
Pré-Publicações do Departamento de Matemática
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Introduction
As the Reader might conclude from its title, this note is closely related

to our previous note [5]. In fact it consists of three independent additional
observations on characterizing effective descent morphisms in the category
Top of topological spaces, presented in three sections, respectively, as follows:

Just as in [5] and in several other papers we refer to, saying that f : X → Y
is an effective descent morphism in Top we simply mean that the pullback
functor

f ∗ : (Top ↓ Y )→ (Top ↓ X)

is monadic. In Section 1 we recall two known characterizations of such maps,
due to J. Reiterman and W. Tholen [10] and to M. M. Clementino and D.
Hofmann [2], and add a modified version of the first of them. Since each
characterization is quite sophisticated, such an addition seems to be useful.

Section 2 is devoted to locally finite spaces, and its main purpose is to show
that a morphism there is an effective descent morphism if and only if it is
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an effective descent morphism in Top. A counter-example shows that this
result does not extend to Alexandrov spaces.

Section 3 is devoted to the ‘opposite extreme’, namely to Hausdorff spaces,
and again, a morphism there is an effective descent morphism if and only if
it is an effective descent morphism in Top. As far as we could, we use there
the more general context of relational algebras in the sense of M. Barr [1];
such an algebra is a Hausdorff algebra if its structure relation is a partial
map. A remark at the end recalls one of the open questions mentioned in [5]
and explains that, as follows from our results, it has affirmative answers in
both locally finite and Hausdorff cases.

1. Reiterman-Tholen and Clementino-Hofmann charac-
terizations of effective descent morphisms of general
topological spaces: a reformulation

For a continuous map f : X → Y of topological spaces, we have:

Theorem 1.1 ([10]). A surjective continuous map f : X → Y is an effective
descent morphism in Top if and only if, for every family of ultrafilters yi on
Y converging to yi ∈ Y , i ∈ I, such that the yi’s converge to y ∈ Y with
respect to an ultrafilter u on I, there is an ultrafilter x on X converging to a
point x ∈ f−1(y) such that

⋃
i∈U Ai ∈ x for all U ∈ u, where Ai is the set of

adherence points of the filterbase f−1yi which belong to f−1(yi).

Theorem 1.2 ([2]). A continuous map f : X → Y between topological spaces
is of effective descent if and only if Ult(Ult(f)) is surjective.

Denoting the ultrafilter monad on Top by T = (T, η, µ), we are go-
ing to reformulate these theorems as one theorem (Theorem 1.4 below)
expressed in a language that uses only T and the convergence relations
R ⊆ T (X) × X and S ⊆ T (Y ) × Y on X and Y , respectively. Follow-
ing [2], the map R → S induced by f will be denoted by f1, while the map
T (R)×T (X) R→ T (S)×T (Y ) S induced by f1 will be denoted by f2. That is,
f1 = Ult(f) and f2 = Ult(Ult(f)) as defined in [2].

Lemma 1.3. (‘Folklore’ ) Let

A C
uoo v // B

be a span of sets with a ∈ T (A) and b ∈ T (B). The following conditions are
equivalent:
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(i) there exists c ∈ T (C) with T (u)(c) = a and T (v)(c) = b;
(ii) D ∈ a⇒ v(u−1(D)) ∈ b.

Proof : (i)⇒(ii): D ∈ a⇒ u−1(D) ∈ c⇒ v−1(v(u−1(D))) ∈ c⇒ v(u−1(D)) ∈
T (v)(c) = b.

(ii)⇒(i): The equalities T (u)(c) = a and T (v)(c) = b hold if and only if,
for every D ∈ a and every E ∈ b, the sets u−1(D) and v−1(E) belong to c.
To prove the existence of such c is to prove that u−1(D) ∩ v−1(E) is always
non-empty. And it is indeed non-empty since so is v(u−1(D)) ∩ E being the
intersection of two elements of the filter b.

Theorem 1.4. Let X = (X,R) and Y = (Y, S) be topological spaces. The
following conditions on a continuous map f : X → Y are equivalent:

(i) f is an effective descent morphism in Top;
(ii) for every (s, (y, y)) ∈ T (S)×T (Y )S, there exists (x, x) ∈ R with f(x) = y

and ρ2(f
−1
1 (U)) in x for each U ∈ s, where ρ2 is the second projection

map R→ X;
(iii) for every (s, (y, y)) ∈ T (S)×T (Y )S, there exists (x, x) ∈ R with f(x) = y

and f1(ρ
−1
2 (V )) in x for each V ∈ x, where ρ2 is as above;

(iv) f2 is surjective, that is, for every (s, (y, y)) ∈ T (S)×T (Y ) S, there exists
(r, (x, x)) ∈ T (R) ×T (X) R with f(x) = y and T (f1)(r) = s (which also
implies T (f)(x) = y).

Moreover, it can be assumed that for a given (s, (y, y)) ∈ T (S) ×T (Y ) S, the
pair (x, x) involved in conditions (ii), (iii), and (iv) is the same.

Proof : (i)⇔(iv) is a trivial copy of Theorem 1.2. (ii)⇔(iv) follows from
Lemma 1.3 applied to the span

S R
f1oo

ρ2 // X,

while (iii)⇔(iv) follows from Lemma 1.3 applied to the opposite span.

Remark 1.5. A careful comparison with Section 5 in [2] could explain that
our reformulations and proof of Theorem 1.4 are hidden there, and, on the
other hand, they cover the proof of Theorem 5.2 of [2]. Not going into the
full story, let us only point out the following:

(a) Our Lemma 1.3, which indeed seems to be a known ‘folklore obser-
vation’ is actually useful for several purposes. For example, it eas-
ily implies the Beck–Chevalley property of T , using a much simpler
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Beck–Chevalley property of the power set functor, namely the fact
that, for a pullback diagram

C
v //

u
��

B

β
��

A α
// U

and any subset D of A, we have v(u−1(D)) = β−1(α(D)).
(b) The definition of Ai in Theorem 1.1 is equivalent to

Ai = {a ∈ X | (∃a∈T (X) (T (f)(a) = yi & (a, a) ∈ R)) & f(a) = yi}, (1.i)

and, for U ∈ u, we can calculate subsequently:

φ(U) = {(yi, yi) | i ∈ U},

f−1
1 (φ(U)) = {(a, a) ∈ R | ∃i∈U (T (f)(a), f(a)) = (yi, yi)},

ρ2(f
−1
1 (φ(U))) = {a ∈ X | ∃i∈U ∃a∈T (X) ((T (f)(a), f(a)) = (yi, yi) & (a, a) ∈ R)},

which, together with (1.i), gives⋃
i∈U

Ai = ρ2(f
−1
1 (φ(U))),

and easily shows the equivalence of conditions (i) and (ii) in Theorem
1.4, independently of Theorem 1.2.

2. Locally finite descent
For a topological space X, let R = Ult(X) and T (R)×T (X)R = Ult(Ult(X))

be as in Section 1.

Theorem 2.1. The following conditions on a space X = (X,R) are equiva-
lent:

(i) X is locally finite, that is every point in X has a finite neighbourhood;
(ii) X is an Alexandrov space (which means that its set of open subsets is

closed under intersections, or, equivalently, its topology is determined
by a preorder), in which all minimal open subsets are finite;

(iii) if (x, x) belongs to R, then the ultrafilter x is principal;
(iv) if (r, (x, x)) belongs to T (R) ×T (X) R, then the ultrafilters x and r are

principal.
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Proof : (i)⇔(ii) is well known.
(i)⇒(iii): Given (x, x) ∈ R, let X ′ be a finite neighbourhood of x; then

X ′ ∈ x and, since X ′ is finite, this implies that x is principal.
(iii)⇒(i): Suppose x is a point in X and u the set of all subsets of X

of the form U ∩ V , where U is a neighbourhood of x and V has a finite
complement. If x ∈ T (X) contains u as a subset, then x is a non-principal
ultrafilter with (x, x) in R, which is impossible by (iii). Since u is closed under
finite intersections, this means that U ∩ V = ∅ for some neighbourhood U of
x and some V with a finite complement, making U finite.

(iii)⇒(iv): Assuming (iii), if (r, (x, x)) belongs to T (R) ×T (X) R, then x
is principal and T (ρ2)(r) = x. Suppose x is generated by {x′}, that is,
x = {U ⊆ X |x′ ∈ U}. We observe:

(a) {x′} ∈ x, and so ρ−1
2 ({x′}) belongs to r.

(b) We already know that (iii) implies (i), and so there exists a finite neigh-
bourhood A of x′.

(c) ρ−1
2 ({x′}) consists of all elements of R of the form (a, x′), and, since every

ultrafilter converging to x′ contains all neighbourhoods of x′, each such
a contains A.

(d) An ultrafilter containing a finite set must be a principal ultrafilter gen-
erated by one of its one-element subsets.

(e) As follows from (c) and (d), the set ρ−1
2 ({x′}) is finite.

(f) As follows from (a) and (e), r is a principal ultrafilter.

(iv)⇒(iii): For (x, x) ∈ R, choose r with T (ρ2)(r) = x, which is possi-
ble since ρ2 is surjective making T (ρ2) as well. Then (r, (x, x)) belongs to
T (R)×T (X) R, and we can apply (iv).

Let us write

6R = {(x1, x0) ∈ X ×X |x0 ∈ {x1}},

6(2)
R = {(x2, x1, x0) |x2 6 x1 6 x0} ≈ 6R ×X 6R .

Consider the map

6(2)
R → T (R)×T (X) R (2.i)

defined by (x2, x1, x0) 7→ (r, (x, x0)), where x = ẋ1 is the ultrafilter on X
generated by {x1}, and r is the ultrafilter on R generated by {(ẋ2, x1)}. It is
natural in X, and, from Theorem 2.1, we easily obtain:

Corollary 2.2. Is X is locally finite, then the map (2.i) is bijective.
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This gives us a simple characterization of effective descent morphisms of
locally finite spaces:

Theorem 2.3. Let X = (X,R) and Y = (Y, S) be locally finite topological
spaces. The following conditions on a continuous map f : X → Y are
equivalent:

(i) f is an effective descent morphism in Top;
(ii) f is an effective descent morphism in the category of Alexandrov spaces;
(iii) f is an effective descent morphism in the category of locally finite spaces;

(iv) the map 6(2)
R → 6(2)

S induced by f is surjective.

Proof : (i)⇔(iv) follows from Theorem 1.4(i)⇔(iv) (i.e., from Theorem 1.2)
and Corollary 2.2.

(ii)⇔(iv) is nothing but the characterization of effective descent morphisms
of preordered sets (Proposition 3.4 in [8]).

(ii)⇒(iii): As follows from a well-known observation in descent theory, e.g.
recalled as Corollary 2.7.2 in [9], we only need to prove that, for a pullback
diagram

A
g
//

α
��

B

β
��

X
f
// Y

(2.ii)

in the category of Alexandrov spaces, B is a locally finite space whenever
so are A, X, and Y . Replacing again Alexandrov spaces with preorders and
continuous maps with preorder-preserving maps, we have to prove that, for
every b ∈ B, the set b ↓ = {b′ ∈ B | b′ ≤ b} is finite, whenever all elements of
A, of X, and of Y have such properties. Suppose b ↓ is infinite, and observe:

• Since β(b) ↓ is a finite subset of Y , there exists an infinite subset B′

of b ↓, on which β is constant; say, β(B′) = {y}.
• Since β is preorder-preserving, we have y ≤ β(b).
• Since f satisfies (ii), it also satisfies (iv). Therefore there exist x′ ≤ x

in X with f(x) = β(b) and f(x′) = y.
• For every b′ ∈ B′, we have (x′, b′) ≤ (x, b) in A = X ×Y B. Since
B′ is infinite, this gives an infinite subset of (x, b) ↓ in A, which is a
contradiction.

(iii)⇒(iv): The proof of Proposition 3.4(b)⇒(c) of [8] can be used since A
there, which plays the role of our B, is finite.
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Remark 2.4. (a) Having a simple description of effective descent mor-
phisms in the category of locally finite spaces might seem surprising
since this category does not admit some coequalizers.

(b) Assuming X and Y in Theorem 2.3 to be not just Alexandrov spaces,
but locally finite spaces, is essential. Indeed, take: Y to be the set of
integers with the topology determined by the usual order; X to be the
coproduct of all sets of all three-element subspaces of Y ; f : X → Y
to be induced by the inclusion maps. Then f satisfies condition (iv)
of Theorem 2.3 (which implies that it satisfies condition (ii) there, by
Proposition 3.4 of [8]), but it is not even a descent map (=pullback
stable regular epimorphism) in Top, which can be easily shown using
either the convergence approach, or the Day–Kelly characterization
[7] of pullback stable regular epimorphisms in Top.

3. Hausdorff descent
We begin this section with a context considered in [5], where T = (T, η, µ)

is an arbitrary non-trivial monad on Sets, and consider relational T -algebras
in the sense of M. Barr [1]. As mentioned in [5], they can also be seen as ‘T -
preorders’, and they are special cases of reflexive and transitive lax algebras in
the sense of [3] and of more special reflexive and transitive (T, V )-algebras,
also called (T, V )-categories, in the sense of [6]; when T is the ultrafilter
monad they are the same as topological spaces as considered in Sections 1
and 2.

Given a relational T -algebra X = (X,R), let us repeat diagram (2.2) of
[5]:

T (R)×T (X) R

��

��

��

Ř×T (X) R

��

&&
T (R)

��

��

��

R

�� ��

Ř

zz ''

T 2(X) T (X) X

(3.i)
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in which (also repeating from [5]):

• the solid arrows represent R as a span T (X)→ X and T (R) as a span
T 2(R)→ T (X), and then represent the composite of these spans as a
span T 2(X)→ X;
• Ř is the relation T 2(X) → T (X) associated with the span
T (R) : T 2(X) → T (X), that is, Ř is simply the image of T (R) in
T 2(X)× T (X);
• the dotted arrows are the canonical maps defined accordingly.

Then, given a morphism f : (X,R) → (Y, S) of relational T -algebras, con-
sider the commutative diagram

T (R)×T (X) R
f2 //

πX

��

T (S)×T (Y ) S

πY

��

Ř×T (X) R
f̌2

// Š ×T (Y ) S,

(3.ii)

in which:

• f2 and f̌2 are induced by f , and they are the same as the maps (2.5)
and (2.6), respectively, in [2]; note also that, when T is the ultrafilter
monad, f2 is the same as Ult(Ult(f)) used in Section 1.

• πX is the same as the top vertical dotted arrow in (3.i) and πY is the
similar canonical map associated with Y = (Y, S).

Recall that, following the special case of the ultrafilter monad, a relational
T -algebra X = (X,R) is said to be a Hausdorff T -algebra if R is a partial
map, that is, if X satisfies the implication

((x, x), (x, x′) ∈ R)⇒ x = x′

(of course the algebraic viewpoint would rather suggest to say “partial” in-
stead of “Hausdorff”).
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Theorem 3.1. Let f : X → Y be a morphism of relational T -algebras.
Then:

(a) if Y is a Hausdorff T -algebra, then f2 is surjective if and only if so is
f̌2;

(b) if the functor T has the Beck–Chevalley property, X and Y are Haus-
dorff T -algebras, and f is an effective descent morphism in the cate-
gory of relational T -algebras, then f is an effective descent morphism
in the category of Hausdorff T -algebras.

Proof : (a) is obvious: just note that, when Y is a Hausdorff T -algebra, the
map πY involved in diagram (3.ii) is bijective.

(b): Referring again Corollary 2.7.2 in [9] (similarly to our proof of Theorem
2.3(ii)⇒(iii)), we only need to prove that, for a pullback diagram (2.ii) in the
category of relational T -algebras with f being an effective descent morphism,
B is a Hausdorff T -algebra whenever so are A, X, and Y . Writing here
A = (A,RA), etc., suppose (b, b) ∈ RB and (b, b′) ∈ RB, and observe:

• Since (b, b) ∈ RB and (b, b′) ∈ RB, we have (T (β)(b), β(b)) ∈ RY and
(T (β)(b), β(b′)) ∈ RY , which gives β(b) = β(b′), since Y is a Hausdorff
T -algebra.
• Since f is an effective descent morphism, the map RX → RY induced

by f is surjective, as follows e.g. from Theorem 2.4 of [4] (in fact this
follows from various results proved by the same authors before).
• Therefore there exists (x, x) ∈ RX with T (f)(x) = T (β)(b) and
f(x) = β(b) = β(b′).
• Since the functor T has the Beck–Chevalley property, there exists
a ∈ A with T (α)(a) = x and T (g)(a) = b.
• Then, since (2.ii) is a pullback diagram, (a, (x, b)) ∈ RA and (a, (x, b′)) ∈
RA.
• Since A is Hausdorff, this gives (x, b) = (x, b′), and so b = b′.

That is, B is a Hausdorff T -algebra.

Theorem 3.2. For a continuous map f : X → Y of Hausdorff spaces, the
following conditions are equivalent:

(i) f is an effective descent morphism in Top;
(ii) f is an effective descent morphism in the category of Hausdorff spaces;
(iii) f2 is surjective;
(iv) f̌2 is surjective.
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Proof : (i)⇔(iii) is a special case of Theorem 1.2 (or of Theorem 1.4(i)⇔(iv),
which is the same). (iii)⇔(iv) is a special case of Theorem 3.1(a). (i)⇒(ii)
follows from Theorem 3.1(b). To prove (ii)⇒(i) we can simply copy the
arguments of subsection 4.2 of [10], having in mind that the space E ×B A
constructed there is obviously a Hausdorff space provided so is E.

Remark 3.3. As follows from Corollary 2.2, when X is a locally finite space,
the canonical maps T (R) → T 2(X) and T (R) → T (X) in diagram (3.i) are
jointly monic. Therefore, when f : X → Y is a continuous map of locally
finite spaces, the vertical arrows in diagram (3.ii) are bijections. It follows
that the equivalence of conditions (iii) and (iv) in Theorem 3.2 also holds
for locally finite spaces. Does it hold for general topological spaces? This
problem, mentioned as one of the open problems in [5], is still open.
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