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Universidade de Coimbra
Preprint Number 18–33

SYMMETRIC SEMI-CLASSICAL ORTHOGONAL
POLYNOMIALS OF CLASS ONE

ON q-QUADRATIC LATTICES

G. FILIPUK AND M.N. REBOCHO

Abstract: In this paper we study discrete semi-classical orthogonal polynomials
on non-uniform lattices. In the symmetric class one case we give a closed form
expression for the recurrence coefficients of orthogonal polynomials.

Keywords: Orthogonal polynomials; Divided-difference operator; Non-uniform
lattices; semi-classical class.
Math. Subject Classification (2000): 33C45, 33C47, 42C05.

1. Motivation
Orthogonal polynomials on q-quadratic lattices are part of the discrete

families of orthogonal polynomials. These families are widely spread in the
literature of special functions and applications. Some works we refer to the
interested reader include [7, 13, 14], where a comprehensive approach to
orthogonal polynomials is given, gathering, amongst many other topics, the
analysis of divided difference operators, related problems on classification,
connections with the Sturm-Louville theory, etc.

In the present paper we consider the general divided-difference operator D
[10, Eq. (1.1)] having the basic property of leaving a polynomial of degree
n−1 when applied to a polynomial of degree n. It is well-know that D yields
the Askey-Wilson operator [1] under appropriate specifications. The related
lattice, commonly known as a non-uniform lattice, is obtained from a conic
defined by (2) [11, Sec. 2] and involves the q-quadratic lattice due to its
parametric representations (more details are given in Section 2.1). The main
problem to be analysed in the present paper lies within the so-called direct
problem (see, e.g., [17]): to extract information on recurrence coefficients
of orthogonal polynomials, given some data on the corresponding Stieltjes
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function or the orthogonality measure. We take the difference equation sat-
isfied by the Stieltjes functions, say ADS = CMS + D, where A, C, D are
polynomials, subject to restrictions deg(A) ≤ 3, deg(C) ≤ 2. According to
the classification from [8], this is the so-called class one (see Section 2.2).
Our main goal is to give a closed form expression for the recurrence coeffi-
cients of orthogonal polynomials in the symmetric case, that is, when one of
the recurrence coefficients is zero (cf. Section 3). Such a closed formula is
given in terms of the lattice as well as in terms of the polynomials A, C, D.
To the best of authors’ knowledge, these results are new in the literature.
Furthermore, as the calculus on non-uniform lattices generalizes the calculus
on lattices of lower complexity (see [13], [18, Sec. 2]), our results may be re-
garded as a generalization of some of the results on semi-classical orthogonal
polynomials of class one, for instance: [12], on symmetric orthogonal polyno-
mials when D is Hahn’s difference operator; [2], on orthogonal polynomials
when D is the derivative operator; [4], on orthogonal polynomials when D is
the forward difference operator.

The paper is organized as follows. In Section 2 we give the definitions
and state the basic results which will be used in the forthcoming sections.
In Section 3 we present the main results of the paper, namely, a closed
form expression for the recurrence coefficients of the symmetric orthogonal
polynomials (see Theorem 1).

2. Preliminary Results
2.1. The General Divided Difference Operator, q-Quadratic Lat-
tices, and Orthogonal Polynomials. We consider the divided difference
operator D given in [10, Eq.(1.1)], with the property that D leaves a polyno-
mial of degree n− 1 when applied to a polynomial of degree n. The operator
D, defined on the space of arbitrary functions, is given in terms of two func-
tions, y1, y2,

(Df)(x) =
f(y2(x))− f(y1(x))

y2(x)− y1(x)
. (1)

The functions y1, y2 may be defined as the two y-roots of the quadratic equa-
tion

ây2 + 2b̂xy + ĉx2 + 2d̂y + 2êx+ f̂ = 0 , â 6= 0 . (2)

In the present paper we shall consider the q-quadratic case, related to the so-
called non-uniform lattices, which appears whenever λτ 6= 0, λ = b̂2−âĉ, τ =



SYMMETRIC SEMI-CLASSICAL OP OF CLASS ONE ON q-QUADRATIC LATTICES 3(
(b̂2 − âĉ)(d̂2 − âf̂)− (b̂d̂− âê)2

)
/â. In such a case, y1, y2 are given by

y1(x) = p(x)−
√
r(x) , y2(x) = p(x) +

√
r(x) (3)

with p, r polynomials given by

p(x) = − b̂x+ d̂

â
, r(x) =

λ

â2

(
x+

b̂d̂− âê
λ

)2

+
τ

âλ
. (4)

We shall use the notation ∆y = y2 − y1. From (3), it follows that

∆y = 2
√
r . (5)

For the q−quadratic case there is a parametric representation of the conic
(2), x = x(s), y = y(s), such that [11, pp. 254–255]

x(s) = xc + ξ
√
â (qs + q−s) , y(s) = yc + ξ

√
ĉ (qs−1/2 + q−s+1/2) , (6)

xc = (âê− b̂d̂)/λ , yc = (ĉd̂− b̂ê)/λ , ξ2 = f̃/(4λ) , f̃ = f̂− ây2
c−2b̂xcyc− ĉx2

c ,

and q defined by

q + q−1 =
4b̂2

âĉ
− 2 . (7)

We have y1(x(s)) = y(s), y2(x(s)) = y(s + 1). Thus, in the account of (3),
we have

p(x(s))−
√
r(x(s)) = y(s) , p(x(s)) +

√
r(x(s)) = y(s+ 1)

and

y(s+ 1) + y(s) = 2p(x(s)) , (y(s+ 1)− y(s))2 = 4r(x(s)) .

In the present paper we shall operate with D given in its general form (1).
We now define other operators related to (1). Firstly, by defining E1 and E2

(see [10]), acting on arbitrary functions f as

(E1f)(x) = f(y1(x)) , (E2f)(x) = f(y2(x)) ,

the so-called companion operator of D is defined as (see [10])

(Mf)(x) =
(E1f)(x) + (E2f)(x)

2
. (8)

Note that Mf is a polynomial whenever f is a polynomial. Furthermore,
if deg(f) = n, then deg(Mf) = n. Indeed, in the account of (3), one has

Ej(x
n) =

(
p(x) + (−1)j

√
r(x)

)n
, j = 1, 2 .
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From the binomial identity

(p±
√
r)n =

n∑
i=0

(
n
i

)
pi
(
±
√
r
)n−i

,

we get, for n odd,

Dxn =

(n−1)/2∑
i=0

(
n
2i

)
p2ir(n−2i−1)/2 , Mxn =

(n−1)/2∑
i=0

(
n

2i+ 1

)
p2i+1r(n−2i−1)/2 ,

(9)
and for n even,

Dxn =

(n−2)/2∑
i=0

(
n

2i+ 1

)
p2i+1r(n−2i−2)/2 , Mxn =

n/2∑
i=0

(
n
2i

)
p2ir(n−2i)/2 .

(10)
In the remainder of the paper we use the following notation:

Dxn =
n−1∑
k=0

dn,kx
k , Mxn =

n∑
k=0

mn,kx
k . (11)

We shall consider orthogonal polynomials related to a (formal) Stieltjes
function defined by

S(x) =
+∞∑
n=0

unx
−n−1, (12)

where (un), the sequence of moments, is such that det
[
ui+j

]n
i,j=0
6= 0, n ≥ 0,

and, without loss of generality, u0 = 1. The orthogonal polynomials related
to S, Pn, n ≥ 0, are taken to be monic, and we will denote the sequence
{Pn}n≥0 by SMOP.

Monic orthogonal polynomials satisfy a three-term recurrence relation [16]

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x) , n = 0, 1, 2, ... , (13)

with P−1(x) = 0, P0(x) = 1, and γn 6= 0, n ≥ 1, γ0 = 1 .
The quantities βn, γn are called the recurrence coefficients of {Pn}n≥0.
Another important sequence, related to {Pn}n≥0, is the sequence of associ-

ated polynomials of the first kind, denoted by {P (1)
n }n≥0, which satisfies the

three term recurrence relation

P (1)
n (x) = (x− βn)P

(1)
n−1(x)− γnP (1)

n−2(x) , n = 1, 2, ...
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with P
(1)
−1 (x) = 0, P

(1)
0 (x) = 1.

In the framework of the Hermite-Padé Approximation (see [9]), the poly-
nomials Pn are the diagonal Padé denominators of (12), and the polynomials

P
(1)
n−1 are the numerator polynomials, thus, also determined by the relation

S(x)− P (1)
n−1(x)/Pn(x) = O(x−2n−1) , x→∞ .

2.2. Semi-Classical Orthogonal Polynomials on Non-Uniform Lat-
tices: the Class One and General Difference Equations. Semi-classical
orthogonal polynomials on non-uniform lattices may be defined by a differ-
ence equation for the Stieltjes function [10, 18],

ADS = CMS +D , (14)

where A, C, D are irreducible polynomials (in x). In general, the polynomials
A, C, D in (14) satisfy, in the account of (1), (8), and (12),

deg(A) ≤ m+ 2 , deg(C) ≤ m+ 1 , deg(D) ≤ m, (15)

where m is some nonnegative integer. When m = 0 we get the so-called
classical polynomials [6, 15].

In the present paper we will study class one (see [8, Def. 8 and Th. 9]),
that is, we will take the difference equation (14) for S with m = 1 in (15),
under the following condition (in order to avoid degenerate cases):

deg(A) = 3 , 1 ≤ deg(C) ≤ 2 or deg(A) < 3 , deg(C) = 2 . (16)

A very useful result on semi-classical orthogonal polynomials concerns the
difference equations studied recently in [3, 5, 11]. In particular, SMOP related
to (14) satisfy the following difference equations, for all n ≥ 0:

An+1DPn+1 = (ln − C/2)MPn+1 + ΘnMPn , (17)

An+1DP (1)
n = (ln + C/2)MP (1)

n +DMPn+1 + ΘnMP
(1)
n−1 , (18)

with

An+1 = A+
∆2

y

2
πn . (19)
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Here ∆y is defined in (5) and ln,Θn, πn are polynomials in x satisfying, for
all n ≥ 0,

πn+1 = −1

2

n+1∑
k=0

Θk−1

γk
, (20)

ln+1 + ln + M(x− βn+1)
Θn

γn+1
= 0 , (21)

−A+ M(x− βn+1)(ln+1 − ln)−
∆2

y

2
(πn+1 + πn) + Θn+1 =

γn+1

γn
Θn−1 , (22)

with initial conditions

π−1 = 0, π0 = −D/2, (23)

Θ−1 = D, Θ0 = A−
∆2

y

4
D − (l0 − C/2)M(x− β0), (24)

l−1 = C/2, l0 = −M(x− β0)D − C/2 . (25)

3. Main Results: the Symmetric Orthogonal Polynomi-
als of Class One

The symmetric families of class one satisfy (13) with βn = 0, n ≥ 0 , that
is,

Pn+1(x) = xPn(x)− γnPn−1(x) , n = 0, 1, 2, ... ,

and they are related to the Stieltjes functions such that (16) holds. Let us
now proceed to the determination of the recurrence coefficients γn.

The polynomials An, ln, Θn, πn in the difference equations from the previ-
ous section satisfy deg(An) = 3, deg(ln) = 2, deg(Θn) = deg(πn) = 1 [3].
We set

A(x) = a3x
3 + a2x

2 + a1x+ a0 , C(x) = c2x
2 + c1x+ c0 ,

D(x) = d1x+ d0 , An(x) = an,3x
3 + an,2x

2 + an,1x+ an,0 ,

ln(x) = `n,2x
2 + `n,1x+ `n,0 , Θn(x) = Θn,1x+ Θn,0 , πn = πn,1x+ πn,0 ,

p(x) = p1x+ p0 , r(x) = r2x
2 + r1x+ r0 .

In accordance with (16), we will take the case

|a3|+ |c2| 6= 0 . (26)

In the following we shall also assume p1 6= 0, p2
1− r2 6= 0 , that is, âb̂ĉ 6= 0 in

(2).
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The polynomial D is defined in terms of the polynomials A, C. Indeed, by
collecting the coefficients in (24) and (25), we get

d1 =
−(a3 + c2p1)

p2
1 − r2

, d0 =
−a2 − c1p1 − c2p0 + (r1 − 2p0p1)d1

p2
1 − r2

. (27)

Theorem 1. Let {Pn}n≥0 be a SMOP related to a Stieltjes function S sa-
tisfying A(x)DS(x) = C(x)MS(x) + D(x) with deg(A) ≤ 3, deg(C) ≤ 2,
deg(D) ≤ 1 under condition (26) in the previous notation. Let the recurrence
relation

Pn+1(x) = xPn(x)− γnPn−1(x) , n = 0, 1, 2, . . .

hold with γ0 = 1. Under the previous notations we have, for all n ≥ 0 ,

γn+2 =
γ1T0D(x0) +

∑n
k=0 ζkTk

TnTn+1
, (28)

γ1 =
(a1 + c1p0 + c0p1 + d0(2p0p1 − r1) + d1(p

2
0 − r0))(p

2
1 − r2)

−a3 + c2p1 + 2d1(r2 + p2
1)

, (29)

where

x0 = −p0/p1 , ζn = A(x0) + 2r(x0)(πn+1 + πn)(x0) , Tn = Θn(x0)/γn+1 .

The quantities ζn, Tn are given in terms of the polynomials A, C as well as
of p, r defined in (4). Indeed, there holds the following explicit formulae. For
all n ≥ 0,

Θn+1,1

γn+2
=
q−n−1(q + 1)(q2n+2 − 1)

(q − 1)p1
`0,2 +

q−n−1(q2n+3 − 1)

q − 1

Θ0,1

γ1
, (30)

πn+1,1 = −d1

2
− Θ0,1

2γ1
− (1− q−n)

(
(q + 1)(qn+1 − 1)

2p1(q − 1)2
`0,2 −

(qn+2 − 1)

2(q − 1)2

Θ0,1

γ1

)
,

(31)

Θn+1,0

γn+2
= 2(πn+1,0 − πn+2,0), (32)

πn+1,0 =
n∏

k=0

sk

π0,0 +
n∑

k=0

(
k∏

j=0

sj

)−1

tk

 , (33)
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with

sn =
fn,0 + 2p1

2p1 − fn+1,0
, (34)

tn =
fn+1 + fn + fn+1,1πn+1,1 + fn,1πn,1 + p0Θn,1/γn+1

2p1 − fn+1,0
, (35)

fn,0 =
2r2dn+1,n

mn+1,n+1
, (36)

fn,1 =
1

mn+1,n+1

(
2r2

(
dn+1,n−1 − dn+1,n

mn+1,n

mn+1,n+1

)
+ 2r1dn+1,n

)
, (37)

fn =
c1

2
+

1

mn+1,n+1

(
a3

(
dn+1,n−1 − dn+1,n

mn+1,n

mn+1,n+1

)
+ a2dn+1,n

)
(38)

and the initial conditions

`0,2 = −p1d1 −
c2

2
,

Θ0,1

γ1
=
−a3 + c2p1 + 2d1(p

2
1 + r2)

p2
1 − r2

, π0,1 = −d1

2
, (39)

π0,0 = −d0

2
,

Θ0,0

γ1
=

1

p2
1 − r2

(
−a2 + c2p0 + d1(3p0p1 + 2r1) + d0(p

2
1 + 2r2)

+p1(p1d0 + p0d1 + c1) +
Θ0,1

γ1
(r1 − 2p0p1)

)
. (40)

Here, p1, p0, r2, r1 are the coefficients of p(x) and r(x) defined in (4), and q
is defined by (7).

Proof : First, let us we deduce (28)–(29).
Evaluating (22) at x0 := −p0/p1 we get, as M(x) = p(x) (which follows

from (3) and (8)),

−A(x0)− 2r(x0)(πn+1 + πn)(x0) + γn+2
Θn+1

γn+2
(x0) = γn+1

Θn−1

γn
(x0) .

Thus, we write

γn+2Tn+1 = γn+1Tn−1 + ζn (41)

with Tn+1 = Θn+1(x0)/γn+2, ζn = A(x0) + 2r(x0)(πn+1 + πn)(x0). By multi-
plying (41) by Tn we get

γn+2TnTn+1 = γn+1Tn−1Tn + ζnTn , n ≥ 0 .
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Iterating yields

γn+2TnTn+1 = γ1T−1T0 +
n∑

k=0

ζkTk , n ≥ 0 ,

thus we obtain (28), where we used T−1 = D(x0) (see (24)).
To obtain γ1 we proceed in two steps: first, by collecting the coefficient of

x in (24) and using (25), we get

Θ0,1 = a1 + c1p0 + c0p1 + d0(2p0p1 − r1) + d1(p
2
0 − r0) .

Next we have (39),

Θ0,1

γ1
=
−a3 + c2p1 + 2d1(p

2
1 + r2)

p2
1 − r2

.

Combining the two equations above we get (29).
Now, let us we deduce the quantities Θn,j/γn+1 and πn,j, j = 0, 1.
To deduce (30) we start by taking βn = 0 as well as M(x) = p(x) in (21),

and collect the coefficients of x2, thus getting

`n+1,2 = −`n,2 − p1
Θn,1

γn+1
. (42)

Also, starting with the definition of An in (19), and using a similar procedure
as in [5, Lemma 1], we obtain Θn+1,1/γn+2 as a linear combination of `n,2 and
Θn,1/γn+1,

Θn+1,1

γn+2
=
−4p1

r2 − p2
1

`n,2 +

(
1− 2(r2 + p2

1)

r2 − p2
1

)
Θn,1

γn+1
. (43)

Then we write (42) and (43) in the matrix form,[
`n+1,2

Θn+1,1/γn+2

]
= X

[
`n,2

Θn,1/γn+1

]
, X =

 −1 −p1

−4p1

r2 − p2
1

1− 2(r2 + p2
1)

r2 − p2
1

 .

(44)
Iterating (44) yields, for all n ≥ 0 ,

`n+1,2 =
(
X n+1

)
(1,1)

`0,2 +
(
X n+1

)
(1,2)

Θ0,1/γ1 , (45)

Θn+1,1/γn+2 =
(
X n+1

)
(2,1)

`0,2 +
(
X n+1

)
(2,2)

Θ0,1/γ1 . (46)

Here,
(
X n+1

)
(i,j)

denotes the element on the position (i, j) of X n+1.
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The diagonalization of X proceeds as in [5, Lemma 1]. Indeed, the set
of the eigenvalues of X is given by σ(X ) = {q, q−1} with q defined in (7).
Therefore, we get X = VDV−1, with V ,D given by

V =

[ −p1

1 + q

−p1

1 + q−1

1 1

]
, D =

[
q 0
0 q−1

]
.

Thus, X n+1 = VDn+1V−1 . As a consequence, from (46) we obtain (30). To
get `0,2 and π0,1 we use (25) and (23), respectively. The quantity Θ0,1/γ1

follows from equating the coefficients of x3 in (18) with n = 1 combined with
(21) with n = 0.

Equation (31) follows from the definition of πn (cf. (20)) combined with
(30).

Equation (32) follows from (20).
In order to deduce πn,0 we start by obtaining some formulae involving `n,1.

By equating the coefficients of xn+2 in (17) we get

`n,1 =
c1

2
+

1

mn+1,n+1

(
an+1,3

(
dn+1,n−1 − dn+1,n

mn+1,n

mn+1,n+1

)
+ an+1,2dn+1,n

)
,

where themn+1,k and dn+1,k are given by (11). As an+1,3 = a3+2r2πn,1, an+1,2 =
a2 + 2r2πn,0 + 2r1πn,1, we get

`n,1 = fn + fn,1πn,1 + fn,0πn,0 , (47)

with fn,0, fn,1, fn given by (36)–(38). Now, to obtain πn,0, we begin by col-
lecting the coefficient of x in (21), hence,

`n+1,1 + `n,1 + p1
Θn,0

γn+1
+ p0

Θn,1

γn+1
= 0 . (48)

Using (47) in (48) as well as 2(πn,0 − πn+1,0) = Θn,0/γn+1 we get, after basic
computations,

πn+1,0 = snπn,0 + tn , n ≥ 0 ,

with sn, tn given by (34)–(35). Thus, we obtain (33).
To obtain π0,0 we use (23), and to obtain Θ0,0/γ1 we take the coefficient of

x2 in (18) with n = 1 combined with (21) with n = 0.
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[15] A.F. Nikiforov and S.K. Suslov, Classical Orthogonal Polynomials of a discrete variable on
non uniform lattices, Letters Math. Phys. 11 (1986) 27–34.
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