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Abstract: In this work, we introduce and study a relationship between two con-
siderably distinct areas of mathematics: Knot Theory and Graph Convexity.

A well-known invariant of a knot or a link is its tunnel number. A collection of
disjoint arcs T = {t1, . . . , tm} properly embedded in the exterior of a knot K in S3

is a unknotting tunnel system for K if the exterior K ∪ T can be ambient isotoped
into the exterior of a plane graph in S3. The tunnel number of K, denoted by t(K),
is the minimum cardinality of an unknotting tunnel system of K. Given a plane
graph G = (V,E), the face convexity is the graph convexity obtained by iteratively
applying the following interval function (the final set is called the face convex hull
of S):

Ifc(S) = S ∪ {v ∈ V (G) | there is a face F of G such that F − v ⊆ S}.
A subset S is a face hull set of G if its convex hull equals V (G), and the face

hull number of G is the size of a smallest face hull set of G; it is denoted by
hnfc(G). A close relationship between t(K) and hnfc(D(K)) is known, where D(K)
is a diagram of the knot K, i.e. a 4-regular planar graph obtained from K by its
vertical projection into the plane.

Because of its dependency on the embedding of the graph, the face convexity
is of hard approach. This is why we lose the constraint and introduce the cycle
convexity. The interval function in this convexity is the following, and it can be
defined for any graph G (the final set is called the convex hull of S):

Icc = S ∪ {v ∈ V (G) | dG′(v) ≥ 2, for some component G′ of G[S]}.
A subset S ⊆ V (G) is a hull set of G if its convex hull equals V (G), and the hull

number of G is the size of a smallest convex set of G; it is denoted by hncc(G).
In this article, we prove that: 1. the hull number of a 4-regular planar graph

is at most half of its vertices; 2. computing the hull number of a planar graph is
an NP-complete problem; and 3. computing the hull humber of chordal graphs,
P4-sparse graphs and grids can be done in polynomial time. As an important open
question, we ask whether hncc(G) is an upper bound for hnfc(G); if the answer is
positive, our result gives an upper bound for the tunnel number of knots based on
the related diagram graph.

Received September 18, 2018.
The authors of this paper were partially supported by CNPq/Universal no. 401519/2016-3, by

FUNCAP/CNPq/PRONEM no. PNE-0112-00061.01.00/16, and by the Centre for Mathematics
of the University of Coimbra – UID/MAT/00324/2013, funded by the Portuguese Government
through FCT/MEC and co-funded by the European Regional Development Fund through the
Partnership Agreement PT2020.

1



2

Keywords: Knot Theory; Tunnel Number; Graph Convexity; Hull number; Planar
graphs.

1. Introduction
We tried to present most of the needed notions in this section, but if the

reader finds any gap, we refer him or her to [1, 2, 3]. In this work, we link
two distinct areas of knowledge: Graph Convexity and Knot Theory. Let
us first shortly describe the notions we need from both areas, alongside the
related works in the literature, before stating our results.

1.1. Basic Graph Theory. A graph G is a pair (V,E), where V is any
finite set called the vertex set of G, and E is a multi-set of subsets of V of
size at most 2; it is called the edge set of G. When V,E are not given, they
are denoted by V (G), E(G), respectively. If {u, v} ∈ E, we write simply uv.
We say that uv has multiplicity k if uv occurs k times in E, and we write
µ(uv) = k. If e = {u} ∈ E, we call e a loop, and we say that G is simple if
G has no loops and every edge of G has multiplicity one. Here, we consider
only loopless graphs, which is not really a big restriction to our problem, as
we will later see.

Given a graph G, the neighborhood of a vertex u ∈ V (G) is the set N(u) =
{v ∈ V (G) | uv ∈ E(G)}; the neighborhood of a subset X ⊆ V (G) is the
set N(X) =

⋃
v∈X N(v) \ X; the neighborhood of u in X ⊆ V (G) is the

set NX(u) = N(u) ∩ X; and the neighborhood of a subset X ⊆ V (G) in
X ′ ⊆ V (G) is the set NX ′(X) = N(X) ∩ X ′. The degree of u in G is
denoted by d(u) and equals

∑
v∈N(u) µ(uv). The minimum degree of G is the

minimum value over d(u), u ∈ V (G), and is denoted by δ(G). We say that
G is k-regular if d(u) = k for every k ∈ V (G); this is also sometimes called
k-valent.

Given a subset C ⊆ V (G), the subgraph of G induced by C is the graph
G[C] = (C,EC), where uv ∈ EC if and only if {u, v} ⊆ C and uv ∈ E(G).
If S ⊆ V (G), then we define G \ S = G[V (G) \ S]. If H ⊆ G is an induced
subgraph of G and u ∈ V (G), the degree of u in H, denoted by dH(u), is the
number of edges incident to u in H, counting multiplicities.

A path in G (between v1 and vq) is a sequence of vertices (v1, · · · , vq) such
that either q = 1 or vivi+1 ∈ E(G) for every i ∈ {1, · · · , q−1}. If vq = v1, the
path is called a cycle of length q−1. A graph is said to be connected is there
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exists a path between u and v, for every pair of vertices u, v ∈ V (G). Also,
a component of G is a maximal connected induced subgraph of G. A graph
G is a tree if it is connected and acyclic (alternatively, a tree is a minimal
connected graph).

A vertex u ∈ V (G) is a cut-vertex of G if G − u has more components
than G. A graph G is 2-connected if G is connected and does not have any
cut-vertex. A block of G is a maximal 2-connected subgraph of G. It is
well-known that the block structure of a connected graph is that of a tree.

A graph G is planar if G can be embedded on the plane in a way that its
edges intersect only at their endpoints. A graph thus embedded is called a
plane graph. Given a plane graph G, each region of the plane minus G is
called a face of G, and the unbounded face is called the outer face of G. We
say that a face F has degree k if its bounded by k edges (edges that bound
only F are counted twice); a face of degree k is also called a k-face.

In Section 4, we investigate some graph classes. A chordal graph is a graph
with no induced cycles of length greater than 4. A P4-sparse graph is a graph
in which every subset of 5 vertices induces at most one path on 4 vertices.
And for positive integers m and n, the m × n grid, denoted by Gm,n is the
graph on vertices {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n} having as edge set:

{(i, j)(i, j + 1) | i ∈ {1, . . . ,m}, j ∈ {1, . . . , n− 1}}∪
{(i, j)(i+ 1, j) | i ∈ {1, . . . ,m− 1}, j ∈ {1, . . . , n}}.

1.2.Graph Convexities. A convexity space is an ordered pair (V, C), where
V is an arbitrary set and C is a family of subsets of V , called convex sets,
that satisfies:

(C1) ∅, V ∈ C;
(C2) For all C ′ ⊆ C, we have

⋂
C ′ ∈ C; and

(C3) The union of any non-decreasing (w.r.t. inclusion) sequence of ele-
ments of C belongs to C.

In Graph Convexity, convexity spaces are defined over the vertex set of a
graph G. Thus, we always consider the set V to be finite and non-empty.
Given a subset S ⊆ V , the convex hull of S (with respect to (V, C)) is the
minimum C ∈ C containing S and we denoted it by Hull(S). If Hull(S) = V ,
then we say that S is a hull-set. The hull number of (V, C) is the minimum
cardinality of a hull-set of (V, C) and it is denoted by hn(V, C).
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Let V be a set and I : 2V → 2V be a mapping such that C ⊆ I(C), for
all C ⊆ V . A subset C ⊆ V is said to be I-closed if I(C) = C. The family
CI of I-closed subsets satisfies axioms (C1), (C2) and (C3). The convexity
space (V, CI) is said to be an interval-convexity space, and the function I is
called interval function. Observe that in this case the convex hull of a subset
C ⊆ V equals the set

⋃
k∈N I

k(C), where Ik denotes k applications of the
interval function; for instance, I2(C) = I(I(C)).

Given a graph G, the interval function Icc : 2V (G) → 2V (G) in the cycle
convexity is defined as follows:

Icc(C) = C ∪ {v ∈ V (G) | there exists a cycle in G[C ∪ {v}] containing v}.

For a plane graph G we also define the face convexity Ifc : 2V (G) → 2V (G)

as follows:

Ifc(C) = C ∪
{
v ∈ V (G) | there is a face F of G containing v

such that F − {v} ⊆ C

}
.

We denote the hull number of (V (G), CIcc) by hncc(G) and of (V (G), CIfc)
by hnfc(G). For shortness we refer to hncc(G) simply as the hull number of
G and to hnfc(G) as the face hull number of G. Clearly hncc(G) ≤ hnfc(G).
Similarly, by hull set, we mean the hull set on the cycle convexity, and by
face hull set, a hull set in the face convexity.

As we shall see in the next section, the definition of such interval function
is motivated by an invariant of knots and links called the tunnel number.
Before going into these details in Knot Theory, let us first refer to previous
works in the literature concerning Graph Convexity.

It is important to emphasize that there are several interval functions de-
fined over the vertices of a graph in the literature, leading to several graph
convexities, e.g.: geodetic [4], P3 [5], P ∗3 [6], monophonic [7]. The graph
convexities we should emphasize are the P3 and P ∗3 . Their interval functions
are, respectively: IP3

(C) = C ∪ {u ∈ V (G) | u has two neighbors in C} and
I*
P3

(C) = C ∪ {u ∈ V (G) | u has two non-adjacent neighbors in C}. We
mention that the P3 convexity is also called percolation [8]; this concept has
many applications in physics and they are usually interested in probabilistic
results (e.g., what is the probability p such that if the vertices are initially
chosen with probability p, then the the chosen set is a hull set - or perco-
lates the entire graph). Observe that hnP3

(G) = hnP*
3
(G) if G has no trian-

gles. Also, because a hull-set in the P ∗3 -convexity and in the cycle convexity
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is also a hull-set in the P3-convexity, we get that hnP3
(G) ≤ hnP*

3
(G) and

hnP3
(G) ≤ hncc(G). And unless G is triangle-free, one cannot ensure a rela-

tionship between hnP*
3
(G) and hncc(G). In Subsection 1.5, when presenting

our results, we will comment about some known results on these convexities.

1.3. Knot Theory. In the sequel, we present basic notions of Knot Theory
and describe a problem in this area which is related to the hull number (with
respect to the interval functions of the previous section) of planar graphs
arising from knots and link diagrams. Throughout this paper we work in the
smooth category of manifolds.

Basics in knot theory. A knot is an embedding of a circle in the 3-dimensional
sphere S3. If f : S1 → S3 is such an embedding, we think of the knot as
the subset K ⊂ S3 given by K = f(S1). A finite collection of disjoint knots
in S3 is called a link. Hence, knots are single component links. Two knots
or links K1, K2 are said to be equivalent if they are ambient isotopic. An
ambient isotopy φ : S3 × [0, 1] → S3 is a continous map such that each
φt = φ|S3×{t} : S3 ≡ S3 × {t} → S3 is a homeomorphism and φ0 = idS3.
To say K1 and K2 are equivalent means that such a φ exists, satisfying
φ1(K1) = K2.

A polygonal knot is a knot whose image is the union of a finite set of line
segments. We shall only consider knots which are equivalent to polygonal
knots. These are called tame knots.

Let K ⊂ S3 be a knot or link. A useful way to visualize K is to consider
its projection on a plane. It is a well known fact that, generically, such a
projection is one-to-one, except at a finite number of double points where
the projection crosses itself transversely. These projections correspond to
finite graphs where all vertices are 4-regular. From these graphs one builds
diagrams for K as follows: at each vertex we distinguish between the over-
strand and the under-strand of K by creating a break in the strand going
underneath. See Figure 1. Such a diagram is denoted by D(K) and the
corresponding 4-regular graph is denoted by GD(K).

We remark that the correspondence between the graphs and diagrams is not
one-to-one. The same graph may be associated to several distinct diagrams.
For example, it can be easily proved that any finite connected 4-regular graph
is associated to a diagram of the trivial knot (the knot which bounds a disk
embedded in S3).
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Figure 1. Left: a diagram of a knot; Right: the corresponding
4-regular graph.

Tunnel number. Given a knot or link K in S3, a tunnel for K is a properly
embedded arc in the exterior E(K) of K. Given a collection of disjoint
tunnels T = {t1, ..., tm} for K, we may think of K ∪ T as a spatial graph.
The collection T is called an unknotting tunnel system for K if a regular
neighborhood of the graph K∪T can be isotoped into a regular neighborhood
of a plane graph in S3. Every link K in S3 admits an unknotting tunnel
system. In fact, if we add one vertical tunnel at each crossing of a diagram
D(K), we obtain an unknotting tunnel system for K. The tunnel number
of K is the minimal cardinality among all unknotting tunnel systems for K
and we denote it by t(K).

The tunnel number is also interpreted in the setting of Heegaard genus
g(M) of a 3-manifold M , which is the minimal genus of a surface splitting
the 3-manifold into two compression bodies. (See for instance [9].) Note that
the definition of an unknotting tunnel system T = {t1, ..., tm} is equivalent to
say that the boundary of regular neighborhood of K ∪ T , which is a surface
of genus m+ 1, splits E(K) into a handlebody and a compression body. We
then have that g(E(K)) = t(K)+1. The computation of the Heegaard genus
of a 3-manifold is very difficult to compute in general. In fact, by [10], this
problem is NP-hard.

In some situations the tunnel number can be computed exactly. For in-
stance, if one single tunnel defines an unknotting tunnel system for a non-
trivial knot, then the knot has tunnel number one. Also, it is known that
tunnel number one knots are prime. So, if a composite knot has an unknot-
ting tunnel system with two tunnels, then the tunnel number of the knot
is 2. But determining if prime knots have tunnel number 2 or higher is a
difficult task. In general, one works with upper bounds or lower bounds for
the tunnel number. For instance, as observed above, the crossing number is
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Crossing number 3 4 5 6 7 8 9 10 11 12
hncc(G) = hnfc(G) = 1 1 1 2 3 7 12 24 45 91 176
hncc(G) = hnfc(G) = 2 0 0 0 0 0 9 25 120 446 1952
hncc(G) = hnfc(G) = 3 0 0 0 0 0 0 0 0 15 48

total 1 1 2 3 7 21 49 165 552 2176

Table 1. The number of prime knots K by crossing number
and hull number of G = GD(K).

an upper bound for the tunnel number, and, from the Heegaard splitting of
the knot exterior, the rank of the fundamental group of the knot exterior is
a lower bound for the tunnel number plus one. For links the tunnels neces-
sarily have to connect the link components. Hence, its tunnel number is at
least the number of components minus one. This lower bound can be used to
determine the tunnel number of a link in case one finds an unknotting tunnel
system with that cardinality, as in [11]. Also in [12] the authors determine
the tunnel number of a class of links by exploring the following upper bound:
given a diagram D(K) of K, consider vertical arcs added at certain crossings
(see figure 2 below). What is the smallest unknotting tunnel system consist-
ing of vertical arcs only? One of the results in [12] shows that this is at most
the hull number associated to the interval function Ifc of the graph GD(K).
We conjecture that the tunnel number is also bounded above by hncc. In
fact, we developed a computer program to compute the hull number and the
face hull number of every prime knot up to 12 crossings, whose results are
described in Table 1. For every one of these 2977 knot diagrams D(K), we
obtained hncc(GD(K)) = hnfc(GD(K)).

Hence, finding good upper bounds for the hull number of GD(K) would help
us estimate t(K).

Figure 2. Adding a vertical arc at a crossing v of the diagram.
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1.4. Relationship between hull number and tunnel number. The
result of this subsection have appeared, in a more general setting, in [12].
We include it here for completeness.

Remark 1.1. Suppose one starts to add vertical arc and, at some point,
there is a face f corresponding to one of the planar regions determined by
the diagram D(K) such that all, except one, of the crossings of f has a
vertical arc. Let v represent this crossing. Then the crossing v of f may be
removed. Let K1 be the resulting 1-complex. This is described in Figure 3.

Figure 3. Removal of vertex

In the diagram D(K), let f ′ be the face containing v, opposite to f . After v
is removed, as above, the faces f and f ′ merge into a single face f1 of D(K1).
If necessary, we may keep adding vertical arcs. Whenever this procedure
yields a face in which all crossings, except one, have a vertical arc, then the
remaining crossing can be removed.

In what follows, we restrict to minimal crossing diagrams of knots and
links. Consider the 4-regular graph GD(K) given by a diagram D(K) of a
link K, i.e., just ignore over/under information on D(K).

Theorem 1.2. t(K) ≤ hnfc(GD(K)).

We thus wish to find good upper bounds for t(K) in terms of the crossing
number of K. The proof of this theorem relies on Remark 1.1.

Let V0 be a subset of vertices in D(K) in which vertical arcs have been
added. Let f be a face of D(K) and suppose that in all, except one, vertices of
f vertical arcs have been added. In the link K, let v represent the remaining
crossing of f , as in the remark. Consider the 1-complex K1 obtained by
removing this crossing, according to the remark, and D(K1) the planar graph
associated to K1.
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Lemma 1.3. Percolation in the graph D(K1) is equivalent to the percolation
in D(K).

Proof : The vertex (crossing) v is removed from D(K). Let f1 be the face of
D(K1) obtained by merging the faces f and f ′. Then the vertices of f1 that
do not have a vertical arc are exactly the vertices of f ′ that that do not have
vertical arcs. Moreover, let g, g′ be the faces of D(K) adjacent to v other
than f, f ′. These yield two faces g1, g

′
1 in D(K1), respectively. As before, the

vertices of g1, g
′
1 that do not a vertical arc are exactly those vertices of g, g′

that do not a vertical arc.

Proof of theorem 1.2: The theorem will be proved by showing hnfc(D(K)) is
an upper bound for the number of vertical arcs needed to make the resulting
1-complex planar. Assume V0 is a hull set for D(K), i.e., coloring all vertices
in V0, then it percolates to the whole graph D(K). We relate the percolation
rule to Remark 1.1.

Place one vertical arc at each crossing corresponding to the vertices of V0.
Let v be the first crossing to be removed in D(K). Then it belongs to a
face f in which all other vertices were previously colored. By Remark 1.1,
the crossing corresponding to v may be removed. Let D(K1) be the graph
obtained by removing the crossing v. By Lemma 1.3, percolation in D(K)
is equivalent to percolation in D(K1). Then V0 is a hull set for D(K1) also.
Inductively, repeat this process to the remaining vertices (crossings). We end
up with a diagram D′ of 1-complex K ′ in which there are no crossings, i.e.,
K ′ is planar.

1.5. Our Results. The main initial motivation for this work has been to
find good upper bounds for the hull number of 4-regular planar graphs, not
necessarily simple, in order to obtain better bounds for the tunnel number
of links. At the beginning of our studies, we believed that a version of
Theorem 1.2 would also hold for hncc(G). However, we have not been able to
prove such a theorem and leave the following open question, whose positive
answer would imply the desired result:

Question 1.4. Let G be a 4-regular planar graph. Does the following hold?

hnfc(G) ≤ hncc(G).
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Because the face convexity depends on the embedding of the graph, it is
of much harder approach. This is why we decided to investigate the cycle
convexity nevertheless. First of all, we prove that we can consider only
loopless graphs. We mention that we do not restrict our attention to simple
graphs, as most convexity works do, because of our initial motivation on knot
theory.

Proposition 1.5. Let G be a graph, and u ∈ V (G) be such that {u} is a
loop in G. Let H be obtained from G by removing u and making N(u) be a
clique in H. Then, hncc(H) = hncc(G).

Proof : We only need to prove that any hull-set of H is also hull-set of G,
and vice-versa. But since {u} is itself a cycle, we get u ∈ Hull(∅), and one
can verify that this implies the proposition.

This means that the problem is not harder if we have loops, and this is why
from now on we consider only loopless graphs. If the graph has no loops, an
equivalent way of defining the interval function for the cycle convexity would
be:

Icc(C) = C ∪ {u ∈ V (G) | dH(u) ≥ 2, for some component H of G[C]}.
In Section 3, we show that the hull number is at most half of the vertices

of G, when G is a 4-regular graph. This is a tight bound as can be seen
by the example in Figure 4. It consists of the graph obtained from two
disjoint cycles of length k, (u1, . . . , uk) and (v1, . . . , vk), by adding edges of
multiplicity two uivi for each i ∈ {1, . . . , k}. If S ⊆ V (G) has size smaller
than k − 1, by the pigeonhole principle there exist i, j ∈ {1, . . . , k} such
that {ui, vi, uj, vj} ∩ S = ∅, which implies that {ui, vi, uj, vj} ∩ Hull(S) = ∅
since ui, vi, uj, vj don’t have two neighbors in the same connected component
of G[S] (this is called a co-convex set and will be formally defined later).
Therefore hncc(G)/2k ≥ k−1

2k →
1
2 as k → +∞.

Figure 4. Tight example.

It is worth mentioning that we have not been able to find a simple 4-regular
planar graph that needs half of the vertices to be contaminated. In fact, we
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believe that this could be improved to a third if G is a simple graph; hence
we ask:

Question 1.6. What is the minimum c such that hncc(G) ≤ c · n, for all
simple 4-regular planar graphs G on n vertices?

It is also worth mentioning that, in general, planar graphs may need as
many as all the vertices to be contaminated. As we will see in Section 4,
if G is a chordal graph with p blocks, then hncc(G) ≥ p + 1. Because a
tree T on p vertices is also a chordal planar graph with p− 1 blocks, we get
hncc(T ) = p. Also, one can observe that a cycle C on n vertices is such that
hncc(C) = n − 1, which means that n cannot be improved even if G is a
simple 2-connected planar graph, i.e., the 4-regularity in the question above
is necessary.

Now, apart from the topological interest, the new graph convexity has
an interest of its own. We recall the connection of our graph convexity to
other previously known ones: the P3 and P ∗3 convexities. Concerning the
P3-convexity, in [13] the authors prove that computing the hull-number is
NP-complete in general, and they give polynomial results for chordal graphs
and cographs. In [6], the authors prove that computing the hull number
remains NP-complete even when restricted to subgraphs of the grid, which
implies that it is hard for bipartite graphs and planar graphs with bounded
maximum degree; they also give polynomial results for P4-sparse graphs. In
addition, they introduce and investigate the P ∗3 -convexity, and prove that
computing the hull-number is NP-complete for bipartite graphs, and also
polynomial for P4-sparse graphs. A natural question is whether any of these
results also apply to our convexity. In Section 2, we prove that computing
hncc(G) is NP-complete even when G is a planar graph, and in Section 4 we
give polynomial results for chordal graphs, P4-sparse graphs and grids.

In particular, our NP-completeness proof does not limit the maximum de-
gree of the graph, which means that we do not know what is the complexity
of computing hncc(G) when G is a 4-regular planar graph, our main class of
interest. We therefore pose the following question:

Question 1.7. Let G be a 4-regular planar graph. Can one compute hncc(G)
in polynomial time?

Many other questions can be posed about all of these graph parameters,
since very little is known. In particular, Table 2 shows the known results of
the graph classes investigated so far.
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Graph class P3 P∗3 cycle conv.
chordal P ? P
P4-sparse P P P
bipartite NP NP ?
planar NP ? NP

Table 2. The complexity of computing the hull number of G in
the given convexities. In the table, P stands for polynomial, NP
stands for NP-complete and “?” stands for open.

2. NP-Completeness
In this section, we work only with simple graphs. Let us formally define

the decision version of the problem we study:

Problem 2.1. Hull Number in Cycle Convexity
Input: A graph G and a positive integer k.
Question: Is hncc(G) ≤ k?

The goal of this section is to prove that:

Theorem 2.2. Hull Number in Cycle Convexity is NP-Complete,
even when restricted to planar graphs.

We shall reduce a variant of Planar 3-SAT to Hull Number in Cycle
Convexity. We first explain which variant we use, so that our gadget
construction becomes more natural.

Let ϕ be a boolean formula in 3-CNF having a set C of m clauses over the
variables X = {x1, . . . , xn}. The ϕ-graph is the graph G(ϕ) such that:

• V (G(ϕ)) = X ∪ C ∪ {x̄1, . . . , x̄n}; and
• E(G(ϕ)) = E1 ∪ E2 ∪ E3, where:

– E1 = {xiC | xi appears positively in C},
– E2 = {x̄iC | xi appears negatively in C}, and
– E3 = {x1x2, x2x3, . . . , xnx1, x1x̄1, . . . , xnx̄n}.

We say that ϕ is linkable if it is possible to add edges to G(ϕ) in such
a way that the obtained graph is planar and that the subgraph induced
by C is connected. We call the obtained graph a linked ϕ-graph, and call
the subgraph formed by the added edges a link. Observe that G(ϕ) must
be planar itself to start with, and that we can consider that the link only
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contains edges between vertices in C as otherwise we could remove some of
the edges and still have a linked ϕ-graph.

The variation of the 3-SAT problem presented next can be proved to be NP-
complete by making a few modifications in the proofs presented in [14, 15, 16].
Because the needed ideas are not in any way new, we restrain from presenting
them here.

Problem 2.3. Linked Planar exactly 3-bounded 3-SAT
Input: A linkable boolean formula ϕ in 3-CNF such that each variable of

ϕ appears exactly three times: twice positively and once negatively.
Question: Is ϕ satisfiable?

In what follows, we present constructions for edge, variable and clause
gadgets that will replace the respective structures in a linked ϕ-graph, ob-
taining a planar graph H. Then, we prove that ϕ is satisfiable if and only if
hncc(H) ≤ 4n+ 4m− 4, finishing the proof. .

Given a graph G = (V,E) and a set of vertices S ⊆ V (G), we define the
boundary of S as ∂(S) = {v ∈ S | N(v) * S}. We say that S is co-convex
if each v ∈ ∂(S) has at most one neighbor in each connected component of
G\S. This means that S cannot be in the convex hull of a set that is disjoint
from S, as proved in the lemma below.

Lemma 2.4. If S is a co-convex set of G, then every hull-set of G contains
at least one vertex of S. Furthermore, if ∂(S) is a stable set, then every
hull-set of G contains at least two vertices of S.

Proof : By contradiction, let C ⊆ V (G) be a hull-set of G such that C∩S = ∅.
Since Hull(C) = V (G), there exists k ∈ N∗ such that Ik−1(C) ∩ S = ∅ and
Ik(C) ∩ S 6= ∅ (consider that I0(C) = C). Let v ∈ S ∩ Ik(C). Since
v ∈ Ik(C) \ Ik−1(C), v must have two neighbors u,w ∈ Ik−1(C) such that
u and w lie in the same connected component of G[Ik−1(C)]. Consequently,
we deduce that v ∈ ∂(S) and u,w ∈ N(v) \S. This contradicts the fact that
S is a co-convex set.

Now suppose that ∂(S) is a stable set and that S ∩ ∂(S) = {u}. Because
∂(S) is a stable set, we know ∂(S \ {u}) = (∂(S) \ {u}) ∪ NS(u) and that
S\{u} is also a co-convex set. The lemma thus follows from the first part.

Let G be a connected graph and H ⊆ G be an induced subgraph of G. We
say that H is pendant at v ∈ V (H) if there are no edges between V (H − v)
and V (G − H) (in other words, v separates H from the rest of the graph).
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(a) (b)

Figure 5. (A) Auxiliary gadget Λ; (B) Edge gadget Ξv
u.

To construct our variable and clause gadgets, we first need what we call
auxiliary gadget. This is the graph Λ with vertex set {a, b, c, d, e, v} and edge
set {va, vb, ac, ad, bc, be, cd, ce, de} as depicted in Figure 5.(a).

Now, consider a linked ϕ-graph L, with link T . We first explain how
to construct the edge gadgets that will replace the edges in T . Given an
edge e = cicj ∈ E(T ), we denote the related edge gadget by Ξij (observe
Figure 5.(b) to follow the construction). Consider the graph with vertex set
{ci, cj, qij, rij, sij, tij} and having as edges {ciqij, cirij, cjsij, cjtij, rijsij, qijrij, sijtij}.
To obtain Ξe we add two copies of the auxiliary graph, one pendant at qij
and the other pendant at tij.

Finally, we define the variable gadgets (follow the construction by observing
Figure 6). Let i ∈ {1, . . . , n}, and define: Ai = {a1

i , . . . , a
8
i} and Bi =

{b1
i , . . . , b

8
i}. Let Υi be the variable gadget obtained as follows:

• Start with V (Υi) = Ai ∪Bi and E(Υi) = ∅;
• Add to V (Υi) the vertices vi, x

1
i , x

2
i , x

a
i , x̄

1
i , x̄

2
i ;

• Add to E(Υi) the edges:

– via
j
i and vib

j
i , for every j ∈ {1, 4, 5, 6};

– a1
ia

j
i and b1

i b
j
i , for every j ∈ {2, 3, 4};

– ajia
j+1
i and bjib

j+1
i , for every j ∈ {2, 3, 4, 5};

– a7
ia

j
i and b7

i b
j
i , for every j ∈ {3, 4};

– a8
ia

j
i and b8

i b
j
i , for every j ∈ {4, 5};

– x1
ia

j
i and x̄1

i b
j
i , for every j ∈ {2, 7};

– x2
ia

6
i , x̄

2
i b

6
i , x

2
ia

8
i , x̄

2
i b

8
i , x

1
ix

2
i , x̄

1
i x̄

2
i , x

1
ix

a
i , x

2
ix

a
i , ;

• Add to Υi an auxiliary graph Λi such that Λi is pendant at x̄1
i ;
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Figure 6. Variable gadget Υi.

We are now ready to prove Theorem 2.2, which we recall:

Theorem 2.2. Hull Number in Cycle Convexity is NP-Complete,
even when restricted to planar graphs.

Proof : First, observe that Hull Number in Cycle Convexity is in NP,
since for a given subset S ⊆ V (G) one can compute Hull(S) in polynomial
time and decide whether Hull(S) = V (G).

To prove the completeness of the problem, we reduce the Linked Planar
exactly 3-bounded 3-SAT to Hull Number in Cycle Convexity.
Let ϕ be an instance of the considered 3-SATproblem, and let L be a linked
ϕ-graph with link T . We can consider T to be a tree as otherwise we can
simply remove some edges. We construct a graph L∗ such that L∗ is planar
and prove that ϕ is satisfiable if, and only if, hncc(L

∗) ≤ 4n+ 4m− 4. This
graph is obtained from L as follows:
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• For each variable xi of ϕ, let cj, ck be the clauses in which xi appears
posivitively and c` be the clause in which xi appears negatively. Re-
place vertices xi, x̄i by Υi, and add edges {cjx1

i , cjx
a
i , ckx

2
i , ckx

a
i , c`x̄

1
i , c`x̄

2
i};

• Replace each edge cicj in E(T ) by Ξij.

One can verify that L∗ is planar by construction. Moreover, observe that
L∗ has less than 27n+14m vertices, since each variable gadget has 27 vertices,
each edge gadget has 14 new vertices, and since there are m− 1 edges in T .
Before we can present our proof, we still need some facts concerning hull-sets
of L∗, presented below.

Claim 2.4.1. (1) If H ⊆ L∗ is an induced subgraph isomorphic to Λ and
is pendant on v, then |V (H − v) ∩ S| ≥ 2, for every hull-set S of L∗;

(2) For every variable xi of ϕ, and every hull-set S of L∗, we have |(Ai ∪
Bi ∪ {vi}) ∩ S| ≥ 2;

(3) For every edge uv ∈ L∗[Ai∪{vi}], we have Ai∪{vi, x1
i , x

2
i , x

a
i , cj, ck} ⊆

Hull({u, v}). The similar statement holds for Bi and the corresponding
vertices; and

(4) Let cicj ∈ E(T ), and let S ⊆ V (L∗) not containing rij. If ci /∈ Hull(S),
then rij /∈ Hull(S). The analogous holds for cj and sij.

Proof: Itens (1) and (2) follow directly from Lemma 2.4 and the fact that
the respective subsets are co-convex sets with stable boundaries. To verify
item (3), first observe that Ai∪{vi} induces a graph formed only by triangles
and can be entirely infected by any of its edges. The item follows because
{x1

i , x
2
i , x

a
i } is clearly contained in Hull(Ai ∪ {vi}). Finally, let S be as in

item (4), and suppose by contradiction that ci /∈ Hull(S) and rij ∈ Hull(S).

Because rij /∈ S, there exists k ∈ N such that rij ∈ Icc
k(S) \ Icc

k−1(S). This

means that there exists a component of L∗[Icc
k−1(S)] containing qij and sij.

This is a contradiction since neither ci nor rij is in Icc
k−1(S), and {ci, rij}

separates qij from sij. �

Let us now prove that ϕ is satisfiable if, and only if, hncc(L
∗) ≤ 4n+4m−4.

Suppose first that ϕ is satisfiable. Let us construct a hull-set S ⊆ V (L∗)
such that |S| = 4n + 4m− 4. For every pendant auxiliary graph in L∗, add
any two adjacent vertices of such auxiliary graph to S, say vertices d and
e. Note that there are n + 2m − 2 such pendant auxiliary graphs. Finally,
consider a truth assignment to the variables x1, . . . , xn satisfying ϕ. In case
xi is true, add to S the vertices vi and a1

i . Otherwise, add to S the vertices
vi and b1

i . We then get |S| = 2 · (n+ 2m− 2) + 2n = 4n+ 4m− 4. Observe
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that this is the smallest size of a hull-set by Claim 2.4.1, items 1 and 2. It
remains to show that S is indeed a hull-set.

It is easy to verify that: (*) H ∪ {v} ⊆ Hull(S) for every auxiliary graph
H pendant at a vertex v. Also, by Claim 2.4.1 we get that: if xi is true,
then Ai ∪ {vi, x1

i , x
2
i , x

a
i , cj, ck} ⊆ Hull({u, v}); while if xi is false, then Bi ∪

{vi, x̄1
i , x̄

2
i , c`} ⊆ Hull(S). Because every gadget contains a truth literal, this

means that C ⊆ Hull(S). This and (*) imply that Hull(S) contains every
edge gadget, which means that: (**) C is contained in the same connected
component of Hull(S). Now it remains to prove that the “untruth” side of the
variable gadgets are also in Hull(S). So consider any variable xi, and let cj, ck
be the clauses that contain xi positively, and c` be the clause containing the
negation of xi. First, suppose that xi is true. Because {x̄1

i , c`} ⊆ Hull(S), we
get that x̄2

i ∈ Hull(S). But in this case, by (**) and since {vi, a6
i , x

2
i , ck} ⊆

Hull({u, v}), we get that b6
i ∈ Hull(S). It follows from Claim 2.4.1 that

Bi ⊆ Hull(S). When xi is false, by (**), we get that Hull(S) contains xai and
consequently x2

i and a6
i ; the rest follows similarly.

Now, let S be a hull-set of L∗ such that |S| ≤ 4n + 4m − 4. As before,
we know that equality must occur by Claim 2.4.1, items 1 and 2. Let xi be
true if, and only if, Ai ∩ S 6= ∅. One can verify that Claim 2.4.1, item 2,
and the size of S tell us that at most one between Ai and Bi has non-empty
intersection with S; hence, the assignment is well-defined. We prove that this
assignment satisfies ϕ. For this, consider ci to be the clause (xi1 ∨ xi2 ∨ x̄i3)
and suppose by contradiction that ci is not satisfied. We prove that in this
case ci /∈ Hull(S), thus getting a contradiction.

So, let k ∈ N∗ be such that ci ∈ Icc
k(S) \ Icc

k−1(S), and let H be the
component of L∗ containing two neighbors of ci, u and v. Observe that
caj /∈ {u, v} and that, by Claim 2.4.1, item 4, we also have that ri,j /∈ {u, v}
for every edge cicj of T . This means that ci must depend on the vertices of

some variable gadget to enter Hull(S). Now, for each j ∈ {1, 2, 3}, let cj1, c
j
2, c

j
3

be the clauses containing the two positive and the one negative occurrence
of xij , respectively, with c1

1 = c2
1 = c3

3 = ci. Because ci is not satisfied, it
must occur that Ai1 ∩ S = ∅, the same being valid for Ai2 and Bi3. But
note that the only vertex in A′i1 = Ai1 ∪{x1

i1
, x2

i1
, xai1} that has more than one

neighbor outside of A′1 is xai1. This means that it must be the first vertex
of A′i1 to enter Hull(S). However, this can only happen after time k, since
it depends on ci to be contaminated. The same argument trivially holds for
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Ai2 ∪ {x1
i2
, x2

i2
, xai2} and a similar argument can be made for Bi3 ∪ {x̄2

i3
}. We

get a contradiction since in this case u, v cannot be in any of these sets.

3. Upper Bound for 4-Regular Planar Graphs
The main result of this section concerns 4-regular planar graphs, but our

first lemmas actually hold for any 4-regular graph. The idea is to iteratively
reduce the graph at the same time that we construct a hull-set of the original
graph, and ensuring that for each vertex added to the hull-set, another vertex
is gained for free. At the end, we prove that if G is planar, then it can be
reduced to the graph containing just one edge of multiplicity 4, which implies
that half of the vertices are enough to contaminate the original graph.

Let G be any 4-regular graph. Below, we present the reduction operations.

M4 Let uv be such that µ(uv) = 4. Remove u and v from G.
M2 Let H be a component of the subgraph of G containing exactly the

edges of multiplicity 2. Because G is 4-regular and µ(uv) = 2 for every
uv ∈ E(H), we get that H is either a cycle or a path. Remove H from
G and, if H is a path between vertices u, v, let NG−H(u) = {x, x′},
and NG−H(v) = {y, y′}. Then, add edges xx′ and yy′.

M3 Let uv ∈ E(G) be such that µ(uv) = 3. Also let x ∈ N(u) \ {v} and
y ∈ N(v) \ {u}. If x 6= y, remove vertices u and v and add edge xy to
G. Otherwise, let N(x) \ {u, v} = {z, z′}. Remove vertices u, v, x and
add edge zz′.

T Let T = (x, y, z) be any cycle of length 3 in G, and let NG\T (x) =
{x1, x2}, NG\T (y) = {y1, y2}, and NG\T (z) = {z1, z2}. Remove T and
add edge x1x2, a vertex w and edges wy1, wy2, wz1, wz2.

Let G′ be obtained from G by exhaustively applying operations M4, M2,
M3, and T, with this order priority, i.e., if at some point M4 and M2 can be
applied, then we apply M4 and re-evaluate. We call G′ the reduction graph
of G. First, we prove the following simple lemma.

Lemma 3.1. Let G be a 4-regular graph and G′ be its reduction graph. Then,
G′ is a simple 4-regular graph with no cycles of length 3.

Proof : Clearly, G′ cannot have any edges of multiplicity bigger than 1, or any
cycle of length 3, as otherwise we could still apply some of the operations.
Thus, we just need to prove that these operations create no loops. Operation
M4 clearly does not create any loop since it does not add any edges. In
operation M2, the added edges xx′ and yy′ are not loops because otherwise
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ux or vy would have multiplicity 2 and, therefore, should also be in H. In
operation M3, when x = y (only case in which we could have added a loop),
we get that z 6= z′ as otherwise xz would be an edge of multiplicity 2 and
we would have had applied M2 instead. A similar argument is applied to see
that x1x2 is not a loop in operation T.

As we said before, we compute the reduction graph of G, and at the same
time we construct a hull-set for G. In the first three operations, the vertex
added to the hull-set is always u. But to explain how we choose a vertex in
the third operation we need the tool lemma below.

Lemma 3.2. If G is not the trivial graph and w is any vertex of G, then
there exists some minimum hull-set of G that does not contain w.

Proof : Let S be a minimum hull-set of G containing w, and let w′ be the
first vertex that needs w to be contaminated. More formally, there exists
k ∈ N such that w′ ∈ Icc

k(S) \ Icc
k−1(S), and NH(w′) = {w, t}, where H is

the component of G[Ik−1(S)] containing {w, t}. Let S ′ = (S \ {w}) ∪ {w′}.
By the choice of w′, we get that Icc

k−1(S \ {w}) ⊆ Icc
k−1(S ′). Therefore,

the subgraph H \ {w} is contained in some component H ′ of G[Icc
k−1(S ′)].

Because t ∈ NH(w′), we get that w′ ∈ V (H ′), and because NH(w) 6= ∅ and
w′ ∈ NH ′−H(w), we get that dH ′(w) ≥ 2, which implies that w ∈ Icc

k(S ′).
Since S ⊆ hull(S ′) and S is a hull-set, we get that S ′ is also a hull-set.

Theorem 3.3. Let G be a 4-regular graph, and G′ be the reduction graph
of G. Then, hncc(G) ≤ hncc(G

′) + f , where f is the number of operations
applied to G in order to obtain G′.

Proof : We can suppose that G is connected, as otherwise we just apply the
argument to each of its connected components. We simply prove that if F
is obtained from G by applying one of the operations above, then hncc(G) ≤
hncc(F ) + 1. For this, suppose that G is not an edge of multiplicity 4, nor a
cycle of edges of multiplicity two, since in both cases we get that V (F ) = ∅
and clearly hncc(G) = 1. So, we analyze only the remaining cases.

So, let S be a hull-set of F . If F is obtained by applying M2, by assumption
the removed subgraph H is a path. Let u, v be its extremities, and let
NG\H(u) = {x, x′} and NG\H(v) = {y, y′}. Because V (H) ⊆ Hull(u), it is
not hard to see that S ∪ {u} is a hull-set of G. Observe that by a similar
argument, we get that if F is obtained by applying operation M3 on edge
uv, then again S ∪ {u} is a hull-set of G.
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Now, suppose that F is obtained by applying operation T on the triangle
(x, y, z). We use the same notation as before. By Lemma 3.2, we can suppose
that w /∈ S. First, note that if S is a hull-set of F − x1x2, then S ∪ {v} is a
hull-set of G for v ∈ {y, z}, depending on whether the cycle in HullF−x1x2

(S)
containing w intersects {y1, y2} or {z1, z2}. So, consider the contrary and
suppose, without loss of generality, that x2 is contaminated after x1, which
means that x2 depends on the edge x1x2 to be contaminated. Let k be such
that x2 ∈ Icc

k
F (S) \ Icc

k−1
F (S), and denote Icc

k−1
F (S) by S ′. We prove that

S ′ ∪ T ⊆ HullG(S ∪ {v}), for some v ∈ {x, y, z}. Observe that this finishes
the proof, since T connects anything that could be connected by w and x1x2.
Recal that w /∈ S and let k′ be such that w /∈ Icc

k′

F (S) and dH(w) ≥ 2, for a

component H of Icc
k′

F (S). We consider two cases. First, suppose that w does
not depend on x1x2 to be contaminated, i.e., vertices x1 and x2 are not in
V (H). This means that V (H) ⊆ HullG(S). Let v = y if V (H)∩{y1, y2} 6= ∅,
and let v = z otherwise. Note that V (H)∪ T ⊆ HullG(S ∪ {v}), and that S ′

is also in HullG(S ∪ {v}) since T plays the role of x1x2. Now, suppose that
w depend on x1x2, which means that S ′ ⊆ V (H). Suppose that y1 ∈ V (H)
(the other cases are analogous), and observe that V (H) ⊆ HullG(S ∪ {x}),
since x plays the role of the edge x1x2. Now, let P be any path between y1

and x1 in H, and note that P ∪ {x, y} is a cycle whose vertices are all in
HullG(S ∪ {x}), except y. Therefore, y is contaminated by S ∪ {x}, and so
does z.

The next lemma is the last tool needed in our proof.

Lemma 3.4. Let G be a 4-regular plane graph, and denote by fi the number
of faces of degree i in G. Then,

2f2 + f3 = 8 +
∑
i≥4

(i− 4)fi

Proof : Let n = |V (G)|, m = |E(G)|, and f denote the number of faces of
G. Because G is 4-regular, we know that m = 2n. By Euler’s Equation, we
have:

n+ f −m = 2⇒ n = f − 2 =
∑
i≥2

fi − 2

Since each edge is contained in exactly two faces, we also have:∑
i≥2

ifi = 2m = 4n = 4
∑
i≥2

fi − 8
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The lemma follows by rearrenging the above equation.

The theorem below is an immediate consequence of the previous results.

Theorem 3.5. hn(G) ≤ 1
2 |V (G)|, for every 4-regular plane graph G.

Proof : Let G′ be the reduction graph of G. By Lemma 3.1, we get that G′ has
no multiple edges or cycles of length 3, which would contradict Lemma 3.4
unless V (G′) = ∅. By Theorem 3.3 hncc(G) ≤ f , where f is the number of
operations applied to G; the theorem follows because each operation removes
at least two vertices from the graph.

4. Polynomial Cases
In this section, we prove that one can compute hncc(G) in polynomial time

for chordal graphs, P4-sparse graphs and grids. The following lemma is a
general one, so we present it first. It will be used in the proof of chordal
graphs.

Lemma 4.1. Let G be a connected graph, u be a cut-vertex of G, and C be
the vertex set of some component of G − u. Also, let G1 = G[C ∪ {u}] and
G2 = G− C. Then,

hncc(G1) + hncc(G2)− 1 ≤ hncc(G) ≤ hncc(G1) + hncc(G2).

Proof : The upper bound is trivial since the union of hull-sets of G1 and G2

clearly gives a hull-set of G. For the lower bound, consider a hull-set S of G
and denote (V (Gi) ∩ S) \ {u} by Si, for i ∈ {1, 2}. First, note that Si ∪ {u}
is a hull-set of Gi for i = 1 and i = 2; this means that hncc(Gi) ≤ |Si| + 1,
i ∈ {1, 2}. We consider the cases:

• u /∈ Hull(Si) for i = 1 and i = 2: then u ∈ S since it cannot be
contaminated by vertices x, y with x ∈ V (G1) and y ∈ V (G2). In this
case,

hncc(G) = |S| = 1 + |S1|+ |S2| ≥ hncc(G1) + hncc(G2)− 1.

• u ∈ Hull(S1): then u /∈ S as otherwise S \ {u} would be a smaller
hull-set of G. Also, note that S1 must be a minimum hull-set of G1,
i.e., |S1| = hncc(G1). Then, we get:

hncc(G) = |S| = |S1|+ |S2| ≥ hncc(G1) + hncc(G2)− 1
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Corollary 4.2. If G is a connected graph on n ≥ 2 vertices with p blocks,
then

hncc(G) ≥ p+ 1.

Proof : We prove by induction on the number of blocks of G. If p = 1,
it holds trivially since n ≥ 2 and a single vertex cannot contaminate any
vertex. Suppose it holds for every connected graph with less than p blocks,
and let G1 be a leaf block connected to the rest of the graph by vertex u. Let
G2 = G−V (G1−u), and note that the number of blocks in G2 equals p− 1.
By induction hypothesis, we then get hncc(G2) ≥ p. The corollary follows by
Lemma 4.1 and the fact that hncc(G1) ≥ 2.

Theorem 4.3. If G is a chordal graph with p blocks, then hncc(G) = p+ 1.

Proof : In [13], the authors prove that if H is a 2-connected chordal graph,
then {u, v} is a hull-set in the P3 convexity of H for any uv ∈ E(H). We use
this fact to construct a hull-set of G of size p + 1. The theorem follows by
Corollary 4.2

Now, consider a sequence of subgraphs G0, . . . , Gq such that G0 is any block
ofG, Gq = G, and, for each i ∈ {1, . . . , q}, we have thatGi = G[V (Gi−1)∪Bi],
where Bi is the vertex set of a block of Gi separated from Gi−1 by exactly
one cut-vertex, xi (in other words, Gi is obtained from Gi−1 by appending a
leaf block to vertex xi). Let S0 = {x0, x1} for any x0 ∈ NG0

(x1) and, for each
i ∈ {1, . . . , q}, let Si = Si−1 ∪ {x′i}, where x′i ∈ NBi(xi). We know that S0 is
a hull-set of G0. Now if Si−1 is a hull-set of Gi−1, then xi ∈ Hull(Si−1), and,
since Bi ⊆ Hull({xi, x′i}), we get that Si is a hull-set of Gi. Since |Sq| = p+1,
the theorem follows.

Now, we investigate P4-sparse graphs. It is well known that these graphs
have a very nice decomposition, but before we present it, we need some new
definitions. Given graphs G1, G2, the union of G1, G2 is simply the graph
G1 ∨G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)), while the join of G1, G2 is the
graph obtained from G1 ∨G2 by adding every possible edge between V (G1)
and V (G2); it is denoted by G1 ∧ G2. A graph G is a spider if V (G) can
be partitioned into sets K,S,R such that |K| = |S| ≥ 2, K is a clique, S
is a stable set, R is complete to K and anti-complete to S, and the edges
between K and S form either a perfect matching, in which case we say that
G is a thin spider, or a perfect anti-matching, in which case we say that G is
a fat spider.
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Theorem 4.4. [17] Let G be a non-trivial P4-sparse graph. Then one of the
following holds:

(1) G is the union of two P4-sparse graphs;
(2) G is the join of two P4-sparse graphs; or
(3) G is a spider with partition sets K,S,R such that G[R] is a P4-sparse

graph.

First, we investigate the union and the join of graphs.

Lemma 4.5. Let G1, G2 be graphs, and let |V (G1)| ≤ |V (G2)| and p be the
number of components of G2. Then,

hncc(G1 ∨G2) = hncc(G1) + hncc(G), and

hncc(G1 ∧G2) =

 p+ 1 , if |V (G1)| = 1,
2 , if V (G1) > 1 and E(G2) 6= ∅, and
3 , if E(G1) = E(G2) = ∅.

Proof : The first equation is straightforward; so consider G = G1 ∧ G2. If
V (G1) = {u} and p > 1, then u is a cut-vertex of G. In any case, when
V (G1) = {u}, the 2-connected components of G are exactly the components
of G2 plus vertex u. Thus, by Corollary 4.2 we get that hncc(G) ≥ p + 1.
Additionaly, because u is universal in G, for each component G′ of G2 and
every v ∈ V (G′), we get that V (G′) ⊆ Hull({u, v}). This means that if we
pick one vertex of each component of G2 together with vertex u we obtain
a hull-set of G, i.e., hncc(G) ≤ p + 1. Now, suppose that |V (G1)| > 1 and
E(G2) 6= ∅. Let uv ∈ E(G2), and note that V (G1) ⊆ Hull({u, v}). Also,
observe that Icc

1({u, v}) is a connected subgraph of G, and because |V (G1)| >
1, we get V (G2) ⊆ Icc

2({u, v}). Finally, suppose that E(G1) = E(G2) = ∅.
An analogous argument works here, except that we need to pick two vertices
from G2 and one from G1 in order to start with a connected subset.

The next lemma is the last needed tool.

Lemma 4.6. Let G be a spider with partition sets {K,S,R} such that K is
a clique and S is a stable set. Then,

hncc(G) =

{
2 , if |K| ≥ 3 and G is a fat spider,
2 + |S| , otherwise.

Proof : If |K| ≥ 3 and G is a fat spider, then every vertex of G has at least
two neighbors in K; hence hncc(G) = 2 clearly follows. Now, to prove the
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second part, we actually prove that if H is a graph and u ∈ V (H) is a leaf
of H (vertex of degree 1), then hncc(H) = hncc(H − u) + 1. Clearly, if X is a
hull-set of H−u, then X ∪{u} is a hull-set of H. On the other hand, if X is
a hull-set of H, then u ∈ X since d(u) = 1. Also, because u is separated from
the rest of the graph by its neighbor, one can see that no vertex depends on
u to be contaminated, i.e., X − u is a hull-set of G− u. Because G is a thin
spider, every u ∈ S is a leaf of G and the lemma follows.

Now, in [17], the authors also provide a linear time algorithm to compute
a decomposition of G using the operations of Theorem 4.4. By the previous
lemmas, we see that we need only to search the decomposition tree in a
bottom-up way to compute hncc(G). Because the decomposition tree has
also linear size, we get the following theorem.

Theorem 4.7. If G is a P4-sparse graph, then hncc(G) can be computed in
linear time.

Finally, we compute the hull number of a grid. Our proof is based on the
following folklore result about the hull number on the P3-convexity.

Proposition 4.8. Let G be the n× n grid. Then, hnP3
(G) = n.

The simplest explanation for the above proposition is as follows. Consider
G as being the graph representation of the spaces on a chessboard H, i.e.,
each vertex of G represents a space in H and two vertices are adjacent if
the spaces share a boundary (alternatively, G is obtained from the dual of
a grid H by removing the vertex related to the outer face). One need only
to observe that each application of the contamination rule on the faces of
H cannot increase the perimeter of the contaminated area, since a space
needs to be adjacent to at least two contaminated spaces in order to be
contaminated. Observe that the same holds for the cycle convexity, except
that we ask additionally that the boundaries containing these two spaces
share an edge. Considering the related subgraph in G, let S be the starting
set and observe that the perimeter of S in H equals 4|S|−

∑
v∈S dG(v). Since

G[S] is connected and because the final perimeter must be 4n, we get:

4n = 4|S| − 2|E(G[S])| ≤ 4|S| − 2(|S| − 1).

Therefore, the mininum size of a hull set on the cycle convexity must be
2n − 1. One can also verify that the first row and first column of G form a
hull set of size exactly 2n− 1. Hence, hncc(Gn×n) = 2n− 1. This argument
can be easily generalized for rectangular grid.
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Theorem 4.9. Let m and n be positive integers. Then,

hncc(Gm×n) = m+ n− 1.
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