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1. Introduction
This paper provides geometric origins for a class of curves on Stiefel mani-

folds, called quasi-geodesic, that have proved to be particularly important in
solving interpolation problems arising in real applications [12]. We show that
quasi-geodesic curves are the projections of sub-Riemannian geodesics gener-
ated by certain left-invariant distributions on Lie groups G that act on Stiefel
manifolds. This quest for the geometric characterization of quasi-geodesic
curves uncovered a large class of left-invariant sub-Riemannian systems on
Lie groups that admit explicit solutions, in the form that will be made clear
below. As a result, the paper is as much about sub-Riemannian structures
on Lie groups as it is about quasi-geodesic curves.

The first part of the paper deals with sub-Riemannian structures associated
with homogeneous spaces M = G/K induced by a transitive left action of
a semi-simple Lie group G on a smooth manifold M , where K denotes the
isotropy subgroup relative to a fixed point m0 ∈ M . The sub-Riemannian
structures will be defined by a left-invariant distribution H generated by a
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vector space p ⊂ g that is transversal to the Lie algebra k of the isotropy
group K, and satisfies additional Lie algebraic relations:

g = p⊕ k, [p, k] ⊆ p, k ⊆ [p, p].

The sub-Riemannian metrics are defined by bilinear, symmetric, non-dege
nerate, AdG invariant forms 〈. , .〉 that are positive definite on p. Under
additional assumption that p⊥, the orthogonal complement relative to the
Killing form, is a Lie subalgebra of g, we show that the sub-Riemannian
geodesics are of the form

g(t) = g0 e
t(P+Q)e−tQ,

where P ∈ p and Q ∈ p⊥, see Theorem 1.
In these situations, a Riemannian metric on M is induced by the push for-

ward of the sub-Riemannian metric on G. We show that the corresponding
Riemannian geodesics on M are the projections of curves in (1) where P
and Q satisfy the additional relation that P + Q is in k⊥. The above find-
ings coincide with the analogous results on semi-simple Lie groups with an
involutive automorphism, as in the theory of symmetric Riemannian spaces,
where p⊥ = k, see, for instance, [10].

The second part of the paper deals with the application of these results
to the actions of Lie groups on Stiefel and Grassmann manifolds and their
relevance to the quasi-geodesic curves. Rather than dealing exclusively with
the real case, we also include Stiefel and Grassmann manifolds over complex
and quaternion algebras.

We realize each Stiefel manifold in two ways as homogeneous manifolds
G/K. On groups G that define the homogeneous structure we consider three
distinct sub-Riemannian structures whose sub-Riemannian geodesics are de-
scribed by Theorem 1. We then single out the sub-classes of sub-Riemannian
geodesics that project either to Riemannian geodesics or to quasi-geodesic
curves on the Stiefel manifolds. Additionally, we show that quasi-geodesics
are curves of constant curvature relative to the induced Riemannian met-
ric. In the process we discovered an interesting fact that two distinct sub-
Riemannian structures on G can induce isometric Riemannian structures on
the homogeneous manifold G/K, see Theorem 2.

We end the paper with a brief discussion of Lagrangian manifolds. First,
we show the relation of Theorem 1 to the canonical (symmetric) Riemannian
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metric, and secondly, we show that the projections of curves on Stiefel man-
ifolds, descending from the sub-Riemannian curves on G, have constant geo-
desic curvature on the Grassmann manifold relative to its canonical metric.
In particular, we show that the quasi-geodesic curves on the Stiefel manifolds
project onto the Riemannian geodesics on the Grassmannian manifold.

This article constitutes a full version of the results announced in a short
paper [11] on Stiefel manifolds embedded in the Euclidean space Rn.

2. Group actions and sub-Riemannian problems
2.1. Notations and background material

We begin with the notations and basic concepts that will be necessary
throughout the paper. Details about this background material may be found,
for instance, in [9, 13, 16, 17].

In particular, M will denote a smooth (or real analytic) manifold, TM and
T ∗M denote the tangent and the cotangent bundle of M respectively, and
TmM and T ∗mM denote the tangent and cotangent spaces at m ∈M . If F is
a smooth map between smooth manifolds, then F∗ will denote the tangent
map and F ∗ the dual map.

The set of smooth vector fields on M is denoted by Γ(TM). A smooth
curve m(t) defined on an open interval (−ε, ε) in M is said to be an integral
curve, or a solution curve, of X if dm

dt = X(m(t)) for all t ∈ (−ε, ε). A vector
field X is said to be complete if each integral curve of X can be extended
to the interval (−∞,∞). We denote by φXt (m) the flow on M generated
by a complete vector field X ∈ Γ(TM). Sometimes we will regard a flow
as a one parameter group of diffeomorphisms {φXt : t ∈ R}. We will make
use of the fact that any one parameter group of diffeomorphisms φt on M
is generated by the flow of a complete vector field X, in the sense that
φt = φXt . In this context, X is called the infinitesimal generator of the group
of diffeomorphisms.

Throughout the paper G will denote a Lie group, and g will denote its
Lie algebra. We think of g as the tangent space TeG at the identity e ∈ G,
with the Lie bracket induced by the left-invariant vector fields in G: [A,B] =
[X, Y ](e) = (Y X − XY )(e), where X(g) = (Lg)∗(A) and Y (g) = (Lg)∗(B),
A,B ∈ g, and Lg is the left translation by g in G. We will adopt a short-hand
notation and write gA (Ag) for the left (right) invariant vector fields.

If X(g) = gA is a left (Ag right) invariant vector field defined by A ∈ g,
then its flow φXt (g) is the left (right) translate Lgφ

X
t (e) (Rgφ

X
t (e)) of the
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flow through the group identity. We will write exp(tA), as well as etA when
convenient, for the curve φXt (e) with X(g) = gA.

A Lie group G is said to act on a manifold M through the left action
φ : G×M →M if φ satisfies

φ(g, φ(h,m)) = φ(Lg(h),m) = φ(gh,m) and φ(e,m) = m,

for all g, h in G, and all m in M . We use φg to denote the diffeomorphism
m 7→ φg(m) on M . If m0 is a point in M , then Km0

= {g ∈ G : φ(g,m0) =
m0} denotes the isotropy group of m0. An isotropy group is a closed subgroup
of G and any two isotropy groups are conjugate. If a group G acts transitively
on M , then M can be regarded as the quotient G/Km0

with m ∈M identified
with gKm0

whenever φg(m0) = m. Then the natural projection π : G →
G/Km0

is given by the map g → φg(m0).
Each element A ∈ g induces a one-parameter group of diffeomorphisms
{φetA : t ∈ R} on M . We will use XA to denote its infinitesimal generator,
so that φetA(m) = φXA

t (m). We will refer to F = {XA : A ∈ g} as the
family of vector fields on M subordinated to the group action. Since G acts
by the left action on M , F is a homomorphic image of the family of right-
invariant vector fields on G. Therefore, F is a finite dimensional Lie algebra
of complete vector fields on M .

If G is connected, then any g ∈ G can be written as g = etkAk · · · et1A1 for
some elements A1, . . . , Ak in g. Then,

φg(m) = φetkAk ···et1A1(m) = φ
XAk
tk · · ·φXA1

t1 (m). (1)

This implies that M is equal to the orbit of F through any point m ∈ M
whenever G is connected, and the action of G on M is transitive. In such a
case any absolutely continuous curve m(t) in M is a solution of

dm

dt
=

k∑
i=1

ui(t)XAi
(m)

for some choice of elements A1, . . . , Ak in g and some choice of measurable
and bounded functions u1(t), . . . , uk(t).

2.2. Sub-Riemannian problems on Lie groups

In what follows we will always suppose that G is a connected Lie group that
acts transitively on M from the left, and K will always denote the isotropy
subgroup of a fixed point m0 in M . Then k will denote the Lie algebra of K.
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We will now assume that p is a linear subspace in g such that

g = p⊕ k, [p, k] ⊆ p, k ⊆ [p, p]. (2)

The space p induces a family Hp of left-invariant vector fields XA(g) =
gA, g ∈ G,A ∈ p. The associated distribution Hp(g), g ∈ G, will be
called horizontal, or the Ehresmann p connection, see for instance [13]. Left-
invariant vector fields gB, B ∈ k will be called vertical. Then V will denote
the family of vertical vector fields.

Absolutely continuous curves g(t) ∈ G that satisfy dg
dt = ġ(t) ∈ Hp(g(t))

for almost all t in some interval [0, T ] are called horizontal. Alternatively,
horizontal curves can be described as the solution curves of a control system

dg

dt
=

k∑
i=1

ui(t)gAi,

where A1, . . . , Ak is a basis for p, and u1(t), . . . , uk(t) are bounded and mea-
surable functions on [0, T ].

Conditions (2) imply that p + [p, p] = g, which in turn implies that Hp is
a two step bracket generating distribution, in the sense that

Hp(g) + [Hp,Hp](g) = TgG, g ∈ G.

Therefore, any two points in G can be joined by a horizontal curve whenever
G is connected [2, 5, 15].

A curve g(t) in G is called a horizontal lift of a curve m(t) ∈ M = G/K
if g(t) is a horizontal curve that projects onto m(t), that is, π(g(t)) =
φg(t)(m0) = m(t).

Proposition 1. Every absolutely continuous curve m(t) in M is the projec-
tion of a horizontal curve. Moreover, if g1(t) and g2(t) are horizontal lifts of
a curve m(t) in M , then g1(t) = g2(t)h for some constant element h ∈ K.

Proof : Equation (1) implies that every absolutely continuous curve m(t) in
M is the projection of an absolutely continuous curve g(t) ∈ G. Then ġ(t) =
g(t)U(t) for some curve U(t) ∈ g, and U(t) = P (t) +Q(t), with P (t) ∈ p and
Q(t) ∈ k.

Now define a new curve g̃(t) = g(t)h(t), where h(t) is a solution in K of
ḣ(t) = −Q(t)h(t). The curve g̃(t) also projects on m(t) and furthermore,

˙̃g(t) = g(t)(P (t) +Q(t))h(t) + g(t)ḣ(t) = g̃(t)h−1(t)P (t)h(t).
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The condition [p, k] ⊆ p implies that h−1(t)P (t)h(t) is in p for all t, hence
g̃(t) is a horizontal curve that projects onto m(t).

If g1(t) and g2(t) are horizontal lifts of a curve m(t) in M , then ġ1 = gU1(t)
and ġ2 = g2U2(t) for some curves U1(t) and U2(t) in p. Since g1(t) and g2(t)
project onto the same curve m(t), g1(t) = g2(t)h(t) for some curve h(t) ∈ K.
But then,

g1U1(t) = ġ1 = ġ2h+ g2ḣ = g1(h
−1U2h+ h−1ḣ).

Hence, U1 = h−1U2h+ h−1ḣ. Since h−1U2h is in p, h−1ḣ = 0. Therefore h is
constant.

Assume now that 〈. , .〉p is any positive definite AdK-invariant symmetric
bilinear form on p. This bilinear form induces a left-invariant inner product

〈gA, gB〉g = 〈A,B〉p, on Hp(g). We define ‖dgdt‖p =
√
〈g−1(t)dgdt , g

−1(t)dgdt 〉p
for any horizontal curve g(t). This metric is called a (left-invariant) sub-
Riemannian metric relative to the distribution Hp. We denote it by the
same symbol 〈. , .〉p. The pair (Hp, 〈. , .〉p) is called a (left-invariant) sub-
Riemannian structure on G and the triplet (G,Hp, 〈. , .〉p) is called a sub-
Riemannian manifold, see for instance [3, 4]. The sub-Riemannian metric
〈. , .〉p induces a length l(g, T ) of a horizontal curve g : [0, T ]→ G, by

l(g, T ) =

∫ T

0

〈ġ(t), ġ(t)〉1/2p dt =

∫ T

0

〈g−1(t)ġ(t), g−1(t)ġ(t)〉1/2p dt.

The sub-Riemannian distance function dsR on G is defined by

dsR(g1, g2) = inf
{
l(g, T ) : ġ ∈ Hp(g), g(0) = g1, g(T ) = g2

}
.

Definition 1. A horizontal curve g : [0, T ]→ G is called geodesic if for any
t ∈ (0, T ) there exists ε > 0 such that

dsR(g(t1), g(t2)) =

∫ t2

t1

〈ġ(t), ġ(t)〉1/2p dt.

for any t1, t2 with t− ε < t1 < t2 < t+ ε.

Any AdK left-invariant sub-Riemannian metric 〈. , .〉p induces a Riemann-
ian metric on M = G/K, whereby the length of a curve m(t) on an in-
terval [0, T ] is equal to the length of a horizontal lift g(t) of m(t) in G.

That is, the length of m(t) is given by l(m,T ) =
∫ T

0

√
〈U(t), U(t)〉p dt, where

U(t) = g−1(t)ġ(t). If g̃ is another horizontal lift of m(t) then, according to the
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previous proposition, g̃ = gh for some constant h ∈ K, and Ũ(t) = h−1U(t)h.

But then
∫ T

0

√
〈U(t), U(t)〉p dt =

∫ T
0

√
〈Ũ(t), Ũ(t)〉

p
dt, by AdK-invariance of

the metric. Hence the length of m(t) is well defined.

Definition 2. A Riemannian metric on M = G/K that is the push forward
of a sub-Riemannian left-invariant metric 〈. , .〉p on a horizontal distribution
Hp in G will be called homogeneous.

In the present paper we are essentially interested in the structure of sub-
Riemannian geodesics on G and their relation to the Riemannian geodesics
on M = G/K relative to the homogeneous metric. Our fundamental results
will be extracted through the length minimizing property of the geodesics
and the following auxiliary optimal problem on G:

given any two points g1 and g2 in G, find a horizontal curve of
shortest length that connects g1 to g2.

The solutions to this auxiliary problem are intimately related to the sub-
Riemannian geodesics, because any horizontal curve of shortest length that
connects g1 to g2 is a sub-Riemannian geodesic. Conversely, every sub-
Riemannian geodesic g(t) is a curve of shortest length relative to the points
g1 = g(0) and g2 = g(t1) for sufficiently small t1.

This formulation permits easy comparison between the sub-Riemannian
geodesics in G and the Riemannian geodesics in M = G/K via the following
proposition.

Proposition 2. Suppose that m1 and m2 are given points in M . Let S1 =
π−1(m1) and S2 = π−1(m2) be the fibers above these points. Then, the pro-
jection of a horizontal curve g(t) is a curve of minimal length in M that
connects m1 to m2 if and only if g(t) is the curve of minimal length that
connects S1 to S2.

The proof is simple and will be omitted.

2.3. The associated optimal control problem

The optimal problem of finding curves of shortest length that connect
two given points can be easily formulated as a time-optimal control prob-
lem, but since it is more convenient to work with the energy functional

E = 1
2

∫ T
0 ‖U(t)‖2

p dt rather than the length functional
∫ T

0 ‖U(t)‖p dt, we will,
instead, pass to the following energy-optimal control problem on G:
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if T > 0 is a fixed number, and if g1 and g2 are fixed points in
G, find a horizontal curve g(t) that satisfies g(0) = g1, g(T ) =

g2, along which the total energy E = 1
2

∫ T
0 ‖U(t)‖2

p dt, U(t) =

g−1(t)dgdt (t), is minimal among all the horizontal curves that sat-
isfy the boundary conditions g(0) = g1 and g(T ) = g2.

The following proposition clarifies the relation between these two optimal
control problems.

Proposition 3. Every horizontal curve of shortest length is a solution of the
optimal control problem for a suitable T > 0.

Proof : If g(t) is any horizontal curve that is a solution of dg
dt = g U(t) that

connects g1 = g(0) to g2 = g(T ), then by the Cauchy inequality∫ T

0

‖U(t)‖p dt ≤ T
1
2

(∫ T

0

‖U(t)‖2
p dt
) 1

2

.

The equality occurs only when ‖U(t)‖p is constant, that is, when T is pro-
portional to the length of g(t) on [0, T ].

In particular, if g(t) is a curve of minimal length, and if ‖U(t)‖p = 1, then T
is the length of g(t) on [0, T ], and E = 1

2T is the minimal value of the energy
functional relative to the boundary values g1 and g2. Conversely, suppose
that ĝ(t) is a horizontal curve parametrized by arc length: ‖Û(t)‖p = 1, such
that ĝ(0) = g1 and ĝ(T ) = g2. Then, by the above inequality, E = 1

2T is
the minimal value of the energy functional over all horizontal curves that
satisfy the boundary conditions g(0) = g0 and g(T ) = g1, and ĝ(t) attains
this minimal value.

Suppose now that g(s) is a horizontal curve of minimal length L such that

g(0) = g1 and g(S) = g2, for some S > 0. Then L =
∫ S

0 ‖U(τ)‖p dτ . It is
not difficult to show that g(s) is a regular curve on the interval [0, S], in the
sense that dg

ds(s) 6= 0, s ∈ [0, S]. Therefore, g(s) can be reparametrized by
a parameter s(t), t ∈ [0, T ] so that the reparametrized curve g̃(t) = g(s(t))
has constant speed ‖g̃−1 dg̃

dt‖p = λ. In fact, s(t) is the inverse function of

t(s) = 1
λ

∫ s
0 ‖U(τ)‖p dτ . Since the property to be horizontal and the length

functional are invariant under reparametrizations, g̃(t) is a horizontal curve
of minimal length that reaches g2 from g1 in T units of time, by a control
of constant magnitude λ = L

T . Therefore, g̃(t) is a solution of the optimal
control problem on the interval [0, T ] relative to the boundary conditions g1
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and g2. Hence it attains the optimal value E = 1
2T . It then follows that

L = λT =

∫ T

0

‖Ũ(t)‖p dt = T
1
2 (2E)

1
2 = T,

and, therefore, λ = 1 and L = T .

Proposition 4. Given any pair of points g1 and g2 in G, there exists a
horizontal curve g(t) such that g(0) = g1, and g(T ) = g2, along which the

total energy E = 1
2

∫ T
0 ‖U(t)‖2 dt is minimal.

The proof is essentially the same as that given in [10, Proposition 9.5, p.
151] and will be omitted.

Corollary 1. For any two points g1 and g2 in G there exists a sub-Riemannian
geodesic that connects g1 to g2.

2.4. The Maximum Principle and the extremal curves

We will now turn to the Maximum Principle of Pontryagin to obtain the
necessary conditions of optimality for the above optimal control problem
under the additional assumptions that G is semi-simple group, and that 〈. , .〉p
is a positive definite bilinear form on p that is the restriction of a symmetric,
non-degenerate AdG-invariant bilinear form 〈. , .〉 on g. The AdG-invariance
implies that

〈A, [B,C]〉 = 〈B, [C,A]〉, (3)

for all A,B,C in g. It also implies that 〈. , .〉p is AdK-invariant. Typically,
〈. , .〉 could be any scalar multiple of the Killing form Kl(A,B) = Tr(adA ◦
adB) that is positive definite on p.

To make an easier transition to the literature on control theory, we will
represent curves U(t) in p in terms of an orthonormal basis A1, . . . , Ak as

U(t) =
∑k

i=1 ui(t)Ai. In this representation, horizontal curves are the solu-

tions of dg
dt =

∑k
i=1 ui(t)gAi, and their energy is given by

1

2

∫ T

0

〈U(t), U(t)〉p dt =
1

2

∫ T

0

k∑
i=1

u2
i (t) dt.

To take advantage of the left-invariant symmetries, the cotangent bundle
T ∗G will be represented by G× g∗, where g∗ stands for the dual of g. In this
representation, points ξ ∈ T ∗gG are viewed as the pairs (g, `), ` ∈ g∗ defined
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by ξ(gA) = `(A) for any A ∈ g. Then the Hamiltonian hA(ξ) of any left-
invariant vector field XA(g) = gA is given by hA(`) = `(A). In particular,

the control system dg
dt =

∑k
i=1 ui(t)gAi, together with the associated energy

functional, lifts to the extended Hamiltonian

hU(t)(`) = −λ
2

k∑
i=1

u2
i (t) +

k∑
i=1

ui(t)hi(`), λ = 1, 0,

where hi(`) = `(Ai), i = 1, . . . , k. The corresponding Hamiltonian vector

field ~hU(t) is called the Hamiltonian lift of the energy-extended control system.
Its integral curves (g(t), `(t)) are the solutions of

dg

dt
= g U(t),

d`

dt
= −ad∗U(t)(`(t)), U(t) =

k∑
i=1

ui(t)Ai,

where (ad∗U(t)(`))(A) = `([U(t), A]), A ∈ g, see [10].
According to the Maximum Principle, every optimal solution g(t) generated

by a control U(t) is the projection of an integral curve (g(t), `(t)) of the

Hamiltonian vector field ~hU(t) such that

hU(t)(`(t)) ≥ −
λ

2

k∑
i=1

v2
i +

k∑
i=1

vihi(`(t)), (4)

for any (v1, . . . , vk) ∈ Rk and all t. In addition, the Maximum Principle
requires that `(t) 6= 0 when λ = 0.

Integral curves (g(t), `(t)) of ~hU(t) that satisfy the conditions of the Maxi-
mum Principle (4) are called extremal; abnormal extremal when λ = 0, and
normal extremal when λ = 1. In the abnormal case, inequality (4) yields
constraints

hi(`(t)) = 0, i = 1, . . . , k,

while in the normal case, the inequality shows that the extremal control U(t)

is a critical point of the Hamiltonian hU(t)(`) = −1
2

∑k
i=1 u

2
i (t)+

∑k
i=1 ui(t)hi(`),

that is, the extremal control is of the form U(t) =
∑k

i=1 hi(`(t))Ai.
The above shows that the normal extremals are the solution curves of a

single Hamiltonian vector field corresponding to the Hamiltonian

H(`) =
1

2

k∑
i=1

h2
i (`).
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We will not pursue the abnormal extremals since it is known that their pro-
jections on G cannot be optimal when Hp is a two step bracket generating
distribution (see [2]).

It follows that the sub-Riemannian geodesics are the projections of the
integral curves of the Hamiltonian vector field ~H on energy level H = 1

2 ,
since the energy functional is equal to the length functional only over the
horizontal curves parametrized by arc length by Proposition 3. That is, the
sub-Riemannian geodesics are the projections of curves (g(t), `(t)) that are
the solutions of

dg

dt
= g (dH),

d`

dt
= −ad∗dH(`)(`(t)), (5)

on the energy level set H = 1
2 , where dH =

∑k
i=1 hi(`)Ai is the differential

of H.
For our purposes, however, it will be more convenient to express equa-

tion (5) on the tangent bundle G × g rather than the cotangent bundle
G × g∗. For that reason, g∗ will be identified with g via the bilinear form
〈. , .〉, i.e.,

` ∈ g∗ ⇐⇒ L ∈ g if and only if `(A) = 〈L,A〉, for all A ∈ g.

Then, relying on (3),

〈dLdt , A〉 = d`
dt(A) = −ad∗dH(`)(`(t))(A) = −`([dH,A])

= 〈L, [dH,A]〉 = 〈[dH,L], A〉.

Since A is an arbitrary element of g, dL
dt = [dH,L]. Hence the extremal

equations (5) are equivalent to

dg

dt
= g(t)dH(`(t)),

dL

dt
= [dH(`), L]. (6)

Let now p⊥ denote the orthogonal complement of p in g relative to 〈. , .〉.
Since 〈. , .〉 is a symmetric and non-degenerate quadratic form, g = p ⊕ p⊥.
Then each L ∈ g can be written as L = Lp + Lp⊥ with Lp ∈ p and Lp⊥ ∈ p⊥.

Relative to the orthonormal basis A1, . . . , Ak, Lp =
∑k

i=1〈L,Ai〉Ai. But,
〈L,Ai〉 = `(Ai) = hi(`), hence dH = Lp.
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The above shows that the Hamiltonian H can be written as H = 1
2〈Lp, Lp〉

and the associated equations (6) can be written as

dg

dt
= g Lp,

dL

dt
= [Lp, L].

Under the previous assumptions, together with the condition that p⊥ is a
Lie subalgebra of g, we now come to the main theorem of the paper.

Theorem 1. Assume that p⊥ is a Lie subalgebra of g. Then, the sub-
Riemannian geodesics are given by

g(t) = g(0) exp(t(Pp + Pp⊥)) exp(−tPp⊥), (7)

for some constant elements Pp ∈ p and Pp⊥ ∈ p⊥ with ‖Pp‖ = 1.
The Riemannian geodesics on M = G/K are the projections of the sub-

Riemannian geodesics for which Pp + Pp⊥ is orthogonal to k.

Proof : Sub-Riemannian geodesics are the projections of

dg

dt
= g(t)Lp(t),

dL

dt
= [Lp(t), L(t)],

on the energy level set H = 1
2‖Lp‖2 = 1

2 .
We now address the solutions of

dL

dt
= [Lp(t), L(t)],

or, equivalently, the solutions of

dLp

dt
+
dLp⊥

dt
= [Lp(t), L(t)] = [Lp(t), Lp⊥(t)]. (8)

Due to the adk-invariance property of 〈. , .〉, and the assumption that p⊥ is
a Lie subalgebra of g, we have

〈[Lp, Lp⊥], p⊥〉 = 〈Lp, [Lp⊥, p
⊥]〉 = 0,

from which we conclude that [Lp(t), Lp⊥(t)] ∈ p. Consequently,
dLp⊥

dt
= 0,

hence Lp⊥(t) = Pp⊥, for some constant element Pp⊥ ∈ p⊥.
So, equation (8) reduces to

dLp⊥

dt
= 0,

dLp

dt
= [Lp(t), Pp⊥].

Therefore,
U(t) = Lp(t) = exp(tPp⊥)Pp exp(−tPp⊥), (9)
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where Pp = Lp(0).

The corresponding sub-Riemannian geodesics are the solutions of dg
dt =

g(t)U(t). In order to show that the solution of this differential equation has
the required form, we define g̃(t) = g(t) exp(tPp⊥) and use (9) to obtain

dg̃
dt = g(t)U(t) exp(tPp⊥) + g̃(t)Pp⊥

= g̃(t)
(

exp(−tPp⊥)U(t) exp(tPp⊥) + Pp⊥
)

= g̃(t)(Pp + Pp⊥).

Hence, g(t) is given by (7).
To complete the proof, we will use the fact that the geodesics in the quo-

tient space M = G/K are the projections of the extremal curves in G that
satisfy the transversality conditions, implied by Proposition 2, which, after
the identification ` → L, means that L(t), the extremal curve that projects
onto a geodesic in G/K, is orthogonal to k at t = 0 and t = T . Since the hori-
zontal distribution Hp is K-invariant, the Hamiltonian lift hA(L) = 〈L,A〉 of
any left-invariant vector field gA, A ∈ k is constant along the solutions of (8).
Indeed, d

dt〈L(t), A〉 = 〈[Lp(t)⊥, Lp(t)], A〉 = 〈Lp(t)⊥, [Lp(t), A]〉 = 0, because of
[Lp(t), A] ∈ p.

So, since 〈L(t), A〉 is constant, 〈L(0), A〉 = 0 if and only if 〈L(t), A〉 = 0 for
all t. It follows that the orthogonality conditions reduce to L(0) = Pp+Pp⊥ ⊥
k.

As a corollary we have the following result, [10, Proposition 8.30].

Corollary 2. If p⊥ = k, the sub-Riemannian geodesics are given by

g(t) = g(0) exp(t(Pp + Pk)) exp(−tPk), (10)

for some constant elements Pp ∈ p and Pk ∈ k with ‖Pp‖ = 1.
The Riemannian geodesics on M = G/K are the projections of the sub-

Riemannian geodesics (10) for which Pk = 0.

Proposition 5. If p⊥ = k, then the projection of a sub-Riemannian geodesic
on the quotient space M = G/K is a curve of constant geodesic curvature
relative to the Riemannian metric.

Proof : Recall that the geodesic curvature of a curve m(t) parametrized by
its arc length is equal to the length of the covariant derivative of dm

dt along
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m(t). In this context it is most convenient to express the covariant derivative
in terms of its horizontal lift as follows.

Let Y (t) denote a vector field defined along the curve m(t) in M . Then Y (t)
is the projection of a horizontal curve g(t)W (t), for some curve W (t) ∈ p,
where g(t) denotes the horizontal curve that projects onto m(t). It follows
that dm

dt is the projection of a curve g(t)U(t) for some U(t) ∈ p. Then the

covariant derivative DY
dt of Y (t) along m(t) is the projection of

g(t)
(dW
dt

+
1

2
[U(t),W (t)]p

)
,

on M , where [U,W ]p denotes the projection of [U,W ] on p.

In this situation m(t) = π(g(t)), where g(t) is given by (10). Then, dg
dt =

g(t)U(t) = g(t)(exp(tPk)Pp exp(−tPk)) and ‖U(t)‖ = ‖Pp‖ = 1. Hence m(t)
is parametrized by arc length. It follows that

D

dt

(dm
dt

)
= π∗

(
g(t)

dU

dt

)
= π∗

(
g(t) exp(tPk)[Pp, Pk] exp(−tPk)

)
.

But then,∥∥∥D
dt

(dm
dt

)∥∥∥ =
∥∥ exp(tPk)[Pp, Pk] exp(−tPk)

∥∥ =
∥∥ [Pp, Pk]

∥∥.
3. Homogeneous metrics on general Stiefel manifolds Stnk(V )
3.1. Stiefel manifolds

A Stiefel manifold Stnk(V ) consists of ordered k orthonormal vectors v1, . . . , vk
in an n-dimensional Euclidean vector space V . We will focus on the cases
when the vector space V is an Euclidean space V = Rn, an Hermitian com-
plex vector space V = Cn, or a quaternionic space V = Hn (with the right
multiplication by scalars) equipped with its inner product (u, v) =

∑n
l=1 ūlvl.

We will identify points m = (v1, . . . , vk) ∈ Stnk(V ) with matrices Mnk whose
columns consist of the coordinate vectors v1, . . . , vk with respect to a cho-
sen orthonormal basis for V . Each such matrix Mnk satisfies M ∗

nkMnk = Ik,
where ∗ stands for the transpose, the complex conjugate, or the quaternion
conjugate, depending on the case.

The quaternionic Stiefel manifold requires some additional explanations.
Let 1, i, j,k denote the standard basis in the quaternion algebra H. Then,
every quaternion is a linear combination q = q0 + q1i + q2j + q3k with real
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coefficients. The conjugate q̄ of the quaternion q is given by q̄ = q0 − q1i −
q2j− q3k. The product of two quaternions is defined by using the coordinate
representation and the law i2 = j2 = k2 = ijk = −1. It follows that qq′ = q̄′q̄
and q̄q = q2

0 + q2
1 + q2

2 + q2
3 = |q|2. The notion of conjugacy extends to Hn and

yields the inner product (v, w) =
∑n

l=1 v̄lwl. It readily follows that

(vα, w) = ᾱ(v, w), (v, wα) = (v, w)α, (v, w) = (w, v), (11)

for any α ∈ H. Then Sp(n) is the group of matrices that leave invariant
the quaternionic Hermitian product (11). It follows that Sp(n) consists of
n × n matrices Θ with quaternionic entries that satisfy Θ∗Θ = ΘΘ∗ = In.
Reminiscent of the unitary group, one can show that Sp(n) is isomorphic to
Sp(2n,C) ∩ U(2n) [9, page 445].

3.2. Stiefel manifolds as homogeneous spaces

All Stiefel manifolds are homogeneous manifolds, and can be realized as
the quotients of Lie groups through several group actions. Below we will
describe two such actions. To avoid unnecessary repetitions, we will use Gn

to denote SO(n) in the real case, SU(n) in the complex case, and Sp(n) in
the quaternionic case.

Both Gn and Gk act on elements of Stnk(V ), represented as n× k matrices.
The first group acts by the matrix multiplication on the left, and the second
group by the matrix multiplication on the right.

Let us first consider the full group action.
• Stnk(V ) as a homogeneous manifold Gn × Gk/Gk × Gn−k. Here the full

group G = Gn ×Gk acts on Stnk(V ) by

φ((r, s),m) = rms−1, m ∈ Stnk(V ), r ∈ Gn, s ∈ Gk.

The action is transitive, and the orbit through m = Ink =

(
Ik
0

)
consists of

the matrices Mnk = rInks
−1, r ∈ Gn, s ∈ Gk. The isotropy group K, that

leaves Ink fixed, consists of matrices r ∈ Gn and s ∈ Gk such that

rInk = Inks. (12)

The matrix r ∈ Gn can be written in block form as r =

(
R1 R2

R3 R4

)
, with

R1 an k × k-matrix, and the remaining matrices of the corresponding sizes.
Then (12) holds for r only when R1 = s and R2 = R3 = 0. Therefore,
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r =

(
R1 0
0 R4

)
. This shows that the isotropy group K is

K =
{((

S 0
0 T

)
, S
)

: S ∈ Gk, T ∈ Gn−k

}
∼= Gk ×Gn−k. (13)

• Stnk(V ) as a homogeneous manifold Gn/Gn−k. The reduced group action
is given by

φ(g,m) = gm, m ∈ Stnk(V ), g ∈ Gn.

The orbit of the reduced action through the matrix m = Ink consists of
matrices Mnk = gInk ∈ Stnk(V ), g ∈ Gn, i.e., the first k columns of g. The
isotropy group at the point Ink is equal to

K =
{(

Ik 0
0 H

)
: H ∈ Gn−k

}
∼= Gn−k. (14)

The above shows that each Stiefel manifold Stnk(V ) can be represented in
two ways: as the full quotient (Gn ×Gk)/Gk ×Gn−k, as well as the reduced
quotient Gn/Gn−k.

In what follows we will write Stnk(V ) = G/K with the understanding that G
and K are either G = Gn and K = Gn−k, or G = Gn×Gk and K = Gk×Gn−k,
depending on the context. Then, g and k will denote the Lie algebras of G
and K. Similarly gk, gn−k will denote the Lie algebras of Gk and Gn−k.

3.2.1. Homogeneous metrics

Each Lie algebra g is endowed with a positive definite bilinear form 〈. , .〉.
If gn is either so(n) or u(n), then the form is given by

〈A,B〉 = −1

2
Tr(AB) for A,B ∈ gn, (15)

with Tr(A) the trace of the matrix A. On gn = sp(n) the form is written as

〈A,B〉 = −1

4
Tr
(
AB + (AB)∗

)
. (16)

We will often refer to the above forms on g as the trace form, and to the
induced metric as the trace metric. The trace form extends to the product
gk× gn−k with 〈. , .〉 = 〈. , .〉1 + 〈. , .〉2, where 〈. , .〉1 is the trace form in gk and
〈. , .〉2 is the trace form in gn−k. The trace form on g is AdG invariant and
satisfies (3). Thus the corresponding left-invariant Riemannian metric 〈. , .〉G
is also bi-invariant.
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We will now introduce three decompositions g = p⊕ k that conform to (2)
and induce the left-invariant horizontal distributions Hp that are relevant for
the applications.

The reduced horizontal distribution is the horizontal distribution associated
with the representation Stnk(V ) = Gn/Gn−k. It is induced by the orthogonal
complement

p =
{(

A B
−B∗ 0

)
: A ∈ gk

}
(17)

with respect to the trace metric to the isotropy algebra

k =
{(

0 0
0 D

)
: D ∈ gn−k

}
(18)

of the isotropy group K in (14).

The other two horizontal distributions are associated with the representa-
tion Stnk(V ) = (Gn ×Gn−k)/(Gk ×Gn−k).

First, is the orthogonal horizontal distribution on G = Gn × Gn−k. It is
induced by the orthogonal complement

p = k⊥ =
{((

A B
−B∗ 0

)
,−A

)
: A ∈ gk

}
(19)

with respect to the trace metric to the isotropy algebra

k =
{((

C 0
0 D

)
, C
)

: C ∈ gk, D ∈ gn−k

}
(20)

of the isotropy group K in (13).
Second, the quasi-geodesic horizontal distribution on G = Gn×Gn−k. This

horizontal distribution is induced by the vector space

p =
{((

0 B
−B∗ 0

)
, A
)

: A ∈ gk

}
(21)

that is not orthogonal to k in (20).
Evidently p is transversal to k, and satisfies g = p ⊕ k, because for any(
A1 A2

−A∗2 A3

)
∈ gn and B ∈ gk we have((

A1 A2

−A∗2 A3

)
, B
)

=
((

0 A2

−A∗2 0

)
, B − A1

)
+
((

A1 0
0 A3

)
, A1

)
.



18 V. JURDJEVIC, I. MARKINA AND F. SILVA LEITE

The distribution defined by the left translations of p in (21) is called quasi-
geodesic distribution to emphasize the connection with curves called quasi-
geodesic, whose significance was demonstrated in [12] in interpolation prob-
lems arising from applications.

Lemma 1. In all three cases above, the reduced, orthogonal, and quasi-
geodesic case, the decomposition g = p⊕ k satisfies (2).

Proof : In the reduced and the orthogonal cases 〈[p, k], k〉 = 〈p, [k, k]〉 = 0,
because k is a Lie algebra, and it is orthogonal to p. Therefore, [p, k] ⊂ p. It
is also true for the quasi-geodesic case by a direct calculation. So in all cases
[p, k] ⊆ p.

We will now show that k ⊆ [p, p]. In the calculations below, Ei,j denotes the
n×n matrix with entry (i, j) equal to 1 and all other entries equal to 0, and
Ai,j = Ei,j −Ej,i. Matrices Ai,j satisfy the following commutator properties:

[Ai,j, Af,l] = −δilAj,f − δjfAi,l + δifAj,l + δjlAi,f ,

where δij denotes the Kronecker delta function.
Taking into consideration the structure of the matrices in k and p in the

reduced case, given respectively by (18) and (17), it is clear that

{Ak+i,k+j, 1 ≤ i < j ≤ n− k}

is a basis for k, while

{Ai,j, 1 ≤ i < j ≤ k} ∪ {Ai,k+j, 1 ≤ i ≤ k, 1 ≤ j ≤ n− k}

is a basis for p. Since for any Ak+i,k+j in k, there exists Al,k+i and Al,k+j in
p such that

Ak+i,k+j = [Al,k+i, Al,k+j] , (22)

we have proved that in the reduced case k ⊆ [p, p]. To show that this inclusion
is also true for the other two distributions, it is enough to take into account
the structure of the matrices that define the subspaces k (given by (20)) and
p, given either by (19) or (21), and use (22) together with the following extra
identity:

Ai,j = [Ai,k+l, Aj,k+l] ,

which is valid for all 1 ≤ i < j ≤ k and l ∈ {1, · · · , n− k}.

Thus, we obtain the following corollary.
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Corollary 3. All three horizontal distributions Hp are two-step bracket gen-
erating distributions, Hp(g) + [Hp,Hp](g) = TgG for all g ∈ G.

Theorem 2. The homogeneous metrics on the Stiefel manifold Stnk(V ) in-
duced by the sub-Riemannian metrics relative to the reduced horizontal dis-
tribution on Gn, and the sub-Riemannian metric on Gn ×Gk relative to the
quasi-geodesic distribution are equal, and they are different from the homoge-
neous metric induced by the sub-Riemannian metric relative to the orthogonal
horizontal distribution on Gn ×Gk.

Proof : We start with the proof of the first statement. Let ṁ(t) denote the
tangent vector of a curve m(t) in Stnk(V ). Then, m(t) = g(t)Ink and m(t) =
r(t)Inks

∗(t) for some horizontal curves g(t) ∈ Gn and (r(t), s(t)) in G =
Gn ×Gk. Then

ṁ(t) = g(t)W (t)Ink = r(t)(U1(t)Ink − InkU2(t))s
∗(t), (23)

where

dg

dt
= g(t)W (t),

dr

dt
= r(t)U1(t),

ds

dt
= s(t)U2(t).

It will be convenient to embed Gk into Gn by identifying s ∈ Gk with(
S 0
0 In−k

)
, and identify Ink with

(
Ik 0
0 0

)
, so that all the matrices above

can be written as n× n matrices in block form:

W =

(
A B
−B∗ 0

)
, U1 =

(
0 C
−C∗ 0

)
, U2 ∼

(
D 0
0 0

)
, A,D ∈ gk.

Let ‖ṁ(t)‖1 and ‖ṁ(t)‖2 denote the lengths of ṁ(t) relative to the homoge-
neous metrics induced by the reduced and the quasi-geodesic distributions.
Since the sub-Riemannian metrics on G are left-invariant, we need only to
compare the norms of the horizontal vectors on the corresponding Lie alge-
bras. Thus

‖W (t)‖2
p = ‖A(t)‖2 + Tr(B(t)B∗(t)),

is equal to ‖ṁ(t)‖2
1, and

‖(U1(t), U2(t))‖2
p = ‖U1(t)‖2 + ‖U2(t)‖2

= ‖D(t)‖2 + Tr(C(t)C∗(t))

is equal to ‖ṁ(t)‖2
2. We need to show that ‖ṁ(t)‖1 = ‖ṁ(t)‖2.
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Since Ink commutes with s∗,

m(t) = g(t) Ink = r(t)Inks
∗(t) = r(t)s∗(t)Ink,

and therefore, r(t)s∗(t)h = g(t) for some constant h ∈ K, where K is given
by (14). Now equation (23) implies that rs∗hWh∗Ink = r(U1 − U2)Inks

∗,
or (U1 − U2)Ink = s∗hWh∗sInk, because Ink commutes with U2, and Inkh =
hInk = Ink. This equality implies that

U1 − U2 =

(
−D(t) C(t)
−C∗(t) 0

)
= W̃ ,

because both of these matrices are of the form

(
X Y
−X∗ 0

)
. Here we denote

W̃ = s∗hWh∗s. Then,

‖ṁ(t)‖2
1 = ‖W (t)‖2

p = ‖W̃ (t)‖2
p = −1

2
Tr(W̃ 2(t))

= −1

2
Tr

(
−D(t) C(t)
−C∗(t) 0

)2

= ‖D(t)‖2 + Tr(C(t)C∗(t))

= ‖(U1(t), U2(t))‖2
p = ‖ṁ(t)‖2

2.

Now we prove the second statement of the proposition. In this case

dg

dt
= g(t) Ũ1(t),

ds

dt
= s(t) Ũ2(t)

with Ũ1(t) =

(
A(t) B(t)
−B∗(t) 0

)
, Ũ2(t) =

(
−A(t) 0

0 0

)
. The norm of (Ũ1, Ũ2)

with respect to orthogonal horizontal distribution is given by

‖(Ũ1(t), Ũ2(t))‖2
p = ‖Ũ1(t)‖2 + ‖Ũ2(t)‖2 = 2‖A(t)‖2 + Tr(B(t)B∗(t)).

A calculation similar to the one above shows that

W̃ = s∗hWh∗s =

(
2A(t) B(t)
−B∗(t) 0

)
= Ũ1 − Ũ2.

Therefore,

‖W (t)‖2
p = ‖W̃ (t)‖2

p = 4‖A(t)‖2 + Tr(B(t)B∗(t))

6= ‖(Ũ1(t), Ũ2(t))‖2
p.
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3.3. Sub-Riemannian geodesics

3.3.1. Geodesics on Stnk(V ), induced by the reduced horizontal dis-
tribution

In this case, p = k⊥ where k and p are given by (18) and (17) respectively,
and hence by (10), the sub-Riemannian geodesics on Gn are of the form

g(t) = g0 exp
(
t

(
A B
−B∗ D

))(
Ik 0
0 e−tD

)
,

Their projections on Stnk(V ) are given by

m(t) = π(g(t)) = g0 exp
(
t

(
A B
−B∗ D

))
Ink,

and the Riemannian geodesics are of the form

m(t) = g0 e
tΩInk, Ω =

(
A B
−B∗ 0

)
. (24)

These geodesics are called canonical in [7] and normal in [8].

3.3.2. Geodesics on Stnk(V ) induced by the orthogonal horizontal dis-
tribution

In this case p and k are given by (19) and (20), respectively. Then Pp =((
A B
−B∗ 0

)
,−A

)
, and Pk =

((
C 0
0 D

)
, C
)

, which leads to

g(t) = g0 exp
(
t(Pp + Pk)

)
exp(−tPk)

= g0

(
exp

(
t

(
A+ C B
−B∗ D

))
, et(−A+C)

)((
e−tC 0

0 e−tD

)
, e−tC

)
.

The projection is given by

π(g(t)) = g0

(
exp

(
t

(
A+ C B
−B∗ D

))((
e−tC 0

0 e−tD

)
Inke

tCet(A−C)
)

= g0

(
exp

(
t

(
A+ C B
−B∗ D

))
Inke

t(A−C)
)
.
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If g0 = (r, s) ∈ Gn×Gk, then the geodesics through the point g0Ink = rInks
∗,

corresponding to Pk = 0, i.e., C = D = 0, have the form

m(t) = g0 exp
(
t

(
A B
−B∗ 0

))
Inke

tA = retΩInke
tAs∗ (25)

3.3.3. Geodesics on Stnk(V ) induced by quasi-geodesic horizontal dis-
tribution

The quasi-geodesic distribution is generated by (20) and (21). An easy
calculation shows that

p⊥ =
{((

E 0
0 F

)
, 0
)

: E ∈ gk, F ∈ gn−k

}
.

Evidently, p⊥ is a Lie subalgebra of g, hence its sub-Riemannian geodesics
are given by (7). Let

Pp =
((

0 B
−B∗ 0

)
, A
)
∈ p, Pp⊥ =

((
E 0
0 F

)
, 0
)
∈ p⊥. (26)

Then

g(t) = g0 exp(t(Pp + Pp⊥)) exp(−tPp⊥)

= g0

(
exp

(
t

(
E B
−B∗ F

))(
e−tE 0

0 e−tF

)
, etA

)
. (27)

If g0 = (r, s) ∈ Gn ×Gk, then

π(g(t)) = r
(

exp
(
t

(
E B
−B∗ F

))(
e−tE 0

0 e−tF

)
Inke

−tAs∗

= r
(

exp
(
t

(
E B
−B∗ F

))(
e−tEe−tA 0

0 e−tF

)
Inks

∗. (28)

According to Theorem 1, the geodesics on Stkn(V ) are the projections of
the above curves for which Pp + Pp⊥ is orthogonal to k. The orthogonal

complement k⊥ consists of matrices of the form
((

X Y
−Y ∗ 0

)
,−X

)
. So, if

Pp and Pp⊥ are as in (26), then Pp + Pp⊥ ∈ k⊥ if and only if E = −A and
F = 0. In such a case,

Pp =
((

0 B
−B∗ 0

)
, A
)
, Pp⊥ =

((−A 0
0 0

)
, 0
)
,
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and

Pp + Pp⊥ =
((−A B
−B∗ 0

)
, A
)
.

It then follows from (28) that the geodesics at g0 = (r, s) ∈ Gn × Gk are of
the form

m(t) = retΩ̃Inks
∗, Ω̃ =

(
−A B
−B∗ 0

)
. (29)

At first glance, formulas (29) and (24) give different curves. To show that it
is not the case, let g = rs∗, where, whenever convenient, we identify s ∈ Gk

with s =

(
S 0
0 In−k

)
∈ Gn. Then,

m(t) = retΩ̃Inks
∗ = retΩ̃s∗Ink = rs∗setΩ̃s∗Ink = g etΩInk,

where Ω = sΩ̃s∗ =

(
−SAS∗ SB
−B∗S∗ 0

)
.

We are now almost ready to relate the above formalism to the quasi-
geodesic curves. The following lemma will lead the way.

Lemma 2. Curves

m(t) = r
(

exp t

(
E B
−B∗ F

)(
e−tEe−tA 0

0 e−tF

)
Inks

∗

in Stnk(V ) that are the projections of sub-Riemannian geodesic on Gn × Gk

relative to the quasi-geodesic distribution are also the projections of horizontal
curves g(t) in Gn that are solutions of

dg

dt
= g(t)

(
−Ã etÃetẼB̃e−tF

−etF B̃∗e−tẼe−tÃ 0

)
(30)

with Ã = SAS∗, Ẽ = SES∗, and B̃ = SB.

Proof : The sub-Riemannian geodesic relative to the quasi-geodesic distribu-
tion is given by (27) and its projection on the Stiefel manifold is given by (28).
The latter can be written as

m(t) = g0e
tΦ∆(t)Ink, g0 = rs∗, (31)

with

etΦ = s exp
(
t

(
E B
−B∗ F

))
s∗ = exp

(
t

(
Ẽ B̃

−B̃∗ F

))
and
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∆ = s

(
e−tEe−tA 0

0 e−tF

)
s∗ =

(
e−tẼe−tÃ 0

0 e−tF

)
.

The curve g(t) = g0e
tΦ∆(t) is the curve on Gn having the derivative

ġ(t) = g0e
tΦ∆

(
∆−1Φ∆ + ∆−1∆̇

)
= g(t)

(
∆−1Φ∆ + ∆−1∆̇

)
.

A straightforward calculation shows that

∆−1Φ∆ + ∆−1∆̇ =

(
−Ã etÃetẼB̃e−tF

e−tF B̃∗e−tẼe−tÃ 0

)
.

Therefore, g(t) is a horizontal curve in Gn satisfying the conditions of the
lemma.

We finally come to the quasi-geodesic curves.

Definition 3. Quasi-geodesic curves through a point m = rInks
∗ in Stnk(V )

are curves γ(t) having the form

γ(t) = r exp(tΨ)Inke
−tAs∗,

for some matrices Ψ =

(
0 B
−B∗ 0

)
, with B ∈Mk(n−k)(V ) and A ∈ gk.

Alternatively, quasi-geodesic curves can be defined as curves

γ(t) = exp(tX)m exp(tY ),

where X = rΨr∗, and Y = −sAs∗ ∈ gk. Indeed,

γ(t) = r exp(tΨ)Ink exp(−tA)s∗ = r exp(tΨ)r∗rInks
∗s exp(−tA)s∗

= exp (t(rΨr∗))rInks
∗ exp(−tsAs∗) = exp(tX)m exp(tY ).

Proposition 6. Quasi-geodesic curves coincide with the projections of sub-
Riemannian geodesics in (27) with Pp⊥ = 0. They are curves of constant
geodesic curvature. A quasi-geodesic is a Riemannian geodesic on Stnk(V ) if

either Pp = (0, A), or Pp =
((

0 B
−B∗ 0

)
, 0
)

.

Proof : The first statement is a consequence of formula (28).
To show the second statement we will use Lemma 2. When Pp⊥ = 0, E =

F = 0, and m(t) = g(t)Ink, where g(t) = g0 exp(t

(
0 B̃

−B̃∗ 0

)
)

(
e−tÃ 0

0 I

)
.



EXTREMAL CURVES ON STIEFEL AND GRASSMANN 25

Then equation (30) reduces to

dg

dt
= g(t)

(
−Ã etÃB̃

−B̃∗e−tÃ 0

)
= g(t)

(
etÃ 0
0 I

)(
−Ã B̃

−B̃∗ 0

)(
e−tÃ 0

0 I

)
.

Since m(t) is the projection of a sub-Riemannian geodesic, it is parametrized

by the arc length. That implies that U(t) =

(
etÃ 0
0 I

)(
−Ã B̃

−B̃∗ 0

)(
e−tÃ 0

0 I

)
is of unit length.

The geodesic curvature of m(t) is given by ‖Ddt(
dm
dt )‖ relative to the ho-

mogeneous metric, where D
dt denotes the covariant derivative. An argument

completely analogous to that in Proposition 5 shows that∥∥∥Ddt(dmdt )
∥∥∥ =

∥∥∥dUdt ∥∥∥p =
∥∥∥[(A 0

0 0

)
,

(
−A B
−B∗ 0

)]∥∥∥
=

∥∥∥( 0 −AB
−B∗A 0

)∥∥∥
Evidently, ‖Ddt(

dm
dt )‖ = 0 if and only if either A = 0, or B = 0.

The last two statements of Proposition 6 were proved earlier in [12] by
direct computations without any recourse to Lie groups.

3.4. The ambient (Euclidean, Hermitian, or quaternion Hermitian)
metric on the Stiefel manifolds

Each Stiefel manifold Stnk(V ) is a closed subset of the vector spaceMnk(V )
of n×k matrices with the entries in V , V = Rn, V = Cn, or V = Hn, endowed
with the usual quadratic form 〈A,B〉M = Tr(A∗B), A,B ∈Mnk(V ). We will
refer to Mnk(V ) together with the metric induced by 〈. , .〉M as the ambient
manifold.

Thus each Stiefel manifold Stnk(V ) is identified with a closed submanifold
defined by {X ∈ Mnk(V ) : X∗X = In} of Mnk. And, consequently, its
tangent space TXStnk(V ) is identified with

TXStnk(V ) = {Ẋ ∈Mn,k : X∗Ẋ = −Ẋ∗X}, X ∈ Stnk(V ).

We will now consider Stnk(V ) as a Riemannian manifold with the metric given
by

(Ẋ1, Ẋ2) = 〈Ẋ1, Ẋ2〉M = Tr(Ẋ∗1Ẋ2)

This choice of a metric will be called ambient.
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We will now show that the ambient metric can be lifted to a metric (. , .)p on
the space p given by (17), which then induces yet another left-invariant sub-
Riemannian structure (Hp, (. , .)p) on Gn. We will then extract the Riemann-
ian geodesics relative to the ambient metric by analyzing the sub-Riemannian
geodesics induced by (. , .)p by a procedure that is analogous to the one de-
scribed in Section 3.3.

We have shown earlier that every tangent vector Ẋ at a point X can be
lifted to a unique horizontal vector gU above X, that is Ẋ = gUInk, where

U =

(
A B
−B∗ 0

)
for suitable matrices A and B. Now,

Tr(Ẋ∗1Ẋ2) = Tr(I∗nkU
∗
1g
∗gU2Ink) = Tr(I∗nkU

∗
1U2Ink)

= Tr
( (
A∗1 −B1

)( A2

−B∗2

))
= Tr(A∗1A2 +B1B

∗
2).

Thus the ambient bilinear form lifts to

(U1, U2)p = Tr(A∗1A2) + Tr(B1B
∗
2) (32)

for U1 =

(
A1 B1

−B∗1 0

)
∈ p, and U2 =

(
A2 B2

−B∗2 0

)
∈ p. We therefore have

two bilinear forms on p, the trace form 〈. , .〉p given by (15) or (16), and the
quadratic form (. , .)p given by (32). They are related by the formula

(U1, U2)p = 〈U1, DU2 + U2D〉p,

where D =

(
Ik 0
0 0

)
.

3.4.1. Sub-Riemanian problem on (Gn,Hp, (. , .)p)

We will now obtain the sub-Riemannian geodesics associated with mini-

mizing 1
2

∫ T
0 (g−1 dg

dt , g
−1 dg

dt )p dt over the horizontal curves that satisfy g(0) = g1

and g(T ) = g2.
The Hamiltonian equations, based on the Maximum Principle, will be ob-

tained much in the same manner as in Section 2.4. For the moment we
assume that V = Rn or V = Cn. We let L denote the vector in g dual
to some l ∈ g∗ with respect to the metric 〈. , .〉 defined in (15), and write
L = Lp + Lk for the decomposition relative to the factors p and k defined
in (17) and (18). It follows that the regular extremals are the projections
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from T ∗G onto G of the integral curves L(t) of the lifted Hamiltonian

hU(L)(t) = −1

2
(U(t), U(t))p + 〈Lp, U〉p,

subject to the optimality condition, that the extremal control U(t) and the
associated dual vector L(t) maximize hU(L(t)) over all controls U in p. If

L(t) =

(
A(t) B(t)
−B∗(t) C(t)

)
, and U =

(
u v
−v∗ 0

)
, then

hU(L(t)) = −1

2
Tr(u∗u)− 1

2
Tr(vv∗)− 1

2
Tr(A(t)u) +

1

2
Tr(B∗(t)v +B(t)v∗).

It follows that hU(L(t)) attains the maximum relative to the control functions
precisely when 2u(t) = A(t), and v(t) = B(t). Therefore, the extremal curves
(g(t), L(t)) are the integral curves of the Hamiltonian system generated by

H =
1

2
(U,U)p =

1

4
‖A‖2 +

1

2
Tr(BB∗), (33)

i.e., they are the solutions of the system dg
dt = g(t)U(t), dL

dt = [U(t), L(t)].

where dH =

(
1
2A B
−B∗ 0

)
= U . Hence,

(
Ȧ Ḃ

−Ḃ∗ Ċ

)
=

(
0 1

2AB −BC
1
2B
∗A− CB∗ 0

)
.

It follows that A and C are constant and that

B(t) = exp(
t

2
A)B(0) exp(−tC).

This yields

U(t) =

(
1
2A e

1
2 tAB(0)e−tC)

−etCB∗(0)e−
1
2 tA 0

)
= etQ

(
1
2A B(0)

−B∗(0) 0

)
e−tQ,

where Q =

(
1
2A 0
0 C

)
.

The extremal curve g(t) in Gn is a solution of

dg

dt
= g(t)(etQPe−tQ),
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with P =

(
1
2A B(0)

−B∗(0) 0

)
and Q =

(
1
2A 0
0 C

)
. It then follows that the

sub-Riemannian geodesic

g(t) = g0e
t(P+Q)e−tQ

projects on the Stiefel manifold as

X(t) = π(g(t)) = g0 e
t(P+Q)e−tQInk = g0e

t(P+Q)Inke
− t

2A, (34)

with P +Q =

(
A B(0)

−B∗(0) C

)
, and A ∈ gk.

For the Riemannian geodesics on the Stiefel manifold we set C = 0, because
of the transversality conditions.

Let us now show that X(t) = g0 e
t(P+Q)e−tQInk with the term P + Q =(

A B
−B∗ 0

)
∈ p and Q =

(
A
2 0
0 0

)
satisfies the Euler-Lagrange equation

Ẍ +XẊ∗Ẋ = 0 ⇐⇒ Ẋ = Y, Ẏ = −X(Y ∗Y ), (35)

found in [7] and [8] for the case V = Rn.
We have X(t) = g(t)Ink, Ẋ(t) = Y (t) = g(t)U(t)Ink, where g(t) =

g0 e
t(P+Q)e−tQ, and U(t) = etQ

(
1
2A B
−B∗ 0

)
e−tQ. Then,

Ẏ = g U 2Ink + gU̇Ink = g (etQP 2e−tQ)Ink + g (etQ[P,Q]e−tQ)Ink

= g etQ(P 2 + [P,Q])e−tQInk

= g

(
et

A
2 (1

4A
2 −BB∗)e−tA2 0

0 0

)
= g

(
1
4A

2 − etA2BB∗e−tA2 0
0 0

)
.

On the other hand,

X(Y ∗Y ) = −gInkU 2Ink = −g
(

1
4A

2 − etA2BB∗e−tA2 ) 0
0 0

)
.

Therefore, X(t) in (34) satisfies the Euler-Lagrange equation (35) when C =
0.

The calculations in the case V = Hn are similar. We obtain

hU(L(t)) = −1

2
Tr(u∗u)− 1

2
Tr(vv∗)− 1

4
Tr(Au+ (Au)∗)

+
1

4
Tr(Bv∗ + (Bv∗)∗ +B∗v + (B∗v)∗).
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The maximum is achieved at 2u = A and v = B giving the Hamiltonian (33)
for the corresponding metric. The rest of the calculations, identical to the
ones above, show that the quaternionic geodesics are given by (34), with
C = 0.

Observe now that all the homogeneous metrics discussed above coalesce
into a single metric in the extreme cases k = n and k = 1, and in both
cases agree with the ambient metric. This is obvious in the case that k = n,
for then Stnn(V ) is equal to Gn, and the homogeneous metric is equal to the
bi-invariant metric on Gn.

In the case k = 1, the Stiefel manifolds Stn1(V ) is the unit sphere, Sn−1 in
the real case, S2n−1 in the complex case, and S4n−1 in the quaternionic case.
To see that the homogeneous metric coincides with the metric inherited from

the ambient space V , note that the matrix Ω =

(
A B
−B∗ 0

)
in (24) and (25)

is equal to

(
0 b
−b∗ 0

)
where b is a row vector when k = 1. Hence

m(t) = exp
(
t

(
0 b
−b∗ 0

))
e1 = (I cos ‖b‖t+

1

‖b‖

(
0 b
−b∗ 0

)
sin ‖b‖t)e1.

Therefore, m(t) is a solution of

m̈(t) + ‖b‖2m(t) = 0.

It may be somewhat surprising that in all other cases, 1 < k < n, the metric
on Stnk(V ) inherited from the ambient spaceMnk(V ) is less natural than the
homogeneous metric on Stnk(V ) relative to the reduced action of Gn.

4. Grassmann manifolds Grnk(V )
We will now demonstrate the relevance of the sub-Riemannian structures

on Lie groups, as described in the first part of this paper, to the canonical
Riemannian structure of the Grassmann manifolds Grnk(V ). We will also
make use of the fact that Stnk(V ) is a principal Gk bundle over Grnk(V ) to
examine the geometric properties of the projections to Grnk(V ) of the sub-
Riemannian geodesics in Stnk(V ).

Recall that Grnk(V ) is the set of all k-dimensional vector subspaces of an n-
dimensional vector space V . We will continue with our notations from above,
with V one of Rn,Cn, or Hn endowed with its usual metric, except that for
the moment Gn will denote O(n) in the real case, U(n) in the complex case,
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rather than SO(n) and SU(n) as before, while in the quaternionic case Gn

will be Sp(n), the same as before.
Then Grnk(V ) can be embedded into Gn by identifying each vector space

W in Grnk(V ) with the orthogonal reflection RW defined by

RW (x) =

{
x if x ∈ W,
−x, if x ∈ W⊥.

Group Gn acts on Grassmann manifolds Grnk(V ) under the action

(O,W )→ OW = {Ow : w ∈ W}, O ∈ Gn.

The action of Gn on Grnk(V ) can be also expressed in terms of the reflections
RW by the following:

(O, RW )→ ORWO∗, O ∈ Gn. (36)

It is easy to verify that this action is transitive. Therefore, Grnk(V ) can be
realized as the quotient Gn/K, where

K =
{(

A 0
0 C

)
, A ∈ Gk, C ∈ Gn−k

}
∼= Gk ×Gn−k (37)

is the isotropy group of RW0
=

(
Ik 0
0 −In−k

)
associated with the vector space

W0 spanned by the standard vectors e1, . . . , ek.
For our purposes it is desirable to work with connected Lie groups. So,

from now on we assume that G and K are connected, that is G is equal to
SO(n), SU(n) or Sp(n), K is modified accordingly, and the quotient G/K is
the oriented Grassmannians instead.

Alternatively, the decomposition g = k ⊕ p could have been obtained
through the involutive automorphism σ(g) = DgD−1 where we denote D =(
Ik 0
0 −In−k

)
. Then K is equal to the subgroup of fixed points of σ: K =

{σ(g) = g : g ∈ G}. Note that D can be also seen as the orthogonal reflexion
RW0

across W0 the linear span of e1, . . . , ek.
In general, an involutive automorphism σ 6= Id on a Lie group G is an

automorphism that satisfies σ2 = Id. It follows that the tangent map σ∗
at the group identity is a Lie algebra automorphism that satisfies σ2

∗ = Id.
Hence (σ∗ − Id)(σ∗ + Id) = 0, and therefore, g = k⊕ p, where

p = {A ∈ g : σ∗(A) = −A}, and k = {A ∈ g : σ∗(A) = A}.
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The subspaces p and k are orthogonal relative to the Killing form and satisfy
Cartan relations

g = p⊕ k, [p, k] ⊆ p, [p, p] ⊆ k, [k, k] ⊆ k.

On semisimple Lie algebras [k, p] = p, and on simple Lie algebras [p, p] = k,
and therefore p + [p, p] = g, see [10].

Our case here is a particular case of this general situation since the trace
form is a scalar multiple of the Killing form. Moreover, [p, p] = k, as can be
easily verified. So we are in the situation where p + [p, p] = g.

Therefore, the left-invariant distribution Hp with values in p defines a nat-
ural sub-Riemannian problem on Gn:

Find the sub-Riemannian geodesics on Gn and identify those
that project on the Riemannian geodesics in the Grassmannian
Grnk(V ).

According to Theorem 1, the sub-Riemannian geodesics are given by

g(t) = g0 e
t(Pp+Pk)e−tPk = g0 exp

(
t

(
A B
−B∗ C

))(
e−tA 0

0 e−tC

)
,

and their projections on Grnk(V ), obtained by (36), are of the form

R(t) = g0 exp
(
t

(
A B
−B∗ C

))
D exp

(
− t
(

A B
−B∗ C

))
g∗0, (38)

Since p⊥ = k, the curves in (38) have constant geodesic curvature in Grnk(V )
by Proposition 5. The Riemannian geodesics on Grnk(V ) are given by Corol-
lary 2,

R(t) = g0 exp
(
t

(
0 B
−B∗ 0

))
D exp

(
− t
(

0 B
−B∗ 0

))
g∗0. (39)

Equation (39) can be expressed in the form

R(t) = exp (tP )R0 exp (−tP ),

where P = g0

(
0 B
−B∗ 0

)
g∗0. It is easy to verify that R0P + PR0 = 0.

The converse is also true: if P ∈ gn satisfies R0P + PR0 = 0, then P =

g0

(
0 B
−B∗ 0

)
g∗0.
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Let us now note that the involutive automorphism σ(g) = DgD−1 is an
isometry for the above sub-Riemannian structure on G since

〈σ∗(A), σ∗(B)〉p = 〈−A,−B〉p = 〈A,B〉p.

We will presently show that this isometry accounts for the geodesic symmetry
of the Riemannian Grassmannian manifolds.

To elaborate, first note that σ(etA) = etσ∗(A) for any A ∈ g. Next, let
Fg : G→ G be the mapping defined by Fg(h) = g σ(g−1h) at each g ∈ G. It
follows that Fg is an isometry for the sub-Riemannian structure and satisfies
Fg(g) = g. If g0 e

t(Pp+Pk)e−tPk is a sub-Riemannian geodesic at g0 then

Fg0(g(t)) = g0 σ(et(Pp+Pk)e−tPk) = g0 e
tσ∗(Pp+Pk)e−tσ∗Pk)

= g0 e
t(−Pp+Pk)e−tPk.

It follows that Fg maps the sub-Riemannian geodesics at g onto the sub-
Riemannian geodesics at g. The sub-Riemannian geodesics that project onto
the Riemannian geodesics are given by Pk = 0, and we have

Fg(g e
tPp) = g e−tPp.

It follows that Sπ(g0)(π(g)) = π◦Fg0(g) is an isometry that satisfies Sp(γ(t)) =
γ(−t) for any geodesic curve γ(t) with γ(0) = p.

Any Riemannian space M in which the map Sp : γ(t) 7→ γ(−t) is an isom-
etry for any geodesic γ is called symmetric Riemannian space [6, 9]. The
above shows that the oriented Grassmannian manifolds Grnk(V ) with the
above homogeneous metric belongs to the class of symmetric Riemannian
spaces.

4.1. Relation between Stiefel and Grassmann manifolds

Every k-dimensional subspace W of V is in one to one correspondence with
the orthogonal reflection RW and the orthogonal projection ΠW defined by

ΠW (x) =

{
x, if x ∈ W
0, if x ∈ W⊥ .

The map

W → ΠW ∈ {A ∈ gl(V ) : A∗ = A, A2 = A, dim(ker(A)) = n− k}

defines a matrix representation of Grnk(V ) in terms of the orthogonal pro-
jections. The passage from the reflections to the projections is given by a
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simple formula

RW = 2ΠW − I.
Therefore RW = gRW0

g∗ corresponds to 2ΠW − I = g(2ΠW0
− I)g∗, or

ΠW = gΠW0
g∗. In particular, ΠW0

=

(
Ik 0
0 0

)
when RW0

= D. In this

representation the geodesic equations (39) become Π(t) = etPΠ0e
−tP , where

Π0P + PΠ0 = P .
There is a natural projection from the Stiefel manifold to the Grassmann

manifold, because every point q = [v1, . . . , vk] in Stnk(V ) can be projected
to the vector space W spanned by v1, . . . , vk. In terms of the orthogonal
projections, the projection Π(q) = W is given by Π(q) =

∑k
i=1 vi ⊗ v∗i .

When q is regarded as an n × (n − k) matrix with columns v1, . . . , vk, then

Π(q) =
∑k

i=1 vi ⊗ v∗i = qq∗. This identification then yields

Π(q) = qq∗ ∈ Grnk(V ), q ∈ Stnk(V ).

Evidently, Π−1(Π(q)) = {qh, h ∈ Gk}. Therefore, Π is a surjection, and
Stnk(V ) is a principal Gk bundle over Grnk(V ) relative to the action of h ∈ Gk

given by φ(h, q) = qh, see for instance [1, 14].
Let us now go back to the curves on Stnk(V ) that are the projections of

various sub-Riemannian geodesics. Equations (31) capture all these curves.
They are of the form

q(t) = g0e
tΦ∆(t)Ink, g0 = rs∗, (40)

with

etΦ = s exp
(
t

(
E B
−B∗ F

))
s∗ = exp

(
t

(
Ẽ B̃

−B̃∗ F

))
, and

∆ = s

(
e−tEe−tA 0

0 e−tF

)
s∗ =

(
e−tẼe−tÃ 0

0 e−tF

)
,

where Ã = SAS∗, Ẽ = SES∗, B̃ = SB, and s =

(
S 0
0 In−k

)
.

The curves in (40) for arbitrary Φ correspond to the projection of sub-
Riemannian curves relative to the quasi-geodesic distribution. The case E =
F = 0 corresponds to the orthogonal distribution, and A = E = F = 0
corresponds to the projection of the sub-Riemannian geodesics relative to
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the reduced orthogonal distribution. The projection of equations (40) on the
Grassmannians is given by

Π(q(t)) = g0 e
tΦ̃

(
Ik 0
0 0

)
e−tΦ̃g∗0, Φ̃ =

(
Ẽ B̃

−B̃∗ F

)
,

or in terms of the orthogonal reflections, by

R(t) = g0 e
tΦ̃

(
Ik 0
0 −In−k

)
e−tΦ̃g∗0. (41)

Proposition 7. The projections of sub-Riemannian geodesics on Stnk(V )
project onto curves of constant curvature in Grnk(V ). Their curvature is zero
precisely when E = F = 0. In particular, the quasi-geodesic curves project
onto Riemannian geodesics in Grnk(V ).

Proof : Equations (41) are of the same form as (38), and curves in (38) have
constant geodesic curvature by Proposition 5. These equations reduce to
the geodesics when E = 0 and F = 0, and that case corresponds to the
quasi-geodesic curves.
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