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Abstract: We provide a broad overview on qualitative versus quantitative regu-
larity estimates in the theory of degenerate parabolic pdes. The former relates to
DiBenedetto’s revolutionary method of intrinsic scaling, while the latter is achieved
by means of what has been termed geometric tangential analysis. We discuss, in
particular, sharp estimates for the parabolic p−Poisson equation, for the porous
medium equation and for the doubly nonlinear equation.

1. Introduction

In the mid 1980’s, Emmanuele DiBenedetto made a series of crucial contri-
butions (see, e.g., [17, 18, 19, 22, 23]) to the understanding of the regularity
properties of weak solutions of singular and degenerate parabolic equations.
His method of intrinsic scaling (cf. [20, 26, 27, 38] for rather complete ac-
counts) would become a landmark in regularity theory, to be used extensively
in the next decades to treat a variety of pdes, the most celebrated being the
p−Laplace equation and the porous medium equation. The main insight
supporting the method is that each degenerate pde must be analysed in its
own geometric setting, in which space and time scale according to the nature
of the degeneracy. The concrete implementation of this general principle is
rather involved, requiring the use of fine analytic estimates and sophisticated
iterative methods (see, among others, [21, 24, 25]). Although powerful and
versatile, the method of intrinsic scaling delivers essentially qualitative re-
sults, placing the weak solutions of certain pdes in the right regularity class
but not providing sharp quantitative information. For example, it tells us
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2 TEIXEIRA AND URBANO

that solutions of the porous medium equation

ut − div
(
m|u|m−1∇u

)
= 0

are locally of class C0,α, for a certain (small) Hölder exponent α but is tight-
lipped on the best possible α.

While, for many purposes, qualitative estimates for a given model are
enough, the investigation pertaining to sharp estimates in diffusive pdes is,
by no means, a mere fanciful inquire. On the contrary, sharp estimates reveal
important nuances of the problem and play a decisive role in a finer analysis
of the model. As a way of example, they are decisive in the investigation of
problems involving free boundaries. As a structural attribute of a given pde,
obtaining optimal regularity estimates for a given diffusive model is often a
challenging problem. In what follows, we will describe a successful geomet-
ric approach which often leads to sharp, or at least improved, estimates in
Hölder spaces; the method is inspired by geometric insights related to the
notion of tangent pde models.

In the sequel, we will describe in more detail a few seminal ideas which fos-
ter intuitive insights leading to a technical apparatus supporting the method.
We will also exemplify the power of those ideas in some concrete, relevant
problems, namely in obtaining sharp estimates for the parabolic p−Poisson
equation, for the porous medium equation and for pdes involving doubly
nonlinearities.

2. Geometric tangential analysis

The abstract concept of Tangent is rather classical and widely spread in
the realm of mathematical sciences. It bears a notion of approximation,
usually involving more regular objects, from which one can infer pertinent
information about the original entity. Probably one of the most well known
examples of Tangent comes from the idea of differentiation, where one lo-
cally approximates a nonlinear map by a linear one. The acclaimed Inverse
Function Theorem from Calculus asserts that if the linear approximation of
a function f at a point a is injective and surjective, then so is f in a neigh-
bourhood of a. This is a classical example where qualitative information on
the approximating object is transferred to the approximated one.
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While tangent lines to the graph of a function, or even tangent hyperplanes
to manifolds are, per se, rather concrete manifestations of Tangent, this pow-
erful mathematical concept transcends to more abstract settings, ultimately
yielding decisive breakthroughs.

In the lines of the analogy above, Geometric Tangential Analysis (GTA)
refers to a constructive systematic approach based on the concept that a
problem which enjoys greater regularity can be tangentially accessed by cer-
tain classes of pdes. By means of iterative arguments, the method then
imports this regularity, properly corrected through the path used to access
the tangential equation, to the original class. The roots of this idea likely go
back to the foundation of De Giorgi’s geometric measure theory of minimal
surfaces, and accordingly, it is present in the development of the modern
theory of free boundary problems.

Indeed, an instrumental argument in De Giorgi’s geometric measure treat-
ment of minimal surfaces is the so called flatness improvement. Roughly
speaking, De Giorgi in [16] shows that if a minimal surface S is flat enough,
say in B1, then it is even flatter in B1/2. At least as important as the the-
orem itself is the reasoning of its proof, which heuristically goes as follows:
arguing by contradiction, one would produce a sequence of minimal surfaces
Sj in B1, that are 1/j flat with respect to a direction νj; however the aimed
flatness improvement is not verified in B1/2. By compactness arguments, an
appropriate scaling of Sj converges to the graph of a function f , which ought
to solve the linearised equation, namely ∆f = 0. Since the limiting function
f is very smooth, flatness improvement is verified for f . Thus, for j0 suffi-
ciently large, one reaches a contraction on the assumption that no flatness
improvement was possible for Sj0.

Such a revolutionary, seminal idea borne fruit in many other fields of re-
search. In particular the motto flatness implies regularity, largely promoted
by Caffarelli and collaborators, thrived in the theory of free boundary prob-
lems from the 1970’s and 1980’s (see, among others, [1, 2, 9, 10, 11, 13, 12]).
Powerful methods and geometric insights designed for the study of free
boundary problems evolved and, in the 1990’s, played a decisive role in Caf-
farelli’s work on fully non-linear elliptic pdes (cf. [14]) and, subsequently,
in his studies on Monge-Ampère equations (see [15]). As for second or-
der fully nonlinear elliptic equations, Caffarelli uses Krylov-Safonov Harnack
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inequality, designed for viscosity solutions, as a universal compactness de-
vice. He measures closeness between variable coefficient equations and con-
stant coefficient equations by means of coefficient oscillation; no linearisation
takes place. Ultimately, he shows that if the constant coefficient equation
F (x0, D

2u) = 0 has a good regularity theory, then F (x,D2u) = 0 inherits
some universal estimates, provided the coefficient oscillation is small enough.

Restricted to diffusive processes, perhaps a didactical way to contemplate
GTA is by drawing connected dots. Each dot represents a class of elliptic or
parabolic pdes and each path is a compactness theorem.

For instance, the study of all Poisson equations of the form −∆u = f(x),
say with f ∈ Lp, is one single dot. Caccioppoli-type energy estimates yield
a connecting path from such dot to the (sought-after) dot representing all
harmonic functions. Namely, if un is a sequence of functions, say bounded
in L2, satisfying −∆un = fn(x), if fn → 0 in Lp, then, up to a subsequence,
un → h and h is harmonic.

The abstract concept of Tangent postulates that two connected PDEs
should share an underlying regularity theory. The caliber of the path deter-
mines how much of the regularity one can bring from one model to another.
In the above example, if

∆u = f(x), f ∈ Lp,

then for any 0 < λ� 1, the function uλ(x) :=
1

λ2−np
u(λx) verifies

∆uλ = fλ(x),
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where

fλ(x) = λ
n
p f(λx).

One easily verifies that

‖fλ(x)‖p ≤ ‖f‖p.
This means that through the path joining the Poisson equation, −∆u =
f(x) ∈ Lp, and the Laplace equation, ∆h = 0, one can transport estimates
of order O(r2−np ). Such estimates ultimately yield C0,2−np−regularity, if 0 <
2− n

p < 1, or C1,1−np−regularity if 1 < 2− n
p < 2. As usual, the cases p = n

or p =∞ are a bit tricker, as logarithm defects appear (see [34]).
In recent years, methods from Geometric Tangential Analysis have been

significantly enhanced, amplifying their range of application and providing a
more user-friendly platform for advancing these endeavours (cf. [34, 35, 37,
36, 31, 5, 6], to cite just a few). In what follows, we shall present a small
sample of problems that can be tackled by methods coming from GTA.

3. The parabolic p−Poisson equation

As a first example, we consider the degenerate parabolic p−Poisson equa-
tion

ut − div
(
|∇u|p−2∇u

)
= f, p > 2, (3.1)

with a source term f ∈ Lq,r(UT ) ≡ Lr(0, T ;Lq(U)), where the exponents
satisfy the conditions

1

r
+
n

pq
< 1 (3.2)

and
2

r
+
n

q
> 1. (3.3)

The first assumption is the standard minimal integrability condition that
guarantees the existence of locally Hölder continuous weak solutions, while
(3.3) defines the borderline setting for optimal Hölder type estimates. For
instance, when r =∞, conditions (3.2) and (3.3) enforce

n

p
< q < n,

which corresponds to the known range of integrability required in the elliptic
theory for local C0,α estimates to be available.
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We have shown in [37] that weak solutions are locally of class C0,α in space,
with

α :=
(pq − n)r − pq

q[(p− 1)r − (p− 2)]
=

p

(
1− 1

r
− n

pq

)
(

2

r
+
n

q
− 1

)
+ p

(
1− 1

r
− n

pq

) ,
a precise and sharp expression for the Hölder exponent in terms of p, the
integrability of the source and the space dimension n. Observe that 0 < α <
1, in view of (3.2) and (3.3).

We also have that u is of class C0,αθ in time, where

θ := α + p− (p− 1)α = p− (p− 2)α = α2 + (1− α)p

is the α−interpolation between 2 and p. If p = 2, we have θ = 2. For p > 2,
we have 2 < θ < p, since 0 < α < 1.

The regularity proof develops along the following lines.

Step 1 - closeness to p-caloric: We first establish a key compactness
result that states that if the source term f has a small norm in Lq,r,
then a solution u to (3.1) is close to a p−caloric function in an in-
ner subdomain. The proof is by contradiction and uses compactness
driven from a Caccioppoli-type energy estimate and a control of the
time derivative due to Lindqvist in [30].

Step 2 - geometric iteration: Then, we explore the approximation
by p−caloric functions and the fact that p−caloric functions are uni-
versally Lipschitz continuous in space and C0, 12 in time. More pre-
cisely, we show there exist ε > 0 and 0 < λ� 1/2, depending only on
p, n and α, such that if ‖f‖Lq,r(G1) ≤ ε and u is a local weak solution
of (3.1) in G1, with ‖u‖p,avg,G1

≤ 1, then there exists a convergent
sequence of real numbers {ck}k≥1, with

|ck − ck+1| ≤ c(n, p) (λα)k , (3.4)

such that

‖u− ck‖p,avg,Gλk ≤
(
λk
)α
, (3.5)
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where the intrinsic θ−parabolic cylinder is defined by

Gτ :=
(
−τ θ, 0

)
×Bτ(0), τ > 0

and the averaged norm is

‖v‖p,avg,Q :=

(∫
Q

|v|p dxdt
)1/p

= |Q|−1/p‖v‖p,Q.

Step 3 - smallness regime: The smallness regime required is not re-
strictive since we can fall into that framework by scaling and contrac-
tion. Indeed, given a solution u, let

v(x, t) = %u(x, %(p−2)t)

(% to be fixed), which is a solution of (3.1) with

f̃(x, t) = %p−1f(x, %(p−2)t).

Just choose 0 < % < 1 such that

‖v‖pp,avg,G1
≤ %2‖u‖pp,avg,G1

≤ 1

and

‖f̃‖rLq,r(G1) = %(p−1)r−(p−2)‖f‖rLq,r(G1) ≤ εr,

observing that, trivially, (p− 1)r − (p− 2) > 0.

Step 4 - Hölder via Campanato: Since the sequence {ck} is conver-
gent, due to (3.4), let

c̄ := lim
k→∞

ck.

It follows from (3.5) that, for arbitrary 0 < r < 1
2 ,∫

Gr

|u− c̄|p dxdt ≤ Crpα.

Standard covering arguments and the characterisation of Hölder con-
tinuity of Campanato–Da Prato give the local C0;α,α/θ – continuity.
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To highlight the extent to which our result is sharp, we project it into the
state of the art of the theory. For the linear case p = 2, we obtain

α = 1−
(

2

r
+
n

q
− 1

)
,

which is the optimal Hölder exponent for the non-homogeneous heat equa-
tion, and is in accordance with estimates obtained by energy considerations.
When p → ∞, we have α → 1−, which gives an indication of the expected
locally Lipschitz regularity for the case of the parabolic infinity-Laplacian.
When the source f is independent of time, or else bounded in time, that is
r =∞, we obtain

α =
pq − n
q(p− 1)

=
p

p− 1
·
q − n

p

q
,

which is exactly the optimal exponent obtained in [33] for the elliptic case.
Within the general theory of p−parabolic equations, our result reveals a

surprising feature. From the applied point of view, it is relevant to know
what is the effect on the diffusion properties of the model as we dim the
exponent p. Näıve physical interpretations could indicate that the higher the
value of p, the less efficient should the diffusion properties of the p−parabolic
operator turn out to be, i.e., one should expect a less efficient smoothness
effect of the operator. For instance, this is verified in the sharp regularity
estimate for p−harmonic functions in the plane [29]. On the contrary, our
estimate implies that for p−parabolic inhomogeneous equations, the Hölder
regularity theory improves as p increases. In fact, a direct computation shows

sign (∂pα(p, n, q, r)) = sign (q(2− r) + nr) = +1,

in view of standard assumptions on the integrability exponents of the source
term.

4. The porous medium equation

There are two crucial differences with respect to the previous case when
treating the porous medium equation (cf. [39])

ut − div
(
m|u|m−1∇u

)
= f, m > 1. (4.1)

One is that adding a constant to a solution does not produce another solu-
tion, which somehow precludes the use of Campanato theory and requires
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a different technical approach to the Hölder regularity. The other is of a
more fundamental nature, namely the hitherto unknown optimal regularity
in the homogeneous case, leading to an extra dependence in the sharp Hölder
exponent. Only for n = 1, it is proven in [7] that

α0 = min

{
1,

1

m− 1

}
but this is not the case in higher dimensions as corroborated by the celebrated
counter-example in [8].

A locally bounded function

u ∈ Cloc

(
0, T ;L2

loc(U)
)
, with |u|

m+1
2 ∈ L2

loc

(
0, T ;W 1,2

loc (U)
)

is a local weak solution of (4.1) if, for every compact set K ⊂ U and every
subinterval [t1, t2] ⊂ (0, T ], we have∫

K

uϕ

∣∣∣∣t2
t1

+

∫ t2

t1

∫
K

{
−uϕt +m|u|m−1∇u · ∇ϕ

}
=

∫ t2

t1

∫
K

fϕ,

for all test functions

ϕ ∈ W 1,2
loc

(
0, T ;L2(K)

)
∩ L2

loc

(
0, T ;W 1,2

0 (K)
)
.

It is clear that all integrals in the above definition are convergent (cf. [26,
§3.5]), interpreting the gradient term as

|u|m−1∇u :=
2

m+ 1
sign(u) |u|

m−1
2 ∇|u|

m+1
2 .

For a source term f ∈ Lq,r(UT ) ≡ Lr(0, T ;Lq(U)), with

1

r
+
n

2q
< 1,

it was shown in [4] that locally bounded weak solutions of (4.1) are locally
of class C0,γ in space, with

γ =
α

m
, α = min

{
α−0 ,

m[(2q − n)r − 2q]

q[mr − (m− 1)]

}
, (4.2)

where 0 < α0 ≤ 1 denotes the optimal Hölder exponent for solutions of (4.1)
with f ≡ 0. This regularity class is to be interpreted in the following sense:
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if
m[(2q − n)r − 2q]

q[mr − (m− 1)]
< α0

then solutions are in C0,γ, with

γ =
(2q − n)r − 2q

q[mr − (m− 1)]
;

if, alternatively,

m[(2q − n)r − 2q]

q[mr − (m− 1)]
≥ α0,

then solutions are in C0,γ, for any 0 < γ < α0

m .
Observe that

m[(2q − n)r − 2q]

q[mr − (m− 1)]
=

2m

(
1− 1

r
− n

2q

)
m

(
1− 1

r

)
+

1

r

> 0

and so indeed γ > 0. Note also that

m[(2q − n)r − 2q]

q[mr − (m− 1)]
> 1

if (
1 +

1

m

)
1

r
+
n

q
< 1,

and, as q, r →∞,

m[(2q − n)r − 2q]

q[mr − (m− 1)]
−→ 2,

which means that after a certain integrability threshold it is the optimal
regularity exponent of the homogeneous case that prevails, with

α = α−0 and γ <
α0

m
< 1.

The C0,γθ regularity in time is also obtained in [4], with

θ = 2−
(

1− 1

m

)
α = α

(
1 +

1

m

)
+ (1− α) 2
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being the α−interpolation between 1 + 1
m and 2. Observe that for m = 1 we

obtain

γ = 1−
(

2

r
+
n

q
− 1

)
and θ = 2,

recovering the optimal Hölder regularity for the non-homogeneous heat equa-
tion, in accordance with estimates obtained by energy considerations.

It is worth stressing that, as in the case of the p-Laplace equation, the
integrability in time (respectively, in space) of the source affects the regularity
in space (respectively, in time) of the solution. Here is a snapshot of the
regularity proof.

Step 1 - a Caccioppoli estimate: An equivalent definition of weak
solution involving the Steklov average is instrumental in obtaining
the following Caccioppoli estimate (cf. [26, §3.6]), for a constant C,
depending only on n,m and K × [t1, t2]:

sup
t1<t<t2

∫
K

u2ξ2 +

∫ t2

t1

∫
K

|u|m−1|∇u|2ξ2

≤ C

∫ t2

t1

∫
K

u2ξ |ξt|+
∫ t2

t1

∫
K

|u|m+1
(
|∇ξ|2 + ξ2

)
+ C‖f‖2

Lq,r ,

for all ξ ∈ C∞0 (K × (t1, t2)) such that ξ ∈ [0, 1].

Step 2 - the intrinsic geometric setting: It is crucial we perform
our analysis in the adequate geometric setting, reflecting the degen-
eracy in the pde in the scaling of the space-time cylinders where the
oscillation is measured. Given 0 < α ≤ 1, let

θ := 2−
(

1− 1

m

)
α (4.3)

and define the intrinsic θ-parabolic cylinder as

Gρ :=
(
−ρθ, 0

)
×Bρ(0), ρ > 0.

Note that when m = 1, we obtain the standard parabolic cylinders
reflecting the natural homogeneity between space and time for the
heat equation. Observe also that θ satisfies the bounds

1 +
1

m
≤ θ < 2,
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which will be instrumental in the sequel.

Step 3 - linkage with the homogeneous case: Another vital ingre-
dient is a way to link solutions of the non-homogeneous problem with
solutions of the homogeneous case. This type of statement follows
from the available compactness for the problem and is proved by con-
tradiction. Using the Caccioppoli estimate and the Arzelà-Ascoli the-
orem, we show that for every δ > 0, there exists 0 < ε� 1 such that,
if ‖f‖Lq,r(G1) ≤ ε and u is a local weak solution of (4.1) in G1, with
‖u‖∞,G1

≤ 1, then there exists φ such that

φt − div
(
m|φ|m−1∇φ

)
= 0 in G1/2

and

‖u− φ‖∞,G1/2
≤ δ.

Step 4 - geometric iteration: This is the heart of the proof. We
show that there exist ε > 0 and 0 < λ � 1/2, depending only on
m,n and α, such that, if ‖f‖Lq,r(G1) ≤ ε and u is a local weak solution
of (4.1) in G1, with ‖u‖∞,G1

≤ 1, then, for every k ∈ N,

‖u‖∞,Gλk ≤ (λk)γ,

provided

|u(0, 0)| ≤ 1

4

(
λk
)γ
.

Recall that γ was fixed in (4.2) and let us proceed by induction. We
start with the case k = 1. Take 0 < δ < 1, to be chosen later, and
apply Step 3 to obtain 0 < ε� 1 and a solution φ of the homogeneous
pme in G1/2 such that

‖u− φ‖∞,G1/2
≤ δ.

Since φ is locally Cα0
x ∩ C

α0/2
t , we obtain

sup
(x,t)∈Gλ

|φ(x, t)− φ(0, 0)| ≤ Cλ
α0
m ,
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for C > 1 universal, where λ � 1 is still to be chosen. In fact, for
(x, t) ∈ Gλ,

|φ(x, t)− φ(0, 0)| ≤ |φ(x, t)− φ(0, t)|+ |φ(0, t)− φ(0, 0)|
≤ c1|x− 0|α0 + c2|t− 0|α0/2

≤ c1λ
α0 + c2λ

θ
2α0

≤ Cλ
α0
m ,

since θ ≥ 1 + 1
m > 2

m . We can therefore estimate

sup
Gλ

|u| ≤ sup
G1/2

|u− φ|+ sup
Gλ

|φ− φ(0, 0)|

+|φ(0, 0)− u(0, 0)|+ |u(0, 0)|

≤ 2δ + Cλ
α0
m +

1

4
λγ

and the result follows from the choices

λ =

(
1

4C

) m
α0−α

and δ =
1

4
λγ.

Now suppose the conclusion holds for k and let’s show it also holds
for k + 1. Due to (4.3), the function v : G1 → R defined by

v(x, t) =
u(λkx, λkθt)

λγk

solves

vt − div
(
m|v|m−1∇v

)
= λk(2−α)f(λkx, λkθt) = f̃(x, t).
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We have

‖f̃‖rLq,r(G1) =

∫ 0

−1

(∫
B1

∣∣∣f̃(x, t)
∣∣∣q)r/q

=

∫ 0

−1

(∫
B1

λk(2−α)q
∣∣f(λkx, λkθt)

∣∣q)r/q
=

∫ 0

−1

(∫
Bλk

λk(2−α)q−kn ∣∣f(x, λkθt)
∣∣q)r/q

= λ[k(2−α)q−kn] rq

∫ 0

−1

(∫
Bλk

∣∣f(x, λkθt)
∣∣q)r/q

= λ[k(2−α)q−kn] rq−kθ
∫ 0

−λkθ

(∫
Bλk

|f(x, t)|q
)r/q

and, since

[(2− α)q − n]
r

q
− θ ≥ 0

due to (4.2), we get

‖f̃‖Lq,r(G1) ≤ ‖f‖Lq,r((−λθk,0)×Bλk ) ≤ ‖f‖Lq,r(G1) ≤ ε,

which entitles v to the case k = 1. Note that ‖v‖∞,G1
≤ 1, due to the

induction hypothesis, and

|v(0, 0)| =
∣∣∣∣u(0, 0)

(λk)
γ

∣∣∣∣ ≤
∣∣∣∣∣ 1

4

(
λk+1

)γ
(λk)

γ

∣∣∣∣∣ ≤ 1

4
λγ.

It then follows that

‖v‖∞,Gλ ≤ λγ,

which is the same as

‖u‖∞,Gλk+1
≤
(
λk+1

)γ
,

and the induction is complete.
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Step 5 - the smallness regime: The final ingredient is showing that
the smallness regime previously required is not restrictive. In fact, we
can show that if u is a local weak solution of (4.1) in G1 then, for
every 0 < r < λ,

‖u‖∞,Gr ≤ C rγ, (4.4)

provided

|u(0, 0)| ≤ 1

4
rγ. (4.5)

To see this, take

v(x, t) = ρu
(
ρax, ρ(m−1)+2at

)
with ρ, a to be fixed. It solves

vt − div(m|v|m−1∇v) = ρm+2af(ρax, ρ(m−1)+2a)t) = f̃(x, t)

and satisfies the bounds

‖v‖∞,G1
≤ ρ‖u‖∞,G1

and

‖f̃‖rLq,r(G1) = ρ(m+2a)r−a(n rq+2)−(m−1)‖f‖rLq,r(G1).

Choosing a > 0 such that

(m+ 2a)r − a
(
nr

q
+ 2

)
− (m− 1) > 0,

which is always possible, and 0 < ρ � 1, we enter the smallness
regime. Now, given 0 < r < λ, there exists k ∈ N such that

λk+1 < r ≤ λk.

Since |u(0, 0)| ≤ 1
4r
γ ≤ 1

4(λk)γ, it follows that

‖u‖∞,Gλk ≤ (λk)γ

and, for C = λ−γ,

‖u‖∞,Gr ≤ ‖u‖∞,Gλk ≤ (λk)γ <
( r
λ

)γ
= C rγ.
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Step 6 - sharp Hölder regularity: We finally show the existence of
a universal constant K such that

‖u− u(0, 0)‖∞,Gr ≤ Krγ,

which is the C0,γ regularity at the origin. We know, a priori, that u
is continuous so

µ := (4|u(0, 0)|)1/γ ≥ 0

is well defined. Taking any radius 0 < r < λ, we have three alternative
cases.

• If µ ≤ r < λ, then (4.5) holds and

sup
Gr

|u(x, t)− u(0, 0)| ≤ C rγ + |u(0, 0)| ≤
(
C +

1

4

)
rγ

follows from (4.4).

• If 0 < r < µ, we consider the function

w(x, t) :=
u(µx, µθt)

µγ
,

which solves a uniformly parabolic equation in Gρ0, for a radius ρ0

depending only on the data. This gives an estimate that, written
in terms of u, reads

sup
Gr

|u(x, t)− u(0, 0)| ≤ C rγ, ∀ 0 < r < µ
ρ0

2
.

• Finally, for µρ02 ≤ r < µ, we have

sup
Gr

|u(x, t)− u(0, 0)| ≤ sup
Gµ

|u(x, t)− u(0, 0)|

≤ C µγ ≤ C

(
2r

ρ0

)γ
= C̃rγ.

5. The doubly nonlinear equation

The methods and techniques of the previous two sections can be combined
to obtain sharp regularity results for solutions of the inhomogeneous degen-
erate doubly nonlinear parabolic equation

ut − div
(
m|u|m−1|∇u|p−2∇u

)
= f, p > 2 m > 1,
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which appears, for example, in the contexts of non-Newtonian fluid dynamics,
plasma physics, ground water problems or image processing.

The local Hölder continuity of bounded weak solutions is established in
[28, 32]. For a source term f ∈ Lq,r(UT ) ≡ Lr(0, T ;Lq(U)), with

1

r
+
n

pq
< 1 and

3

r
+
n

q
> 2,

it is proven in [3] that locally bounded weak solutions are locally of class C0,β

in space with

β =
α(p− 1)

m+ p− 2
, α = min

{
α−∗ ,

(m+ p− 2)[(pq − n)r − pq]
q(p− 1)[(r − 1)(m+ p− 2) + 1]

}
,

where 0 < α∗ ≤ 1 denotes the optimal (unknown) Hölder exponent for
solutions of the homogeneous case. The regularity class is to be interpreted
as in the case of the porous medium equation.

Observe that when m = 1, the equation becomes the degenerate parabolic
p−Poisson equation, for which α∗ = 1, and we recover the exponent

α :=
(pq − n)r − pq

q[(p− 1)r − (p− 2)]

of section 3. For p = 2, we have the porous medium equation and obtain the
exponent (4.2) of section 4.
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[4] D.J. Araújo, A. Maia and J.M. Urbano, Sharp regularity for the inhomogeneous porous medium

equation, J. Anal. Math., to appear.
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