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ABSTRACT: We propose signed compound Poisson integer-valued GARCH processes
for the modelling of the difference of count time series data. We investigate the the-
oretical properties of these processes and we state their ergodicity and stationarity
under mild conditions. We discuss the conditional maximum likelihood estimator
when the series appearing in the difference are INGARCH with geometric distribu-
tion and explore its finite sample properties in a simulation study. Two real data
examples illustrate this methodology.
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1. Introduction

The practical relevance of count time series has led to the development of
several class of integer-valued models in order to better describe and capture
the main characteristics of this kind of data. Among these classes, we high-
light that of the compound Poisson INGARCH (CP-INGARCH) models, intro-
duced in Gongalves et al (2015), that enlarges and unifies the main INGARCH
processes present in literature and has the ability of capturing simultaneously
characteristics of overdispersion and conditional heteroscedasticity, in a general
distributional context.

Some papers emerged in the literature in recent years (a.e. Karlis and Nt-
zoufras, 2006, 2009; Koopman et al, 2014) have shown the interest of signed
integer-valued time series defined by the Skellam distribution, which is con-
structed as differences in pairs of Poisson counts independent or not. Such
models allow us to describe, for example, the differences over time in the num-
ber of accidents, catastrophes, or people contracting certain epidemic disease
in two cities, two world regions, or two populations.

Several studies have shown that Poissonian models have some limitations
to describe counting data, particularly because this kind of data usually has
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overdispersion characteristics, which are not captured by Poissonian distribu-
tions but by others such as negative binomial (NB), Neyman-type A, general-
ized Poisson (see a.e. Weifs, 2009; Zhu, 2011, 2012; Gongalves et al, 2015) all
of them included in the supra referred CP-INGARCH models. Therefore, to
consider the differences of general counting models have obviously theoretical
and practical interest.

Following this idea we present here a Z-valued counting model defined as the
difference between two general independent CP-INGARCH processes, which
will allow to describe in practice such kind of data, even when the phenomena
under study has different distributional behavior in each situation considered
(in that difference). We observe that our proposal differs from those in which
models to adjust time series with Z-values are based on thinning operators,
a subject where Kim and Park (2008) was pioneering; a good review of these
thinning operators models is presented in Scotto et al (2015).

For sake of technical simplicity, we start with the study of a bivariate model
defined by two independent CP-INGARCH processes from which the difference
model, that is the signhed CP-INGARCH one, is constructed. The main proba-
bilistic properties of weak and strict stationarity and ergodicity are deduced for
a wide class of these kind of bivariate models. After we consider any measurable
function of the marginal processes and in what concerns the statistical anal-
ysis we concentrate our study in the estimation by the conditional maximum
likelihood method of a particular case of signed geometric INGARCH model,
that is, that corresponding to a bivariate model whose marginal processes are
particular NB-INGARCH ones.

The remainder of the paper is organized as follows. In Section 2 we recall the
class of CP-INGARCH models by presenting its definition and construction as
well as its main subclasses. The bivariate process is introduced in Section 3.
Properties of stationarity and ergodicity are developed and, in particular, nec-
essary and sufficient conditions of weak and strict stationarity are established.
The signed CP-INGARCH model is defined in Section 4. For the particular
case of the signed geometric INGARCH processes, we develop in this Section
the conditional maximum likelihood estimator of the model parameter vector.
The performance of the conditional likelihood estimator in finite samples is
evaluated via simulation experiments. We observe that with our models, we
can compare a temporal phenomenon in different periods (sufficiently distant
to assume independence) but also compare it in different situations; we illus-
trate it by discussing the monthly counts of poliomyelitis cases recorded in the
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United States in two periods as well as another application related to the num-
ber of Olympic medals won by Swiss and Dutch athletes over all time. Some
concluding remarks end the paper.

2. Preliminairies

Let us recall the definition of Compound Poisson integer-valued GARCH
model introduced in Gongalves et al (2015) as well as some results that are
relevant for the study presented in next Sections.

Let X = (X;,t € Z) be a stochastic process with values in Ny and, for any
t € Z,let X, ; be the o—field generated by {X;_;,7 > 1}.

Definition 2.1 (CP-INGARCH(p,q) model). The process X is said to satisfy
a Compound Poisson INteger-valued GARCH model with orders p and q (p,
q € N) if, Vt € Z, the characteristic function of X|X,_, is given by

Dy, x, ,(u) = exp {ng—@) [pe(u) — 1]} , u€R )
E(X|X ) =M= a0+ 30 0 Xej + > Brdi—s

for some constants ag > 0, o > 0 (j = 1,...,p), B > 0 (kK = 1,...,q),
and where (g, t € Z) is a family of characteristic functions on R, X, ;-
measurable associated to a family of discrete laws with support Ny and finite
mean. © denotes the imaginary unit.

As oy, t € Z, is the characteristic function of a discrete law with support Ny
and finite mean, the derivative of ¢, at u = 0, ¢;(0), exists and is nonzero.

In the previous definition, if 8 = 0, kK = 1, ..., q, the CP-INGARCH(p, q)
model is simply denoted CP-INARCH(p).

Remark 2.1. (1) As the conditional distribution of X; is a discrete com-
pound Poisson law with support Ny then, ¥Vt € Z and conditionally to
X, 1, X; can be identified in distribution as

N,
d
X <)Xy, (2)
j=1

where Ny follows a Poisson law with parameter A} = i \/;(0), and
Xi1,--., Xen, are discrete independent random variables, with support
contained in Ny, independent of Ny and having characteristic function
oy with first derivative at zero, that is, with finite mean. We note that
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the characteristic function ¢ being X, |-mensurable may be a random
function. This means that ©; may depend on the previous observations
of the process.
(2) Let us consider the polynomials
A(L)=onL+ ...+ a,L? and B(L) =1— /L — ... — B, LY,

where L is the backshift operator. To ensure the existence of the inverse
of B(L) we suppose that the roots of B(z) = 0 lie outside the unit
circle which, for non-negative [3;, is equivalent to 23:1 B; < 1. Under
this assumption, the conditional expectation of the model (1) may be
rewritten in the form

B(L)\ = ap+ A(L)X; & N\ = B~ (1) + B~ L)A(L) X,
that is, with B~ (L)A(L) = Y_72 ¢;L7,

A=aoB 1) + ) X,
j=1

which expresses a CP-INARCH(400) representation of the model (1).
(3) The process X satisfying the model (1) is first order stationary if and
only if > 0« +Z§.:1 B; < 1. Under this condition, the processes (Xi)
and () are both first order stationary and
Qo

D L q a
1 - i—=1 Qi j=1 6]

(4) If ¢ is deterministic, t € 7, and independent of t, there is a strictly
and weakly stationary and ergodic process that satisfies the model (1),
if and only if 3 30—y ai + D5, B < 1.

(5) The sub-class of CP-INGARCH models with ; deterministic and inde-
pendent of t is still quite vaste including, among others. the INGARCH
(Ferland et al, 2006), Negative-Binomial DINARCH (Xu et al, 2012),
Generalized Poisson INGARCH (Zhu, 2012), Neyman type-A and GE-
OMP2 (Gongalves et al, 2015) INGARCH models.

E(Xt) — E()\t) -

3. Bivariate model

3.1. Definition.

Let X = (X;,t € Z) be a bivariate stochastic process, X; = (X1, Xo4),
where Xy = (X14,t € Z) and Xy = (Xo,,t € Z) are univariate processes and,
for any ¢ € Z, let X, _; be the o —field generated by {X;_;, 7 > 1}. If X satisfy
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a CP-INGARCH(p, q¢) model and X5 satisfy a CP-INGARCH(p, ¢) model and
if, for any ¢t € Z, X;; e Xy, are independent relatively to the law conditioned
by X, 1, then the characteristic function of X;|X, ; is, for any ¢ € Z, given by

( Oy, (w,0) = exp {3l [ (w) = 1} exp il [Biv) = 1]}, (u,0) € R2
. E(Xl,t|il,t—1) =M =+ Zj:l ijXl,t—j =+ Zkzl BrM;_y,
E(X27t|i2,t71) = ]\71% = + Z]?:l @ Xop—j+ Zzzl gkj\\jt—ka

(3)
for some constants oy > 0, o; > 0 (j = 1,...,p), B > 0 (k = 1,...,q),
ap>0,a;, >0(j =1,....p), B, > 0 (k = 1,...,q) and where (¢, t € Z)
and (@r,t € Z) are two families of characteristic functions on R, X, ; and
Xy, 1—measurable, respectively, each one associated to a family of discrete
laws with support Ny and finite mean.
We assume in what follows the hypothesis

q q
Hy:Y Br<land > Bp<l. (4)
k=1 k=1
Introducing the polynomials
A(L)=oL+ ..+ a,lPand B(L)=1—- L — ... — B,L",
A(L)=a L+ ...+ azLP and B(L) =1~ 3L — ... — B;LY,

we may ensure the existence of the following representations for M; and ]\Z
My = ooB7 (1) + 3270 Ui Xy, My=aoB™H(1) + 327 ¥ Xa-,
where 1); (resp., 1;]) is the coefficient of 2/ in the Maclaurin expansion of

A(2)/B(2) (resp., A(2)/B(2)), that is, B (L)A(L) = S2 617 (resp.,
B_l(L)A(L):ZjZN/)J )

3.2. First and second order stationarity.
The process X is first order stationary if and only if Y8, a; + Z] B <1

and Z 0+ Z 1 BJ < 1. Under these conditions, the processes (X;;) and
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(M,) are both first order stationary, as well as (Xa,) and (]\Z), and we have
1 D i Qi — 23:1 B;’
- 1 - ?5:15&—2?:1@

The study of the second order stationarity of CP- INGARCH models was
undertaken in Gongalves et al (2015) under the condition

E(X1) = E(M;) = p

E(Xs;) = E(M;) =]

12 0
H2 . —ZSOI,f ( )
Pt (0)

with vy > 0,v; > 0, not simultaneously zero. The stated results are valuable
for a quite general subclass including both random and deterministic charac-
teristic functions ¢y; in particular, they apply to the INGARCH (Ferland et al,
2006), NB-INARCH (Zhu, 2011), NB-DINARCH (Xu et al, 2012), Generalized
Poisson INGARCH (Zhu, 2012), Neyman type-A INGARCH models and also
to all the models where the ¢; functions are determinist and independent of ¢.
This study apply naturally to the bivariate model X; = (X4, Xo) since the
matrices of variances-covariances, I'x, (h),h = 0,1, 2, ..., are given by

= vy + U1y,

I'y (h) — [ Cov (X17t+h7X1,t) Cov (X17t+h7X2,t) ]
t | Cov (X1, Xog) Cov (Xopin, Xog) |
[ Cov (X1 t4h, X1 t) 0 |
i 0 Cov (Xa1n, Xoy) |
[ Tx,, (h) 0
0 Ix,(h)]°

due to the independence of X; and Xo.

From Theorems 2 of Gongalves et al (2015) and 3.1 of Gongalves et al (2016),
a necessary and sufficient condition of weak stationarity of processes (X;,) and
(X32+) and consequently of (X;) is deduced.

We refer, for example, that for a first order stationary CP-INGARCH(1,1)
model verifying H,, a necessary and sufficient condition of weak stationarity is
(o1 + 51)2 —|—U10z% < 1. We also note that the autocovariances of a second order
CP-INGARCH(p, q) process X and those of A (respectively, I" and f) verify
the linear equations
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min(h—1,q)

h—j)+ Z Bl (h — k+ZBth k), h>1,

I
E
L
’1

HllIl

Z L (h=5)+ D al G=h+Y AL (h—k), h20,
k=1

j=h+1

assuming that 3¢ BT (h—k) = 0if h > ¢ and Yol (G—h) =
0 if A > p. In particular, the autocovariances of a weakly stationary CP-
INGARCH(1,1) are given by

I (h) = ay (1= By (ar + B1)) (ar + B)" !
1— (o —|—51)2 + a2
with, under Ho,

L), h>1,

(v + V1) [1 — (o + 51)2 + aﬂ
1— (a1 + 61)2 —via?

['(0) = p

Qg
l—a1—p1°

where 1 =

3.3. Strict stationarity.

In this section we study the existence of strictly stationary solutions for the
class of models introduced in (3). Following Ferland et al (2006) and Gongalves
et al (2015) we begin by building a first order stationary process solution of
the bivariate model that, under certain conditions, will be strictly stationary
and ergodic.

3.3.1. Construction of a process solution when ¢; and p; are determinis-
tic.

Let us consider model (3) associated to a given family of characteristic func-
tions (¢, @r, t € Z) such that the hypothesis H; is satisfied. We assume

Hs: ¢, and @, are deterministic. (5)

Let (Uy,t € Z) be a sequence of independent real random variables dis-
tributed according to a discrete compound Poisson law with characteristic func-
tion .
(7)) [

Py, (u) = exp {WW

) - 11}
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Foreach t € Z and k € N, let Z; , = {Z;1,; } jen be a sequence of independent
discrete compound Poisson random variables with characteristic function

1
Dz, (u) =exp {wk
. ©i11(0)

where (¢;,7 € N) is the sequence of coefficients associated to the
CP-INARCH(+00) representation of the model X;,;. We note that E(U;) =
B (1) = o, E(Z1x;) = tr and that Z;;; are identically distributed
for each (t,k) € Z x N. We also assume that all the variables U,, Z; ;,
s,t € Z,k,5 € N, are mut(uz)ﬂly independent. Based on these random variables,
t

we define the sequence X;

(o1 si(u) — 1]} ,

as follows:

0 n <0

xm ¢ U n=0 (6)
1.t . X(n,k) )
Ui+ i1 22t Zikky, m>0

where it 1s assumed that Z?Zl Zi k1 =0.

We introduce, analogously, the sequences, independent of the previous ones,
(U, t € Z), Zyjy = {Zx;}jen for each t € Z and k € N, with characteristic
functions

(Pgt(u) = €eXp {E(l)m [Pe(u) — 1]} )

(I)Ztm (u) = exp {¢km [Pran(u) — 1]}

and define the sequence Xg? as:

0, n <0
x5y =4 U n=0. (7)

(n—k) _

~ x{n=
U+ 221 25200 Zikpj, n>0

In what follows we present some properties of the sequence
(x07, x{) nen),

that are direct consequences of Ferland et al (2006) and Gongalves et al (2015).
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Property 3.1. If Y70 oy + >0, 85 <1 and Z‘?:l a; + Z?:l Bj < 1 then
{(Xl(z),Xz(Z),t € Z), n € Z} is a sequence of first order stationary processes
such that, as n — o0,

(6 (x02) () —

Property 3.2. If Y77 c; + 30,8 < 1, Y qi + 25,8 <1 and ¢,

and @ are derivable at zero up to order 2, then the sequence {(Xl(z),XQ(Z),t S

Z), n € Z} converges almost surely, in L* and L? to a process (X§,X3) =
(XitaX;,tat € Z)

Taking into account the previous results, we obtain the next lemma that
will be useful to establish the existence of a strictly stationary and ergodic
process satisfying the bivariate model (3).

Lemma 3.1. Under the hypothesis Hs, the process (X7, X3) is a solution
of the model if Zle aj+ > 0Bk <land X' o+ Z?‘:l By < 1.

Proof. The almost sure limit of the sequence (X1(:Lt): X2(:Lf)) is a solution of the

model (3) since, for (u,v) € R?,

Pxsxn, oxglxs, )W v) = Hm o @n(u,v) (8)
M — 1)| expli AZ* o(v) —

with ®,, the characteristic function of the sequence (r§”)|§"t_l,?~§”)\1§7t_l),

where

n Xik,tfk n Xs’tfk
SCRIES 35 SE SININE (N5 b 5r AVWRI

and M; = ayB~ (1) + > VX M} = &05_1(1) + D X,

As in Ferland et al (2006) and Gongalves et al (2015), the equality in (8)
follows from Paul Lévy theorem since, for a fixed ¢, the sequence Yl(?) = 7"§”) —
X 1(? converges in mean to zero, when n — co. So Yl(?) and X{,—X 1(7?
in probability to zero and

Xiy =1 = (X0, = X)) + (X0 i) = (X7, = X)) - Vi)

converge



10 E. GONCALVES AND N. MENDES-LOPES

which allows to conclude that the sequence rt(n) converges in probability to Xy,

n .
and then 7“75 )]Xit | converges in law to X7,|X7, ;. In an analogous way, we

conclude that 7" |X2t 1 converges in law to X3 ,[X5, ;.
Let us obtain ®,,. Conditionally to X7, ;, we have

* *
Xltk Xltk:

(I)ZX“ g Ly kk] H q)Zt kk] _eXp ; ¢k I(O) [ (U) N 1]

~ exp {wxitk#m ) - 11}

and conditionally to X5, ;, we have

Xoik .
~ % /L —
iz, @ 11 %, 0= o0 i (B0 - 1
From the independence of the variables involved in the definition of r§”> and
?“{tn), we obtain
Bo(u,0) = exp (g () — 1] + ZMH e o) — 1] %
B(1) ¢4(0) i (0)
<o At i)~ 1]+ wam e CIORS)
B(1) @, (0) @1 (0)

XeXp{( Z >—0[§5t(v)1]},

2 71(0)
and thus, when n — oo, we have the equahty presented in (9). |

Remark 3.1. As a consequence of Property 3.1 and previous lemma, the pro-
cess (X7, X3) is, under the hypothesis Hs, a first order stationary solution of

the model if Y7, aj + >4 1ﬁk<1andzp1al—|—2] 1Ej<1
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Now, we consider, additionally to the hypothesis H3, that ¢; and @; are inde-
pendent of ¢. In this subclass, it is possible to establish the strict stationarity
and ergodicity of (X7, X3).

Theorem 3.1. Let us consider the bivariate model defined by (3) with @ and
0y, t € 7, deterministic and independent of t.
(a): {(Xl(’?,XQ(z),t € Z),n € L} is a sequence of strictly stationary and
ergodic processes.
(b): There is a strictly stationary and ergodic process in L' that satisfies

the bivariate model if and only if Y8 | o —l—z B <land XV a;+

._1 Bj < 1. Moreover, its first two moments are finite.

Proof. (a) The sequence {( 11 ,t € Z),n € 7} is strictly stationary since the

sequences (U, t € Z) and (Zt’k,t € Z,k € N), defined in Section 3.3.1, are in
(n)

this case (¢; = ¢) of i.i.d. random variables. Moreover, (X}') is a sequence of
ergodic processes, because it is a measurable function of the sequence of 1.i.d.

random variables {(Uy, Z;;),t € Z,j € N} (Durrett, 2010). Analogously, we

conclude that the sequence {(X 2t),t € Z),n € Z} is strictly stationary and

ergodic as it envolves the sequences (U, t € Z) and (Zyy,t € Z, k € N).

As Xﬁ) and Xéz) are independent for each ¢, the process (Xﬁ), XQ(Z),t €7Z)
is strictly stationary.
(b) In Lemma 3.1 we proved that (X7, X5,,t € Z) is a solution of (3). So,
it is enough to prove that when ¢; and ¢; are deterministic and indepen-
dent of ¢, the almost sure limit is strictly stationary and ergodic. From (a),

(Xff? ,X;Z),n € 7Z) is a sequence of strictly stationary processes. Otherwise,
(Xf?),{(z(j?) converges almost surely to (X Xop) if Y20 i+ 3008 <1
and Y7, a; + > 5., B; < 1. So, considering without loss of generality, the
indexes {1, ..., k}, we have when n tends to +o0

(X, X5 s (XL X)) = (X X5, e (X4 X50))

(O e X5 o O3 X5000) = (X s X0 o (X s X3 4).
almost surely, for any h € Z, and consequently, in law. Considering the strict
stationarity of (Xl( t), X2( t)) and the limit unicity, we conclude that (X7,, X3 ,)

is a strictly stationary process. Moreover, taking into account that (X 1(1?, XQ(ZL))

is the measurable function of (Uy, Z; ;, U, Z,j) referred above, (X7, X3,) is the
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almost sure limit of a sequence of measurable functions, so a measurable one
(Halmos, 1974), of the ergodic process (U, Zy,j, Uy, Ztj). Thus (X7, X5,) is
ergodic.

Regarding the necessary condition of existence of a strictly stationary solu-
tion, we observe that if (X4, Xa¢) is such a solution of the bivariate model,
it is also first order stationary as, by hypothesis, it is a process of L'. So, by

Section 2 we have » i | a; + % 1Bj<lalr1dz L ait ] 16j<1 |

Remark 3.2. Under the conditions of the previous theorem it follows that
(Xf’t, X5t € Z) is also a weakly stationary solution of the model (3) because
it is a strictly stationary second order process, from Property 3.2 .

4. Signed compound Poisson INGARCH models

If we consider that the law de X1 | X, ; is any discrete Compound Poisson
law, and analogously for X2’t|X2’t_1, we see that the class of models proposed
in the previous Section includes inumerous bivariate cases. As examples of
INGARCH models related to discrete compound Poisson laws recently studied,
we refer the Binomial negative (Zhu, 2011), generalized Poisson (Zhu, 2012),
dispersed INARCH (Xu et al, 2012), geometric and Neyman type-A (Gongalves
et al, 2015), among others.

The study of the resulting model for any measurable function of X;; e Xo,
will be more or less complexe according to the retained laws. In particular,
there is a strictly stationary and ergodic solution for the model if the conditional
laws relative to X;; and Xy, are chosen among INGARCH, NB-DINARCH,
GP, Neyman Type-A and GEOMP2 models as, in these cases, the characteristic
function of the compounding variables is deterministic and independent of ¢.

A natural transformation is the process difference Dy = X;; — X9y, t € Z.

Example 4.1. Let us consider that Xy X;, 1 is Poisson distributed with
parameter My = o + Z?Zl o X1—j + > iy BuMi_y. This model was intro-
duced by Ferland et al (2006), is denoted INGARCH model and it belongs
to CP-INGARCH models as it is enough to consider, in Observation 2.1, p;
equal to the characteristic function of Dirac law concentrated in {1} and N
Poisson distributed with parameter My. Analogously, let us consider that the
law of XQt‘XQt L 1s Poisson with parameter Mt = ap + Z 0 Xy

Zk:l ﬁkMt_k. The constants verify g > 0, o > 0 (j = 1,...,p), B 2 0
(k’ = 1,...,(]), 620 > O, &j Z O (] = 1,...,]3/), Bk Z O (k = 1,...,6) and



SIGNED CP INGARCH PROCESSES 13

1+ 0 By < 1and 27?:1 54}4—2?:1 Bj < 1. The conditional law of the
difference process, Dy = X134 — Xoy, t € Z, is a Skellam law (Skellam, 1946),
that is, with probability function given by

P@%duzﬂem{—@%+ﬂa}6§>%q(%M@@)AEZ,

t

where Iiq (.) is the modified Bessel fonction of the first kind, that is, (Abramowitz
and Stegun, 1965)

+00
1 2m—+ao
I, (z) = mz:%m!F CETEy (g) , when « is not an integer
Iy (z) = lin}cla (x), when k is an integer.
a—

The process difference Dy = X1+ — Xoy, t € Z, 1s an INGARCH process with
values in 7Z and the previous study shows that it is strictly stationary and
ergodic. We note that the Skellam law has a recognized utility in the modelling
of the number of accidents (or murders, strikes, catastrophes, ...) registered,
for example, in two towns, two populations, two years, ...

We present now the first and second-order moments of the difference process.
The conditional mean of Dy is

E(Di|Dy_y) = My — M,
and so the first unconditional moment is
Q) Q
L= 0= 1= a-5 5
Moreover, I'p, (h) = I'x,, (h) +I'x,, (h) , h € Z, due to the independence.
In particular, it M; = op + a1 X141 and My = ag + a1 X271 we have

E(D)) = E (M~ M) =

(071} &0
E (D) = — —,
( t) 1-— a1 1— a1
Lp,(h) = af Tx,, (0)+a7 Ix,, (0), h>1

Qo

% VO+U11—a
r 0) = !
%1, (0) l—a;l—(1+wv)af
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and analogously for I'x,, (0) , with ap, a1, 9 and vy replaced by ap, ay, 7 and
V1.

Let us illustrate the study of the process difference when XX, ; and
X4 X5, 1 are geometrically distributed, observing that the characteristic func-
tions of the compounding variables are not deterministic in this case.

4.1. The signed geometric INGARCH model.

4.1.1. Preliminaires.

The geometric law belongs to the Compound Poisson distributions. In what
follows we consider that XX, ; e Xp|X,, ; are geometrically distributed
and we analyse some properties of the process difference.

Let us recall that if the random variable X is geometrically distributed with
parameter p;, that is, with probability function P (X =k) = pi(1 — p1)F,

k € Ny, then its characteristic function is given by ¢ (t) = 1_(1_ppll) il € R,

and we have, for example, F(X) = %, V(X) = 1;#. Moreover, if Y is
another random variable that is independent of X and %ollowing a geometric
law with parameter po, then the difference X —Y has support Z and probability
function

+00
P(X-Y=k = > P(X=n+kY =n)
n=0

p1p2

R A

1—(1=p1)(1—pa)

The geometric INGARCH process (X;,t € Z) is a particular case of the bi-
nomial negative INGARCH process introduced in Zhu (2011), and such that

(1-p)f, keN,
(1-py)™", —keN.

k
1 1
P(Xt=k|it1):ﬂ(1—1+)\t> , k€ Ny,

where \; = o + Zle a; X + Z;]':l BjAi—j. It is also obtained in Gongalves
et al (2015), and noted NB(l, ﬁ) , considering, conditionally to X;_1,

Xe=Y1+Yo+ ... +Yin
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with Y;1,Y;2, ..., independent and identically distributed random variables
with logarithmic distribution with parameter 1 A , independent of the random
variable Ny which follows a Poisson law with parameter In(1 + \;). The char-

acteristic function of the compounding variables, Y; ;, is given by

B ln( 1+>\ exp (zu))
T ()

which i1s a X;_1— measurable and dependent on ¢ function.

First and second order stationarity conditions and the study of the auto-
correlation function of the geometric INGARCH process may be found in Zhu
(2011) and Gongalves et al (2015). In particular, we have

1 - L
E (Xt|Xt—l) = —j/\t =M\
1+/\t
1 —
V(X Xy ) = & =M1+ N),

2
1
(1—|—)\t)

This model allows integer-valued time series with overdispersion, as we de-
duce that V' (X;) > E(Xy).

4.1.2. The model for Z; = X1 — Xoy.
Let us consider that the processes (X, t€Z) and (X9t € Z) are

NB(l, H——M) and NB( +—Mt> respectively, with
p q
M; = ag + Z a;j X1+ Z Br M,
j=1 k=1
and

Mt - &0 + Z &jX2,t—j —|— Z ﬁkMt—k-
j=1 k=1
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The probability function of the conditional law of the process difference Z; =
X1t — Xoy, t € Z, is given by

p

1 M, \F
1+ M, 1\7<1+§\4>’ we
+ M, + t
P(Zi=k|Z,_1) = 1 1t ! Y7 —k
_ L | |, —keN.
1+ M+ 0 \ 1+ M

1 a \Me® g )Y
B 1+Mt+J\Z(1+Mt) 1+ M, '

4.1.3. Conditional mazximum likelihood estimation.
To describe the maximum likelihood approach to estimate the parameter
vector

~ ~\T
@ = (a07"'7apa517"'75@0407"'7a177617"'7621v)

T
(O Byt O s O B2 s O, Ot o O 2)
of a stochastic process Z following a signed geometric INGARCH model, we
note that the conditional likelihood function associated to n observations 21, ..., Z,

conditionally to the initial values is

n Ziln, (Z4) ~ N\ —Zin(—Z4)
_ 1 M, 0 M,
L©)=11 1+ M+ M, (HMt) (HZ\Z)

t=1

The log-likelihood function is given by
L(©) =1log L(©) = > 1:(O)
=1

with

1(©) = —log (1+ My + M)+ 7 [ 1n, () log (727 ) — 1 (~Z) log ()]

To estimate the true value of ©, Oy, it is natural to maximize £ (©) but, as
the estimates has no closed form, numerical optimization methods have to be
used.

In order to estimate the asymptotic covariance matrix of the conditional max-
imum likelihood estimator, ©, namely [nZ (©y)]"" where Z (6y) is the infor-
mation matrix evaluated at ©g, let us begin by considering the first derivatives




SIGNED CP INGARCH PROCESSES 17

of l; in order to the first parameters 6;, 2 = 1,...,p + ¢ + 1, namely,

ol 1 oM, 1 1 oM,
= — t+Zt1NO(Zt)[ - ] !
1 oM,
= |- — + Ziln, (Z, ] 11
[ 1+ M; + M, a t)Mt(1+Mt) 90; ()
and the second derivatives
2l {_ 1 Zin, (Z2) } 02 M,
— Gt (1+ M) — M5t
+ L — aa];/[t + Ziln, (Zt) % ( 2 t 2 2 38];4,:
(1+ 0+ 21,) 9% Mg (1+ M) :
B {_ 1 Zln, (Z4) } 92 M,
1+Mt+j\\jt Mt (1+Mt) 891893
1 Zin, (Z,) (1 + 2M,) | OM, M,
* —\2 2 2 90; 00, (12)
<1+Mt+Mt) M (1+ M) i 0Y;
for 1 <1i,5 <p+ q+ 1. Moreover,
8Mt d 8Mt—k:
8&0 ;ﬁk 8040
8Mt d aMt—k
= Zi;+ i=1,...,p,
(90@ t—i kz:;ﬁk 80@- ? p
8Mt d 8Mt—k
- Mt—'+ Bk 7j:17"'7Q'
00, g kz:; 0B,
Taking expectations in both sides of the equation (12) we obtain
9%y B 1 E(Zn, (Z)12,1) \ 0*M,
b (aeiaej |Zt—1> - ( Lr ML M(L+M,) ) 96,00,
+ 1 . (1 + 2Mt> E (Ztho (Zt) |Zt71) OM; OM,

—~\ 2 2 ) .
(1 + M, + Mt) M} (14 M) 90; 06
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But from
1 +oo M k 1 —|—M 1— 1 t 1 +M
B (s (2012i) = =3 b (13 ) = Bk = ",
1+Mt+Mtk:0 + t 1+Mt+Mt 1+M; 1+Mt+Mt

we deduce that

021 1 1+ 2M oM., OM.
B2 g, )= - R g (212, | 2k 00,
00; 09 M? (1 + M, 00, 00;
<1 + Mt -+ Mt) t ( + t) i j

1 (1+ 2M,) OM, DM,

—~\ 2 —— .
In an analogous way, from (11) we get

El(— — + LAy (Z A —_—
Gz = £ o+ 20 (8 ) 21) S0

M, (1 4+ M) (1 + 2M,
Taking into account that E (ZleO (Zy) ]Zt_l) — (14 M) (1+ t)

. 1+ M, + M,
obtain
ol, ol
b (ae 90, a0, 2+ 1)
_ 1 2B (Zin (Z)|Z,-0) E (221, (Z:) |ZH))8Mt O,
<1+Mt+]\7t>2 M, (14 M) (1 4+ M, + 31, MEZ(1+ M) 06; 00
1 1+ 2M, OM, OM,

B _<1+Mt+1\2)2+Mt(1+Mt)(1+Mt+f\Z) 06; 06;°

_ o4l ol; 0l .
deducing that — F (W;@Jztl) =F (agt aet Z, 1) i, =1,....p+q+1.

We obtain analogously the first and second derlvatlves of [; in order to the
other parameters 0;, i =p+q+2,...,p+p+ g+ ¢+ 2, namely

%: _ 1 B Zth (_Zt) 6‘7\\4; (13)
00; L+ M+ My M, (14 0) | 9
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L | 1  Zin(=Z) | 9*M,
. . Zin (=) (1+2M,) | 937 031
—~\ 2 — —~\ 2 . .
(1+ M, + M) M (1+ 1) 96; 90,

Proceeding as above we deduce that the usual information matrix equality
follows

9%, ol 0l ~ -
—F YA =F 07 =1, ... 2.
(aeael it— 1) ((99 ae |_t 1)727] ) 7p+p+q—|_Q+

Asymptotic standard errors of the conditional maximum likelihood estimators

PN
of © can be computed from the matrix % (DnSnDn) where

10l Al ~ 1<
4= 007 and D __ﬁ;a@ﬁ@T'

4.2. Simulation study.

A simulation study was carried out to evaluate the finite sample performance
of the CML estimators.

Table 1 presents the sample means and the standard deviations for the CML
estimates of ap, a1, 1, ap, @1 and B for the signed geometric model with M; =
ap + a1 X1 -1+ fiM—1 and My = ap + a1 X1 + f1M—1. These estimates
were obtained considering different sample sizes, namely n = 1000, 4000, 10000
and g = &0 = 1.2,0{1 :&1 = 61 :61 =0.2.

We generated a sample of the signed geometric model of size n and, for
this sample, we obtained its CML estimates following the previous theoretical
approach. We repeated this procedure 100 times and the mean values of the
estimates, along with the standard deviations in parenthesis, are presented in
Table 1.

These simulations show that, as expected, the estimates of the six parameters
seem to converge to the corresponding true parameter values as the sample size

(14)
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FIGURE 1. Box-plots of the CML estimates for all parameters,
with n = 1000 and 10000.

increases. Further, the standard deviations of the estimates decrease when the

sample size increases.

Table 1. CML estimates for the signed geometric model with
ap = ag = 1.2, a1 =aq = 1 =01 = 0.2, for sample sizes n = 1000, 4000 and

10000.
Eest (55) Eest (a) Eest (51) Eest (52;) Eest (a) Eest (51)
n = 1000 1.260643 | 0.195888 1.17689 1.173820 | 0.203735 | 0.218863
(0.405936) | (0.042905) | (0.211527) | (0.364874) | (0.044899) | (0.187787)
n = 4000 1.193396 | 0.1968091 | 0.203823 | 0.176754 | 0.203517 | 0.210494
(0.172529) | (0.023841) | (0.083176) | (0.175265) | (0.024281) | (0.090910)
n = 10000 | 1.220624 0.199929 0.188485 1.206462 0.203864 0.192802
(0.089579) | (0.014106) | (0.047199) | (0.103817) | (0.014282) | (0.053779)

Figure 1 displays the Box-plots of the CML estimates for all parameters for
n = 1000 and 10000. We observe, in all cases, a strong concentration in the
vicinity of the true value of the parameter and, paying attention to the scale

of the plot, we notice that this concentration increases with n.
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The Q-Q plots corresponding to n = 1000 and 10000 are presented in Figure
2. We note that the empirical quantiles approach the Gaussian distribution
ones when n increases, for all the parameters in study. Moreover, the Jarque-
Bera statistics and p-values presented in Table 2 for n = 10000 show the
clear compatibility of the CML estimates of the parameters with the Gaussian
distribution.

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

--------------------

AAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 2. Q-Q plots of the CML estimates for n = 1000 and 10000.

Table 2. CML estimates and Gaussian distribution for n = 10000.

ag aq b1 Qyp ay b1
Jarque-Bera | 0.961911 | 1.658994 | 1.869042 | 0.188014 | 0.118713 | 0.90713
Probability | 0.618193 | 0.436269 | 0.392774 | 0.910276 | 0.942371 | 0.635361

4.3. Applications.

4.3.1. Poliomyelitis cases in USA. We apply the proposed estimation method-
ology to the polio data discussed in Zeger (1988) and Zhu (2011), among oth-
ers. The data consists of monthly counts of poliomyelitis cases recorded in
the United States from 1970 to 1983 by the Centres for Disease Control. We
consider two subseries of this data as spaced as possible, namely the monthly
counts of polio cases from 1970 to 1974 and from 1979 to 1983 and we study
the series that is the difference between the most recent values and those more
distant (60 observations).

Figure 3 presents this series, its descriptive summaries and empirical autocor-
relation and partial autocorrelation values. The empirical mean and standard
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FIGURE 3. Difference series: plot, descriptive summaries and au-
tocorrelation and partial autocorrelation values.

deviation of the data are —0.45 and 2.466 respectively. We conclude that there
was, on average, progress in that 10-year interval in the direction of polio eradi-
cation in United States. The data is overdispersed, the autocorrelation of order
one is 0.223 and the autocorrelations of higher order are not significant, which
allows inferring an order 1 dependence although not very strong.

In order to model the data we consider a signed geometric INARCH model
with p = p = 1 with parameters «g, a1, ap, @;. The conditional maximum
likelihood estimates from this fitting are summarised in Table 3 (0.509345,
0.293369, 0.519798 and 0.522338, respectively) leading to an estimated model
that is first order stationary.

The fitted conditional mean is given in Figure 4 and we note that it closely
follows the values and trend of the observed series. The resulting Pearson
residual is defined by
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FIGURE 4. Difference series and fitted conditional mean from the
signed geometric INGARCH model.

% (- 7)

J\Z(HJ\Z)H\Z(HJ\Z)

where ]\Z = ap + 1 X141 and ]\Z = 50 - gleg,t_l. The residual analysis
is shown in Figure 5 and there is no evidence of any correlation within the
residuals. The Jarque-Bera statistics implies the normality of the Pearson
residuals at the 0.01 significance level and this fact is also suggested by the
kernel density estimation and normal Q-Q plots for the Pearson residuals.

Table 3. Signed geometric INARCH model parameter estimation

LogL: LOGLO3

Sample: 2 60

Date: 07/24/18 Time: 11:32

Included observations: 59

Evaluation order: By equation
Convergence achieved after 19 iterations

Coeflicient Std. Error z-Statistic Frob.

C(1) 0.509345 0.314045 1.621885 0.1048
C(2) 0.293369 0.200107 1.466060 0.1426
C(3) 0.519798 0.262866 1.977421 0.0480
C(4) 0522338 0.225187 2.319573 0.0204
Log likelihood -118.0980 Akaike info criterion 4.138915
Avg. log likelihood -2.001661 Schwarz criterion 4. 279765
Mumber of Coefs. 4 Hannan-Quinn criter. 4193897

4.3.2. Olympic Medals won by Swiss and Dutch athletes. Our second appli-
cation consists of the number of Olympic medals won by Switzerland (S) and
Netherlands (N) as displayed in https://demos.telerik.com/ aspnet-ajax /sample-
applications/olympic-games/.



24 E. GONCALVES AND N. MENDES-LOPES
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FIGURE 5. Pearson residuals: descriptive summaries, autocorrela-
tion and partial autocorrelation values, kernel density estimation
and Gaussian QQ-Q) plot.

Figure 6 presents the plot of the S-N difference series, its descriptive sum-
maries and the empirical autocorrelation and partial autocorrelation values.
The empirical mean and variance are —1.935 and 76.74, respectively. A better
performance, on average, of Dutch athlets is observed. The data is overdis-
persed and the autocorrelations of order greater than two are not significant.

The conditional maximum likelihood estimates after fitting a signed geo-
metric INARCH model with parameters «g, aq, ag, as are 1.64603, 0.306622,
2.145151 and 0.476046, respectively (Table 4).

Table 4. Signed geometric INARCH model parameter ag, a1, ap, ais estimation

LogL: LOGLO1

Sample: 1904 2016

Date: 09/19/18 Time: 10:45

Included observations: 29

Evaluation order. By equation
Convergence achieved after 18 iterations

Coefficient Std. Error z-Statistic Prob.

C(1) 1.646030 0.805580 2.043285 0.0410
C{2) 0306622 0.136229 2250782 0.0244
C{3) 2.145151 1.260393 1.701969 0.0888
Cl4) 0.476048 0.284534 1.673073 0.0043
Log likelihood -96.28852 Akaike info criterion 6.916450

Avg. log likelihood -3.320294  Schwarz criterion 7.105042
MNumber of Coefs. 4 Hannan-Quinn criter. 6.975515
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FIGURE 6. Difference series: plot, descriptive summaries and au-
tocorrelation and partial autocorrelation values.

Despite the significance of all the estimated parameters we decided, in view
of the small significance of the order 2 autocorrelation, to fit the series by a
a signed geometric INARCH model with parameters ag, aq, ag, 1. The corre-
sponding estimates are now 1.374252, 0.368949, 0.81656 and 0.622359, respec-
tively (Table 5). The values of the Akaike and Schwarz criteria lead us to retain
this second modeling.

Table 5. Signed geometric INARCH model parameter ag, oy, ap, a;; estimation

LogL: LOGLOA

Method: Maximum Likelihood (Newton-Raphson / Marquardt steps)
Date: 07/28M18 Time: 22:26

Sample: 1900 2016

Included observations: 30

Evaluation order: By equation

Convergence achieved after 6 iterations

Coefficient covariance computed using outer product of gradients

Coefficient Std. Error z-Statistic Prob.

c() 1.374252 0.619727 2217510 0.0266
C(2) 0.368949 0.152283 2422782 0.0154
C{3) 0.816560 0.784855 1.040397 0.2982
Ci4) 0.622359 0.319859 1.945727 0.0517
Log likelihood -97.12910 Akaike info criterion 6.741940
Avg. log likelihood -3.237637 Schwarz criterion 6928766

Mumber of Coefs. 4 Hannan-Quinn criter. 6.801707




26 E. GONCALVES AND N. MENDES-LOPES

30

20

-20

T T T T T T T T T T T T T T T
00 08 16 24 32 40 48 56 64 72 80 88 96 04 12

—e— CDIF_—o— COND_MEAN_EST |

FIGURE 7. Difference series and fitted conditional mean from the
signed geometric INGARCH model
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FIGURE 8. Pearson residuals: descriptive summaries, autocorrela-
tion and partial autocorrelation values, kernel density estimation
and Gaussian QQ-Q) plot.

So, considering this first order model we observe that the fitted conditional
mean accompanies the dynamics of the observed series (Figure 7). The resulting
Pearson residual analysis given in Figure 8 shows that there is no evidence of
correlation within the residuals and that there is compatibility with Gaussian
distribution at 0.01 and 0.05 significance levels. We observe that the analysis
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of the Pearson residuals for the second order model, firstly considered, led to
worst results confirming the decision based on the criteria.

5. Conclusion

Time series of counts appear in a large variety of contexts like in studies of
the incidence of a certain disease in a country, number of daily transactions on
a financial market or number of accidents in a town. This kind of time series
often reveals overdispersion and conditional heteroscedasticity and the large
family of integer-valued CP-INGARCH models has wide potential to describe
and capture these characteristics.

With the aim of modeling the difference of two count time series, we propose
in this paper a bivariate model defined by two independent CP-INGARCH
processes. A Z-valued counting process is then defined as the difference between
the two marginal processes. The signed integer-valued process defined by the
Skellam distribution, which is constructed as differences in pairs of Poisson
counts, is included in this study if the counts series are independent.

Since the Poissonian models are not the most adequated to model overdis-
persed series we concentrated our study in the geometric models, a particular
case of the NB-INARCH ones. The probabilistic and statistical study here de-
veloped shows that this family of Z-valued models may be useful in applications
where the analysis of the difference of count time series is relevant.

Although we have privileged the difference of the two marginal processes,
we note that any other measurable function of these processes may be consid-
ered and emphasize that the main probabilistic properties of such models have
already been here stated.
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