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1. Introduction

The practical relevance of count time series has led to the development of
several class of integer-valued models in order to better describe and capture
the main characteristics of this kind of data. Among these classes, we high-
light that of the compound Poisson INGARCH (CP-INGARCH) models, intro-
duced in Gonçalves et al (2015), that enlarges and uni�es the main INGARCH
processes present in literature and has the ability of capturing simultaneously
characteristics of overdispersion and conditional heteroscedasticity, in a general
distributional context.
Some papers emerged in the literature in recent years (a.e. Karlis and Nt-

zoufras, 2006, 2009; Koopman et al, 2014) have shown the interest of signed
integer-valued time series de�ned by the Skellam distribution, which is con-
structed as di�erences in pairs of Poisson counts independent or not. Such
models allow us to describe, for example, the di�erences over time in the num-
ber of accidents, catastrophes, or people contracting certain epidemic disease
in two cities, two world regions, or two populations.
Several studies have shown that Poissonian models have some limitations

to describe counting data, particularly because this kind of data usually has
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overdispersion characteristics, which are not captured by Poissonian distribu-
tions but by others such as negative binomial (NB), Neyman-type A, general-
ized Poisson (see a.e. Weiÿ, 2009; Zhu, 2011, 2012; Gonçalves et al, 2015) all
of them included in the supra referred CP-INGARCH models. Therefore, to
consider the di�erences of general counting models have obviously theoretical
and practical interest.
Following this idea we present here a Z-valued counting model de�ned as the

di�erence between two general independent CP-INGARCH processes, which
will allow to describe in practice such kind of data, even when the phenomena
under study has di�erent distributional behavior in each situation considered
(in that di�erence). We observe that our proposal di�ers from those in which
models to adjust time series with Z-values are based on thinning operators,
a subject where Kim and Park (2008) was pioneering; a good review of these
thinning operators models is presented in Scotto et al (2015).
For sake of technical simplicity, we start with the study of a bivariate model

de�ned by two independent CP-INGARCH processes from which the di�erence
model, that is the signed CP-INGARCH one, is constructed. The main proba-
bilistic properties of weak and strict stationarity and ergodicity are deduced for
a wide class of these kind of bivariate models. After we consider any measurable
function of the marginal processes and in what concerns the statistical anal-
ysis we concentrate our study in the estimation by the conditional maximum
likelihood method of a particular case of signed geometric INGARCH model,
that is, that corresponding to a bivariate model whose marginal processes are
particular NB-INGARCH ones.
The remainder of the paper is organized as follows. In Section 2 we recall the

class of CP-INGARCH models by presenting its de�nition and construction as
well as its main subclasses. The bivariate process is introduced in Section 3.
Properties of stationarity and ergodicity are developed and, in particular, nec-
essary and su�cient conditions of weak and strict stationarity are established.
The signed CP-INGARCH model is de�ned in Section 4. For the particular
case of the signed geometric INGARCH processes, we develop in this Section
the conditional maximum likelihood estimator of the model parameter vector.
The performance of the conditional likelihood estimator in �nite samples is
evaluated via simulation experiments. We observe that with our models, we
can compare a temporal phenomenon in di�erent periods (su�ciently distant
to assume independence) but also compare it in di�erent situations; we illus-
trate it by discussing the monthly counts of poliomyelitis cases recorded in the
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United States in two periods as well as another application related to the num-
ber of Olympic medals won by Swiss and Dutch athletes over all time. Some
concluding remarks end the paper.

2. Preliminairies

Let us recall the de�nition of Compound Poisson integer-valued GARCH
model introduced in Gonçalves et al (2015) as well as some results that are
relevant for the study presented in next Sections.
Let X = (Xt, t ∈ Z) be a stochastic process with values in N0 and, for any

t ∈ Z, let X t−1 be the σ−�eld generated by {Xt−j, j ≥ 1}.

De�nition 2.1 (CP-INGARCH(p,q) model). The process X is said to satisfy
a Compound Poisson INteger-valued GARCH model with orders p and q (p,
q ∈ N) if, ∀t ∈ Z, the characteristic function of Xt|X t−1 is given by{

ΦXt|Xt−1
(u) = exp

{
i λt
ϕ′t(0)

[ϕt(u)− 1]
}
, u ∈ R

E(Xt|X t−1) = λt = α0 +
∑p

j=1 αjXt−j +
∑q

k=1 βkλt−k
(1)

for some constants α0 > 0, αj ≥ 0 (j = 1, ..., p), βk ≥ 0 (k = 1, ..., q),
and where (ϕt, t ∈ Z) is a family of characteristic functions on R, X t−1-
measurable associated to a family of discrete laws with support N0 and �nite
mean. i denotes the imaginary unit.

As ϕt, t ∈ Z, is the characteristic function of a discrete law with support N0

and �nite mean, the derivative of ϕt at u = 0, ϕ′t(0), exists and is nonzero.

In the previous de�nition, if βk = 0, k = 1, ..., q, the CP-INGARCH(p, q)
model is simply denoted CP-INARCH(p).

Remark 2.1. (1) As the conditional distribution of Xt is a discrete com-
pound Poisson law with support N0 then, ∀t ∈ Z and conditionally to
X t−1, Xt can be identi�ed in distribution as

Xt
d
=

Nt∑
j=1

Xt,j, (2)

where Nt follows a Poisson law with parameter λ∗t = i λt/ϕ
′
t(0), and

Xt,1,..., Xt,Nt
are discrete independent random variables, with support

contained in N0, independent of Nt and having characteristic function
ϕt with �rst derivative at zero, that is, with �nite mean. We note that
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the characteristic function ϕt being X t−1-mensurable may be a random
function. This means that ϕt may depend on the previous observations
of the process.

(2) Let us consider the polynomials
A(L) = α1L+ ...+ αpL

p and B(L) = 1− β1L− ...− βqLq,
where L is the backshift operator. To ensure the existence of the inverse
of B(L) we suppose that the roots of B(z) = 0 lie outside the unit
circle which, for non-negative βj, is equivalent to

∑q
j=1 βj < 1. Under

this assumption, the conditional expectation of the model (1) may be
rewritten in the form

B(L)λt = α0 + A(L)Xt ⇔ λt = α0B
−1(1) +B−1(L)A(L)Xt

that is, with B−1(L)A(L) =
∑∞

j=1 ψjL
j,

λt = α0B
−1(1) +

∞∑
j=1

ψjXt−j,

which expresses a CP-INARCH(+∞) representation of the model (1).
(3) The process X satisfying the model (1) is �rst order stationary if and

only if
∑p

i=1 αi+
∑q

j=1 βj < 1. Under this condition, the processes (Xt)
and (λt) are both �rst order stationary and

E(Xt) = E(λt) =
α0

1−
∑p

i=1 αi −
∑q

j=1 βj
.

(4) If ϕt is deterministic, t ∈ Z, and independent of t, there is a strictly
and weakly stationary and ergodic process that satis�es the model (1),
if and only if

∑p
i=1 αi +

∑q
j=1 βj < 1.

(5) The sub-class of CP-INGARCH models with ϕt deterministic and inde-
pendent of t is still quite vaste including, among others. the INGARCH
(Ferland et al, 2006), Negative-Binomial DINARCH (Xu et al, 2012),
Generalized Poisson INGARCH (Zhu, 2012), Neyman type-A and GE-
OMP2 (Gonçalves et al, 2015) INGARCH models.

3. Bivariate model

3.1. De�nition.
Let X = (Xt, t ∈ Z) be a bivariate stochastic process, Xt = (X1,t, X2.t) ,

where X1 = (X1,t, t ∈ Z) and X2 = (X2,t, t ∈ Z) are univariate processes and,
for any t ∈ Z, let X t−1 be the σ−�eld generated by {Xt−j, j ≥ 1}. If X1 satisfy
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a CP-INGARCH(p, q) model and X2 satisfy a CP-INGARCH(p̃, q̃) model and
if, for any t ∈ Z, X1,t e X2.t are independent relatively to the law conditioned
by X t−1, then the characteristic function of Xt|X t−1 is, for any t ∈ Z, given by


ΦXt|Xt−1

(u, v) = exp
{
i Mt

ϕ′t(0)
[ϕt(u)− 1]

}
exp

{
i M̃t

ϕ̃′t(0)
[ϕ̃t(v)− 1]

}
, (u, v) ∈ R2

E(X1,t|X1,t−1) = Mt = α0 +
∑p

j=1 αjX1,t−j +
∑q

k=1 βkMt−k,

E(X2,t|X2,t−1) = M̃t = α̃0 +
∑p̃

j=1 α̃jX2,t−j +
∑q̃

k=1 β̃kM̃ t−k,

(3)
for some constants α0 > 0, αj ≥ 0 (j = 1, ..., p), βk ≥ 0 (k = 1, ..., q),

α̃0 > 0, α̃j ≥ 0 (j = 1, ..., p̃), β̃k ≥ 0 (k = 1, ..., q̃) and where (ϕt, t ∈ Z)
and (ϕ̃t, t ∈ Z) are two families of characteristic functions on R, X1,t−1 and
X2,t−1−measurable, respectively, each one associated to a family of discrete
laws with support N0 and �nite mean.
We assume in what follows the hypothesis

H1 :

q∑
k=1

βk < 1 and

q̃∑
k=1

β̃k < 1. (4)

Introducing the polynomials
A(L) = α1L+ ...+ αpL

p and B(L) = 1− β1L− ...− βqLq,
Ã(L) = α̃1L+ ...+ α̃p̃Lp̃ and B̃(L) = 1− β̃1L− ...− β̃q̃Lq̃,

we may ensure the existence of the following representations for Mt and M̃t

Mt = α0B
−1(1) +

∑∞
j=1 ψjX1,t−j, M̃t = α̃0B̃

−1(1) +
∑∞

j=1 ψ̃jX2,t−j,

where ψj (resp., ψ̃j) is the coe�cient of zj in the Maclaurin expansion of

A(z)/B(z) (resp., Ã(z)/B̃(z)), that is, B−1(L)A(L) =
∑∞

j=1 ψjL
j (resp.,

B̃−1(L)Ã(L) =
∑∞

j=1 ψ̃jL
j).

3.2. First and second order stationarity.
The process X is �rst order stationary if and only if

∑p
i=1 αi +

∑q
j=1 βj < 1

and
∑p̃

i=1 α̃i +
∑q̃

j=1 β̃j < 1. Under these conditions, the processes (X1,t) and
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(Mt) are both �rst order stationary, as well as (X2,t) and (M̃t), and we have

E(X1,t) = E(Mt) = µ =
α0

1−
∑p

i=1 αi −
∑q

j=1 βj
,

E(X2,t) = E(M̃t) = µ̃ =
α̃0

1−
∑p̃

i=1 α̃i −
∑q̃

j=1 β̃j
.

The study of the second order stationarity of CP- INGARCH models was
undertaken in Gonçalves et al (2015) under the condition

H2 : −iϕ
′′

t (0)

ϕ
′
t (0)

= υ0 + υ1λt,

with υ0 ≥ 0, υ1 ≥ 0, not simultaneously zero. The stated results are valuable
for a quite general subclass including both random and deterministic charac-
teristic functions ϕt; in particular, they apply to the INGARCH (Ferland et al,
2006), NB-INARCH (Zhu, 2011), NB-DINARCH (Xu et al, 2012), Generalized
Poisson INGARCH (Zhu, 2012), Neyman type-A INGARCH models and also
to all the models where the ϕt functions are determinist and independent of t.
This study apply naturally to the bivariate model Xt = (X1,t, X2.t) since the
matrices of variances-covariances, ΓXt

(h) , h = 0, 1, 2, ..., are given by

ΓXt
(h) =

[
Cov (X1,t+h, X1,t) Cov (X1,t+h, X2,t)
Cov (X1,t+h, X2,t) Cov (X2,t+h, X2,t)

]
=

[
Cov (X1,t+h, X1,t) 0

0 Cov (X2,t+h, X2,t)

]
=

[
ΓX1,t

(h) 0
0 ΓX2,t

(h)

]
,

due to the independence of X1 and X2.
From Theorems 2 of Gonçalves et al (2015) and 3.1 of Gonçalves et al (2016),

a necessary and su�cient condition of weak stationarity of processes (X1,t) and
(X2.t) and consequently of (Xt) is deduced.
We refer, for example, that for a �rst order stationary CP-INGARCH(1,1)

model verifying H2, a necessary and su�cient condition of weak stationarity is
(α1 + β1)

2 +υ1α
2
1 < 1.We also note that the autocovariances of a second order

CP-INGARCH(p, q) process X and those of λ (respectively, Γ and Γ̃) verify
the linear equations
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Γ (h) =

p∑
j=1

αjΓ (h− j) +

min(h−1,q)∑
k=1

βkΓ (h− k) +

q∑
k=h

βkΓ̃ (h− k) , h ≥ 1,

Γ̃ (h) =

min(h,p)∑
j=1

αjΓ̃ (h− j) +

p∑
j=h+1

αjΓ (j − h) +

q∑
k=1

βkΓ̃ (h− k) , h ≥ 0,

assuming that
∑q

k=h βkΓ̃ (h− k) = 0 if h > q and
∑p

j=h+1 αjΓ (j − h) =
0 if h > p. In particular, the autocovariances of a weakly stationary CP-
INGARCH(1,1) are given by

Γ (h) =
α1 (1− β1 (α1 + β1)) (α1 + β1)

h−1

1− (α1 + β1)
2 + α2

1

Γ (0) , h ≥ 1,

with, under H2,

Γ (0) = µ
(υ0 + υ1µ)

[
1− (α1 + β1)

2 + α2
1

]
1− (α1 + β1)

2 − υ1α2
1

where µ = α0

1−α1−β1 .

3.3. Strict stationarity.
In this section we study the existence of strictly stationary solutions for the

class of models introduced in (3). Following Ferland et al (2006) and Gonçalves
et al (2015) we begin by building a �rst order stationary process solution of
the bivariate model that, under certain conditions, will be strictly stationary
and ergodic.

3.3.1. Construction of a process solution when ϕt and ϕ̃t are determinis-
tic.
Let us consider model (3) associated to a given family of characteristic func-

tions (ϕt, ϕ̃t, t ∈ Z) such that the hypothesis H1 is satis�ed. We assume

H3 : ϕt and ϕ̃t are deterministic. (5)

Let (Ut, t ∈ Z) be a sequence of independent real random variables dis-
tributed according to a discrete compound Poisson law with characteristic func-
tion

ΦUt
(u) = exp

{
α0

B(1)

i

ϕ′t(0)
[ϕt(u)− 1]

}
.
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For each t ∈ Z and k ∈ N, let Zt,k = {Zt,k,j}j∈N be a sequence of independent
discrete compound Poisson random variables with characteristic function

ΦZt,k,j
(u) = exp

{
ψk

i

ϕ′t+k(0)
[ϕt+k(u)− 1]

}
,

where (ψj, j ∈ N) is the sequence of coe�cients associated to the
CP-INARCH(+∞) representation of the model X1,t. We note that E(Ut) =
α0B

−1(1) = ψ0, E(Zt,k,j) = ψk and that Zt,k,j are identically distributed
for each (t, k) ∈ Z × N. We also assume that all the variables Us, Zt,k,j,
s, t ∈ Z, k, j ∈ N, are mutually independent. Based on these random variables,

we de�ne the sequence X
(n)
1,t as follows:

X
(n)
1,t =


0, n < 0
Ut, n = 0

Ut +
∑n

k=1

∑X
(n−k)
1,t−k

j=1 Zt−k,k,j, n > 0

, (6)

where it is assumed that
∑0

j=1 Zt−k,k,j = 0.
We introduce, analogously, the sequences, independent of the previous ones,

(Ũt, t ∈ Z), Z̃t,k = {Zt,k,j}j∈N for each t ∈ Z and k ∈ N, with characteristic
functions

ΦŨt
(u) = exp

{
α̃0

B̃(1)

i

ϕ̃′t(0)
[ϕ̃t(u)− 1]

}
,

ΦZ̃t,k,j
(u) = exp

{
ψ̃k

i

ϕ̃′t+k(0)
[ϕ̃t+k(u)− 1]

}
and de�ne the sequence X

(n)
2,t as:

X
(n)
2,t =


0, n < 0

Ũt, n = 0

Ũt +
∑n

k=1

∑X
(n−k)
2,t−k

j=1 Z̃t−k,k,j, n > 0

. (7)

In what follows we present some properties of the sequence(
X

(n)
1,t , X

(n)
2,t , n ∈ N

)
,

that are direct consequences of Ferland et al (2006) and Gonçalves et al (2015).
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Property 3.1. If
∑p

i=1 αi +
∑q

j=1 βj < 1 and
∑p̃

i=1 α̃i +
∑q̃

j=1 β̃j < 1 then

{(X(n)
1,t , X

(n)
2,t , t ∈ Z), n ∈ Z} is a sequence of �rst order stationary processes

such that, as n→∞,(
E
(
X

(n)
1,t

)
, E
(
X

(n)
2,t

))
−→ (µ, µ̃) .

Property 3.2. If
∑p

i=1 αi +
∑q

j=1 βj < 1,
∑p̃

i=1 α̃i +
∑q̃

j=1 β̃j < 1 and ϕt

and ϕ̃t are derivable at zero up to order 2, then the sequence {(X(n)
1,t , X

(n)
2,t , t ∈

Z), n ∈ Z} converges almost surely, in L1 and L2 to a process (X∗1 , X
∗
2) =

(X∗1,t, X
∗
2,t, t ∈ Z).

Taking into account the previous results, we obtain the next lemma that
will be useful to establish the existence of a strictly stationary and ergodic
process satisfying the bivariate model (3).

Lemma 3.1. Under the hypothesis H3, the process (X∗1 , X
∗
2) is a solution

of the model if
∑p

j=1 αj +
∑q

k=1 βk < 1 and
∑p̃

i=1 α̃i +
∑q̃

j=1 β̃j < 1.

Proof. The almost sure limit of the sequence (X
(n)
1,t , X

(n)
2,t ) is a solution of the

model (3) since, for (u, v) ∈ R2,

Φ(X∗1,t|X∗1,t−1,X∗2,t|X∗2,t−1)
(u, v) = lim

n→+∞
Φn(u, v) (8)

= exp[i
M ∗

t

ϕ′(0)
(ϕ(u)− 1)] exp[i

M̃ ∗
t

ϕ̃′(0)
(ϕ̃(v)− 1)], (9)

with Φn the characteristic function of the sequence
(
r
(n)
t |X∗1,t−1, r̃

(n)
t |X∗2,t−1

)
,

where

r
(n)
t = Ut +

n∑
k=1

X∗1,t−k∑
j=1

Zt−k,k,j, r̃
(n)
t = Ũt +

n∑
k=1

X∗2,t−k∑
j=1

Z̃t−k,k,j (10)

and M ∗
t = α0B

−1(1) +
∑∞

j=1 ψjX
∗
1,t−j, M̃ ∗

t = α̃0B̃
−1(1) +

∑∞
j=1 ψ̃jX

∗
2,t−j.

As in Ferland et al (2006) and Gonçalves et al (2015), the equality in (8)

follows from Paul Lévy theorem since, for a �xed t, the sequence Y
(n)
1,t = r

(n)
t −

X
(n)
1,t converges in mean to zero, when n→∞. So Y

(n)
1,t andX∗1,t−X

(n)
1,t converge

in probability to zero and

X∗1,t − r
(n)
t = (X∗1,t −X

(n)
1,t ) + (X

(n)
1,t − r

(n)
t ) = (X∗1,t −X

(n)
1,t )− Y (n)

1,t ,



10 E. GONÇALVES AND N. MENDES-LOPES

which allows to conclude that the sequence r
(n)
t converges in probability to X∗1,t

and then r
(n)
t |X∗1,t−1 converges in law to X∗1,t|X∗1,t−1. In an analogous way, we

conclude that r̃
(n)
t |X∗2,t−1 converges in law to X∗2,t|X∗2,t−1.

Let us obtain Φn. Conditionally to X∗1,t−1, we have

Φ∑X∗
1,t−k

j=1 Zt−k,k,j
(u) =

X∗1,t−k∏
j=1

ΦZt−k,k,j(u) = exp


X∗1,t−k∑
j=1

ψk
i

ϕ′t(0)
[ϕt(u)− 1]


= exp

{
ψkX

∗
1,t−k

i

ϕ′t(0)
[ϕt(u)− 1]

}
,

and conditionally to X∗2,t−1, we have

Φ∑X∗
2,t−k

j=1 Z̃t−k,k,j
(v) =

X∗2,t−k∏
j=1

ΦZ̃t−k,k,j
(v) = exp

{
ψ̃kX

∗
2,t−k

i

ϕ̃′t(0)
[ϕ̃t(v)− 1]

}
.

From the independence of the variables involved in the de�nition of r
(n)
t and

r̃
(n)
t , we obtain

Φn(u, v) = exp

(
α0

B(1)

i

ϕ′t(0)
[ϕt(u)− 1] +

n∑
k=1

ψkX
∗
1,t−k

i

ϕ′t(0)
[ϕt(u)− 1]

)
×

× exp

(
α̃0

B̃(1)

i

ϕ̃′t(0)
[ϕ̃t(v)− 1] +

n∑
k=1

ψ̃kX
∗
2,t−k

i

ϕ̃′t(0)
[ϕ̃t(v)− 1]

)

= exp

{(
α0

B(1)
+

n∑
k=1

ψkX
∗
1,t−k

)
i

ϕ′t(0)
[ϕt(u)− 1]

}
×

× exp

{(
α̃0

B̃(1)
+

n∑
k=1

ψ̃kX
∗
2,t−k

)
i

ϕ̃′t(0)
[ϕ̃t(v)− 1]

}
,

and thus, when n→∞, we have the equality presented in (9). �

Remark 3.1. As a consequence of Property 3.1 and previous lemma, the pro-
cess (X∗1 , X

∗
2) is, under the hypothesis H3, a �rst order stationary solution of

the model if
∑p

j=1 αj +
∑q

k=1 βk < 1 and
∑p̃

i=1 α̃i +
∑q̃

j=1 β̃j < 1.
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Now, we consider, additionally to the hypothesis H3, that ϕt and ϕ̃t are inde-
pendent of t. In this subclass, it is possible to establish the strict stationarity
and ergodicity of (X∗1 , X

∗
2).

Theorem 3.1. Let us consider the bivariate model de�ned by (3) with ϕt and
ϕ̃t, t ∈ Z, deterministic and independent of t.

(a): {(X(n)
1,t , X

(n)
2,t , t ∈ Z), n ∈ Z} is a sequence of strictly stationary and

ergodic processes.
(b): There is a strictly stationary and ergodic process in L1 that satis�es

the bivariate model if and only if
∑p

i=1 αi+
∑q

j=1 βj < 1 and
∑p̃

i=1 α̃i+∑q̃
j=1 β̃j < 1. Moreover, its �rst two moments are �nite.

Proof. (a) The sequence {(X(n)
1,t , t ∈ Z), n ∈ Z} is strictly stationary since the

sequences (Ut, t ∈ Z) and (Zt,k, t ∈ Z, k ∈ N), de�ned in Section 3.3.1, are in

this case (ϕt = ϕ) of i.i.d. random variables. Moreover, (X
(n)
1,t ) is a sequence of

ergodic processes, because it is a measurable function of the sequence of i.i.d.
random variables {(Ut, Zt,j), t ∈ Z, j ∈ N} (Durrett, 2010). Analogously, we

conclude that the sequence {(X(n)
2,t , t ∈ Z), n ∈ Z} is strictly stationary and

ergodic as it envolves the sequences (Ũt, t ∈ Z) and (Z̃t,k, t ∈ Z, k ∈ N).

As X
(n)
1,t and X

(n)
2,t are independent for each t, the process (X

(n)
1,t , X

(n)
2,t , t ∈ Z)

is strictly stationary.
(b) In Lemma 3.1 we proved that (X∗1,t, X

∗
2,t, t ∈ Z) is a solution of (3). So,

it is enough to prove that when ϕt and ϕ̃t are deterministic and indepen-
dent of t, the almost sure limit is strictly stationary and ergodic. From (a),

(X
(n)
1,t , X

(n)
2,t , n ∈ Z) is a sequence of strictly stationary processes. Otherwise,

(X
(n)
1,t , X

(n)
2,t ) converges almost surely to (X∗1,t, X

∗
2,t) if

∑p
i=1 αi +

∑q
j=1 βj < 1

and
∑p̃

i=1 α̃i +
∑q̃

j=1 β̃j < 1. So, considering without loss of generality, the
indexes {1, ..., k}, we have when n tends to +∞

((X
(n)
1,1 , X

(n)
2,1 ), ..., (X

(n)
1,k , X

(n)
2,k )) →

(
(X∗1,1, X

∗
2,1), ..., (X

∗
1,k, X

∗
2,k)
)
,

((X
(n)
1,1+h, X

(n)
2,1+h), ..., (X

(n)
1,k+h, X

(n)
2,k+h)) → ((X∗1,1+h, X

∗
2,1+h), ..., (X

∗
1,k+h, X

∗
2,k+h)),

almost surely, for any h ∈ Z, and consequently, in law. Considering the strict

stationarity of (X
(n)
1,t , X

(n)
2,t ) and the limit unicity, we conclude that (X∗1,t, X

∗
2,t)

is a strictly stationary process. Moreover, taking into account that (X
(n)
1,t , X

(n)
2,t )

is the measurable function of (Ut, Zt,j, Ũt, Z̃t,j) referred above, (X∗1,t, X
∗
2,t) is the
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almost sure limit of a sequence of measurable functions, so a measurable one
(Halmos, 1974), of the ergodic process (Ut, Zt,j, Ũt, Z̃t,j). Thus (X∗1,t, X

∗
2,t) is

ergodic.
Regarding the necessary condition of existence of a strictly stationary solu-

tion, we observe that if (X1,t, X2,t) is such a solution of the bivariate model,
it is also �rst order stationary as, by hypothesis, it is a process of L1. So, by
Section 2 we have

∑p
i=1 αi +

∑q
j=1 βj < 1 and

∑p̃
i=1 α̃i +

∑q̃
j=1 β̃j < 1. �

Remark 3.2. Under the conditions of the previous theorem it follows that(
X∗1,t, X

∗
2,t, t ∈ Z

)
is also a weakly stationary solution of the model (3) because

it is a strictly stationary second order process, from Property 3.2 .

4. Signed compound Poisson INGARCH models

If we consider that the law de X1,t|X1,t−1 is any discrete Compound Poisson
law, and analogously for X2,t|X2,t−1, we see that the class of models proposed
in the previous Section includes inumerous bivariate cases. As examples of
INGARCH models related to discrete compound Poisson laws recently studied,
we refer the Binomial negative (Zhu, 2011), generalized Poisson (Zhu, 2012),
dispersed INARCH (Xu et al, 2012), geometric and Neyman type-A (Gonçalves
et al, 2015), among others.
The study of the resulting model for any measurable function of X1,t e X2,t

will be more or less complexe according to the retained laws. In particular,
there is a strictly stationary and ergodic solution for the model if the conditional
laws relative to X1,t and X2,t are chosen among INGARCH, NB-DINARCH,
GP, Neyman Type-A and GEOMP2 models as, in these cases, the characteristic
function of the compounding variables is deterministic and independent of t.
A natural transformation is the process di�erence Dt = X1,t −X2,t, t ∈ Z.

Example 4.1. Let us consider that X1,t|X1,t−1 is Poisson distributed with
parameter Mt = α0 +

∑p
j=1 αjX1,t−j +

∑q
k=1 βkMt−k. This model was intro-

duced by Ferland et al (2006), is denoted INGARCH model and it belongs
to CP-INGARCH models as it is enough to consider, in Observation 2.1, ϕt
equal to the characteristic function of Dirac law concentrated in {1} and Nt

Poisson distributed with parameter Mt. Analogously, let us consider that the

law of X2,t|X2,t−1 is Poisson with parameter M̃t = α̃0 +
∑p̃

j=1 α̃jX2,t−j +∑q̃
k=1 β̃kM̃ t−k. The constants verify α0 > 0, αj ≥ 0 (j = 1, ..., p), βk ≥ 0

(k = 1, ..., q), α̃0 > 0, α̃j ≥ 0 (j = 1, ..., p̃), β̃k ≥ 0 (k = 1, ..., q̃) and
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i=1 αi+

∑q
j=1 βj < 1 and

∑p̃
i=1 α̃i+

∑q̃
j=1 β̃j < 1. The conditional law of the

di�erence process, Dt = X1,t −X2,t, t ∈ Z, is a Skellam law (Skellam, 1946),
that is, with probability function given by

P (Dt = d | Dt−1) = exp
[
−
(
Mt + M̃t

)](Mt

M̃t

)d
2

I|d|

(
2

√
MtM̃t

)
, d ∈ Z,

where I|d| (.) is the modi�ed Bessel fonction of the �rst kind, that is, (Abramowitz
and Stegun, 1965)

Iα (x) =
+∞∑
m=0

1

m!Γ (m+ α + 1)

(x
2

)2m+α

,when α is not an integer

Ik (x) = lim
α→k

Iα (x) ,when k is an integer.

The process di�erence Dt = X1,t −X2,t, t ∈ Z, is an INGARCH process with
values in Z and the previous study shows that it is strictly stationary and
ergodic. We note that the Skellam law has a recognized utility in the modelling
of the number of accidents (or murders, strikes, catastrophes, ...) registered,
for example, in two towns, two populations, two years, ...

We present now the �rst and second-order moments of the di�erence process.
The conditional mean of Dt is

E (Dt|Dt−1) = Mt − M̃t,

and so the �rst unconditional moment is

E (Dt) = E
(
Mt − M̃t

)
=

α0

1−
∑p

i=1 αi −
∑q

j=1 βj
− α̃0

1−
∑p̃

i=1 α̃i −
∑q̃

j=1 β̃j
.

Moreover, ΓDt
(h) = ΓX1,t

(h) + ΓX2,t
(h) , h ∈ Z, due to the independence.

In particular, if Mt = α0 + α1X1,t−1 and M̃t = α̃0 + α̃1X2,t−1 we have

E (Dt) =
α0

1− α1
− α̃0

1− α̃1
,

ΓDt
(h) = αh1 ΓX1,t

(0) + α̃h1 ΓX2,t
(0) , h ≥ 1

ΓX1,t
(0) =

α0

1− α1

ν0 + υ1
α0

1−α1

1− (1 + υ1)α2
1
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and analogously for ΓX2,t
(0) , with α0, α1, ν0 and υ1 replaced by α̃0, α̃1, ν̃0 and

υ̃1.

Let us illustrate the study of the process di�erence when X1,t|X1,t−1 and
X2,t|X2,t−1 are geometrically distributed, observing that the characteristic func-
tions of the compounding variables are not deterministic in this case.

4.1. The signed geometric INGARCH model.

4.1.1.Preliminaires.
The geometric law belongs to the Compound Poisson distributions. In what

follows we consider that X1,t|X1,t−1 e X2,t|X2,t−1 are geometrically distributed
and we analyse some properties of the process di�erence.
Let us recall that if the random variable X is geometrically distributed with

parameter p1, that is, with probability function P (X = k) = p1(1 − p1)
k,

k ∈ N0, then its characteristic function is given by ϕ (t) = p1
1−(1−p1) exp(it) , t ∈ R,

and we have, for example, E (X) = 1−p1
p1
, V (X) = 1−p1

p21
. Moreover, if Y is

another random variable that is independent of X and following a geometric
law with parameter p2, then the di�erenceX−Y has support Z and probability
function

P (X − Y = k) =
+∞∑
n=0

P (X = n+ k, Y = n)

=


p1p2

1− (1− p1) (1− p2)
(1− p1)k , k ∈ N0

p1p2
1− (1− p1) (1− p2)

(1− p2)−k , −k ∈ N.

The geometric INGARCH process (Xt, t ∈ Z) is a particular case of the bi-
nomial negative INGARCH process introduced in Zhu (2011), and such that

P (Xt = k|X t−1) =
1

1 + λt

(
1− 1

1 + λt

)k
, k ∈ N0,

where λt = α0 +
∑p

i=1 αiXt−i +
∑q

j=1 βjλt−j. It is also obtained in Gonçalves

et al (2015), and noted NB
(

1, 1
1+λt

)
, considering, conditionally to X t−1,

Xt = Yt,1 + Yt,2 + ...+ Yt,Nt
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with Yt,1, Yt,2, ..., independent and identically distributed random variables
with logarithmic distribution with parameter 1

1+λt
, independent of the random

variable Nt which follows a Poisson law with parameter ln(1 + λt). The char-
acteristic function of the compounding variables, Yt,j, is given by

ϕt (u) =
ln
(

1− λt
1+λt

exp (iu)
)

ln
(

1
1+λt

) .

which is a X t−1− measurable and dependent on t function.
First and second order stationarity conditions and the study of the auto-

correlation function of the geometric INGARCH process may be found in Zhu
(2011) and Gonçalves et al (2015). In particular, we have

E (Xt|X t−1) =
1− 1

1+λt
1

1+λt

= λt

V (Xt|X t−1) =
1− 1

1+λt(
1

1+λt

)2 = λt (1 + λt) ,

This model allows integer-valued time series with overdispersion, as we de-
duce that V (Xt) > E (Xt) .

4.1.2. The model for Zt = X1,t −X2,t.
Let us consider that the processes (X1,t, t ∈ Z) and (X2,t, t ∈ Z) are

NB
(

1, 1
1+Mt

)
and NB

(
1, 1

1+M̃t

)
, respectively, with

Mt = α0 +

p∑
j=1

αjX1,t−j +

q∑
k=1

βkMt−k

and

M̃t = α̃0 +

p̃∑
j=1

α̃jX2,t−j +

q̃∑
k=1

β̃kM̃ t−k.
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The probability function of the conditional law of the process di�erence Zt =
X1,t −X2,t, t ∈ Z, is given by

P (Zt = k | Zt−1) =


1

1 +Mt + M̃t

(
Mt

1 +Mt

)k
, k ∈ N0

1

1 +Mt + M̃t

(
M̃t

1 + M̃t

)−k
, −k ∈ N.

=
1

1 +Mt + M̃t

(
Mt

1 +Mt

)k1N0(k)( M̃t

1 + M̃t

)−k1N(−k)
.

4.1.3.Conditional maximum likelihood estimation.
To describe the maximum likelihood approach to estimate the parameter

vector

Θ =
(
α0, ..., αp, β1, ..., βq, α̃0, ..., α̃p̃, β̃1, ..., β̃q̃

)T
= (θ1, ..., θp+1, θp+2, ..., θp+q+1, θp+q+2, ..., θp, θp+1, ..., θp+p̃+q+q̃+2)

T

of a stochastic process Z following a signed geometric INGARCH model, we
note that the conditional likelihood function associated to n observations Z1, ..., Zn
conditionally to the initial values is

L (Θ) =
n∏
t=1

1

1+Mt+M̃t

(
Mt

1+Mt

)Zt1N0(Zt) (
M̃t

1+M̃t

)−Zt1N(−Zt)

The log-likelihood function is given by

L (Θ) = logL (Θ) =
n∑
t=1
lt (Θ)

with
lt (Θ) = − log

(
1 +Mt + M̃t

)
+Zt

[
1N0

(Zt) log
(

Mt

1+Mt

)
− 1N (−Zt) log

(
M̃t

1+M̃t

)]
.

To estimate the true value of Θ, Θ0, it is natural to maximize L (Θ) but, as
the estimates has no closed form, numerical optimization methods have to be
used.
In order to estimate the asymptotic covariance matrix of the conditional max-

imum likelihood estimator, Θ̂, namely [nI (Θ0)]
−1 where I (Θ0) is the infor-

mation matrix evaluated at Θ0, let us begin by considering the �rst derivatives
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of lt in order to the �rst parameters θi, i = 1, ..., p+ q + 1, namely,

∂lt
∂θi

= − 1

1 +Mt + M̃t

∂Mt

∂θi
+ Zt1N0

(Zt)

[
1

Mt
− 1

1 +Mt

]
∂Mt

∂θi

=

[
− 1

1 +Mt + M̃t

+ Zt1N0
(Zt)

1

Mt (1 +Mt)

]
∂Mt

∂θi
(11)

and the second derivatives

∂2lt
∂θi∂θj

=

[
− 1

1 +Mt + M̃t

+
Zt1N0 (Zt)

Mt (1 +Mt)

]
∂2Mt

∂θi∂θj
+

+

 1(
1 +Mt + M̃t

)2 ∂Mt

∂θj
+ Zt1N0 (Zt)

−∂Mt

∂θj
(1 +Mt)−Mt

∂Mt

∂θj

M2
t (1 +Mt)

2

 ∂Mt

∂θi

=

[
− 1

1 +Mt + M̃t

+
Zt1N0 (Zt)

Mt (1 +Mt)

]
∂2Mt

∂θi∂θj
+

+

 1(
1 +Mt + M̃t

)2 − Zt1N0 (Zt) (1 + 2Mt)

M2
t (1 +Mt)

2

 ∂Mt

∂θi

∂Mt

∂θj
, (12)

for 1 ≤ i, j ≤ p+ q + 1. Moreover,

∂Mt

∂α0
= 1 +

q∑
k=1

βk
∂Mt−k

∂α0
;

∂Mt

∂αi
= Zt−i +

q∑
k=1

βk
∂Mt−k

∂αi
, i = 1, ..., p,

∂Mt

∂βj
= Mt−j +

q∑
k=1

βk
∂Mt−k

∂βj
, j = 1, ..., q.

Taking expectations in both sides of the equation (12) we obtain

E

(
∂2lt
∂θi∂θj

|Zt−1

)
=

(
− 1

1 +Mt + M̃t

+
E
(
Zt1N0 (Zt) |Zt−1

)
Mt (1 +Mt)

)
∂2Mt

∂θi∂θj
+

+

 1(
1 +Mt + M̃t

)2 − (1 + 2Mt)E
(
Zt1N0 (Zt) |Zt−1

)
M2

t (1 +Mt)
2

 ∂Mt

∂θi

∂Mt

∂θj
.
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But from

E
(
Zt1N0 (Zt) |Zt−1

)
=

1

1 +Mt + M̃t

+∞∑
k=0

k

(
Mt

1 +Mt

)k
=

1 +Mt

1 +Mt + M̃t

1− 1
1+Mt

1
1+Mt

=
1 +Mt

1 +Mt + M̃t

Mt

we deduce that

E(
∂2lt
∂θi∂θj

|Zt−1) =

 1(
1 +Mt + M̃t

)2 − (1 + 2Mt)

M2
t (1 +Mt)

2E
(
Zt1N0 (Zt) |Zt−1

) ∂Mt

∂θi

∂Mt

∂θj

=

 1(
1 +Mt + M̃t

)2 − (1 + 2Mt)

Mt (1 +Mt)
(

1 +Mt + M̃t

)
 ∂Mt

∂θi

∂Mt

∂θj
.

In an analogous way, from (11) we get

E(
∂lt
∂θi

∂lt
∂θj
|Zt−1) = E

(
(− 1

1 +Mt + M̃t

+ Zt1N0
(Zt)

1

Mt (1 +Mt)
)2|Zt−1

)
∂Mt

∂θi

∂Mt

∂θj
.

Taking into account that E
(
Z2
t 1N0

(Zt) |Zt−1
)

=
Mt (1 +Mt) (1 + 2Mt)

1 +Mt + M̃t

we

obtain

E

(
∂lt
∂θi

∂lt
∂θj
|Zt−1

)
= (

1(
1 +Mt + M̃t

)2 − 2E
(
Zt1N0 (Zt) |Zt−1

)
Mt (1 +Mt)

(
1 +Mt + M̃t

) +
E
(
Z2
t 1N0 (Zt) |Zt−1

)
M2

t (1 +Mt)
2 )

∂Mt

∂θi

∂Mt

∂θj

=

− 1(
1 +Mt + M̃t

)2 +
1 + 2Mt

Mt (1 +Mt)
(

1 +Mt + M̃t

)
 ∂Mt

∂θi

∂Mt

∂θj
,

deducing that −E
(

∂2lt
∂θi∂θj

|Zt−1

)
= E

(
∂lt
∂θi

∂lt
∂θj
|Zt−1

)
, i, j = 1, ..., p+q+1.

We obtain analogously the �rst and second derivatives of lt in order to the
other parameters θi, i = p+ q + 2, ..., p+ p̃+ q + q̃ + 2, namely

∂lt
∂θi

=

− 1

1 +Mt + M̃t

− Zt1N (−Zt)

M̃t

(
1 + M̃t

)
 ∂M̃t

∂θi
(13)
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∂2lt
∂θi∂θj

=

− 1

1 +Mt + M̃t

− Zt1N (−Zt)

M̃t

(
1 + M̃t

)
 ∂2M̃t

∂θi∂θj
+

+

 1(
1 +Mt + M̃t

)2 +
Zt1N (−Zt)

(
1 + 2M̃t

)
M̃ 2

t

(
1 + M̃t

)2
 ∂M̃t

∂θi

∂M̃t

∂θj
(14)

Proceeding as above we deduce that the usual information matrix equality
follows

−E
(

∂2lt
∂θi∂θj

|Zt−1

)
= E

(
∂lt
∂θi

∂lt
∂θj
|Zt−1

)
, i, j = 1, ..., p+ p̃+ q + q̃ + 2.

Asymptotic standard errors of the conditional maximum likelihood estimators

of Θ can be computed from the matrix 1
n

(
D̂nŜnD̂n

)−1
where

Ŝn =
1

n

n∑
t=1

∂lt
∂Θ

∂lt
∂ΘT

and D̂n = −1

n

n∑
t=1

∂2lt
∂Θ∂ΘT

.

4.2. Simulation study.

A simulation study was carried out to evaluate the �nite sample performance
of the CML estimators.
Table 1 presents the sample means and the standard deviations for the CML

estimates of α0, α1, β1, α̃0, α̃1 and β̃1 for the signed geometric model withMt =

α0 + α1X1,t−1 + β1Mt−1 and M̃t = α̃0 + α̃1X2,t−1 + β̃1M̃ t−1. These estimates
were obtained considering di�erent sample sizes, namely n = 1000, 4000, 10000
and α0 = α̃0 = 1.2, α1 =α̃1 = β1 =β̃1 = 0.2.
We generated a sample of the signed geometric model of size n and, for

this sample, we obtained its CML estimates following the previous theoretical
approach. We repeated this procedure 100 times and the mean values of the
estimates, along with the standard deviations in parenthesis, are presented in
Table 1.
These simulations show that, as expected, the estimates of the six parameters

seem to converge to the corresponding true parameter values as the sample size
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Figure 1. Box-plots of the CML estimates for all parameters,
with n = 1000 and 10000.

increases. Further, the standard deviations of the estimates decrease when the
sample size increases.

Table 1. CML estimates for the signed geometric model with
α0 = α̃0 = 1.2, α1 =α̃1 = β1 =β̃1 = 0.2, for sample sizes n = 1000, 4000 and

10000.

Eest (α̂0) Eest (α̂1) Eest

(
β̂1

)
Eest

(̂̃α0

)
Eest

(̂̃α1

)
Eest

(̂̃
β1

)
n = 1000 1.260643 0.195888 1.17689 1.173820 0.203735 0.218863

(0.405936) (0.042905) (0.211527) (0.364874) (0.044899) (0.187787)
n = 4000 1.193396 0.1968091 0.203823 0.176754 0.203517 0.210494

(0.172529) (0.023841) (0.083176) (0.175265) (0.024281) (0.090910)
n = 10000 1.220624 0.199929 0.188485 1.206462 0.203864 0.192802

(0.089579) (0.014106) (0.047199) (0.103817) (0.014282) (0.053779)

Figure 1 displays the Box-plots of the CML estimates for all parameters for
n = 1000 and 10000. We observe, in all cases, a strong concentration in the
vicinity of the true value of the parameter and, paying attention to the scale
of the plot, we notice that this concentration increases with n.
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The Q-Q plots corresponding to n = 1000 and 10000 are presented in Figure
2. We note that the empirical quantiles approach the Gaussian distribution
ones when n increases, for all the parameters in study. Moreover, the Jarque-
Bera statistics and p-values presented in Table 2 for n = 10000 show the
clear compatibility of the CML estimates of the parameters with the Gaussian
distribution.
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Figure 2. Q-Q plots of the CML estimates for n = 1000 and 10000.

Table 2. CML estimates and Gaussian distribution for n = 10000.

α0 α1 β1 α̃0 α̃1 β̃1

Jarque-Bera 0.961911 1.658994 1.869042 0.188014 0.118713 0.90713
Probability 0.618193 0.436269 0.392774 0.910276 0.942371 0.635361

4.3. Applications.

4.3.1.Poliomyelitis cases in USA. We apply the proposed estimation method-
ology to the polio data discussed in Zeger (1988) and Zhu (2011), among oth-
ers. The data consists of monthly counts of poliomyelitis cases recorded in
the United States from 1970 to 1983 by the Centres for Disease Control. We
consider two subseries of this data as spaced as possible, namely the monthly
counts of polio cases from 1970 to 1974 and from 1979 to 1983 and we study
the series that is the di�erence between the most recent values and those more
distant (60 observations).
Figure 3 presents this series, its descriptive summaries and empirical autocor-

relation and partial autocorrelation values. The empirical mean and standard
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Figure 3. Di�erence series: plot, descriptive summaries and au-
tocorrelation and partial autocorrelation values.

deviation of the data are −0.45 and 2.466 respectively. We conclude that there
was, on average, progress in that 10-year interval in the direction of polio eradi-
cation in United States. The data is overdispersed, the autocorrelation of order
one is 0.223 and the autocorrelations of higher order are not signi�cant, which
allows inferring an order 1 dependence although not very strong.
In order to model the data we consider a signed geometric INARCH model

with p = p̃ = 1 with parameters α0, α1, α̃0, α̃1. The conditional maximum
likelihood estimates from this �tting are summarised in Table 3 (0.509345,
0.293369, 0.519798 and 0.522338, respectively) leading to an estimated model
that is �rst order stationary.
The �tted conditional mean is given in Figure 4 and we note that it closely

follows the values and trend of the observed series. The resulting Pearson
residual is de�ned by
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Figure 4. Di�erence series and �tted conditional mean from the
signed geometric INGARCH model.

rt =

Xt −
(
M̂t −

̂̃
Mt

)
√
M̂t

(
1 + M̂t

)
+
̂̃
Mt

(
1 +

̂̃
Mt

)
where M̂t = α̂0 + α̂1X1,t−1 and

̂̃
Mt = ̂̃α0 + ̂̃α1X2,t−1. The residual analysis

is shown in Figure 5 and there is no evidence of any correlation within the
residuals. The Jarque-Bera statistics implies the normality of the Pearson
residuals at the 0.01 signi�cance level and this fact is also suggested by the
kernel density estimation and normal Q-Q plots for the Pearson residuals.

Table 3. Signed geometric INARCH model parameter estimation

4.3.2. Olympic Medals won by Swiss and Dutch athletes. Our second appli-
cation consists of the number of Olympic medals won by Switzerland (S) and
Netherlands (N) as displayed in https://demos.telerik.com/ aspnet-ajax/sample-
applications/olympic-games/.
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Figure 5. Pearson residuals: descriptive summaries, autocorrela-
tion and partial autocorrelation values, kernel density estimation
and Gaussian Q-Q plot.

Figure 6 presents the plot of the S-N di�erence series, its descriptive sum-
maries and the empirical autocorrelation and partial autocorrelation values.
The empirical mean and variance are −1.935 and 76.74, respectively. A better
performance, on average, of Dutch athlets is observed. The data is overdis-
persed and the autocorrelations of order greater than two are not signi�cant.
The conditional maximum likelihood estimates after �tting a signed geo-

metric INARCH model with parameters α0, α1, α̃0, α̃2 are 1.64603, 0.306622,
2.145151 and 0.476046, respectively (Table 4).

Table 4. Signed geometric INARCH model parameter α0, α1, α̃0, α̃2 estimation
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Figure 6. Di�erence series: plot, descriptive summaries and au-
tocorrelation and partial autocorrelation values.

Despite the signi�cance of all the estimated parameters we decided, in view
of the small signi�cance of the order 2 autocorrelation, to �t the series by a
a signed geometric INARCH model with parameters α0, α1, α̃0, α̃1. The corre-
sponding estimates are now 1.374252, 0.368949, 0.81656 and 0.622359, respec-
tively (Table 5). The values of the Akaike and Schwarz criteria lead us to retain
this second modeling.

Table 5. Signed geometric INARCH model parameter α0, α1, α̃0, α̃1 estimation
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Figure 7. Di�erence series and �tted conditional mean from the
signed geometric INGARCH model
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Figure 8. Pearson residuals: descriptive summaries, autocorrela-
tion and partial autocorrelation values, kernel density estimation
and Gaussian Q-Q plot.

So, considering this �rst order model we observe that the �tted conditional
mean accompanies the dynamics of the observed series (Figure 7). The resulting
Pearson residual analysis given in Figure 8 shows that there is no evidence of
correlation within the residuals and that there is compatibility with Gaussian
distribution at 0.01 and 0.05 signi�cance levels. We observe that the analysis
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of the Pearson residuals for the second order model, �rstly considered, led to
worst results con�rming the decision based on the criteria.

5. Conclusion

Time series of counts appear in a large variety of contexts like in studies of
the incidence of a certain disease in a country, number of daily transactions on
a �nancial market or number of accidents in a town. This kind of time series
often reveals overdispersion and conditional heteroscedasticity and the large
family of integer-valued CP-INGARCH models has wide potential to describe
and capture these characteristics.
With the aim of modeling the di�erence of two count time series, we propose

in this paper a bivariate model de�ned by two independent CP-INGARCH
processes. A Z-valued counting process is then de�ned as the di�erence between
the two marginal processes. The signed integer-valued process de�ned by the
Skellam distribution, which is constructed as di�erences in pairs of Poisson
counts, is included in this study if the counts series are independent.
Since the Poissonian models are not the most adequated to model overdis-

persed series we concentrated our study in the geometric models, a particular
case of the NB-INARCH ones. The probabilistic and statistical study here de-
veloped shows that this family of Z-valued models may be useful in applications
where the analysis of the di�erence of count time series is relevant.
Although we have privileged the di�erence of the two marginal processes,

we note that any other measurable function of these processes may be consid-
ered and emphasize that the main probabilistic properties of such models have
already been here stated.
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