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Abstract: The aim of this paper is to study a coupled model that describes drug
release from a biodegradable polymeric surface, coated to a metallic device, and
the evolution of a bacterial population adhering to the surface. Bacteria can cause
infections, that are common events in orthopedic prosthesis, and are often respon-
sible for rejection. A controlled drug delivery to fight bacterial adhesion is crucial
in reducing infection rates. A strategy recently adopted to address the problem
is to deliver therapeutic agents locally by dispersing them into polymeric implant
coatings.

The mathematical model is composed by a system of three partial differential
equations that describe the drug release from a biodegradable polymeric coating
and by an ordinary differential equation that governs the density of a bacterial
population. The link between the space-time differential system and the ordinary
differential equation is defined by the mass of drug that is released by the polymeric
structure at time t. Quasi-sharp estimates for the bacterial density, that give insight
into its dependence on the polymeric properties and the drug characteristics, are
established. Numerical experiments illustrating the behaviour of the density of
bacteria, in function of the characteristics of the drug-polymeric coating system,
are included.

Keywords: Drug release, biodegradable polymeric coating, PDE’s system
coupled with an ODE, sharp-estimates, numerical simulation.

1. Introduction

The main objective of this paper is to study the coupling of a system of par-
tial differential equations (PDEs) of convection-diffusion-reaction type with
an ordinary differential equation (ODE). The solution of the ODE depends
on the solution of the PDE system and consequently indirectly it depends on
the parameters that characterize the system. The motivation of the study
is the modeling of the evolution of a bacterial population that develop on
the surface of a medical implant and their evolution under the action of an
antibacterial drug.
The drug is dispersed in a polymeric matrix that coats a metallic clinical

device. When in contact with the interstitial fluid the drug is released to fight
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the threat of bacterial infections. The approach followed aimed at establish-
ing theoretical estimates of the bacterial density with a sound physiological
meaning. That is to say we look for solutions upper bounds sharp enough as
to give relevant information about the behavior of the biotic population.
The following assumptions are considered to describe the physical, chemical

and biological phenomena occurring in the surface of the drug eluting device:

(i) the polymer coating of a metallic device contains an antibacterial drug;
(ii) the interstitial fluid permeates the coating;
(iii) the polymer degrades in contact with the fluid, the chains broke and

the drug is released;
(iv) the fluid molecules induce a dissolution process;
(v) the dissolved drug molecules diffuse through the polymeric platform

and are released to the physiological environment;
(vi) the bacteria adhere to the surface of the polymeric coating in a ”race

for the surface”, between host and pathogens.

As the fluid permeates the polymeric coating, the polymer swells and a
pressure gradient arises. The swelling of the polymer is induced by a set
of complex phenomena that occur in the polymeric chains and it requires
that the partial differential equations are defined in a moving boundary do-
main. To simplify, we assume in what follows that the polymeric swelling is
instantaneous and that all the phenomena occur after the swelling.
The model studied here contributes to highlight the dependence of the

amount of drug released, on its own properties, the polymeric matrix proper-
ties and the characteristics of the particular bacterial population. We assume
that the transport of the fluid is described by a convection-diffusion process
in a porous medium. We also assume that the drug diffusion coefficient
depends on the porosity, that increases with the degradation.
The drug is initially dispersed in the polymeric matrix and, as the fluid en-

ters, a dissolution process takes place. We hypothesize that, when the release
of drug starts, the corresponding polymeric structure is completely relaxed.
Consequently we describe the delivery as a convection-diffusion-reaction pro-
cess where the diffusion coefficient depends on the fluid concentration within
the matrix and on the porosity. The tuning parameters of the drug release
are the degradation rate of the polymeric matrix, the fluid diffusion coeffi-
cient, the drug diffusion coefficient, the rate of the interstitial fluid and the
drug dissolution rate.
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The drug release from the polymeric coating is coupled with an ordinary
differential equation that governs the time evolution of a bacterial population
density. The two differential problems are linked by the drug mass that is
released at each time from the polymeric structure. The time evolution of
the bacterial population is studied in function of the tuning parameters of
the polymeric matrix and the drug.
The mathematical problem studied here can be used to simulate drug re-

lease from metallic clinical devices when the metal surface is coated with a
biodegradable polymer where a drug is dispersed. Biocompatible metals and
metallic alloys are extensively used in medical devices but, despite biocom-
patibility, infections occur as pathogens adhere to implant surfaces. We note
that almost all implants, as for example coronary stents, catheters, pace-
makers, valves, cochlear implants, breast implants and contact lenses, can be
colonized by bacteria. Bacteria develop a biofilm where they are protected
from the immune system and they gain resistance to antibiotics ([22]). In
a simplified way, we will say that there is a ”race for the surface”, between
host and pathogens which compete to determine the fate of the implant.
Infections related to orthopedic implants are the main cause of the failure

of these devices. Such infections are caused by bacteria like staphylococcus
aureus, staphylococcus epidermis that are often present in the operation room
where they are harmless. Implant infections are extremely resistant to an-
tibiotics and host defenses. Several strategies have been explored to control
infections and other adverse tissue reactions, as inflammation or rejection.
Systemic administration of drugs leads to a relatively low drug concentration
at the target site and the administration of higher concentrations may only
increase the occurrence of side effects as toxicity, renal and liver complica-
tions.
Efficient ways of delivering drug through in situ clinical eluting devices are

desirable and this has given rise to several approaches. The mixing of drug
and bone cement represents a precursor of local drug delivery in orthopedy.
However, in real systems the drug mainly diffuses through the cracks that are
formed during the cement drying process. This means that it is difficult to
control the release rate. Also adding the antibiotic decreases the material’s
durability, leading to an high incidence of bone cement fractures [24].
The use of metallic prosthesis offered new types of solutions. For example,

in [17], the authors proposed a hollow titanium implant perforated with
microholes loaded with drug and showed that a release of the drug up to
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7 weeks was observed. In [7], a stainless steel hollow tubular reservoir with
encapsulated drug has been proposed for fixation pins used in orthopedic
applications. The coating of metallic prosthesis with polymeric materials,
where drug has been dispersed, has generated much interest during the last
years [2, 6, 8, 14, 16, 24, 25, 26]. Recently, researchers of the Massachusetts
General Hospital published a paper [24], in Nature, where they proposed
a drug eluting polymeric implant that maintains the necessary mechanical
strength.
To move a step forward in the field, mathematical models of drug delivery

from polymeric coatings of metallic devices can be of great help to manufac-
turers and clinicians. First of all the influence of mechanical properties can
be tested. This point has been largely studied in the literature (see for in-
stance [18, 26] and their references) and will not be addressed in the present
paper. Secondly the behavior of drug release can be simulated for short and
long times. Both behaviors have clinical importance: early times - the first
6 hours [20] after surgery - are crucial to prevent pathogens from rapid pro-
liferation; late times act as long time defense. Therefore, variable sequential
drug delivery systems with several distinctly different release profiles have
been developed [23].
In previous works of some of the authors, models of drug release from poly-

meric platforms and applications to drug eluting stents have been presented
(see for instance [3, 4, 5, 15]). From a theoretical point of view, the origi-
nality of the present paper stands on the type of coupling between the drug
delivery from the polymeric matrix and the time evolution of the density of
bacteria. The approach followed leads to stability estimates of the popula-
tion density that depend on the properties of the release platform. These
estimates, based on functional arguments are needed to prove stability and
existence results. However they also show how to bridge the gap between
the theoretical analysis of a model and its practical outcomes. In fact they
represent a contribution that can be used to assist in tuning drug delivery
from a medical device and its effect on opportunistic bacterial populations.
In Section 2 we present the mathematical model. In Section 3 we establish a
number of stability results. Numerical simulations are presented in Section
4 and finally, in Section 5 some conclusions are included.
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2. Drug release from a polymeric coating

2.1.Mathematical model. We consider a simplified geometry for the drug
release system: it is composed by a metallic cube with a biodegradable poly-
meric coating on its top (see Figure 1a)). A drug in the solid state is initially
dispersed in the polymeric coating. To simulate the behaviour of the delivery
system in vitro, we assume that the device is inside of a Petri dish containing
a solvent. This geometry simulates for instance the behaviour of a sample
of a bimaterial orthopedic implant composed by a metallic platform and a
polymeric coating. We assume that the polymeric coating with the dispersed
drug is an isotropic medium. This fact allows us to replace the 3D geometry
by a 2D computational domain (see Figure 1b)) defined by the intersection
of the 3D solid with a plan.

a) b)

Figure 1. a) 3D Metallic structure and the polymeric coating
imbedded in a fluid b) The computational domain Ω imbedded
in the fluid.

Let Ω denote the spatial domain represented in Figure 1b) and let T be a
fixed time. By cℓ(x, y, t) we represent the fluid concentration in (x, y) ∈ Ω
at time t. The fluid, in contact with the polymeric coating, permeates the
matrix and is absorbed due to a concentration gradient. Moreover, the poly-
meric coating swells and a pressure gradient arises that induces a convective
transport. To make the model more intelligible, we assume that swelling is
instantaneous and that the viscoelastic properties of the polymeric matrix
have no influence on the release process.
To simplify the presentation, if w : Ω× [0, T ] → IR, then by w(t) we denote

the following function w(t) : Ω → IR such that w(t)(x, y) = w(x, y, t), (x, y) ∈
Ω.
Let Jℓ(t) be the fluid mass flux. Then

Jℓ(t) = −Dℓ(t)∇cℓ(t) + vcℓ(t) in Ω× (0, T ], (1)



6 R. BERNARDES, J.A. FERREIRA, M. GRASSI, M. NHANGUMBE AND PAULA DE OLIVEIRA

where, v stands for the fluid velocity andDℓ(t) the liquid diffusion coefficient.
Neglecting the gravitational force, v(t) is given by Darcy’s law

v = −k
µ
∇p in Ω, (2)

where p denotes the fluid pressure, k and µ denote the permeability and
the fluid viscosity coefficients, respectively. As the fluid is incompressible,
equation (2) is coupled with

∇.v = 0 in Ω. (3)

To keep the mathematical problem analytically manageable, we assume that
the velocity is known ([11]).
The release of the dissolved drug from the biodegradable polymeric coating
depends on polymer degradation, drug diffusion and convective transport.
As the polymeric coating degrades in the presence of the fluid, its porosity
increases, altering the diffusion and convective transports. We assume that
the liquid diffusion coefficient Dℓ(t) satisfies

Dℓ(t) =
ǫ(t)

τ(t)
Dℓ,0,

where ǫ(t) and τ(t) denote the porosity and the tortuosity coefficients, re-
spectively, and Dℓ,0 represents the diffusion coefficient in the non-hydrolyzed
polymer. As we assume that τ(t) = ǫ(t)−1/2(t), then

Dℓ(t) = ǫ(t)3/2Dℓ,0, (4)

(see [19]).
Summing up the concentration cℓ(t) is solution of the following parabolic
equation

∂cℓ
∂t

+∇.(vcℓ) = ∇.(Dℓ∇cℓ) inΩ× (0, T ]. (5)

Let cs(x, y, t) and cd(x, y, t) represent the solid and dissolved drug con-
centrations in (x, y) ∈ Ω̄ at time t, respectively. The kinetics of these two



DRUG DELIVERY FROM ORTHOPEDIC IMPLANTS: A MATHEMATICAL APPROACH 7

unknown concentrations is described by the following system of partial dif-
ferential equations



















∂cd
∂t

(t) +∇.(vcd(t)) = ∇.(Deff(t)∇cs(t)) + f(cs(t), cd(t), cℓ(t))

∂cs
∂t

(t) = −f(cs(t), cd(t), cℓ(t)), inΩ× (0, T ],

(6)

with

Deff(t) =
(1− ǫ(t))D1 + k̃ǫ(t)D2

1− ǫ(t) + k̃ǫ(t)
, (7)

where D1 denotes the diffusion coefficient of the drug in the solid polymer
and D2 is the drug diffusivity in the liquid filled pores ([27]) . In (7), k̃
denotes the drug partition coefficient between the liquid pores and the solid
polymer. In order to simplify, we take k̃ = 1.
In [27], a mathematical model for drug release from PLGA (poly(D,L-lactic-
co-glycolic acid) was established for cardiovascular drug delivery. In this
model the authors assumed that the drug diffusion coefficient is defined by
(7) with the porosity ǫ(t) given by

ǫ(t) = ǫ0 + (1− ǫ0)(1 + e−2kdt − 2e−kdt), (8)

where ǫ0 represents the initial porosity coefficient and kd denotes the poly-
meric degradation rate.
Following [27], we consider ǫ(t) defined by (8), Deff given by (7), constant
diffusion coefficients Di, i = 1, 2, with D2 > D1.
A common choice for the function f that defines the kinetics of the undis-
solved and dissolved drugs is the following Noyes–Whitney relation

f(cs(t), cd(t), cℓ(t)) = αH(cs(t))
csol − cd(t)

csol
cℓ(t), (9)

where H(.) denotes the Heaviside function, α the dissolution constant rate
of the solid drug and csol the drug solubility (see for instance [10], [21]).
However, when cd is far from csol, it is appropriate to replace (9) by

f(cs(t), cd(t), cℓ(t)) = αH(cs(t))
cs(t)− cd(t)

cs(t)
cℓ(t), (10)

(see [3],[5]). If large solid drug particles are used then the total contact
surface area, between drug and fluid, is smaller than in the case of small
particles. As a consequence equation, (10) can be considered an accurate
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description of the dissolution process if large drug particles are considered.
In [13] the first order models

f(cs(t), cd(t), cℓ(t)) = αcs(t),

and

f(cs(t), cd(t), cℓ(t)) = k1cs(t)− k2cd(t),

are used with K1, K2 constants, however the role of the fluid concentration
is not taken into account.
Synthesizing, the differential system that governs the release of drug is com-
posed by: equation (5) for cℓ(t), with the diffusion coefficient of the fluid
Dℓ(t) given by (4) and the porosity ǫ(t) defined by (8); equation (6) for cd(t)
and cs(t), with Deff(t) given by (7), k̃ = 1, Di, i = 1, 2, constant, and f
given by (10).
To close the differential system we impose boundary, interface and initial
conditions. We consider that the interface between the metallic structure
and the polymeric coating is isolated (see Figure 1b); regarding the fluid
that permeates through ∂Ω−B, we assume that the incoming fluid depends
on the polymer permeability β, that is

Jℓ(t).η = 0 onB,
Jℓ(t).η = β(cℓ(t)− cext) on ∂Ω− B,

(11)

where cext denotes the exterior fluid concentration, η is the exterior unitary
normal to Ω and Jℓ(t) defined in (1).
For the dissolved drug cd(t) we assume that the drug molecules that reach
∂Ω−B are immediately absorbed by the exterior medium and that B is an
isolated interface. These assumptions are represented by

cd(t) = 0 on ∂Ω−B,
Jd(t).η = 0 onB,

(12)

where Jd(t) = −Deff∇cd(t) + vcd(t).
The initial conditions are defined by

cs(0) = c0, cd(0) = 0, cℓ(0) = 0 in Ω. (13)

We observe that if the velocity is described by (2), (3) these equations
should be complemented by the boundary conditions

v.η = 0 on B, p = p0 on ∂Ω−B, (14)

where η denotes the exterior unitary normal at B.
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2.2. Qualitative behaviour: quasi-sharp estimates. We start by estab-
lishing an upper bound for the total drug mass Md(t) in Ω

Md(t) =

∫

Ω

(

cd(t) + cs(t)
)

dω.

As
∂cd
∂t

(t) +
∂cs
∂t

(t) = −∇.Jd(t),
we successively deduce

M ′
d(t) = −

∫

Ω

∇.Jd(t)dω

= −
∫

∂Ω−B

Jd(t).ηds,

where η is the exterior unitary normal. Considering the phenomenological
ansatz Jd(t).η > 0, we conclude that

M ′
d(t) ≤ 0, t > 0,

and consequently

Md(t) ≤Md(0), t ≥ 0,

which is physically acceptable.
In what follows we establish an estimate for the energy functional

E(t) = ‖cd(t)‖2L2(Ω) + ‖cs(t)‖2L2(Ω), t ≥ 0, (15)

where ‖.‖L2(Ω) denotes the usual norm in L2(Ω) that is induced by the usual
inner product (., .)L2(Ω).
Let

H1
∂Ω−B,0(Ω) = {u ∈ H1(Ω) : u = 0 on ∂Ω−B}.

As cd(t) ∈ H1
∂Ω−B,0(Ω), there exists a positive constant CP such that

‖cd(t)‖L2(Ω) ≤ CP‖∇cd(t)‖L2(Ω)×L2(Ω). (16)

Inequality (16) is usually known as Friedrichs-Poincaré inequality. In this
inequality, L2(Ω)×L2(Ω) represents the usual cartesian product of L2(Ω) by
itself and ‖.‖L2(Ω)×L2(Ω) denotes the usual norm in this space.
We establish now a two technical propositions that will be used in the

study of the behaviour of the energy E(t). By ‖.‖∞ we represent the usual
norm in L∞(Ω)× L∞(Ω), that is
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‖w‖∞ = max
i=1,2

{ess sup
Ω

|wi|, w = (w1, w2) ∈ L∞(Ω)× L∞(Ω)}.

Proposition 1. Let us suppose that the transport of the dissolved drug cd is
diffusion dominated in the sense that

Deff(t)− ‖v‖∞CP > 0. (17)

If

µ±(t) =
1

‖v‖∞

√

Deff(t)±
√

Deff(t)2 − C2
P‖v(t)‖2∞, (18)

then for µ ∈]µ−(t), µ+(t)[, where µ±(t) > 0, we have

1

C2
P

(

−Deff(t) +
1

2
‖v(t)‖2∞µ2

)

+
1

2µ2
< 0, (19)

Deff(t)−
1

2
‖v‖2∞µ±(t)2 > 0 (20)

Furthermore, for µ ∈]µ−(0), µ+(0)[, with

µ±(0) =
1

‖v‖∞

√

Deff(0)±
√

Deff(0)2 − ‖v‖2∞C2
P , Deff(0) = D1+ǫ0(D2−D1),

we have (19), for all t ≥ 0.

Proposition 2. The function

g(µ) =
1

C2
P

(

Deff(0)−
1

2
‖v‖2∞µ2

)

− 1

2µ2
, µ ∈]µ−(0), µ+(0)[,

attains its maximum at µ̄ =

√

CP

‖v‖∞
∈]µ−(0), µ+(0)[ and, under assumption

(17), we have

g(µ̄) =
1

C2
P

(

Deff(0)− ‖v‖∞CP

)

> 0.

Moreover, for σ2 ∈ I(σ2), with

I(σ2) =]
ᾱC2

P

ᾱC2
P +Deff(0)− ‖v‖∞CP

, 1[, (21)

1

C2
P

(

Deff(0)− ‖v‖∞CP

)

− ᾱ(
1

σ2
− 1) > 0. (22)
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(Proof: See Appendix)
Let us now estimate E(t). For the concentrations of fluid, cℓ(t), dissolved

drug, cd(t), and solid drug cs(t), we obtain

(
∂cℓ
∂t
, φ)L2(Ω) = −(Dℓ(t)∇cℓ(t),∇φ)L2(Ω)×L2(Ω) − (cℓ(t)v,∇φ)L2(Ω)×L2(Ω)

−β(cℓ(t), φ)L2(∂Ω−B), ∀φ ∈ H1(Ω),
(23)

where (., .)L2(∂Ω−B) denotes the usual inner product in L2(∂Ω− B),

(
∂cd
∂t
, ψ)L2(Ω) = −(Deff(t)∇cd(t),∇ψ)L2(Ω)×L2(Ω) − (cs(t)v,∇ψ)L2(Ω)×L2(Ω)

+(f(cs(t), cd(t), cℓ(t)), ψ)L2(Ω), ∀ψ ∈ H1
∂Ω−B(Ω),

(24)
where f is defined by (10), and

(
∂cs
∂t
, ω)L2(Ω) = −(f(cs(t), cd(t), cℓ(t)), ω)L2(Ω), ∀ω ∈ L2(Ω). (25)

In Proposition 3 we establish an upper bound for the energy E(t) defined
by (15).

Proposition 3. Let us suppose that the transport of the dissolved drug cd is
diffusion dominated in the sense that (17) holds and the fluid is in equilibrium
that is cℓ(t) = cℓ,eq. Then

E(t) ≤ e−Qt‖cs(0)‖2L2(Ω), t ≥ 0, (26)

where

Q =
ᾱ(Deff(0)− ‖v‖∞CP )

ᾱC2
P +Deff(0)− ‖v‖∞CP

(27)

and

ᾱ =
αcℓ,eq

‖cs(0)‖∞
. (28)

Proof: Considering in (24) and (25) ψ = cd(t) and ω = cs(t), respectively,
we easily get

1

2
E ′(t) = −(α

H(cs(t))

cs(t)
cℓ,eq(cs(t)− cd(t)), cs(t)− cd(t))L2(Ω)

−(Deff(t)∇cd(t),∇cd(t))L2(Ω)×L2(Ω) − (cd(t)v,∇cd)L2(Ω)×L2(Ω).
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If we assume now that cℓ(t) is in equilibrium, then

1

2
E ′(t) ≤ ᾱ

(

− ‖cs(t)‖2L2(Ω) − ‖cd(t)‖2L2(Ω) + 2(cs(t), cd(t))L2(Ω)

)

−Deff(t)‖∇cd(t)‖2L2(Ω)×L2(Ω) − (cd(t)v,∇cd(t))L2(Ω)×L2(Ω).
(29)

As for all µ 6= 0 and σ 6= 0, we have

−(cd(t)v,∇cd)L2(Ω)×L2(Ω) ≤
1

2
‖v‖2∞µ2‖∇cd(t)‖2L2(Ω)×L2(Ω) +

1

2µ2
‖cd(t)‖2L2(Ω)

(30)
and

2(cs(t), cd(t))L2(Ω) ≤ σ2‖cs(t)‖2L2(Ω) +
1

σ2
‖cd(t)‖2L2(Ω),

from (29) we conclude

1

2
E ′(t) ≤ ᾱ

(

(σ2 − 1)‖cs(t)‖2L2(Ω) + (
1

σ2
− 1)‖cd(t)‖2L2(Ω)

)

+
(

−Deff(t) +
1
2‖v‖2∞µ2

)

‖∇cd(t)‖2L2(Ω)×L2(Ω) +
1

2µ2‖cd(t)‖2L2(Ω).

(31)
Proposition 1 allows to conclude that (19) holds, for µ ∈]µ−(t), µ+(t)[, and
then, using the Friedrichs-Poincaré inequality, we establish

1

2
E ′(t) ≤ ᾱ

(

(σ2 − 1)‖cs(t)‖2L2(Ω) + (
1

σ2
− 1)‖cd(t)‖2L2(Ω)

)

+
(

1
C2

P

(

−Deff(t) +
1
2‖v‖2∞µ2

)

+ 1
2µ2

)

‖cd(t)‖2L2(Ω).
(32)

Moreover, as Deff(t) is an increasing function, then, for µ ∈]µ−(0), µ+(0)[,
we also have

1

2
E ′(t) +

(

1
C2

P

(

Deff(0)− 1
2‖v‖2∞µ2

)

− 1
2µ2 − ᾱ( 1

σ2 − 1)
)

‖cd(t)‖2L2(Ω)

+ᾱ(1− σ2)‖cs(t)‖2L2(Ω) ≤ 0, t > 0.
(33)

We choose now µ̄ ∈]µ−(0), µ+(0)[ that maximizes the coefficient of ‖cd(t)‖2L2(Ω)

in (33). From Proposition 2 we conclude that

1

2
E ′(t) + T1(σ

2)‖cd(t)‖2L2(Ω) + T2(σ
2)‖cs(t)‖2L2(Ω) ≤ 0, t > 0, (34)

where

T1(σ
2) =

1

C2
P

(

Deff(0)− ‖v‖∞CP

)

− ᾱ(
1

σ2
− 1)

)

and
T2(σ

2) = ᾱ(1− σ2).
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From Proposition 2 we conclude that, for all σ2 ∈ I(σ2), where I(σ2) is
defined by (21), both the coefficients of ‖cs(t)‖2L2(Ω) and ‖cd(t)‖2L2(Ω) in (34)
are positive.
We fix now σ̄2 as the midpoint of the interval I(σ2), that is

σ̄2 =
ᾱC2

P + 1
2(Deff(0)− ‖v‖∞CP )

ᾱC2
P + (Deff(0)− ‖v‖∞CP )

.

Then

T1(σ̄
2) =

(Deff(0)− ‖v‖∞CP )(ᾱC
2
P +Deff(0)− ‖v‖∞CP )

C2
P (2ᾱC

2
P +Deff(0)− ‖v‖∞CP )

T2(σ̄
2) =

1

2

ᾱ(Deff(0)− ‖v‖∞CP )

ᾱC2
P +Deff(0)− ‖v‖∞CP

.

As

T1(σ̄
2) ≥ T2(σ̄

2),

from (34) we deduce

E ′(t) + 2T2((σ̄
2)E(t) ≤ 0, t > 0, (35)

that leads to (26).

Corollary 1. Under the assumptions of Proposition 3, the dissolved drug
mass Md(t) satisfies

Md(t) ≤
√

2|Ω|e− 1
2Qt‖cs(0)‖L2(Ω), t ≥ 0, (36)

where Q is defined by (27) and |Ω| represents the measure of Ω.

To interpret (36) for practical outcomes, we analyze the behavior of Q
((27)) as a function of parameters ᾱ, ((28)), Deff(0), ((7)), ‖v‖∞ and CP

((16)). The results obtained are summarized in Table 1. We remark that CP

depends on the measure of the domain Ω and increases when Ω increases.
We conclude that estimate (36) is ”quasi-sharp”. Its behaviour is physical
with parameters Deff(0), CP , ᾱ, ǫ0. The estimate can be considered sharp,
regarding these parameters, because it gives insight on the type of functional
dependence of Md(t). An exception arises for ‖v‖∞. This lack of sharpness
could be expected because in (30) we replaced −(cd(t)v,∇cd(t))L2(Ω)×L2(Ω) by
a term that is always positive.
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Partial derivative Sign Monotony of the upper Previewed behaviour
bound of Md(t) of Md(t)

∂Q

∂Deff(0)
+ Decreases with Deff(0) Physical

∂Q

∂CP
− Increases with CP Physical

∂Q

∂ᾱ
+ Decreases with ᾱ Physical

∂Q

∂‖v‖∞
− Increases with ‖v‖∞ Non physical

∂Q

∂ǫ0
+ Decreases with ǫ0 Physical

Table 1. Dependence of drug mass on the parameters of the model

3. Time evolution of the concentration of bacteria

In what follows we consider the coupling of the drug release problem (5),
(6), (11), (12), (13) with an ordinary differential equation that describes the
evolution of a population of pathogens under the action of the drug. Let
N(t) represent the population density. We consider the equation

dN

dt
(t) =

(

λ− F (Ms(t))
)

N(t), t > 0, (37)

where Ms(t) is the drug mass released at time t through ∂Ω−B

Ms(t) =

∫

∂Ω−B

Jd(t).ηds (38)

and

F (y) =
Emaxy

γ

Mγ
50 + yγ

(39)

with Emax, M50 and γ constants.
Equation (37) is obtained from Hill model ([9])

dN

dt
(t) =

(

λ− Emaxcd(t)
γ

cγ50 + cd(t)γ

)

N(t), t > 0, (40)

that is used to describe the evolution of bacteria under the action of an
antibacterial agent with concentration cd(t). The Hill model is extensively
used in the literature and probably one of the reasons for its success is its
flexibility and effectiveness in fitting experimental data ([9]).



DRUG DELIVERY FROM ORTHOPEDIC IMPLANTS: A MATHEMATICAL APPROACH 15

In (40), N(t) denotes the bacterial density, λ is the growth rate of bacte-
ria, Emax denotes the maximum drug effect, c50 is the drug concentration
producing 50% of the maximum effect and γ represents a measure of the
cooperation between bacteria. If γ = 1 the adhesion of the bacteria to the
surfaces is independent of each other; if γ > 1, then there is cooperation; if
γ < 1 no cooperation occurs.
If Vbio denotes the volume of the bacterial habitat then

F (cd(t)) =
Emax(Vbiocd(t))

γ

(Vbioc50)γ + (Vbiocd(t))γ

=
EmaxMbio(t)

γ

(Vbioc50)γ +Mbio(t)γ
,

where Mbio(t) = Vbiocd(t) is the drug mass in the bacterial habitat at time
t. Assuming that the drug mass available in Vbio in each time t is the drug
mass Ms(t) (38) released from the polymeric platform, we obtain

F (cs(t)) =
EmaxMs(t)

γ

Mγ
50 +Ms(t)γ

:= F (Ms(t)),

where M50 = Vbioc50 stands for the drug mass leading to half-effect.
As mentioned before, the mathematical model (5), (6), (11), (12), (13) can

be used to describe drug release from the polymeric coating of an implant.
Once equation (37) is coupled with the drug delivery model it can be used
to describe the time evolution of a bacterial population that adheres to the
implant causing infection. In this case Vbio is the volume of the biofilm
developed by bacteria.
Integrating (37) we have

N(t) = N(0)e
∫ t

0
(λ−F (Ms(µ)))dµ, t ≥ 0. (41)

Using now Corollary 1, we can compute an upper bound for N(t) in function
of the parameters that characterize the drug release system and the drug
characteristics.

Proposition 4. Under the assumptions of Proposition 3 and for γ = 1, the
bacteria density in the biofilm on the polymeric coating satisfies

N(t) ≤ N(0)e
λt−EmaxMd(0)

M50+Md(0)e
Emax

M50+Md(0)

√
2|Ω|e−1

2Qt‖cs(0)‖L2(Ω), t ≥ 0. (42)

where Q is defined by (27).
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Partial derivative Sign Monotony of the upper Previewed behaviour
bound of N(t) of N(t)

∂Q

∂Deff(0)
+ Decreases with Deff(0) Physiological

∂Q

∂ᾱ
+ Decreases with ᾱ Physiological

∂Q

∂‖v‖∞
− Increases with ‖v‖∞ Non Physiological

∂Q

∂ǫ0
+ Decreases with ǫ Physiological

Table 2. Dependence of the bacterial density on the parameters
of the model

Proof: As Ms(t) ≤Md(0), from (41) we obtain

N(t) ≤ N(0)e
λt− Emax

M50+Md(0)

∫ t

0
Ms(µ)dµ, t ≥ 0. (43)

The total released drug until time t is given by

Mr(t) =

∫ t

0

Ms(µ)dµ =Md(0)−Md(t), (44)

where Md(t) denotes the drug mass inside Ω at time t.
Inserting (44) in (43) we get

N(t) ≤ N(0)e
λt−EmaxMd(0)

M50+Md(0)e
EmaxMd(t)

M50+Md(0) , t ≥ 0. (45)

Finally, from Corollary 1 we conclude (42).

Considering the behavior of Q described in Table 1 we can deduce for the
bacterial density N(t), the monotony properties indicated in Table II. We
note that the previewed bacterial density decreases with the porosity ǫ0 of
the implant coating, the diffusion coefficient Deff(0) of the drug at t = 0,
and dissolution rate α. This point will be addressed is the Conclusions. In
Section 4 we illustrate numerically the results in Table 1 and 2.

4. Numerical simulation

4.1. The finite difference method for the coupled problem. In this
section we illustrate the behaviour of the coupled model (5), (6), (11), (12),
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(13) and (37). The results are obtained considering an IMEXmethod (implicit-
explicit method). Let H = (∆x,∆y) be a vector of stepsizes for the spatial
domain Ω = (−1, 1)2 and let ΩH be the correspondent spatial grid ΩH =
{(xi, yj), i = 0, . . . ,Mx, j = 0, . . . ,My, x0 = −1, xMx

= 1, y0 = −1, yMy
= 1}

where xi − xi−1 = ∆x, i = 1, . . . ,Mx, and yj − yj−1 = ∆y, j = 1, . . . ,My. Let
ΩH = Ω ∩ ΩH , ∂ΩH = ∂Ω ∩ ΩH and BH = B ∩ ΩH .
Let ∆H represent the discrete Laplace operator and ∇c = (Dc,x, Dc,y), where
Dc,x and Dc,y denote the central finite difference operator that approximate
the first order partial derivatives with respect to x and y, respectively. Let
D+x and D−x be the second order forward and backward operators defined
by

D+xu(xi, yj) =
1

2∆x

(

− 3u(xi, yj) + 4u(xi+1, yj)− u(xi+2, yj)
)

and

D−xu(xi, yj) =
1

2∆x

(

u(xi−2, yj)− 4u(xi−1, yj) + 3u(xi, yj)
)

that approximate the first order partial derivative with respect to x. By D+y

and D−y we denote the correspondent operators with respect to y that are
defined analogously. These operators will be used to discretize the boundary
conditions.
In [0, T ] we introduce the uniform mesh

{tm, m = 0, . . . ,Mt; t0 = 0, tMt
= T, tm − tm−1 = ∆t,m = 1, . . . ,Mt}.

By D−t we represent the usual backward finite difference operator

D−tu(tm) =
u(tm)− u(tm−1)

∆t
.

By cmℓ,ij, c
m
d,ij and c

m
s,ij we denote the approximations for cℓ(xi, yj, tm), cd(xi, yj, tm)

and cs(xi, yj, tm) defined by the finite difference method:

D−tc
m
ℓ,H +∇c.(vc

m
ℓ,H) = Dℓ(tm)∆Hc

m
ℓ,H inΩH , (46)

D−tc
m
s,H = −f(cm−1

s,H , cm−1
d,H , cmℓ,H) inΩH , (47)

D−tc
m
s,H +∇c.(vc

m
d,H) = Deff(tm)∆Hc

m
s,H + f(cms,H , c

m−1
d,H , cmℓ,H) inΩH , (48)

for m = 1, . . . ,Mt. System (46), (47), (48) is completed with the initial and
boundary conditions

c0ℓ,H = 0, c0s,H = cs(0), c
0
d,H = 0 in ΩH , (49)
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Jm
ℓ,Hη = β(cmℓ,H − cext) on ∂ΩH − BH − {(−1, 1), (1, 1)}
Jm
ℓ,Hη = 0 onBH − {(−1,−1), (1,−1)} (50)

cmd,H = 0 on ∂ΩH −BH − {(−1, 1), (1, 1)}
Jm
d,H .η = 0 onBH − {(−1,−1), (1,−1)} (51)

for m = 1, . . . ,Mt.
In (50) Jm

ℓ,H is defined by

Jm
ℓ,H = −Dℓ(tm)∇Hc

m
ℓ,H + vcmℓ,H ,

where ∇Hc
m
ℓ,H(xi, yj) = (D±x, D±y)c

m
ℓ,H(xi, yj) with the signal + or − chosen

in function of the position on the boundary point (xi, yj). The dissolved drug
mass flux Jm

d,H in (51) is defined analogously.
The discrete drug release problem (46), (47), (48), (49), (50), (51) is coupled
with the discrete bacteria problem

D−tN
m = (λ− F (Mm

s ))Nm, m = 0, . . . ,Mt (52)

completed with

N0 = N0. (53)

In (52) Mm
s is defined by

Mm
s =

∑

P∈∂ΩH−BH−{(±1,±1)}
∆PJ

m
d (P ).η(P ),

where Jm
d (P ) and η(P ) denote the dissolved mass flux and the unitary ex-

terior normal to Ω in P ∈ ∂ΩH − BH − {(±1,±1)}, respectively. In the
definition of Mm

s , ∆P is equal to ∆x (∆y) if P is in a part of ∂Ω parallel to
x axis (y axis).

4.2. Numerical results. Except stated otherwise the following set of pa-
rameters was considered: T = 200(h), kd = 10−3, Dℓ,0 = 10−2, D1 =
10−3.5, D2 = 10−3(cm2/h), ǫ0 = 10−4, α = 10−2(1/h) cext = 0.7(g/cm3)
and Vbio = 0.06(cm3). The distribution of the initial solid drug is defined
randomly and is plotted in Figure 2.
To define the spatial grid ΩH we takeMx =My = 100 and the temporal grid
is defined with ∆t = 10−3h.
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Figure 2. Initial solid drug cs(0).

A global picture of fluid, solid and dissolved drug concentrations in the
coating

The concentrations of the fluid and of the solid and dissolved drug are il-
lustrated in Figure 3 for v = (0, 0)(cm/h) and t = 50, 200(h). As the fluid
permeates the polymeric coating, the dissolution process occurs, the con-
centration of the dissolved drug increases and the concentration of the solid
drug decreases. After a certain interval of time it permeates the boundary
∂Ω−B and the concentration of the dissolved drug decreases in the polymeric
coating, as can be seen in the plot of cd(200).

Influence of the drug diffusion coefficient and the fluid convection velocity

The effect of the drug diffusion coefficients, in the polymer and in the fluid
filled pores, D1 and D2 respectively, is illustrated in Figure 4. We consider
their effect on the solid drug mass Msol(t), and on the total released mass
in [0, t], Mr(t) (44). As the diffusion coefficients increase, the solid drug
mass decreases and the released mass increases. This behaviour is expected
because as Deff(t) increases, the passive transport of the dissolved drug
increases leading to an increasing of the dissolution of the solid drug.
The influence of the velocity on the drug massMs(t), that is released through
∂Ω− B at each time t, is illustrated in Figure 5. For short times, when the
velocity increases, a lower drug mass Ms(t) is observed as a consequence of
the increasing of the mass flux. This behaviour is plotted in Figure 5 (left)
for 1, 5 days. After this period, the dependence on the interstitial velocity
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Figure 3. Plots of fluid, solid and dissolved drug concentrations
at t = 50, 200(h): top row -fluid concentration, middle row- solid
drug, bottom row- dissolved drug. The initial distribution of drug
is random (Figure 2).

v inverts: for a fixed t the mass Ms(t) that crosses the boundary increases
with v. This result is in agreement with ([12]).
The dependence on the velocity v of the total drug released mass in [0, t],
Mr(t), is illustrated in Figure 6. Mr(t) has the the same functional de-
pendence on the velocity as Ms(t). The behaviour for short times is not
highlighted in Figure 6.
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Figure 4. Plots of solid mass Msol(t) in the polymer coating
and drug released mass Mr(t): top -Msol(t), bottom-Mr(t).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t

0

0.5

1

1.5

2

2.5

M
s
(t

)

10 -4

v
2

=0

v
2

=1.5 10 -2.5

20 40 60 80 100 120 140 160 180 200
t

1

2

3

4

5

6

7

8

M
s
(t

)

10 -5

v
2

=0

v
2

=1.5 10 -2.5

Figure 5. Plots of drug masses that permeates the boundary
∂Ω−B for v = (0, 0) and v = (0, 1.5×10−2.5): left- first 1.5 days,
right- last 6.5 days.

Influence of the dissolution rate

We analyse in what follows the effect of the dissolution rate α on the drug
release process. We begin by analyzing how the mass of drug inside the
polymer depends on α. In Figure 7 we plot the solid drug mass Msol(t)
and the dissolved drug mass Mdis(t) for different dissolution rates α. As α
increases, Msol(t) decreases. The dissolved drug mass Mdis(t) presents a two
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Figure 6. Plot of the released drug mass Mr(t) for v = 0 and
v = (0, 1.5× 10−2.5).

phase behaviour: for short times it is an increasing function of α; for large
times it is a decreasing function of α. This result appears physically sound
because, only after an initial period of time, the dissolved drug starts to be
released through ∂Ω− B.
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Figure 7. Plots of the solid drug mass Msol(t) and dissolved
drug mass Mdis(t) for different dissolution rates: top-Msol(t),
bottom-Mdis(t).



DRUG DELIVERY FROM ORTHOPEDIC IMPLANTS: A MATHEMATICAL APPROACH 23

Polymeric coating, drug and bacteria

The ultimate aim of the present paper is to study the dependence of bacterial
density on the properties of the polymer and the characteristics of the drug.
Regarding the properties of the drug, in the bacterial model (37), we illustrate
the dependence of N(t) on c50 and the cooperation coefficient γ.
We start by analysing the effect of c50. In Figure 8 we exhibit the plot
of Ms(t), the mass of drug that crosses the boundary ∂Ω − B at instant
t. We take c50 = 10−4.4, 10−2.5(g/cm3). Let N10−4.4(t) and N10−2.5(t) be the
correspondent bacterial densities. The efficacy of the drug decreases with
c50. So the simulation in Figure 9 suggests a physiological behaviour, that is
N10−4.4(t) < N10−2.5(t), t ∈ [0, T ].
Regarding the cooperation coefficient γ we observe in Figure 9, that for
t > 160 the population density increases with γ. In [0, 160[, for the different
γ, the plots are overlapping. However the numerical values obtained show
that N(t) decreases with γ. This result can be easily proved from (37).
For γ < 1 we have in both cases λ−Fc50(Ms(t)) < 0 that leads to Nc50(t) →

0 as t increases.
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Figure 8. Plot of Ms(t) used to obtain the bacteria densities
plotted in Figure 9 computed with ǫ0 = 0.1, v = 2.5× 10−2(0, 1),
(cm2/h) (‖v‖ = 2.5× 10−2 (cm2/h)[11]), D1 = 0.5× 10−3, D2 =
10−2 (cm2/h), λ = 0.56 (1/h), N(0) = 107(FCU/cm3).

Let us analyze now the influence of the release process. We recall thatDeff(t)
represents the effective diffusion coefficient of the drug in the porous coating
(7). In Figure 10 we exhibit plots of Ms(t) - the mass of drug released at
instant t - for different values of D1, D2. The result appears physically sound
as the largest effective diffusion corresponds to the largestMs(t).We observe
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Figure 9. Dependence of bacterial density on c50: top left-N(t)
for c50 = 10−4.4, top right-zoom of the left picture, bottom left -
N(t) for c50 = 10−2.5, bottom right-zoom of the left picture .

an initial burst followed by a period of steep decrease and a period of steady
release.
In Figure 11 we illustrate the effect of Deff(t) on bacterial density N(t)
for c50 = 5.1 × 10−6 (g/cm3). By Deff,1(t) we denote the effective diffusion
coefficient for D1 = 0.5×10−4, D2 = 0.5×10−3.5 and by Deff,2(t) the effective
diffusion coefficient obtained for D1 = 0.5× 10−3.5, D2 = 0.5× 10−3. We use
the notations NDeff

(t) and FDeff
(Ms(t)) to take into account the dependence

of N(t) and F (Ms(t)) on Deff .We highlight two aspects in Figure 11. Firstly
the fact that the bacterial population is not eliminated when the drug has
effective coefficient Deff,1(t). From an analytical point of view, this fact is
easily explained because FDeff,1

(Ms(t)) < 0, for t < t̃, for a certain time t̃,

but FDeff,1
(Ms(t)) > 0, for t > t̃. This means that NDeff,1

(t) decreases in (0, t̃)

and increases in (t̃, 200). The second aspect regards the comparison of the
bacterial populations corresponding to Deff,1 and Deff,2. As expected the
largest population corresponds to Deff,1(t).
The simulations in Figure 11 suggest that if the effective diffusion Deff(t)

is not large enough than the antibacterial fight can be ineffective. From (7),
Deff(t) depends on the interplay between the characteristics of the drug and
the properties of the material, namely its porosity. The illustration in Figure
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Figure 10. Plots of Ms(t) used to obtain bacterial densities
plotted, in Figure 11, computed with ǫ0 = 0.1, v = 2.5 ×
10−2(0, 1), (cm2/h) (‖v‖ = 2.5 × 10−2 (cm2/h)[11]), c50 =
5.1×10−6 (g/cm3), λ = 0.56 (1/h), N(0) = 107(FCU/cm3).
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Figure 11. Plots of bacterial densities when the effective diffu-
sion coefficient Deff(t) increases. If Deff(t) is not large enough
the bacterial density explodes.

11 shed light on the the fact that a successful fight, against an opportunistic
bacterial population, depends on a compromise between drug characteristics
and polymeric platform properties.
We illustrate now the influence of the coating porosity. In Figure 12 we
exhibit the behaviour of N(t) when we change the initial porosity. We use
the notationNǫ0(t) to highlight the dependence ofN(t) on ǫ0.We observe that
N10−1(t) ≤ N10−2(t), for all t. In fact, as ǫ0 increases, the effective diffusion
coefficient Deff(t) also increases.

5. Conclusions

Biocompatible polymers play a crucial role in controlled drug delivery tech-
nology because they provide platforms that can release therapeutic agents to
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Figure 12. Plots of bacterial densities when the initial porosity
increases (left) and its zoom (right), computed with D1 = 0.5×
10−3, D2 = 10−2 (cm2/h) and c50 = 5.1× 10−6 (g/cm3).

targeted tissues or organs during long periods. Medical implants are some-
times colonized by bacteria forming a biofilm at their surface and leading to
infectious process that are very difficult to treat effectively. Often, the only
treatment for biofilm infections is to remove the implant, fight the infection
with antibiotics, and replace the implant, which represents a damaging, risky
and expensive procedure. An alternative used nowadays is to use implants
coated with a porous polymer layer where antibacterial agents are dispersed.
An important type of implants are metallic orthopedic prosthesis coated with
drug eluting polymeric layers ([2, 6, 8, 14, 16, 18, 23, 24, 25, 26]).
The motivation of this paper is to model the release of drug from a polymeric
platform and its simultaneous action in combating opportunistic infection by
pathogens. More exactly we address the problem of predicting the evolution
of a bacterial population from the parameters that characterize the polymeric
platform and the pharmacokinetics of the drug. To describe the whole process
we propose a system of partial differential equations coupled with an ordinary
differential equation. The system of PDE’s governs the drug release from a
biodegradable polymer coating and the ODE is used to describe the time
evolution of a bacterial population attached to the surface.
At the best of our knowledge the paper contains original contributions. Re-
garding theoretical results we mention:

(a) The type of coupling between the system of PDE’s and the ODE made
by an integral that represents the mass of drug released at instant t
(38);

(b) A ”quasi-sharp” estimate of the bacterial density N(t), in the sense
that the upper bound obtained exhibits a physiological dependence
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on the parameters of the model, giving information on how to control
the bacterial density (Tables 1 and 2). This ”quasi-sharpness” points
a way of bridging the gap between theoretical analysis and practical
outcomes.

From an applied point of view, the simulation outcomes allow us to shed
light on different aspects of bacterial growth:

(a) The influence of interstitial velocity on drug release: ”The fasten the
flow rate, higher concentrations are released”(see [12])(Figure 6);

(b) The influence of effective diffusion, in the polymeric layer, on the mass
of drug released in the bacterial film: the larger the effective density,
the smaller the bacterial population (Figure 11). A successful fight,
depends not only on drug properties but also on material platform
properties;

(c) The influence of polymer porosity on the bacterial density (Figure 12).

Regarding this last point a clarification is due. The result in Figure 12 states
that the bacterial density decreases with porosity. In the scenario of Hill
model (37) this has a simple explanation: the larger the porosity, the greater
the mass released at instant t, Ms(t), and consequently the smaller is the
bacterial population. However, as mentioned in [1],”. . . the introduction of
pores inherently increases the surface roughness and also the risk of bacterial
adherence”. This paper contains an exploratory approach and further studies
on the topic should include an improvement of Hill’s model namely inserting
a functional dependence of the growth rate λ (37) on the porosity. This
functional dependence should be based on laboratorial experiments.
Finally we observe that macroscopic models, like the Hill model, have many
advantages due to the fact that they can provide global pictures of the pro-
cess. However for situations where only a few bacterial cells exist or survive
the therapeutic agent, the coupling of the PDE’s system with agent based
models should deserve attention.
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7. Appendix

Proof of Proposition 1: To establish the existence of µ 6= 0 such that (19)
holds we start by proving the existence of ǫ 6= 0 such that

P (ǫ) := ‖v(t)‖2∞ǫ2 − 2ǫDeff(t) + C2
P < 0. (54)

The zeros of the polynomial P (ǫ) are defined by

ǫ± =
1

‖v‖2∞

(

Deff(t)±
√

D2
eff − C2

P‖v‖2∞
)

,

then the positive the zeros of ‖v(t)‖2∞µ4 − 2µ2Deff(t) + C2
P are defined by

(18). Consequently, for µ ∈]µ−, µ+[, where µ− > 0, we have (19).
We remark that

∂µ2−
∂t

≤ 0,
∂µ2+
∂t

≥ 0, t ≥ 0,

and then µ− decreases with t and µ+ increases with t. In order to select an
interval time independent where ‖v(t)‖2∞µ4−2µ2Deff(t)+C

2
P < 0, for all t, we

use the monotonicity of µ±(t). It is easy conclude that for µ ∈]µ−(0), µ+(0)[
we have (19).
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