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DRUG RELEASE ENHANCED BY TEMPERATURE: AN
ACCURATE DISCRETE MODEL FOR SOLUTIONS IN H3

J.A. FERREIRA, PAULA DE OLIVEIRA AND E. SILVEIRA

Abstract: In this paper we consider the coupling between two quasilinear diffusion
equations: the diffusion coefficient of the first equation depends on its solution
and the diffusion and convective coefficients of the second equation depend on the
solution of the first one. This system can be used to describe the drug evolution in
a target tissue when the drug transport is enhanced by heat. We study, from an
analytical and a numerical viewpoints, the coupling of the heat equation with the
drug diffusion equation. A fully discrete piecewise linear finite method is proposed
to solve this system and its stability is studied. Assuming that the heat and the
concentration are in H3 we prove that the method is second order convergent.
Numerical experiments illustrating the theoretical results and the global qualitative
behavior of the coupling are also included.

Keywords: Drug release, Temperature, Concentration, Piecewise linear finite
element method, Finite differences, sharp-estimates, numerical simulation.

1. Introduction
In recent years advances in materials science and nanotechnology have

given huge contributions to the development of drug delivery systems which
represent an important tool in the framework of a precision medicine. The
most challenging problems faced by researchers in the area are the develop-
ment of systems for targeted release, controlled release or enhanced release.
Targeted release refers to systems that deliver drugs to specific parts of the
body, avoiding global systemic absorption. Examples of targeted delivery
systems are polymeric intravitreal implants where the drug is dispersed or
the use of nanoparticle drug carriers. When the drug targets the tissue or
organ, the release is sustained when it is extended over a period of time to
keep concentration levels within a therapeutic window. In the case of poly-
meric implants the release can be controlled by tuning the properties of the
polymer and of the drug-polymer interactions. In some cases the delivery
must be enhanced. To enhance drug release from drug delivery systems and
also drug transport through the target tissue, chemical enhancers or physical
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enhancers as electric fields, magnetic fields, ultrasound, heat, are used nowa-
days. These stimuli are used individually or coupled in different areas, being
oncology one of the most promising and challenging (see [5], [6], [12], [18] and
[21])). In oncologic diseases the transport of the chemotherapy cocktails can
be made by specific nanoparticles and the stimuli act to enhance the drug
release from the transporter ([11], [14], [18], [20], [23]).
Another area of great application is transdermal delivery where it is crucial

to enhance the permeability of the stratum corneum, the outermost layer
of the epidermis. In this case external stimuli as heat, electric fields or
ultrasounds have been used with great success (see for instance [4], [9], [11],
[13], [15], [19] and [24]). Another important application of ultrasound, as an
enhancer, is drug delivery to the brain where the stimulus act as a disruptor
of the blood brain barrier ([12], [22]).
In the present paper we are mainly interested on drug delivery systems

where the drug release is enhanced by the temperature. Heat has been used as
enhancer in different situations as for instance in transdermal drug delivery.
An increasing body of evidence suggests that temperature largely influences
drug distribution, altering rate profile ([9]).
One popular application of heat in transdermal drug delivery are patches.

We mention, for example patches where dispersed iron powder represent a
heat source. Oxidation of the iron powder that generates an increase of the
temperature that lead to an increase of permeability of the skin as well as a
decrease in its Young modulus ([24]). Consequently, an increase in the drug
flux through the skin is observed, and due to the increase of the superficial
blood perfusion, an increase in the drug absorption occurs (see [15], [19]).
Heat can be also generated by the application of other stimuli as ultrasounds
[11] or electric fields [4].
When temperature increases, the pattern of Brownian motion is altered. In

fact the rate of diffusion defined by the diffusion coefficient strongly depends
on temperature. In the case of spherical particles through a liquid with low
Reynolds number, the Stokes-Einstein equation postulates that the diffusion
coefficient D is defined by

D =
KBT

6Πηr
,

where T denotes the temperature, KB is the Boltzman constant, r the radius
of a spherical drug molecule and η the viscosity.
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The diffusion coefficient in solids at a specific temperature T is given by
the Arrhenius equation

D = D0 exp

(

−EA

RT

)

, (1)

where D0 is the maximal diffusion coefficient (at infinite temperature), EA is
the activation energy for diffusion, and R denotes the universal gas constant.
Heat is also generated as a consequence of the application of other physical

enhancers as electric fields or ultrasound. We remark that electric fields have
been used to enhance drug transport through the skin namely for electric
charged drug molecules. In this case, a convective drug transport arises
induced by the electric field defined by the gradient of the electric potential
([4]). The electric field generates heat that can be described by the Pennes’
bioheat equation [16]

ρks
∂T

∂t
= ∇.(DT∇T )− ωmcb(T − Ta) + q +QJ , (2)

where T denotes the temperature, ρ represents the tissue density, ks is the
specific heat of the tissue,DT is the thermal conductivity, Ta is the arterial
blood temperature, q is the metabolic volumetric heat generation, ωm is the
nondirectional blood flow associated with perfusion, cb is the specific heat
of blood. In (2), QJ denotes the heat generated by the applied potential φ
that is given by QJ = σ|∇φ|2, where σ is the electrical conductivity and |.|
represents the euclidian norm (see for instance [4]).
In the previous scenario, the drug molecules transport through the target

tissue is described by the convection-diffusion-reaction equation

∂c

∂t
−∇.

(

(

vc∇φ+ wFueff
)

c
)

= ∇.(Dd∇c), (3)

where c denotes the drug concentration, Dd is the diffusion coefficient, vc is
the electrophoretic mobility coefficient which describes the ability of the elec-
tric field to move the solute, and ueff is the electro-osmotic flow coefficient.
The electrophoretic coefficient vc is related with the diffusion coefficient via

Einstein-Smoluchowski relation vc = Dd
zF

RT
, where F is Faraday’s number.

In (3), wF is a convective flow hindrance associated with a bulk convective
flow with an average flow velocity ueff (see [4]).
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Our aim is to study the convection-diffusion-reaction equation for a drug
concentration

∂c

∂t
+∇.(v(T )c) = ∇.(Dd(T )∇c) +Q(c) in Ω× (0, Tf ] (4)

where T denotes the temperature defined by

∂T

∂t
= ∇.(DT (T )∇T ) +G(T ) in Ω× (0, Tf ]. (5)

In (4), v(T ) denotes the drug velocity and Dd is the diffusion coefficient. To
describe the dependence of drug distribution on temperature, we assume that
Dd in (4) is a function of the temperature T. We observe that equations (4)
and (5) describe the drug evolution in two different situations: when heat is
generated by a source term, like in heat patches applications, or when heat
is generated as a secondary stimulus.
The concentration and temperature equations, (4) and (5), respectively,

are complemented with homogeneous Dirichlet boundary conditions

c(t) = 0 on ∂Ω× (0, Tf ], T (t) = 0 on ∂Ω× (0, Tf ], (6)

and initial conditions

c(0) = c0 in Ω× (0, Tf ], T (0) = T0 in Ω× (0, Tf ]. (7)

To simplify, we assume that the medium Ω is isotropic which means that we
can replace it by Ω = (0, 1).
Our aim is to propose a stable and accurate numerical method to com-

pute numerical approximations for the temperature and concentration. The
method is based on a piecewise linear finite element method combined with
particular integration formulas. Such fully discrete method can be seen as
a finite difference method defined on a nonuniform grid. We prove that the
approximations for the temperature and concentration and their gradients
are second order convergent with respect to discrete L2-norms. It is well
known that the piecewise linear finite element method (FEM) leads to first
order approximations for the gradient. Such result shows the supercloseness
of the gradient approximations. As we mentioned before, the fully discrete
FEM is equivalent to a finite difference method defined on a nonuniform grid
with first order truncation error with respect to the norm ‖.‖∞. This result
shows the supraconvergence of the method.
The paper is organized as follows. In Section 2 we study the stability of the

continuous coupled model (4)-(5). The method proposed to solve numerically
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the coupled problem is introduced in Section 3. In this section, the stability
of the method is established under certain conditions. In Section 4, an error
analysis is developed which is not based on the use of the truncation error
neither on the stability of the method. Numerical experiments illustrating the
convergence results and the behaviour of the concentration and temperature
are included in Section 5. Finally, in Section 6 we present some conclusions.

2. The continuous model: stability analysis
In this section we study the stability of the coupled problems (4)-(5). Let

c(t) and T (t) in L2(0, Tf , H
1
0(Ω)) be such that

(T ′(t), u) = −(DT (T )∇T (t),∇u)
+(G(T ), u) a.e. (0, Tf ], ∀u ∈ H1

0(Ω),
(8)

and

(c′(t), w)− (v(T )c,∇w) = −(Dd(T )∇c,∇w)
+(Q(c), w) a.e. (0, Tf ], ∀w ∈ H1

0(Ω).
(9)

In (8) and (9), (., .) denotes the usual inner product in L2(Ω) and ‖.‖ repre-
sents the corresponding norm. We assume the following conditions:

H1 : DT ∈ C1
b (IR) and DT ≥ β0 > 0 in IR,

H2 : |G(T )| ≤ β1|T | in IR,
H3 : |v(T )| ≤ β2|T | in IR,
H4 : Dd ∈ C1

b (IR) and Dd ≥ β3 > 0 in IR,
H5 : |Q(c)| ≤ β4|c| in IR,

whereC1
b (IR) denotes the space of bounded functions with bounded derivative

in IR. To obtain upper bounds for the temperature and concentration, the
previous assumptions will be used. To establish the stability of the weak
problem (8), (9), H2, H3 and H5 will be replaced by

H∗
2 : G ∈ C1

b (IR),
H∗

3 : v ∈ C1
b (IR),

H∗
5 : Q ∈ C1

b (IR),

respectively.
1.Energy estimates for the solution of (8), (9):
The study of existence of solution for the coupled system (8) and (9) is not

addressed in this paper. We present energy estimates for the solution of the
system and for the corresponding fully discretized problem.
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Energy estimate for the temperature: Taking in (8) u = T (t), we get

1

2

d

dt
‖T (t)‖2 + β0‖∇T (t)‖2 ≤ β1‖T (t)‖2.

This inequality leads to

‖T (t)‖2 + 2β0

∫ t

0

‖∇T (s)‖2ds ≤ ‖T (0)‖2 + 2β1

∫ t

0

‖T (s)‖2ds. (10)

If T ∈ C1([0, Tf ], L
2(Ω)) ∩ L2(0, Tf , H

1
0(Ω)), by the Gronwall Lemma we

conclude

‖T (t)‖2 +
∫ t

0

‖∇T (s)‖2ds ≤ 1

min{1, 2β0}
e2β1t‖T (0)‖2, t ∈ [0, Tf ]. (11)

Energy estimate for the concentration: Let w = c(t) in (9). As H1
0(Ω) is

continuously embedded in C0(Ω), we have successively

|(v(T )c(t),∇c(t))| ≤ β2‖T (t)‖∞‖c(t)‖‖∇c(t)‖
≤ 1

4ǫ21
β2
2‖T (t)‖2∞‖c(t)‖2 + ǫ21‖∇c(t)‖2, (12)

where ǫ1 6= 0 is an arbitrary constant. Then, from (9) and (12), we easily get

‖c(t)‖2 + 2(β3 − ǫ21)

∫ t

0

‖∇c(s)‖2ds

≤ ‖c(0)‖2 +
∫ t

0

( 1

2ǫ21
β2
2‖T (s)‖2∞ + 2β4

)

‖c(s)‖2ds.
(13)

If T ∈ C([0, Tf ], H
1
0(Ω)) then, for ǫ1 such that β3 − ǫ21 > 0, we guarantee

the existence of two positive constants γc,i, i = 1, 2, such that

‖c(t)‖2 +
∫ t

0

‖∇c(s)‖2ds ≤ γc,1‖c(0)‖2e
γc,2

∫ t

0

(

‖T (s)‖2∞+1

)

ds
, t ∈ [0, Tf ], (14)

provided that c ∈ C1([0, Tf ], L
2(Ω)) ∩ L2(0, Tf , H

1
0(Ω)).

As ‖T (t)‖∞ ≤ ‖∇T (t)‖, instead of (14), we have

‖c(t)‖2 +
∫ t

0

‖∇c(s)‖2ds ≤ γc,1‖c(0)‖2e
γc,2

∫ t

0

(

‖∇T (s)‖2+1

)

ds
, t ∈ [0, Tf ]. (15)

The term

∫ t

0

‖∇T (s)‖2ds in (11) is bounded, for t ∈ [0, Tf ].

As
|(v(T )c(t),∇c(t))| ≤ β2‖T (t)‖‖∇c(t)‖2, (16)
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if the drug convection-diffusion equation (4) is diffusion dominated in the
sense that

β3 − β2‖T (t)‖ > γc,c > 0 a.e. in (0, Tf), (17)

then c satisfies

‖c(t)‖2 + 2γc,c

∫ t

0

‖∇c(s)‖2ds ≤ ‖c(0)‖2e2β4t, t ∈ [0, Tf ]. (18)

Moreover, if the reaction term Q satisfies

H ′
5 : Q ∈ C1(IR), and Q(0) = 0, Q′(c) ≤ β4 ≤ 0 in IR,

instead of H5, then (18) holds, and it can also be proved that

‖c(t)‖2 + 2γc,c

∫ t

0

e2β4(t−s)‖∇c(s)‖2ds ≤ ‖c(0)‖2e2β4t, t ∈ [0, Tf ]. (19)

2.Stability estimates:
Let T, T̃ and c, c̃ be solutions with initial conditions c0, c̃0 and T0, T̃0, re-

spectively. Under the assumptions specified before, for T, T̃ and c, c̃ hold
the energy estimates previously established. In what follows we will obtain
estimates for T − T̃ and c− c̃.
For the temperature: Considering that T and T̃ satisfy (8), for ωT (t) =

T − T̃ we obtain

1

2

d

dt
‖ωT (t)‖2 +((DT (T )−DT (T̃ ))∇T,∇ωT(t)) + (DT (T̃ )∇ωT (t),∇ωT(t))

= (G(T )−G(T̃ ), ωT (t)).

Using the assumption H1, we have, successively,

|((DT (T )−DT (T̃ ))∇T,∇ωT(t))|
≤ ‖D′

T‖L∞(IR)‖ωT (t)‖‖∇T (t)‖L∞‖∇ωT (t)‖
≤ 1

4ǫ21
‖D′

T‖2L∞(IR)‖∇T (t)‖2L∞‖ωT (t)‖+ ǫ21‖∇ωT (t)‖2,
(20)

where ǫ1 6= 0. Using now H∗
2 , we obtain

1

2

d

dt
‖ωT (t)‖2 +(β0 − ǫ21)‖∇ωT (t)‖2

≤
(

G′
max +

1

4ǫ21
‖D′

T‖2L∞(IR)‖∇T (t)‖2L∞

)

‖ωT (t)‖2,
(21)
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If β0 − ǫ21 > 0 and T, T̃ ∈ C1([0, Tf ], L
2(Ω)) ∩ L2(0, Tf , H

1
0(Ω) ∩W 1,∞(Ω)),

from (21) we obtain

‖ωT (t)‖2 +2(β0 − ǫ21)

∫ t

0

‖∇ωT (s)‖2ds

≤ ‖ωT (0)‖2 +
∫ t

0

(

2G′
max +

1

2ǫ21
‖D′

T‖2L∞(IR)‖∇T (s)‖2L∞

)

‖ωT (s)‖2ds.

that leads to

‖ωT (t)‖2 +2(β0 − ǫ21)

∫ t

0

e

∫ t

s

(

2G′
max+

1

2ǫ21
‖D′

T ‖2L∞(IR)‖∇T (µ)‖2L∞

)

dµ
‖∇ωT (s)‖2ds

≤ ‖ωT (0)‖2e
∫ t

0

(

2G′
max+

1

2ǫ21
‖D′

T ‖2L∞(IR)‖∇T (s)‖2L∞

)

ds
, t ∈ [0, Tf ].

(22)
From (22) the stability is concluded for T ∈ C1([0, Tf ], L

2(Ω))∩L2(0, Tf , H
1
0(Ω)∩

W 1,∞(Ω)) and T̃ ∈ C1([0, Tf ], L
2(Ω)) ∩ L2(0, Tf , H

1
0(Ω)).

The smoothness of T can be weakened if we impose a stronger condition
on ‖∇T (t)‖. In fact, instead of (20), we can easily deduce

|((DT (T )−DT (T̃ ))∇T,∇ωT(t))|
≤ ‖D′

T‖L∞(IR)‖∇T (t)‖‖∇ωT(t)‖2.

If

β0 − ‖D′
T‖L∞(IR)‖∇T (t)‖ ≥ γT > 0 a.e. in (0, Tf), (23)

for some positive constant γT , instead of (22), we conclude

‖ωT (t)‖2 +2γT

∫ t

0

e2G
′
max(t−s)‖∇ωT (s)‖2ds

≤ ‖ωT (0)‖2e2G
′
maxt, t ∈ [0, Tf ].

(24)

The stability inequality (24) allows us to conclude the stability for T, T̃ ∈
C1([0, Tf ], L

2(Ω)) ∩ L2(0, Tf , H
1
0(Ω)) provided that T satisfies (23).



AN ACCURATE DISCRETE MODEL FOR SOLUTIONS IN H3 9

For the concentration: For the convection term we have

|(v(T )c(t)− v(T̃ )c̃(t),∇ωc(t))|
= |((v(T )− v(T̃ ))c(t) + v(T̃ )ωc(t),∇ωc(t))|
≤ ‖v′‖L∞(IR)‖ωT (t)‖L2‖c(t)‖L∞‖∇ωc(t)‖+ β2‖T̃ (t)‖L∞‖ωc(t)‖‖∇ωc(t)‖
≤ 1

4ǫ21
‖v′‖2L∞(IR)‖c(t)‖2L∞‖ωT (t)‖2 +

1

4ǫ22
β2
2‖T̃ (t)‖2L∞‖ωc(t)‖2

+(ǫ21 + ǫ22)‖∇ωc(t)‖2,
(25)

with ǫi 6= 0, i = 1, 2, arbitrary constants.
For the diffusion term we get

(Dd(T )∇c(t)−Dd(T̃ )∇c̃(t),∇ωc(t))

= ((Dd(T )−Dd(T̃ ))∇c(t) +Dd(T̃ )∇ωc(t),∇ωc(t)),

where

|((Dd(T )−Dd(T̃ ))∇c(t),∇ωc(t))|
≤ ‖D′

d‖L∞(IR)‖ωT (t)‖‖∇c(t)‖L∞‖∇ωc(t)‖
≤ 1

4ǫ23
‖D′

d‖2L∞(IR)‖∇c(t)‖2L∞‖ωT (t)‖2 + ǫ23‖∇ωc(t)‖2
(26)

and

(Dd(T̃ )∇ωc(t),∇ωc(t)) ≥ β3‖∇ωc(t)‖2.

Then we obtain the differential inequality

1

2

d

dt
‖ωc(t)‖2 + (β3 − ǫ21 − ǫ22 − ǫ23)‖∇ωc(t)‖2

≤
( β2

2

4ǫ22
‖∇T̃ (t)‖2 +Q′

max

)

‖ωc(t)‖2

+
( 1

4ǫ21
‖v′‖2L∞(IR)‖c(t)‖2L∞ +

1

4ǫ23
‖D′

d‖2L∞(IR)‖∇c(t)‖2L∞

)

‖ωT (t)‖2
(27)
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whose solution satisfies

‖ωc(t)‖2 + 2(β3 − ǫ21 − ǫ22 − ǫ23)

∫ t

0

e

∫ t

s

(

β22
2ǫ22

‖∇T̃ (µ)‖2+2Q′
max

)

dµ
‖∇ωc(s)‖2ds

≤ ‖ωc(0)‖2e
∫ t

0

(

β22
2ǫ22

‖∇T̃ (µ)‖2+2Q′
max

)

dµ

+

∫ t

0

e

∫ t

s

(

β22
2ǫ22

‖∇T̃ (µ)‖2+2Q′
max

)

dµ

( 1

2ǫ21
‖v′‖2L∞(IR)‖c(s)‖2L∞ +

1

2ǫ23
‖D′

d‖2L∞(IR)‖∇c(s)‖2L∞

)

‖ωT (s)‖2ds,
(28)

for t ∈ [0, Tf ] and provided that c ∈ C1([0, Tf ], L
2(Ω)) ∩ L2(0, Tf , H

1
0(Ω) ∩

W 1,∞(Ω)), c̃ ∈ C1([0, Tf ], L
2(Ω))∩L2(0, Tf , H

1
0(Ω)), T ∈ L2(0, Tf , L

2(Ω)), T̃ ∈
L2(0, Tf , H

1
0(Ω)).

Finally for ǫi, i = 1, 2, 3, such that β3 −
3

∑

i=1

ǫ2i > 0, we get the desired upper

bound.

To conclude we recall that an upper bound for

∫ t

0

‖∇T̃ (µ)‖2dµ is estab-

lished in (11) and upper bounds for ‖ωT (t)‖2L2 are defined in (22) or (24)

when T̃ ∈ C1([0, Tf ], L
2(Ω)) ∩ L2(0, T,H1

0(Ω)) and T ∈ C1([0, Tf ], L
2(Ω)) ∩

L2(0, T,H1
0(Ω) ∩W 1,∞(Ω)).

From (28), the stability of (8) and (9) is concluded when c ∈ L∞(0, Tf , H
1
0(Ω)∩

W 1,∞(Ω)) ∩ C1([0, Tf ], L
2(Ω)), T ∈ C1([0, Tf ], L

2(Ω)) ∩ L2(0, Tf , H
1
0(Ω)) and

for c̃, T̃ ∈ C1([0, Tf ], L
2(Ω)) ∩ L2(0, Tf , H

1
0(Ω)).

In what follows we obtain more precise stability estimates under weaker
assumptions. As ‖ωT (t)‖∞ ≤ ‖∇ωT (t)‖, (25) and (26) are replaced by

|(v(T )c(t)− v(T̃ )c̃(t),∇ωc(t))|
≤

( 1

4ǫ21
‖v′‖2L∞(IR)‖c(t)‖2‖∇ωT‖2 +

1

4ǫ22
β2
2‖∇T̃ (t)‖2‖ωc(t)‖2

+(ǫ21 + ǫ22)‖∇ωc(t)‖2

and

|((Dd(T )−Dd(T̃ ))∇c(t),∇ωc(t))|
≤ 1

4ǫ23
‖D′

d‖2L∞(IR)‖∇c(t)‖2‖∇ωT (t)‖2 + ǫ23‖∇ωc(t)‖2,
respectively.
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Consequently, (28) is replaced by

‖ωc(t)‖2 + 2(β3 −
3

∑

i=1

ǫ2i )

∫ t

0

e

∫ t

s

(

β22
2ǫ22

‖∇T̃ (µ)‖2+2Q′
max

)

dµ
‖∇ωc(s)‖2ds

≤ ‖ωc(0)‖2e
∫ t

0

(

β22
2ǫ22

‖∇T̃ (µ)‖2+2Q′
max

)

dµ

+

∫ t

0

e

∫ t

s

(

β22
2ǫ22

‖∇T̃ (µ)‖2+2Q′
max

)

dµ
( 1

2ǫ21
‖v′‖2L∞(IR)‖c(s)‖2

+
1

2ǫ23
‖D′

d‖2L∞(IR)‖∇c(s)‖2
)

‖∇ωT (s)‖2ds
)

, t ∈ [0, Tf ].

(29)

An upper bound for

∫ t

0

‖∇T̃ (µ)‖2dµ is given by (11). Upper bounds for
∫ t

0

‖∇ωT (s)‖2ds are defined by (22) provided that T ∈ C1([0, Tf ], L
2(Ω)) ∩

L2(0, Tf , H
1
0(Ω)∩W 1,∞(Ω)) and for T̃ ∈ C1([0, Tf ], L

2(Ω))∩L2(0, Tf , H
1
0(Ω));

or by (24) provided that (23) holds and T, T̃ ∈ C1([0, Tf ], L
2(Ω))∩L2(0, Tf , H

1
0(Ω)).

From (29) we conclude the stability of the initial value problem (8) and
(9) for c ∈ L∞(0, Tf , H

1
0(Ω)) ∩ C1([0, Tf ], L

2(Ω)), T ∈ C1([0, Tf ], L
2(Ω)) ∩

L2(0, T,H1
0(Ω)) and for c̃, T̃ ∈ C1([0, Tf ], L

2(Ω)) ∩ L2(0, Tf , H
1
0(Ω)).

3. A FEM that mimics the continuous model: stability
analysis

3.1. Fully discrete FEM. In this section we present a fully discrete method
that mimics system (8) and (9).

Let h = (h1, . . . , hN) be a vector of positive entries such that
N
∑

i=1

hi = 1

and hmax = max
i
hi. Let Λ be a sequence of vectors h defined as before and

such that hmax → 0. Let Ωh = {xi, i = 0, . . . , N} be the non-uniform grid
in Ω induced by h, with xi − xi−1 = hi, x0 = 0, xN = 1. By Ωh and ∂Ωh

we denote the interior set of nodes Ωh = Ω ∩ Ωh and the boundary points
∂Ωh = ∂Ω ∩ Ωh.
ByWh we represent the space of grid functions defined in Ωh and letWh,0 =

{wh ∈ Wh : wh = 0 on ∂Ωh}. For wh ∈ Wh, Phwh denotes the continuous
piecewise linear interpolation of wh with respect to the partition Ωh.
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In Wh,0 we introduce the inner product

(uh, wh)h =
N−1
∑

i=1

hi+1/2uh(xi)wh(xi), uh, wh ∈ Wh,0,

where hi+1/2 =
1
2(hi + hi+1). Let ‖.‖h be the corresponding norm. We intro-

duce xi+1/2 = xi +
hi+1

2
, xi−1/2 = xi −

hi
2
.

For uh, wh ∈ Wh, we use the notations

(uh, wh)+ =

N
∑

i=1

hiuh(xi)wh(xi),

and

‖wh‖+ =
√

(wh, wh)+.

Let D−x be the usual backward finite difference operator. We recall that
holds the following discrete Poincaré-Friedrichs inequality

‖wh‖2h ≤ ‖D−xwh‖2+, ∀wh ∈ Wh,0. (30)

By ‖.‖1,h we represent the norm ‖uh‖1,h =
(

‖uh‖2h + ‖D−xuh‖2+
)1/2

. The

piecewise linear finite element approximations for the solutions of (8) and
(9) are defined as follow: PhTh(t), Phch(t) ∈ H1

0(Ω) such that

(PhT
′
h(t), Phuh) = −(DT (PhTh(t))∇PhTh(t),∇Phuh)

+(G(PhTh), Phuh), ∀uh ∈ Wh,0,
(31)

and
(Phc

′
h(t), Phwh) −(v(PhTh)Phch(t),∇Phwh)

= −(Dd(PhTh(t))∇Phch(t),∇Phwh)
+(Q(Phch(t)), Phwh), ∀wh ∈ Wh,0.

(32)

To define the fully discrete piecewise linear approximations for the tempera-
ture and concentration we need to define the approximations for the integrals
terms in (31) and (32).
Considering the approximations rules defined before by one of the authors

in [7], we introduce the following approximations:

(f, g) ≃ (Rhf, Rhg), f, g ∈ C(Ω), (33)
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where Rh denotes the restriction operator,

(a(Phqh)∇Phuh,∇Phwh) ≃ (a(Mhqh)D−xuh, D−xwh)+, qh, uh, wh ∈ Wh,0,
(34)

where Mh is the average operator

Mhqh(xi) =
1

2
(qh(xi−1) + qh(xi)), i = 1, . . . , N.

Taking into account the previous approximation rule, the variational problem
for the finite element approximation PhTh(t) is placed by the following fully
discrete FEM: compute Th(t) ∈ Wh,0 such that

(T ′
h(t), uh)h = −(DT (MhTh(t))D−xTh(t), D−xuh)+

+(G(Th(t)), uh)h, ∀uh ∈ Wh,0.
(35)

To define the fully discrete problem for the concentration, we need to intro-
duce the approximation of the integral term associated with the convective
term (v(PhTh)Phch(t),∇Phwh). We consider

(v(PhTh)Phch(t),∇Phwh) ≃ (Mh(v(Th)ch), D−xwh)+.

Using the introduced quadrature rules in (32), we get the fully discrete
FEM: compute ch(t) ∈ Wh,0 such that

(c′h(t), wh)h −(Mh(v(Th(t))ch(t)), D−xwh)+
= −(Dd(MhTh(t))D−xch(t), D−xwh)+
+(Q(ch(t)), wh)h, ∀wh ∈ Wh,0.

(36)

We remark that the coupled system (35), (36) can be rewritten as a or-
dinary differential systems. To do that, we need to introduce the difference
quotient D∗

x(a(Mhqh)D−xuh) defined by

D∗
x(a(Mhqh)D−xuh)(xi) = 1

hi+1/2

(

a(Mhqh(xi+1))D−xuh(xi+1)

−a(Mhqh(xi))D−xuh(xi)
)

,

for i = 1, . . . , N − 1, and for qh, uh ∈ Wh,0, and the first order centered finite
difference operator

Dc(uh)(xi) =
uh(xi+1)− uh(xi−1)

hi + hi+1
, i = 1, . . . , N − 1.
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We introduce now the ordinary differential systems






T ′
h(t) = FT (Th(t)) inΩh × (0, Tf ]
Th(t) = 0 in ∂Ωh × (0, Tf ]
Th(0) = RhT0inΩh,

(37)

and






c′h(t) = Fc(Th(t), ch(t)) inΩh × (0, Tf ]
ch(t) = 0 in ∂Ωh × (0, Tf ]
ch(0) = Rhc0in Ωh,

(38)

where the following notations were used

FT (Th(t)) = D∗
x(DT (MhTh(t))D−xTh(t)) +G(Th(t))

and

Fc(Th(t), ch(t)) = D∗
x(Dd(MhTh(t))D−xch(t))−Dc(v(Th(t))ch(t)) +Q(ch(t)).

Considering the inner product of the first equation of (37) and (38), with
respect to (., .)h, by uh ∈ Wh,0 and wh ∈ Wh,0, respectively, we get (35) and
(36). This results shows the equivalence between the fully discrete FEM (35),
(36) and the FDMs (37) and (38), respectively.

3.2. Stability. We start this section establishing energy upper bounds for
‖Th(t)‖h and ‖ch(t)‖h analogous of the ones established before for the con-
tinuous counterpart.
Firstly we establish the existence of the semi-discrete approximations, at

least locally, this means that there exists an interval [0, Tf ] and functions
Th(t), ch(t) solutions of the ordinary differential problems (37) and (38).
We observe that the previous coupled problem can be rewritten in the

following equivalent form






Z ′
h(t) = Fh(Zh(t)) inΩh × (0, Tf ],

Zh(0) = Z0,h inΩh,
Zh(t) = 0 in ∂Ωh × (0, Tf ],

(39)

where Zh(t) = (Th(t), ch(t)), Z0,h = (RhT0, Rhc0) and

Fh(Zh(t)) = (FT (Th(t)), Fc(Th(t), ch(t))).

Proposition 1. Under the assumptions H1, H
∗
2 , H

∗
3 , H4 and H∗

5 ,

Fh : BδT (RhT0)×Bδc(Rhc0) → [Wh,0]
2
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is one-side Lipschitz, where

Bδ(uh) = {zh ∈ Wh,0 : ‖zh − uh‖h ≤ δ},
for uh = RhT0, Rhc0, and δ = δT , δc.

Proof: Let Zh = (qh, wh), Z̃h = (q̃h, w̃h) ∈ BδT (RhT0) × Bδc(Rhc0), and
ωq = qh − q̃h, ωw = wh − w̃h and ω = (ωq, ωw). We have, successively, the
following

(Fh(Zh)− Fh(Z̃h), ω)[Wh,0]2 = (FT (qh)− FT (q̃h), ωq)h
+(Fc(qh, wh)− Fc(q̃h, w̃h), ωw)h,

(FT (qh) −FT (q̃h), ωq)h = −((DT (Mhqh)−DT (Mhq̃h))D−xqh, D−xωq)+
−(DT (Mhq̃h(t))D−xωq, D−xωq)+
+(G(qh)−G(q̃h), ωq)h
≤

√
2|D′

T |max‖ωq‖h‖D−xqh‖∞‖D−xωq‖+ − β0‖D−xωq‖2+ +G′
max‖ωq‖2h

≤
(

4
ǫ2

1
h2
min

(

δT + ‖RhT0‖h
)2

(D′
T )

2
max +G′

max

)

‖ωq‖2h
+(−β0 + ǫ2)‖D−xωq‖2+.

Then, for ǫ2 = β0, we obtain

(FT (qh)− FT (q̃h), ωq)h ≤
(

4
β0

1
h2
min

(

δT + ‖RhT0‖h
)2

(D′
T )

2
max +G′

max

)

‖ωq‖2h
:= LT (h)‖ωq‖2h.

(40)
For (Fc(qh, wh)− Fc(q̃h, w̃h), ωw)h we establish

(Fc(qh, wh) −Fc(q̃h, w̃h), ωw)h = −((Dd(Mhqh)−Dd(Mhq̃h))D−xwh, D−xωw)+
−Dd(Mhq̃h))D−xωw, D−xωw)+
+(Mh((v(qh)− v(q̃h))wh, D−xωw)+
+(Mh(v(q̃h))ωw, D−xωw)+ +Q′

max‖ωw‖2h
≤

√
2|D′

d|max‖ωq‖h‖D−xwh‖∞‖D−xωw‖+
−β3‖D−xωw‖2+ +

√
2|v′|max‖ωq‖h‖wh‖∞‖D−xωw‖+

+
√
2β2‖q̃h‖∞‖ωw‖h‖D−xωw‖+ +Q′

max‖ωw‖2h
≤ 1

ǫ2

(

4
h2
min

(D′
d)

2
max +

2
hmin

(v′)2max

)

(

δc + ‖Rhc0‖h
)2

‖ωq‖2h
+
(

β2
2

ǫ2
2

hmin

(

δT + ‖RhT0‖h
)2

+Q′
max

)

‖ωw‖2h
+(3ǫ2 − β3)‖D−xωw‖2+.
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Choosing ǫ2 = 1
3
β3, we conclude that

(Fc(qh, wh) −Fc(q̃h, w̃h), ωw)h ≤ 3
β3

(

4
hmin

(D′
d)

2
max +

2
hmin

(v′)2max

)

(

δc + ‖Rhc0‖h
)2

‖ωq‖2h
+
(

6β2
2

β3

1
hmin

(

δT + ‖RhT0‖h
)2

+Q′
max

)

‖ωw‖2h
:= Lc,1(h)‖ωq‖2h + Lc,2(h)‖ωw‖2h.

(41)

From (40) and (41) we finally obtain

(Fh(Zh) −Fh(Z̃h), Zh − Z̃h)[Wh,0]2 ≤ (LT (h) + Lc,1(h))‖ωq‖2h + Lc,2(h)‖ωw‖2h
≤ max{LT (h) + Lc,1(h), Lc,2(h)}‖Zh − Z̃h‖2[Wh,0]2

.

(42)

We remark that the one-side Lipschitz condition (42), established in Propo-
sition 1, guarantees the existence of the semi-discrete approximations Th(t), ch(t),
at least locally.
We observe that if we use the previous result to get upper bounds for

‖ωh(t)‖[Wh,0]2, where ωh(t) = Zh(t) − Z̃h(t), Zh(t) = (Th(t), ch(t)) is the so-

lution of (39) with initial condition Zh(0), and Z̃h(t) is the solution of the
same problem but with perturbed initial condition Z̃h(0), then we have

1
2
d
dt
‖ωh(t)‖2[Wh,0]2

= (Fh(Zh(t))− Fh(Z̃h(t)), ωh(t))[Wh,0]2

≤ max{LT (h) + Lc,1(h), Lc,2(h)}‖ωh(t)‖2[Wh,0]2
,

(43)

where LT (h), Lc,1(h) and Lc,2(h) are defined in Proposition 1. Consequently,
we obtain

‖ωh(t)‖2[Wh,0]2
≤ e2max{LT (h)+Lc,1(h),Lc,2(h)}t‖ωh(0)‖2[Wh,0]2

, t ≥ 0. (44)

The upper bound (44) guarantees the stability of the semi-discretization
defined by Fh in bounded time intervals for each h. However, when h de-
creases, from this upper bound we are not able to conclude such stability
behaviour. This fact is our motivation to study the stability using the en-
ergy method for each semi-discretization defined by FT and Fc. To obtain the
stability upper bounds, we start by establishing convenient upper bounds for
Th(t) and ch(t) which are solutions of (35) and (36), respectively.
1.Energy estimates:
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For the temperature Th(t): Taking in (35) uh = Th(t), and following the
steps used to prove (11), we easily get

‖Th(t)‖2h +
∫ t

0

‖D−xTh(s)‖2+ds ≤
1

min{1, 2β0}
e2β1t‖Th(0)‖2h, (45)

for t ∈ [0, Tf ], provided that Th ∈ C1([0, Tf ],Wh,0).
For the concentration: Let wh = ch(t) in (36). As in the continuous case,

we have
|(Mh(v(Th(t))ch(t)), D−xch(t))+|

≤
√
2β2‖Th(t)‖∞‖ch(t)‖h‖D−xch(t)‖+

≤ 1

2ǫ21
β2
2‖Th(t)‖2∞‖ch(t)‖2h + ǫ21‖D−xch(t)‖2+,

(46)

where ǫ1 6= 0 is an arbitrary constant. Then, for ǫ1 such that β3 − ǫ21 > 0, we
easily get

‖ch(t)‖2h+
∫ t

0

‖D−xch(s)‖2+ds ≤
1

min{1, 2(β3 − ǫ21)}
‖ch(0)‖2he

∫ t

0

(

β22
ǫ21
‖Th(s)‖2∞+2β4

)

ds
,

(47)
for t ∈ [0, Tf ], provided that ch ∈ C1([0, Tf ],Wh,0).

From (45), the term

∫ t

0

‖D−xTh(s)‖2+ds is uniformly bounded in [0, Tf ],

provided that ‖Th(0)‖h is uniformly bounded in h ∈ Λ. As

∫ t

0

‖Th(s)‖2∞ds ≤
∫ t

0

‖D−xTh(s)‖2+ds, we have
∫ t

0

‖Th(s)‖2∞ds ≤
1

min{1, 2β0}
e2β1t‖Th(0)‖2h and

then

‖ch(t)‖2h+
∫ t

0

‖D−xch(s)‖2+ds ≤ γc,1‖ch(0)‖2he
β22
ǫ21

1
min{1,2β0}

e2β1t‖Th(0)‖2h+2β4t
, t ∈ [0, Tf ].

(48)
However, (46) can be replaced by

|(Mh(v(Th(t))ch(t)), D−xch(t))+|
≤

√
2β2‖Th(t)‖h‖ch(t)‖∞‖D−xch(t)‖+

≤
√
2β2‖Th(t)‖h‖D−xch(t)‖2+.

(49)

Then, if the discrete version of (17)

ǫ3 −
√
2β2‖Th(t)‖h > γc,c > 0 a.e. in (0, Tf),
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holds, for some positive constant γc,c, then ch(t) satisfies the following discrete
version of (18)

‖ch(t)‖2h + 2γc,c

∫ t

0

‖D−xch(s)‖2+ds ≤ ‖ch(0)‖2he2β4t, t ∈ [0, Tf ]. (50)

We remark that from (45), ‖Th(t)‖h is bounded in [0, Tf ].
2.Stability estimates:
In what follows we analyse the differences ωT (t) = Th(t) − T̃h(t), ωc(t) =

c(t) − c̃(t), when Th(t), T̃h(t) and ch(t), c̃h(t) are solutions of (36) and (35),
respectively, with initial conditions Th(0), T̃h(0) and ch(0), c̃h(0), respectively.
For ωT (t) = Th(t)− T̃h(t):

1

2

d

dt
‖ωT (t)‖2h +((DT (MhTh(t))−DT (MhT̃h(t)))D−xTh(t), D−xωT (t))+

+(DT (MhT̃h(t))D−xωT (t), D−xωT (t))+
= (G(Th(t))−G(T̃h(t)), ωT(t))h.

To establish an upper bound for

((DT (MhTh(t))−DT (MhT̃h(t)))D−xTh(t), D−xωT (t))+,

we need to impose an additional condition to D−xTh(t)

H6 :

∫ t

0

‖D−xTh(t)‖2∞ds is uniformly bounded in h ∈ Λ , t ∈ (0, Tf).

Under the previous assumption we get

((DT (MhTh(t))−DT (MhT̃h(t)))D−xTh(t), D−xωT (t))+
≤

√
2(D′

T )max‖D−xTh(t)‖∞‖ωT (t)‖h‖D−xωT (t)‖+
≤ 1

2ǫ21
(D′

T )
2
max‖D−xTh(t)‖2∞‖ωT (t)‖2h + ǫ21‖D−xωT (t)‖2+.

(51)

for ǫ1 6= 0.
For ǫ1 such that β0 − ǫ21 > 0, it can be shown that

‖ωT (t)‖2h +2(β0 − ǫ21)

∫ t

0

e

∫ t

s

(

1

2ǫ21
(D′

T )
2
max‖D−xTh(µ)‖2∞+2G′

max

)

dµ
‖D−xωT (s)‖2+ds

≤ ‖ωT (0)‖2he
∫ t

0

(

1

2ǫ21
(D′

T )
2
max‖D−xTh(s)‖2∞+2G′

max

)

ds
, t ∈ [0, Tf ].

(52)
The assumption H6 guarantees that the upper bound in (52) is bounded by

Const.‖ωT (0)‖h in [0, Tf ]. Consequently we conclude the stability of the FEM
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(35), or equivalently, the stability of the FDM (37), in Th(t).We observe that
it remains to analyse when H6 effectively holds.

We can obtain another upper bound avoiding the assumption H6. Observ-
ing that (51) can be replaced by replaced by

((DT (MhTh(t))−DT (MhT̃h(t)))D−xTh(t), D−xωT (t))+
≤ |D′

T |max‖D−xTh(t)‖+‖ωT (t)‖∞‖D−xωT (t)‖+
≤ (D′

T )
2
max‖D−xTh(t)‖+‖D−xωT (t)‖2+,

(53)

we establish

‖ωT (t)‖2h +2γT

∫ t

0

e2G
′
max(t−s)‖D−xωT (s)‖2+ds

≤ ‖ωT (0)‖2he2G
′
maxt, t ∈ [0, Tf ],

(54)

provided that

β0 − (D′
T )

2
max‖D−xTh(t)‖+ ≥ γT > 0 a.e. in (0, Tf), (55)

for some positive constant γT .
From (53) we conclude the stability of (35) or equivalently (37) in Th(t)
provided that (55) holds. Condition (55) means that ‖Th(t)‖1,h is a.e bounded
in (0, Tf) uniformly in h ∈ Λ.
For ωc(t) = ch(t)− c̃h(t) : For the convective term we deduce

|(Mh

(

v(Th)ch(t)− v(T̃h)c̃h(t)
)

, D−xωc(t))+|
≤

√
2|v′|max‖ωT (t)‖h‖ch(t)‖∞‖D−xωc(t)‖+

+
√
2β2‖T̃h(t)‖∞‖ωc(t)‖h‖D−xωc(t)‖+

≤ 1

2ǫ21
(v′)2max‖ωT (t)‖2h‖ch(t)‖2∞ +

1

2ǫ22
β2
2‖T̃h(t)‖2∞‖ωc(t)‖2h

+(ǫ21 + ǫ22)‖D−xωc(t)‖2+,

(56)

with ǫi 6= 0, i = 1, 2, are arbitrary constants.
For the diffusion terms we get

|((Dd(MhTh)−Dd(MhT̃h))D−xch(t), D−xωc(t))+|
≤

√
2|D′

d|max‖ωT (t)‖h‖D−xch(t)‖∞‖D−xωc(t)‖+
≤ 1

2ǫ23
(D′

d)
2
max‖ωT (t)‖2h‖D−xch(t)‖2∞ + ǫ23‖D−xωc(t)‖2+

(57)

and

(Dd(MhT̃h)D−xωc(t), D−xωc(t))+ ≥ β3‖D−xωc(t)‖2+.
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Following the steps used to establish (28) with the convenient adaptations,

it can be show that, for ǫi 6= 0, i = 1, 2, 3, such that β3 −
3

∑

i=1

ǫ2i > 0, we have

‖ωc(t)‖2h +
∫ t

0

e

∫ t

s

(

β22
ǫ22
‖T̃h(µ)‖2∞+2Q′

max

)

dµ
‖D−xωc(s)‖2+ds

≤ 1

min{1, 2(β3 −
∑3

i=1 ǫ
2
i )}

(

‖ωc(0)‖2he
∫ t

0

(

β22
ǫ22
‖T̃h(s)‖2∞+2Q′

max

)

ds

+

∫ t

0

e

∫ t

s

(

β22
ǫ22
‖T̃h(µ)‖2∞+2Q′

max

)

dµ
( 1

ǫ21
(v′)2max‖ch(s)‖2∞ +

1

ǫ23
(D′

d)
2
max‖D−xch(s)‖2∞

)

‖ωT (s)‖2hds, t ∈ [0, Tf ].
(58)

To conclude the stability of (35) and (36), we recall that an upper bound for
‖ωT (t)‖2h in [0, Tf ] is established in (52)(provided that H6 holds) or (54) (pro-
vided that (55) holds) . To guarantee that the previous estimate holds, we
need to assume that Th, T̃h, ch, c̃h ∈ C1([0, Tf ],Wh,0). However, the obtained
upper bound will be h-dependent. To get a stability estimate h-independent,
we need to assume that

∫ t

0

‖T̃h(s)‖2∞ds and

∫ t

0

(

‖ch(s)‖2∞ + ‖D−xch(s)‖2∞
)

‖ωT (s)‖2hds

are uniformly bounded in h ∈ Λ. As

∫ t

0

‖T̃h(s)‖2∞ds ≤
∫ t

0

‖D−xT̃h(s)‖2+ds,

then, by (45) or (47),

∫ t

0

‖T̃h(s)‖2∞ds is uniformly bounded in h ∈ Λ.

We observe now that an upper bound for ‖ωT (t)‖2h, t ∈ [0, Tf ], h ∈ Λ, is estab-

lished in (52) or (54). Then to bound

∫ t

0

(

‖ch(s)‖2∞+‖D−xch(s)‖2∞
)

‖ωT (s)‖2hds,

we need to guarantee that

∫ t

0

(

‖ch(s)‖2∞ + ‖D−xch(s)‖2∞
)

ds is uniformly

bounded in h ∈ Λ. As we will see later, to do that we assume an additional
condition on the spatial grids Ωh, h ∈ Λ, and we show that ch(s) is a second
order approximations for c(t).
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To get another upper bound for ‖ωc(t)‖h, we observe that the bounds (56)
and (57) can be replaced, respectively, by

|(Mh

(

v(Th)ch(t)− v(T̃h)c̃h(t)
)

, D−xωc(t))+|
≤ 1

2ǫ21
(v′)2max‖D−xωT (t)‖2+‖ch(t)‖2h +

1

2ǫ22
β2
2‖D−xT̃h(t)‖2+‖ωc(t)‖2h

+(ǫ21 + ǫ22)‖D−xωc(t)‖2+

(59)

and

|((Dd(MhTh)−Dd(MhT̃h))D−xch(t), D−xωc(t))+|
≤ |D′

d|max‖ωT (t)‖∞‖D−xch(t)‖+‖D−xωc(t)‖+
≤ 1

4ǫ23
(D′

d)
2
max‖D−xωT (t)‖2+‖D−xch(t)‖2+ + ǫ23‖D−xωc(t)‖2+.

(60)

Then (58) is replaced by

‖ωc(t)‖2h +
∫ t

0

e

∫ t

s

(

β22
ǫ22
‖D−xT̃h(µ)‖2++2Q′

max

)

dµ
‖D−xωc(s)‖2+ds

≤ 1

min{1, 2(β3 −
∑3

i=1 ǫ
2
i )}

(

‖ωc(0)‖2he
∫ t

0

(

β22
ǫ22
‖D−xT̃h(s)‖2++2Q′

max

)

ds

+

∫ t

0

e

∫ t

s

(

β22
ǫ22
‖D−xT̃h(µ)‖2++2Q′

max

)

dµ
( 1

ǫ21
(v′)2max‖ch(s)‖2h

+
1

2ǫ23
(D′

d)
2
max‖D−xch(s)‖2+

)

‖D−xωT (s)‖2+ds, t ∈ [0, Tf ].

(61)

In this case, upper bounds for

∫ t

0

‖D−xT̃h(s)‖2+ds can be easily obtained

from (45). An estimate for

∫ t

0

‖D−xωT (s)‖2+ds in established in (52) or (54).

To conclude from (61) the stability of (35) and (36), we need to guaran-
tee that ‖ch(s)‖2h + ‖D−xch(s)‖2+ is bounded a.e. in (0, Tf), uniformly in

h ∈ Λ. We observe that, from (48) or (50), ‖ch(t)‖h, and
∫ t

0

‖D−xch(s)‖2+ds
are bounded for all t ∈ [0, Tf ], uniformly in h ∈ Λ, and consequently
‖ch(t)‖2h+‖D−xch(t)‖2+ is bounded a.e. in (0, Tf), uniformly in h ∈ Λ. In fact,

if

∫ t

0

‖D−xch(s)‖2+ds ≤ K, ∀t ∈ [0, Tf ], ∀h ∈ Λ, then ess sup
(0,Tf )

‖D−xch‖+ ≤

K, ∀h ∈ Λ (Theorem 2.14, [1]).
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We remark that the assumption H6 is verified if Th and ch are a second
order approximations for T and c in L2(0, Tf , H

3(Ω)∩H1
0(Ω)) in the following

sense

‖ET (t)‖2h +
∫ t

0

‖D−xET (s)‖2+ds ≤ Ch4max, t ∈ [0, Tf ], (62)

and

‖Ec(t)‖2h +
∫ t

0

‖D−xEc(s)‖2+ds ≤ Ch4max, t ∈ [0, Tf ], (63)

where ET (t) = RhT (t)−Th(t), Ec(t) = Rhc(t)−ch(t), and under the assump-
tion on the spatial grids of the sequence Λ

h4max

hmin
≤ Const, h ∈ Λ. (64)

In fact,
∫ t

0

‖D−xTh(s)‖2∞ds ≤ 2

∫ t

0

‖D−xEh(s)‖2∞ds+ 2

∫ t

0

‖∇T (s)‖2∞ds

≤ 2

h2min

∫ t

0

‖D−xEh(s)‖2+ds+ 2

∫ t

0

‖∇T (s)‖2∞ds

≤ C
h4max

h2min

+ 2‖T‖2L2(0,Tf ,C1(Ω)).

In the following proposition we summarize our stability result for (35) and
(36).

Proposition 2. Under the assumptions H1−H5, H
∗
2 , H

∗
3 and H∗

5 , if Ωh, h ∈
Λ, satisfy (64), Th, ch ∈ C1([0, Tf ],Wh,0), h ∈ Λ, satisfy (62), (63), re-
spectively, then there exists a set of positive constants Ci, i = 1, . . . , 6, h-
independent, such that, for T̃h, c̃h ∈ C1([0, Tf ],Wh,0), and ωT (t) = Th(t) −
T̃h(t), ωc(t) = ch(t)− c̃h(t), h ∈ Λ, we have

‖ωT (t)‖2h +
∫ t

0

e2G
′
max(t−s)‖D−xωT (s)‖2+ds ≤ C1‖ωT (0)‖2h (65)

‖ωc(t)‖2h +
∫ t

0

e2Q
′
max(t−s)‖D−xωc(s)‖2+ds

≤ eC2‖T̃h(0)‖2h+C3

(

C4‖ωc(0)‖2h + ‖ωT (0)‖2h
(

C5 + C6‖ch(0)‖2h
)

)

,
(66)

for t ∈ [0, Tf ].

We establish in the next section the error estimates (62) and (63).
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4. Convergence analysis
In this section our aim is to establish the upper bound (62) for the error

ET (t) = RhT (t) − Th(t), and a similar upper bound for the error for the
concentration Ec(t) = Rhc(t) − ch(t), where Th(t) and ch(t) are defined by
(35) and (36), respectively. We remark that the results presented in [2] have
an important role in what follows (see also [3],[7], [8]).
In what follows we use the following notation

(g)h(xi) =
1

|✷i|

∫

✷i

g(x)dx, xi ∈ Ωh,

with ✷i = [xi−1/2, xi+1/2].

4.1. Error estimate for the temperature Th(t) defined by (35). We
have successively

(E ′
T (t), ET (t))h = ((T ′(t))h, ET (t))h − (T ′

h(t), ET (t))h + τd(t)
= −(DT (Mh(RhT (t)))D−xRhT (t)−DT (Mh(Th(t)))D−xTh(t), D−xET (t))+

+(RhG(T (t))−G(Th(t)), ET(t))h
+τd(ET (t)) + τDT

(ET (t)) + τG(ET (t)),
(67)

where

τd(t) = (RhT
′(t)− (T ′(t))h, Eh(t))h, (68)

τDT
(ET (t)) = ((∇.(DT(T (t))∇T (t)))h, ET (t))h

+(DT (Mh(RhT (t)))D−xRhT (t), D−xET (t))+

and

τG(ET (t)) = ((G(T (t)))h, ET (t))h − (RhG(T (t)), ET(t))h.

In the next propositions we establish an estimate for the introduced error
terms. By Ii we represent the interval (xi−1, xi).

Proposition 3. If T ′(t) ∈ H2(Ω) then

|τd(t)| ≤ Const.
(

N
∑

i=1

h4i‖T ′(t)‖2H2(Ii)

)1/2

‖D−xET (t)‖+. (69)

Proof: See Theorem 3.1 of [2].
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Proposition 4. If DT ∈ W 2,∞(IR) and T (t) ∈ H3(Ω) ∩H1
0(Ω), then

|τDT
(ET (t))| ≤ Const.‖DT‖W 2,∞(IR)

(

2
∑

i=0

‖T (t)‖i
C1(Ω)

)(

N
∑

i=1

h4i‖T (t)‖2H3(Ii)

)1/2

‖D−xET (t)‖+.
(70)

Proof: For τDT
(t) we have

τDT
(t) = (

(

∇.
(

DT (T (t))∇T (t)
)

)

H
, ET (t))h

+(DT (T̂h(t))D−xRhT (t), D−xET (t))+
−(DT (T̂h(t))D−xRhT (t), D−xET (t))+
+(DT (Mh(RhT (t)))D−xRhT (t), D−xET (t))+
:= τ1(t) + τ2(t),

where T̂h(t)(xi) = T (xi−1/2, t).

(1) An estimate for τ1(t) is obtained using Theorem 3.1 of [2]

|τ1(t)| ≤ Const.
(

N
∑

i=1

h4i‖DT ((T (t))∇T (t)‖2H2(Ii)

)1/2

‖D−xET (t)‖+.

(2) To get an estimate for τ2(t) we start by remarking that the Bramble-
Hilbert lemma allows us to obtain for

σ(xi, t) = T (xi−1/2, t)−
1

2

(

T (xi−1, t) + T (xi, t)
)

the following estimate

|σ(xi, t)| ≤ Const.hi

∫ xi

xi−1

|∆T (x, t)|dx,

and then we get

|τ2(t)| ≤ Const.‖D′
T‖∞

(

N
∑

i=1

h4i‖T (t)‖C1(I i)
‖T (t)‖2H2(Ii)

)1/2

‖D−xET (t)‖+.
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We conclude for |τDT
(ET (t))| the next estimate

|τDT
(ET (t))| ≤ Const.

(

N
∑

i=1

h4i‖DT (T (t))∇T (t)‖2H2(Ii)

+‖D′
T (t)‖∞

N
∑

i=1

h4i‖T (t)‖C1(Ii)
‖T (t)‖2H2(Ii)

)1/2

‖D−xET (t)‖+,

that lead to (70).

Proposition 5. If G ∈ W 2,∞(IR) and T (t) ∈ H2(Ω) ∩H1
0(Ω), then

|τG(ET (t))| ≤ Const.max{β1, ‖G‖W 2,∞(IR)}
(

1
∑

i=0

‖T (t)‖i
C1(Ω)

)

(

N
∑

i=1

h4i‖T (t)‖2H2(Ii)

)1/2

‖D−xET (t)‖+.
(71)

Proof: See Theorem 3.1 of [2].
In the next result we establish the upper bound for ET (t) :

Theorem 1. If

T ∈ L2(0, Tf , H
3(Ω) ∩H1

0(Ω)) ∩H1(0, Tf , H
2(Ω)),

RhT, Th ∈ C1([0, Tf ],Wh,0),

the coefficient functions DT and G satisfy the assumptions H1, H2, respec-
tively, as well as the assumption of Propositions 4 and 5. Then for ǫ such
that β0 − 4ǫ2 > 0 the error ET (t) = RhT (t)− Th(t) satisfies the following

‖ET (t)‖2h +
∫ t

0

e
∫ t

s

(

1
ǫ2
(D′

T )
2
max‖D−xRhT (µ)‖2∞+2G′

max

)

dµ‖D−xET (s)‖2+ds

≤ 1

min{1, 2(β0 − 4ǫ2)}e
∫ t

0

(

1
ǫ2
(D′

T )
2
max‖D−xRhT (µ)‖2∞+2G′

max

)

ds
(

‖ET (0)‖2h

+
1

2ǫ2

∫ t

0

e−
∫ s

0

(

1
ǫ2
(D′

T )
2
max‖D−xRhT (µ)‖2∞+2G′

max

)

dµτT (s)ds
)

, t ∈ [0, Tf ],

(72)
where

τT (t) = Const.
(

2
∑

i=0

‖T (t)‖i
C1(Ω)

)2
N
∑

i=1

h4i

(

‖T (t)‖2H3(Ii)
+ ‖T ′(t)‖2H2(Ii)

)

.
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Proof: From (67) and Propositions 3, 4 and 5, we easily get

1

2

d

dt
‖ET (t)‖2h + β0‖D−xET (t)‖2+
≤

√
2|D′

T |max‖ET (t)‖h‖D−xRhT (t)‖∞‖D−xET (t)‖+
+G′

max‖ET (t)‖2h +
1

4ǫ2
τT (t) + 3ǫ2‖D−xET (t)‖2+,

(73)

where ǫ 6= 0 is an arbitrary constant.
The inequality (73) leads to

e−
∫ t

0

(

1
ǫ2
(D′

T )
2
max‖D−xRhT (µ)‖2∞+2G′

max

)

dµ d

dt
‖ET (t)‖2h

+2(β0 − 4ǫ2)e−
∫ t

0

(

1
ǫ2
(D′

T )
2
max‖D−xRhT (s)‖2∞+2G′

max

)

ds‖D−xET (t)‖2+
≤ e−

∫ t

0

(

1
ǫ2
(D′

T )
2
max‖D−xRhT (s)‖2∞+2G′

max

)

ds
( 1

ǫ2
(D′

T )
2
max‖D−xRhT (t)‖2∞

+2G′
max

)

‖ET (t)‖2h +
1

2ǫ2
e−

∫ t

0

(

1
ǫ2
(D′

T )
2
max‖D−xRhT (s)‖2∞+2G′

max

)

dsτT (t),

(74)

for t ∈ [0, Tf ]. Finally, choosing ǫ such that β0 − 4ǫ2 > 0 and considering the
continuous imbedding of H3(Ω) in C1(Ω), we conclude (72).

Corollary 1. Under the assumptions of Theorem 1, if Th(0) = RhT (0) then
there exists a positive constant C such that the error ET (t) satisfies

‖ET (t)‖2h +
∫ t

0

e2G
′
max(t−s)‖D−xET (s)‖2h,+ds ≤ Ch4max, t ∈ [0, Tf ].

If the sequence Λ of the spatial vectors h satisfies the assumption (64), then
the sequence of approximations for the temperature Th, h ∈ Λ, is uniformly
bounded in the sense

‖Th(t)‖∞ ≤ C,

∫ t

0

e2G
′
max(t−s)‖D−xTh(s)‖2+ds ≤ C, t ∈ [0, Tf ], h ∈ Λ.
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4.2. Error estimate for the concentration ch(t) defined by (36). For
the error Ec(t) = Rhc(t)− ch(t) holds the following

(E ′
c(t), Ec(t))H = ((c′(t))h, Ec(t))h − (c′h(t), Ec(t))h + τd(Ec(t))

= −(Dd(Mh(RhT (t)))D−xRhc(t)−Dd(Mh(Th(t)))D−xch(t), D−xEc(t))+
+(Mh(Rh(v(T (t))c(t))), D−xEc(t))+ − (Mh(v(Th(t))ch(t)), D−xEc(t))+
+(RhQ(c(t))−Q(ch(t)), Ec(t))h
+τd(Ec(t)) + τDd

(Ec(t)) + τv(Ec(t)) + τQ(Ec(t)),
(75)

where τd(Ec(t)) is defined by(68) with T (t) and ET (t) replaced by c(t) and
Ec(t), respectively,

τDd
(Ec(t)) = ((∇.(Dd(T (t))∇c(t)))h, Ec(t))h

+(Dd(Mh(RhT (t)))D−xRhc(t), D−xEc(t))+,

τv(Ec(t)) = −(
(

∇.(v(T (t))c(t))
)

h
, Ec(t))h

−(Mh(Rh(v(T (t))c(t))), D−xEc(t))+,

and

τQ(Ec(t)) = ((Q(c(t)))h, Ec(t))h − (RhQ(c(t)), Ec(t))h.

As in Proposition 3, for τd(Ec(t)) we have

|τd(Ec(t))| ≤
(

N
∑

i=1

h4i‖c′(t)‖2H2(Ii)

)1/2

‖D−xEc(t)‖+. (76)

For τQ(Ec(t)) we easily get

|τQ(Ec(t))| ≤ Const.‖R‖W 2,∞(IR)

(

1
∑

i=0

‖c(t)‖i
C1(Ω)

)(

N
∑

i=1

h4i‖c(t)‖2H2(Ii)

)1/2

‖D−xEc(t)‖+.
(77)

We study now τDd
(Ec(t)) and τv(Ec(t)).
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Proposition 6. If Dd ∈ W 2,∞(IR), T (t) ∈ H2(Ω)∩H1
0(Ω) and c(t) ∈ H3(Ω)∩

H1
0(Ω), then

|τDd
(ET (t))| ≤ Const.‖Dd‖W 2,∞(IR)

((

2
∑

i=0

‖T (t)‖i
C1(Ω)

)2
N
∑

i=1

h4i‖c(t)‖2H3(Ii)

+‖c(t)‖2
C1(Ω)

N
∑

i=1

h4i‖T (t)‖2H2(Ii)

)1/2

‖D−xEc(t)‖+.

(78)

Proof: The proof follows the proof of Proposition 4.

Proposition 7. If T (t), c(t) ∈ H2(Ω) ∩H1
0(Ω) then

|τv(ET (t))| ≤ Const.‖v‖W 2,∞(IR)

((

2
∑

i=0

‖T (t)‖i
C1(Ω)

)2
N
∑

i=1

h4i‖c(t)‖2H2(Ii)

+‖c(t)‖2
C0(Ω)

N
∑

i=1

h4i‖T (t)‖2H2(Ii)

)1/2

‖D−xEc(t)‖+.

(79)

Proof: See Theorem 3.1 of [2].

Theorem 2. Let us suppose that

T, c ∈ L2(0, Tf , H
3(Ω) ∩H1

0(Ω)) ∩H1(0, Tf , H
2(Ω)),

RhT,Rhc, Th, ch ∈ C1([0, Tf ],Wh,0),

the coefficient function DT and G satisfy the assumptions H1, H2, respec-
tively, and v and Dd satisfy the assumption H3, H4, respectively. If the se-
quence Λ of the spatial vectors h satisfies the assumption (64), then for the
error Ec(t) = Rhc(t)− ch(t) we have

‖Ec(t)‖2h +
∫ t

0

e
∫ t

s

(

1
ǫ2
β2
2‖Th(µ)‖2∞+2Q′

max

)

dµ‖D−xEc(s)‖2+ds

≤ 1

min{1, 2(β3 − 7ǫ2)}e
∫ t

0

(

1
ǫ2
β2
2‖Th(s)‖2∞+2Q′

max

)

ds
(

‖Ec(0)‖2h

+
∫ t

0 e
−
∫ s

0

(

1
ǫ2
β2
2‖Th(µ)‖2∞+2Q′

max

)

dµ
(

1
ǫ2 (D

′
T )

2
max‖D−xc(s)‖2∞

+
1

ǫ2
(v′)2max‖c(s)‖2∞

)

‖ET (s)‖2hds+
1

ǫ2

∫ t

0

e
∫ s

0

(

1
ǫ2
β2
2‖Th(µ)‖2∞+2Q′

max

)

dµτc(s)ds, t ∈ [0, Tf ],

(80)
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where ǫ 6= 0 is such that β3 − 7ǫ2 > 0, ‖ET (t)‖2h is bounded in (72) and

τc(t) = C
(

N
∑

i=1

h4i‖c′(t)‖2H2(Ii)

+
(

1
∑

i=0

‖c(t)‖i
C1(Ω)

)2
N
∑

i=1

h4i
(

‖c(t)‖2H2(Ii)
+ ‖T (t)‖2H2(Ii)

)

+
(

2
∑

i=0

‖T (t)‖i
C1(Ω)

)2
N
∑

i=1

h4i‖c(t)‖2H3(Ii)

)

.

Proof: From Theorem 1, ‖Th(t)‖∞, h ∈ Λ, is uniformly bounded in [0, Tf ].
From (75), we easily get

1
2‖Ec(t)‖2h + β3‖D−xEc(t)‖2+

≤
√
2|D′

d|max‖D−xc(t)‖∞‖ET (t)‖h‖D−xEc(t)‖2+
+|v′|max

√
2‖ET (t)‖h‖c(t)‖∞‖D−xEc(t)‖+

+
√
2β2‖Th(t)‖∞‖Ec(t)‖h‖D−xEc(t)‖+

+Q′
max‖Ec(t)‖2h + τd(Ec(t)) + τDd

(Ec(t)) + τv(Ec(t)) + τQ(Ec(t)).

Consequently, Ec(t) satisfies

d

dt
‖Ec(t)‖2h + 2(β3 − 7ǫ2)‖D−xEc(t)‖2+
≤

( 1

ǫ2
(D′

d)
2
max‖D−xc(t)‖2∞ +

1

ǫ2
(v′)2max‖c(t)‖2∞

)

‖ET (t)‖2h
+
( 1

ǫ2
β2
2‖Th(t)‖2∞ + 2Q′

max

)

‖Ec(t)‖2h +
1

ǫ2
τc(t),

(81)

where ǫ 6= 0 is an arbitrary constant, and

τc(t) = Const.
(

N
∑

i=1

h4i‖c′(t)‖2H2(Ii)

+
(

1
∑

i=0

‖c(t)‖i
C1(Ω)

)2
N
∑

i=1

h4i
(

‖c(t)‖2H2(Ii)
+ ‖T (t)‖2H2(Ii)

)

+
(

2
∑

i=0

‖T (t)‖i
C1(Ω)

)2
N
∑

i=1

h4i‖c(t)‖2H3(Ii)

)

.
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The inequality (81) is equivalent to the following one

‖Ec(t)‖2h + 2(β3 − 7ǫ2)

∫ t

0

‖D−xEc(s)‖2+ds

≤ ‖Ec(0)‖2h +
∫ t

0

( 1

ǫ2
(D′

d)
2
max‖D−xc(s)‖2∞ +

1

ǫ2
(v′)2max‖c(s)‖2∞

)

‖ET (s)‖2hds

+

∫ t

0

( 1

ǫ2
β2
2‖Th(s)‖2∞ + 2Q′

max

)

‖Ec(s)‖2hds+
1

ǫ2

∫ t

0

τc(s)ds,

that leads to (80).

By Corollary 1, for the error ET (t) we have the following

‖ET (t)‖2h ≤ Ch4max, t ∈ [0, Tf ].

Then, from Theorem 2, we finally conclude the next estimate.

Corollary 2. Under the assumptions of Theorems 1 and 2, if Th(0) =
RhT (0), ch(0) = Rhc(0), then there exists a positive constant C such that
the error Ec(t) satisfies

‖Ec(t)‖2h +
∫ t

0

e2Q
′
max(t−s)‖D−xEc(s)‖2+ds ≤ Ch4max, t ∈ [0, Tf ].

5. Numerical simulation
5.1. Convergence rates. In this section our goal is to illustrate the main
results of this work: Theorems 1 and 2. We consider Tf = 0.1, and we
introduce in [0, Tf ] the uniform grid {tm, m = 0, . . . ,M} with stepsize ∆t
such that ∆t ≤ Const.h2max.
As we intent to illustrate the convergence rates established in Theorems 1
and 2, we consider the the differential equations (4) and (5) with reaction
terms f2(t) and f1(t), respectively. These new reactive terms induce in (35),
(36), the new terms ((f1(t))h, uh)h and ((f2(t))h, wh)h, respectively, or equiva-
lently in the semi-discrete FD problems (37) and (38) the new reactive terms
(f1(t))h and (f2(t))h, respectively.
To avoid the computation of the solution of non-linear systems, the new
version of the semi-discrete FE problem (35), (36), or equivalently the new
version of the semi-discrete FD problem (37) and (38), are integrated in
time using Euler’s method following an implicit-explicit approach (IMEX
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approach)














(Tm+1
h , φh)h +∆t(DT (MhT

m
h )D−xT

m+1
h , D−xφh)+ = (Tm

h , φh)h
+∆t(G(Tm

h ), φh)h +∆t((f1(tm))h, φh)h,
m = 0, . . . ,M − 1, ∀φh ∈ Wh,0,

T 0
h = RhT0,

(82)

and














(cm+1
h , ψh)h −∆t(Mh(v(T

m
h )cm+1

h ), D−xψh)+ +∆t(Dd(MhT
m
h )D−xc

m+1
h , D−xψh)+

= (cmh , ψh) + ∆t(Q(cmh ), ψh)h +∆t((f2(tm))h, ψh)h,
m = 0, . . . ,M − 1, ∀ψh ∈ Wh,0,

c0h = Rhc0.
(83)

The fully discrete FE discretizations (82), (83) are equivalent to the fol-
lowing FD discretizations


















Tm+1
h −∆t(D∗

x

(

DT (MhT
m
h )D−xT

m+1
h

)

= Tm
h +∆tG(Tm

h ) + ∆t(f1)h,

in Ωh, m = 0, . . . ,M − 1,
T 0
h = RhT0 inΩh,
Tm
h = 0 on ∂Ωh, m = 1, . . . ,M,

(84)














cm+1
h +∆tDc

(

(v(Tm
h )cm+1

h )−∆tD∗
x(Dd(MhT

m
h )D−xc

m+1
h ) = cmh

+∆tQ(cmh ) + ∆t(f2)h in Ωh, m = 0, . . . ,M − 1,
c0h = Rhc0 in Ωh,
cmh = 0 on ∂Ωh, m = 1, . . . ,M.

(85)

In the error tables that we present in what follows, we illustrate the be-
haviour of the errors

Errorℓ,h = max
j=1,··· ,M

(

‖Ej
ℓ‖2h +∆t

M
∑

j=1

‖D−xE
j
ℓ‖2+

)

, ℓ = T, c,

where

Ej
ℓ = Rhℓ(tj)− ℓjh, j = 1, . . . ,M,

and ℓjh is the approximation for ℓh(tj) defined by the IMEX method (82),
(83) (or (84), (85)). We also include the convergence rates Rateℓ defined
considering the following formula
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Rateℓ =
log

(

Errorℓ,hmax,i

Errorℓ,hmax,i+1

)

log
(

hmax,i

hmax,i+1

) , ℓ = T, c,

where hmax,i and hmax,i+1 are defined by two consecutive grids Ωh,i and Ωh,i+1.
We consider DT (T ) = DT , with DT = 10−3(cm2/s), and the diffusion

coefficient for the concentration given by the Arrhenius equation (1), with
R = 8.3144621, Ea = 1.60217662 × 10−19, D0 = 10−1(cm2/s). Moreover,
to simplify, we assume that the convective velocity is defined by v(T ) =
bT (cm/s), where b = 10−1(cm/soK). We also take G = Q = 0 and ∆t =
1−6(s).
In the first example we consider f1 and f2 such that the differential system

(4), (5) has the following solution

T (x, t) = e−DT tsin(πx),
c(x, t) = e−tsin(2πx), for x ∈ [0, 1], t ∈ [0, Tf ].

(86)

In Table 1 we include the errors for the numerical approximations for T and
c obtained with (82), (83) (or (84), (85)), and the correspondent convergence
rates Rateℓ, ℓ = T, c. The results included in this table illustrate Theorems 1
and 2 when T and c are smooth functions.

Npoints hmax ET RT Ec Rc

40 3.75× 10−2 2.66001× 10−5 —— 4.33994× 10−3 ——
80 1.875× 10−2 1.16484× 10−5 1.19130 1.12487× 10−3 1.94791
160 9.375× 10−3 3.75280× 10−6 1.63409 2.82498× 10−4 1.99345
320 4.6875× 10−3 1.0090× 10−6 1.89504 7.09491× 10−5 1.99338
640 2.34375× 10−3 2.56835× 10−7 1.97401 1.77873× 10−5 1.99594
1280 1.171875× 10−3 6.44969× 10−8 1.99354 4.48864× 10−6 1.98649

Table 1. Convergence rates for the numerical approximations
for the smooth solutions (86).

To see the sharpness of our convergence results in what concerns the
smoothness assumptions for the solutions, we consider now the differential
system (4), (5) with solution

T (x, t) = e−DT tsin(πx)|2x− 1|α,
c(x, t) = e−tx(1− x)|2x− 1|α, for x ∈ [0, 1], t ∈ [0, Tf ].

(87)
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We observe that T (t), c(t) ∈ H3(Ω) for α > 3, and T (t), c(t) ∈ H2(Ω) for
3 ≤ α > 2. In Tables 2 and 3 we include the errors and the correspondent
convergence rates obtained for α = 3.1 and α = 2.1, respectively. The
results show that when the solutions T and c do not satisfy the smoothness
assumption T (t), c(t) ∈ H3(Ω), then we lose the second order convergence
rates.

Npoints hmax ET RT Ec Rc

40 3.75× 10−2 8.02419× 10−5 —— 5.20569× 10−4 ——
80 1.875× 10−2 3.37646× 10−5 1.24885 1.33263× 10−4 1.96581
160 9.375× 10−3 1.06791× 10−5 1.66072 3.37786× 10−5 1.98009
320 4.6875× 10−3 2.88317× 10−6 1.88907 8.49696× 10−6 1.99109
640 2.34375× 10−3 7.39408× 10−7 1.96321 2.13042× 10−6 1.99581
1280 1.171875× 10−3 1.86910× 10−7 1.98403 5.32633× 10−7 1.99992

Table 2. Convergence rates for the α-solution numerical ap-
proximation with α = 3.1

Npoints hmax ET RT Ec Rc

40 3.75× 10−2 1.11053× 10−4 —— 4.07632× 10−4 ——
80 1.875× 10−2 5.09896× 10−5 1.12297 1.46949× 10−4 1.47195
160 9.375× 10−3 2.06318× 10−5 1.30533 6.00531× 10−5 1.29101
320 4.6875× 10−3 9.77867× 10−6 1.07715 2.65040× 10−5 1.18003
640 2.34375× 10−3 5.36280× 10−6 0.86665 1.21129× 10−5 1.12967
1280 1.171875× 10−3 2.90522× 10−6 0.88434 5.61021× 10−6 1.11041

Table 3. Convergence rates for the α-solution numerical ap-
proximation with α = 2.1

5.2. Qualitative behaviour. In this section we illustrate the effectiveness
of the temperature as a drug release enhancer. We consider an isotropic and
homogeneous tissue where a drug is initially dispersed. The assumptions on
the properties of the tissue allow us to replace the 3D drug release problem by
a 1D problem. To enhance the drug transport through the tissue, a localized
heat source term is assumed in contact with the tissue at the boundaries.
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It is reported in the literature that the increase of the temperature increases
the tissue permeability, body fluid circulation, blood vessel wall permeability,
rate-limiting membrane permeability and drug solubility. All these individ-
ual contributions are macroscopically taken into account in the convective
velocity v(T ) and in the drug diffusion coefficient Dd(T ) that we assume to
be given by given by the Arrhenius equation (1).
We consider that the heat sources are applied at the boundaries of the

domain Ω = (0, 1). Initially, the drug concentration is defined by T (x, 0) =
x(1−x) (g/cm3) , x ∈ (0, 1). We consider G = 0 and Tf = 104 (s), DT = 10−7

(cm2/s), D0 = 10−4 (cm2/s). We take ∆t = 10−1 (s) and h = 1.25 × 10−2

(cm).

• In what follows we consider that the heat is generated by T (0, t) =
T (1, t) = 310+0.1t (oK) for an activation energy Ea such that Ea/R =
4.43× 102 (s), and v(t) = 0.
In Figure 1 we plot the temperature curves for different times. As the
heat sources are localized at the boundaries, we observe an increasing
of the temperature from the boundaries to the interior. The evolution
of the concentration when the diffusion coefficient depends on the
temperature is illustrated in Figure 2. In this case we consider the
temperature given in Figure 1. As the time increases, an increasing on
the transport near the left and right boundaries is observed. This fact
is consequence of the increasing on the temperature observed in these
zones. The correspondent released mass Mr(t) is plotted in Figure 3.
The released mass increases when the drug transport is enhanced by
the temperature.
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Figure 1. Evolution of the temperature for T (0, t) = T (1, t) =
310 + 0.1t.
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Figure 2. Evolution of the temperature when the heat sources
are defined by T (0, t) = T (1, t) = 310 + 0.1t. The right figure is
a zoom of the left figure.
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Figure 3. Evolution of the released drug masses: under the
effect of the temperature (dashed line); without the temperature
effect (continuous line) for the diffusion coefficient D = 10−4 and
v = 0.

• We assume now that the heat is generated by T (0, t) = T (1, t) =
310 + 5 × 10−4t (oK), for t > 0, and the heat induces a convective
transport given by v(T ) = bT, with b = 5 × 10−4, (cm/soK). We
assume that the activation energy Ea is such that Ea/R = 103 (s).
Figure 4 illustrates the behaviour of the temperature. A we can see,
it increases when t increases from the boundaries, where we have the
heat source, to the interior. In Figure 5 we plot the evolution of the
corresponding drug concentration. As the heat generates a convective
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term, we observe a displacement of the highest concentration values
from the left to the right and such displacement increases with time.
The behaviour of the released drug massMr(t) is illustrated in Figure
6. The heat, generated by the sources applied at the boundaries of
the domain, increases the transport from the left to the right and,
consequently, it increases the released drug.
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Figure 4. Evolution of the temperature for T (0, t) = T (1, t) =
310 + 5× 10−4t.
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Figure 5. Evolution of the concentration when the heat source
is given by T (0, t) = T (1, t) = 310 + 5 × 10−4t. The right figure
is a zoom of the left figure.

6. Conclusions
The use of the heat as a stimulus to enhance drug release is nowadays a

common approach in several medical applications (see [5], [6], [12], [18] and



AN ACCURATE DISCRETE MODEL FOR SOLUTIONS IN H3 37

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 t

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 M
r

Figure 6. Evolution of the released drug masses: under the
effect of the temperature (dashed line); without the temperature
effect (continuous line) for the diffusion coefficient D = 10−4 and
v = 0.

[21]). Mathematically, the drug release enhanced by the temperature is de-
scribed by a diffusion-reaction equation for the temperature and a convection-
diffusion-reaction equation for the drug, where the convective and the drug
diffusion coefficients depend on the temperature.
In this work we propose a numerical method to compute the temperature

and the drug concentration. The method is based on the piecewise linear
finite element method, combined with special quadrature rules. It leads to
second order numerical approximations for the temperature and for the con-
centration provided that both solutions are in H3(Ω) ∩ H1

0(Ω) (Theorems
1 and 2). The proposed method mimics the continuous coupling in what
concerns the stability behaviour as it was shown, in Section 2, for the con-
tinuous coupling, and, in Section 3.2, for the numerical coupling problem.
The main stability result - Proposition 2- establishes that the fully discrete
finite element method (35), (36) or, equivalently, the finite difference method
(37), (38) is stable. This result was proved under assumption H6 that is
consequence of the second convergence order established in Theorems 1 and
2.
We reinforce the fact that our convergence analysis in not based on the

classical approach: consistency and stability imply convergence. The error
analysis in based on the analysis of the error equation and on the use of
the approach introduced by one of the authors in [2], and used later for the
coupling between an elliptic equation and an integro-differential equation in
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[3], and for the coupling between an hyperbolic equation and a convection-
diffusion equation that arises in models for drug delivery enhanced by ultra-
sons in [8].
Numerical results were included to illustrate the main convergence results.

The results presented in Tables 1, 2 and Table 3 illustrate the sharpness of
our results in what concerns the smoothness assumptions for the temperature
and concentration.
The numerical results presented in Figures 3, 6 shows that the use of heat

to enhance drug release is in fact an effective procedure.
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Coimbra—UID/MAT/00324/2013, funded by the Portuguese Government
through FCT/MCTES and co-funded by the European Regional Develop-
ment Fund through the Partnership Agreement PT2020. The first and the
second authors were also supported by the project NEXT.parts - Next- gen-
eration of advanced hybrid parts, funded by EU’s Horizon 2020 science pro-
gramme (Portugal 2020, COMPETE 2020).

References
[1] R. Adams, Sobolev Spaces, 2nd edition, Elsevier, 2003.
[2] S. Barbeiro, J.A: Ferreira, R. Grigorieff, Supraconvergence of a finite difference scheme for

solutions in Hs(0, L), IMA Journal of Numerical Analysis, 25 (2005), 797–811.
[3] S. Barbeiro,S. Bardeji, J.A: Ferreira, L. Pinto, Non-Fickian convection-diffusion models in

porous media, Numerische Mathematik, 138 (2018), 869–904.
[4] S. Becker, Skin electroporation with passive transdermal transport theory: a review and a

suggestion for future numerical model development, Journal of Heat Transfer, 133 (2011),
011011.

[5] S. Chowdhury, T. Lee, J. Willmann, Ultrasound-guided drug delivery in cancer, Ultrasonog-
raphy, 36 (2017), 171–184.

[6] O. Couture, J. Foley, N. Kassell, B. Larrat, J-F. Aubry, Review of ultrasound mediated drug
delivery for cancer treatment: updates from pre-clinical studies, Translational Cancer Research
3 (2014), 494–511.

[7] J.A: Ferreira, R. Grigorieff, Supraconvergence and supercloseness of a scheme for elliptic equa-
tions on non-uniform grids, Numerical Functional Analysis and Optimization, 27 (2006), 539–
564.

[8] J.A. Ferreira, D. Jordão, L. Pinto, Approximating coupled hyperbolic–parabolic systems aris-
ing in enhanced drug delivery, Computers & Mathematics with Applications, 76 (2018), 81–97.

[9] J.Hao, P.Ghosh, S. Li, B. Newman, G. Kasting, S. Raney, Heat effects on drug delivery across
human skin, Expert Opinion on Drug Delivery, 13 (2016) 755–768.

[10] C. Yang, Y. Li, M. Du, Z. Chen, Recent advances in ultrasound-triggered therapy, Journal of
Drug Targeting, DOI : 10.1080/1061186X.2018.1464012



AN ACCURATE DISCRETE MODEL FOR SOLUTIONS IN H3 39

[11] A. Gasselhuber, M. Dreher, A. Partanen, P. Yarmolenko, D. Woods, B. Wood, D. Haem-
merich, Targeted drug delivery by high intensity focused ultrasound mediated hyperthermia
combined with temperature–sensitive liposomes: Computational modelling and preliminary
in vivovalidation, International Journal of Hyperthermia, 28 (2012), 337–348.

[12] Z. Kovacsa, S.Kima, N.Jikariaa, F. Qureshia, B. Miloa, B. Lewisa, M. Breslera, S. Burksa, J.
Franka, Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation,
Proceedings of the National Academy of Sciences USA, 114 (2017) :E75–E84.

[13] I. Lentacker, I. De Cock, R. Deckers, S.C. De Smedt, C.T.W. Moonenb, Understanding ultra-
sound induced sonoporation: Definitions and underlying mechanisms, Advanced Drug Delivery
Reviews, 72 (2014), 49–64.

[14] S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery, Nature
Materials, 12 (2013), 991–1003.

[15] D. Otto, M. de Villiers, What is the future of heated transdermal drug delivery systems,
Theoretical Delivery, 14 (2014) 961-964.

[16] H. Pennes, Analysis of tissue and arterial blood temperatures in the resting forearm, Journal
of Applied Physiology, 1 (1948) 93–122.

[17] A. Pulkkinen, B. Werner, E. Martin, K. Hynynen, Numerical simulations of clinical focused
ultrasound functional neurosurgery, Physics in Medicine & Biology, 59 (2014) 1679–1700.

[18] D. Rosenblum, N. Joshi, W. Tao, J. Karp, D. Peer, Progress and challenges towards targeted
delivery of cancer therapeutics, Nature Communications, (2018) 9:1410.

[19] S. Szunerits, R. Boukhroub, Heat: a higly efficient skin enhancer for transdermal drug delivery
, Frontiers in Bioengineering and Biotechnology 6:15 (2018).

[20] M.Wei, Y. Gao, X. Li, M. Serpe, Stimuli-responsive polymers and their applications, Polymer
Chemistry, 8(2017), 127–143.

[21] A. Wood, C. Sehgal, A review of low-intensity ultrasound for cancer therapy, Ultrasound Med
& Biology, 41 (2015), 905–928.

[22] Q. Zhang, Y. Wang, W. Zhou, J. Zhang, X. Jian, Numerical simulation of high intensity
focused ultrasound temperature distribution for transcranial brain therapy, AIP Conference
Proceedings 1816, 080007 (2017).

[23] A-Z. Zardad, Y. Choonara, L. Toit, P. Kumar, M. Mabrouk. P. Kondiah, V. Pillay, A review of
thermo- and ultrasound-responsive polymeric systems for delivery of chemotherapeutic agents,
Polymers 8, 359 (2016).

[24] B. Zhou, F. Xu, C. Chen, T. Lu, Strain rate sensitivity of skin tissue under thermomechanical
loading, Philosophical Transactions of the Royal Society A, 368 (2010), 679–690.

J.A. Ferreira

CMUC, Department of Mathematics, University of Coimbra, Apartado 3008, EC Santa

Cruz, 3001-501 Coimbra, Portugal

E-mail address : ferreira@mat.uc.pt
URL: http://www.mat.uc.pt/~ferreira

Paula de Oliveira

CMUC,Department of Mathematics, University of Coimbra, Apartado 3008, EC Santa

Cruz, 3001-501 Coimbra, Portugal

E-mail address : polivei@mat.uc.pt
URL: http://www.mat.uc.pt/~poliveir/

E. Silveira



40 J.A. FERREIRA, PAULA DE OLIVEIRA AND E. SILVEIRA

CMUC,Department of Mathematics, University of Coimbra, Apartado 3008, EC Santa

Cruz, 3001-501 Coimbra, Portugal

E-mail address : elisasilveira11@gmail.com


