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1. Introduction
Discrete semi-classical orthogonal polynomials have been widely studied in

the literature of special functions [12, 19, 20]. They are defined through a dif-
ference equation with polynomial coefficients for the corresponding Stieltjes
function,

ADS = CMS +D . (1)

Here, D is some divided-difference operator and M is a companion difference
operator related to D. The divided-difference calculus is classified in terms of
hierarchies of operators and related lattices (see, for instance, [22, Sec. 2,3]).
In this paper we shall consider the divided-difference operator D given by

Df(x(s)) =
f(x(s+ 1/2))− f(x(s− 1/2))

x(s+ 1/2)− x(s− 1/2)
,

with the so-called quadratic lattice, x(s) = c2s
2 + c1s + c0 [16, Sec. 2] (see

Section 2 for details). In the literature, these lattices are part of the lattices
usually referred to as non-uniform. The calculus on non-uniform lattices
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generalizes the calculus on lattices of lower complexity, such as the linear
and q−uniform lattices.

There are many papers on semi-classical orthogonal polynomials on qua-
dratic lattices. We refer the interested reader to [7, 8, 11, 22] and their list
of references. Standard research topics include the study of structure rela-
tions, that is, difference equations involving the polynomials, and systematic
classifications or characterizations, given pairs of (A,C) in (1).

In the present paper our goal is twofold. First, to gather some recent results
on semi-classical orthogonal polynomials on quadratic lattices, namely, differ-
ence equations involving the polynomials and related functions, compatibility
relations, and new matrix identities. Essentially, such equations generalize
well-known differential systems from [14] (see Section 3). Then, with the help
of these results, to describe the sequences of orthogonal polynomials within
the class one, that is, under the restrictions deg(A) ≤ 3, 1 ≤ deg(C) ≤ 2
in (1) (see Section 4). The main results are difference equations for the re-
currence relation coefficients of the orthogonal polynomials. For the case
deg(A) ≤ 2, deg(C) = 1, we recover closed form formulae for the classical
orthogonal polynomials.

Let us emphasize that, for some lattices of lower complexity, the description
of class one has been carried out. For instance, [2] gives the classification and
integral representation of semi-classical linear functionals of class one when D
is the derivative operator; in [17], the authors established the system satisfied
by the recurrence relation coefficients of symmetric semi-classical orthogonal
polynomials of class one when D is the Hahn’s difference operator. We also
note [5], an extensive study on semi-classical orthogonal polynomials of class
one when D is the forward difference operator.

The remainder of the paper is organized as follows. In Section 2 we give
the definitions and state the basic results which will be used in the forth-
coming sections. In Section 3 we show difference equations for semi-classical
orthogonal polynomials on quadratic lattices, together with the consequent
compatibility relations and matrix identities. In Section 4 we deduce dif-
ference equations for the recurrence relation coefficients of the semi-classical
orthogonal polynomials. Section 5 is devoted to examples: we show applica-
tions on the Dual Hahn polynomials as well as on some of their modifications.
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2. Divided-difference calculus on quadratic lattices and
orthogonal polynomials

Quadratic lattices are commonly defined through a parametric representa-
tion x = x(s), s ∈ Z,

x(s) = č2s
2 + č1s+ č0 , (2)

for appropriate constants čj’s [19, 20]. The corresponding divided-difference
operator, defined on the space of arbitrary functions, is given by [1, 18, 19]

Df(x(s)) =
f(x(s+ 1/2))− f(x(s− 1/2))

x(s+ 1/2)− x(s− 1/2)
.

Alternatively, D can be defined in terms of two functions, say y+, y−, as
[15, 22]

(Df)(x) =
f(y+(x))− f(y−(x))

y+(x)− y−(x)
, (3)

where y− and y+ are the two y-roots of a quadratic equation

ây2 + 2b̂xy + ĉx2 + 2d̂y + 2êx+ f̂ = 0 , âĉ 6= 0 , b̂2 = âĉ . (4)

As y−, y+ are the y-roots of (4), we have

y−(x) = p(x)−
√
r(x) , y+(x) = p(x) +

√
r(x) , (5)

with p, r polynomials of degree one (in x) given by

p(x) = − b̂x+ d̂

â
, r(x) =

2(b̂d̂− âê)
â2

x+
d̂2 − âf̂
â2

. (6)

The polynomials p, r defined in (6) will play an important role in the sequel.
In the account of (5) and y−(x) = x(s− 1/2), y+(x) = x(s+ 1/2), we have

x(s+ 1/2) + x(s− 1/2) = 2p(x(s)) , (x(s+ 1/2)− x(s− 1/2))2 = 4r(x(s)) .
(7)

We take ∆y = y+ − y−. From (5), there follows

∆y = 2
√
r . (8)

Define the operators E+ and E− (see [15]), acting on arbitrary functions f ,
as

E±f(x) = f(y±(x)) .

With this notation, (3) is given by

(Df)(x) =
E+f − E−f
E+x− E−x

.
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The companion operator of D is defined as (see [15])

(Mf)(x) =
E+f(x) + E−f(x)

2
. (9)

Note that D has the following property: if f(x) is a polynomial of degree n
in x, then Df(x) is a polynomial of degree n − 1 in x. Mf is a polynomial
whenever f is a polynomial. Furthermore, if deg(f) = n, then deg(Mf) = n.

We emphasize that, throughout the paper, we will deal with polynomials
of the variable x, not displaying the parametrization (2).

Let us introduce some notations within the functional approach. We take
a linear functional, L : C[x] −→ C, defined by its moments (un)n≥0,

L[xn] = un , n = 0, 1, . . . ,

under the condition

det
[
ui+j

]n
i,j=0
6= 0 , n ≥ 0 . (10)

We shall consider systems of orthogonal polynomials, {Pn}n≥0, with respect
to L, that is,

L[PnPm] = hnδn,m , n,m = 0, 1, . . . ,

where hn 6= 0 and δn,m is the Kronecker’s delta. It is well known that (10) is a
necessary and sufficient condition for the existence of a sequence of orthogonal
polynomials with respect to L [21]. Furthermore, if det

[
ui+j

]n
i,j=0

> 0 , n ≥
0, then there exists a positive measure µ such that

L[P ] =

∫
supp µ

P (x)dµ(x) , ∀P ∈ C[x] , (11)

thus the family {Pn}n≥0 is said to be orthogonal with respect to µ.
Closely related to L is the moment generating function, the (formal) Stielt-

jes function, defined by

S(x) =
+∞∑
n=0

unx
−n−1 . (12)

Throughout this paper the orthogonal polynomials Pn are taken to be
monic, Pn(x) = xn+ lower degree terms, n ≥ 0, and the sequence {Pn}n≥0

will be denoted by SMOP.
Monic orthogonal polynomials satisfy a three-term recurrence relation [21]

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x) , n = 0, 1, 2, . . . , (13)
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with P−1(x) = 0, P0(x) = 1, and γn 6= 0, n ≥ 1, γ0 = 1 . The parameters
βn, γn are the so-called recurrence relation coefficients.

Another relevant sequence, related to {Pn}n≥0, is the sequence of associated

polynomials of the first kind, denoted by {P (1)
n }n≥0, defined through the three

term recurrence relation

P (1)
n (x) = (x− βn)P (1)

n−1(x)− γnP (1)
n−2(x) , n = 1, 2, . . . , (14)

with P
(1)
−1 (x) = 0, P

(1)
0 (x) = 1.

The sequence of functions of the second kind, {qn}n≥0, is defined by

qn(x) = S(x)Pn(x)− P (1)
n−1(x) , n ≥ 0 , (15)

subject to the initial conditions q−1(x) = 1, q0(x) = S(x). It satisfies a three
term recurrence relation,

qn+1(x) = (x− βn)qn(x)− γnqn−1(x) , n = 0, 1, 2, . . . . (16)

3. Semi-classical orthogonal polynomials on quadratic
lattices

Semi-classical orthogonal polynomials on quadratic lattices may be defined
through:
(i) a Pearson equation for the linear functional [9, 10],

D(φL) = M(ψL) , φ 6= 0 , deg(ψ) ≥ 1 ; (17)

(ii) a difference equation for the Stieltjes function [15, 22],

ADS = CMS +D , (18)

with A,C,D irreducible polynomials (in x);
(iii) a Pearson equation for the weight [3, 22],

ADw = CMw . (19)

The polynomials in (17)–(19) are related via [9, 10]

A = Mφ− r(x)Dψ − U1Mψ , C = −Dφ+ Mψ + U1Dψ , (20)

with U1 = č2/2, being č2 defined by (2) (cf. [9, eq. (16)]), thus, in the account
of (7), U1 = 2p0. D is a polynomial depending on A,C.

The polynomials A,C,D in (18) satisfy, in the account of (3), (9), and (12),

deg(A) ≤ m+ 2 , deg(C) ≤ m+ 1 , deg(D) ≤ m, (21)
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where m is some nonnegative integer. When m = 0 we get the so-called
classical polynomials [9, 18].

The class of a linear functional L on quadratic lattices was defined in [10],
as the non-negative integer given by

cl(L) = min
(f,g)∈X

{max(deg(f)− 2, deg(g)− 1)} ,

X = {(f, g) ∈ C[x]2 : deg(g) ≥ 1 and D(fL) = M(gL)} .

In what follows we show some fundamental identities for semi-classical
orthogonal polynomials on quadratic lattices.

3.1. The system of difference equations for the polynomials. Let S be
a Stieltjes function satisfying the difference equation (18), ADS = CMS+D.
Following the same lines as in [22] or [4] (where we take B ≡ 0 in Theorem
1), we have, for all n ≥ 1,{
ADPn = (ln−1 + ∆yπn−1)E−Pn − C/2E+Pn + Θn−1E−Pn−1 ,

ADP (1)
n−1 = (ln−1 + ∆yπn−1)E−P (1)

n−1 + C/2E+P
(1)
n−1 +DE+Pn + Θn−1E−P (1)

n−2 ,
(22)

and, for all n ≥ 0,

ADqn = (ln−1 + ∆yπn−1)E−qn + C/2E+qn + Θn−1 E−qn−1 . (23)

The above difference equations (22) are equivalent to{
ADPn = (ln−1 −∆yπn−1)E+Pn − C/2E−Pn + Θn−1E+Pn−1 ,

ADP (1)
n−1 = (ln−1 −∆yπn−1)E+P

(1)
n−1 + C/2E−P (1)

n−1 +DE−Pn + Θn−1E+P
(1)
n−2 ,

(24)
and (23) is equivalent to

ADqn = (ln−1 −∆yπn−1)E+qn + C/2E−qn + Θn−1 E+qn−1 . (25)

Remark . Furthermore, the polynomials ln,Θn, πn are subject to the following
bounds:

deg(Θn) ≤ max{deg(A)− 2, deg(C)− 1} , (26)

deg(ln) ≤ max{deg(A)− 1, deg(C)} , deg(πn) ≤ deg(C)− 1 . (27)
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3.2. Compatibility conditions. Define the matrices

Pn =

[
Pn+1 P

(1)
n

Pn P
(1)
n−1

]
, n ≥ 0 . (28)

In the account of (13) and (14), Pn satisfies the difference equation

Pn = AnPn−1 , An =

[
x− βn −γn

1 0

]
, n ≥ 1 , (29)

with initial condition P0 =

[
x− β0 1

1 0

]
.

The previous systems (22) and (24) can be put in the matrix form as [7]

ADPn = B−n E−Pn −
(
E+Pn

)
C , (30)

ADPn = B+
n E+Pn −

(
E−Pn

)
C , (31)

with the matrices B±n and C given by

B±n =

[
ln ∓∆yπn Θn

−Θn−1

γn
ln−1 ∓∆yπn−1 + Θn−1

γn
E±(x− βn)

]
, C =

[
C/2 −D

0 −C/2

]
.

From the compatibility of (29) and (30)–(31) we get the equations for the
transfer matrices An, for all n ≥ 1 [7]:

ADAn = B−n E−An −
(
E+An

)
B−n−1 , (32)

ADAn = B+
n E+An −

(
E−An

)
B+
n−1 . (33)

The compatibility conditions (32)–(33) yield the following relations for the
polynomials πn, ln,Θn, for all n ≥ 0 [7, 15]:

πn+1 = −1

2

n+1∑
k=0

Θk−1

γk
, (34)

ln+1 + ln + M(x− βn+1)
Θn

γn+1
= 0 , (35)

−A+ M(x− βn+1)(ln+1 − ln)−
∆2
y

2
(πn+1 + πn) + Θn+1 =

γn+1

γn
Θn−1 . (36)
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The following initial conditions hold:

π−1 = 0, π0 = −D/2, (37)

Θ−1 = D, Θ0 = A−
∆2
y

4
D − (l0 − C/2)M(x− β0) , (38)

l−1 = C/2, l0 = −M(x− β0)D − C/2 . (39)

3.3. Further matrix identities. The following results extend the differen-
tial systems from the continuous orthogonality given in [14] to the discrete
orthogonality on systems of nonuniform lattices (see [3, Th. 1] and also
[22, Sec. 4]). We stress equation (43) below, the analogue of the so-called
Magnus’ summation formula [14].

Theorem 1. Let S be a Stieltjes function related to a weight w, satisfying
ADS = CMS + D, and let {Yn}n≥0 be the corresponding sequence given by

{Yn =

[
Pn+1 qn+1/w
Pn qn/w

]
}n≥0. The following equation holds:

An+1 DYn = (Bn − C/2 I)MYn , n ≥ 1 , (40)

where

An+1 = A+
∆2
y

2
πn ,

I is the identity matrix, and Bn is given as

Bn =

 ln Θn

−Θn−1

γn
ln−1 +

Θn−1

γn
M(x− βn)

 . (41)

Corollary 1. The matrix Bn satisfies the following identities, for all n ≥ 1:

trBn = 0 , (42)

detBn = −∆2
yπ

2
n + AD − C2

4
+ A

n∑
k=1

Θk−1

γk
. (43)

Remark . Taking into account Θ−1/γ0 = D (see (38)) and (34), an equivalent
equation for (43) is

detBn = −∆2
yπ

2
n −

C2

4
− 2Aπn . (44)
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In the account of (42), we shall use Bn in (44) given as

Bn =

[
ln Θn

−Θn−1/γn −ln

]
.

Therefore, (44) reads as

−l2n(x) + Θn(x)
Θn−1(x)

γn
= −∆2

yπ
2
n −

C2

4
− 2Aπn . (45)

4. Difference equations for the recurrence relation coef-
ficients

4.1. Difference equations when m = 1 in (21). Let us take m = 1 in
(21), that is, A(x)DS(x) = C(x)MS(x) +D(x) with

deg(A) ≤ 3 , deg(C) ≤ 2 , deg(D) ≤ 1 , (46)

were we consider, by writing

A(x) = a3x
3 + a2x

2 + a1x+ a0 , C(x) = c2x
2 + c1x+ c0 ,

the condition

a3 6= 0 or c2 6= 0 . (47)

The polynomial D is given in terms of A,C. By collecting the coefficient of
x3 in (38) as well as the coefficient of x2 in (39) we get

d1 = −(a3 + c2p1)/p
2
1 . (48)

By collecting the coefficient of x2 in (38) as well as the coefficient of x in (39)
we get, using (48),

d0 =
a3(2p0p1 − r1 − 2p1β0)− p1(a2p1 + c1p

2
1 + c2(r1 + p1β0 − p0p1))

p4
1

. (49)

In the account of (26)–(27), we have deg(ln) = 2, deg(Θn) = deg(πn) = 1.
Set

ln(x) = `n,2x
2 + `n,1x+ `n,0 , Θn(x) = Θn,1x+ Θn,0 , πn(x) = πn,1x+ πn,0 .

Also, recall (8), thus ∆2
y(x) = 4r(x).

Henceforth we adopt the convention that
∑j

i · = 0 whenever i > j and∏j
i · = 1 whenever i > j.
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Lemma 1. Under the previous assumptions and notations, the quantities
`n,2, `n,1,Θn,1/γn+1,Θn,0/γn+1, πn,1, πn,0 are given, for all n ≥ 0, by

`n,2 = n
a3

p1
− p1d1 −

c2

2
, (50)

Θn,1

γn+1
=

1

p1

(
−(2n+ 1)

a3

p1
+ 2p1d1 + c2

)
, (51)

πn,1 = −d1

2
+

1

2p1

(
a3

p1
n− 2p1d1 − c2

)
n , (52)

`n,1 = Ln,1 +
a3

p2
1

n∑
k=1

βk . (53)

with

Ln,1 =

(
a2p1 − a3p0

p2
1

)
n

+
2r1

p1

(
−nd1 +

a3

2p2
1

(
(n− 1)n(2n− 1)

3
+ n2

)
− (2p1d1 + c2)

2p1
n2

)
− p1d0 − (p0 − β0)d1 −

c1

2
.

Furthermore, the following relations hold, for all n ≥ 1:

Θn,0

γn+1
= Sn,0 +

1

p1

(
Θn,1

γn+1
− a3

p2
1

)
βn+1 −

2a3

p3
1

n∑
k=1

βk ,

Sn,0 = −(Ln+1,1 + Ln,1 + p0Θn,1/γn+1)

p1
, (54)

(i) if a3 6= 0, then

πn,0 = T̂n,0 +
`n,2
p2

1

n∑
k=1

βk , T̂n,0 =
Ln,1`n,2 − 2r1π

2
n,1 − a2πn,1 − c1c2/4

a3
, (55)
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(ii) if a3 = 0, then

πn,0 = Tn,0 −
(2p1d1 + c2)

2p2
1

n∑
k=2

βk ,

Tn,0 = −d0

2
− 1

2

Θ0,0

γ1
+

1

2p1

n−1∑
k=1

(
Lk+1,1 + Lk,1 +

p0(2p1d1 + c2)

p1

)
. (56)

The initial conditions hold:

π0,0 = −d0

2
,

Θ0,0

γ1
= −a2

p2
1

+
r1

p2
1

(
d1 +

Θ0,1

γ1

)
+

(
−`0,2 − p1

Θ0,1

γ1
+
c2

2

)(
p0 − β1

p2
1

)
+

1

p1

(
−`0,1 − (p0 − β1)

Θ0,1

γ1
+
c1

2

)
+
d1

p1

(
2p0 − (β0 + β1) +

r1

p1

)
+ d0 .

Here, p1, p0, r1 are the coefficients of p(x), r(x), defined in (6).

Proof : The coefficient of x3 in (36) yields

−a3 + p1(`n+1,2 − `n,2) = 0 .

This, combined with the initial condition `0,2 = −p1d1 − c2/2, gives us (50).
The use of (50) in the equation that follows from the coefficient of x2 in

(35),

`n+1,2 + `n,2 + p1Θn,1/γn+1 = 0 ,

gives us (51) for all n ≥ 1. In order to get Θ0,1/γ1 we take n = 1 in

An+1DP (1)
n = (ln + C/2)MP (1)

n +DMPn+1 + ΘnMP
(1)
n−1 .

Indeed, using (34) and (35) with n = 0 in the equation above with n = 1 we
have

A+2r

(
−D

2
− 1

2

Θ0

γ1

)
=

(
−l0 −M(x− β1)

Θ0

γ1
+ C/2

)
M(x−β1)+DMP2+Θ1 .

(57)
The coefficient of x3 gives us

Θ0,1

γ1
=

1

p1

(
−a3

p1
+ 2p1d1 + c2

)
, (58)

thus (51) also holds for n = 0.
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Equation (52) follows from the use of (51) in the summation formula (34),
and the initial condition π0,1 = −d1/2 (cf. (37)).

Let us now obtain (53). Using (50) in the equation that follows from
equating the coefficients of x2 in (36) we get

`n+1,1 = `n,1 −
(p0 − βn+1)a3

p2
1

+
2r1

p1
λn,1 +

a2

p1
, λn,1 = πn+1,1 + πn,1 . (59)

Thus, we obtain (53), where we used the initial conditions `0,1 = −p1d0 −
(p0 − β0)d1 − c1/2.

To get (54) we take the x coefficient in (35),

`n+1,1 + `n,1 + p1
Θn,0

γn+1
+ (p0 − βn+1)

Θn,1

γn+1
= 0 ,

and substitute (53) and (51) therein. The initial condition π0,0 comes from
(37) and Θ0,0/γ1 follows from taking the coefficient of x2 in (57).
πn,0 can be obtained via the summation formula (34). Thus, from (34), if

a3 = 0, we get

πn,0 = −1

2

Θ−1,0

γ0
− 1

2

Θ0,0

γ1
− 1

2

n−1∑
k=1

Θk,0

γk+1
. (60)

and (56) follows. The case a3 6= 0 can be alternatively obtained through the
use of the x3-coefficient in (45), thus yielding (55).

Theorem 2. Let S be a Stieltjes function satisfying

A(x)DS(x) = C(x)MS(x) +D(x)

with deg(A) ≤ 3, deg(C) ≤ 2, deg(D) ≤ 1 subject to the condition (47). Let
{Pn}n≥0 be the corresponding SMOP, satisfying (13),

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x) , n = 0, 1, 2, . . . .

Under the notations of the previous lemma, the γn’s are defined only in terms
of the βn’s and the polynomials A,C, a well as p, r from (6), related to the
quadratic lattice. There holds the formula

γn+2 = γ1

n∏
j=0

sj +
n∑
k=0

tk

n∏
j=k+1

sj , n ≥ 0 , (61)

γ1 =
p1Θ0,1

−a3/p1 + 2p1d1 + c2
, (62)
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with

sn =
Θn−1/γn

Θn+1/γn+2
(xn+1) , tn =

A(xn+1) + 2r(xn+1)(πn+1 + πn)(xn+1)

(Θn+1/γn+2)(xn+1)
, (63)

xn+1 = (βn+1 − p0)/p1 ,

and

Θ0,1 = a1−r1d0−r0d1 +(p1d0 +(p0−β0)d1 +c1)(p0−β0)+((p0−β0)d0 +c0)p1 .
(64)

Proof : We evaluate (36) at xn+1 = (βn+1−p0)/p1. As M(x−βn+1)(xn+1) = 0,
we get

−A(xn+1)− 2r(xn+1)λn(xn+1) + γn+2
Θn+1

γn+2
(xn+1) = γn+1

Θn−1

γn
(xn+1) , (65)

where it was used the notation λn(x) = πn+1(x) + πn(x). Hence, we obtain

γn+2 = snγn+1 + tn , n ≥ 0 (66)

with sn, tn given in (63). As the solution of the initial value problem

zn+1 = anzn + bn , zn0 = z0

is [6]

zn = z0

n−1∏
j=n0

aj +
n−1∑
k=n0

bk

n−1∏
j=k+1

aj ,

then equation (61) is a consequence of (66).
To get γ1, we take the initial conditions

`0,1 = −p1d0 − (p0 − β0)d1 − c1/2 , (67)

`0,0 = −(p0 − β0)d0 − c0/2 . (68)

Θ0,1 = a1 − r1d0 − r0d1 − (`0,1 − c1/2)(p0 − β0)− (`0,0 − c0/2)p1 , (69)

The use of (67) and (68) in (69) yields (64). Using Θ0,1/γ1 given by (cf. (58))

Θ0,1

γ1
=

1

p1
(−a3/p1 + 2p1d1 + c2)

combined with (64), we get (62).
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Remark . The previous theorem gives us the γn’s in terms of the βn’s. In order
to obtain a recurrence for the βn’s we may start by taking the independent
term of (35), which gives us

`n+1,0 = −`n,0 − (p0 − βn+1)
Θn,0

γn+1
. (70)

Using this equality into the equation that results from the coefficient of x in
(36) we obtain

`n,0 = − 1

2p1
(a1 + 2r0λn,1)−

(p0 − βn+1)

2p1

(
p1

Θn,0

γn+1
+ `n,1 − `n+1,1

)
− r1

p1
(πn+1,0 + πn,0) + γn+2

νn+1,1

2p1
− γn+1

νn−1,1

2p1
, (71)

where we used the notation λn,1 = πn+1,1 + πn,1, νn,1 = Θn,1/γn+1. Now, by
substituting (61) and (71) into equation (70) we get a first order non-linear
recurrence relation for the βn’s, say F (γ1, β1, . . . , βn+2) = G(γ1, β1, . . . , βn+1).
Due to the complexity of such a formulae, we shall not give its explicit form
here.

4.1.1. The symmetric case. The symmetric case, that is, βn = 0, n ≥
0, implies simplifications in (53), (54), (55), (56), and all these quantities
now depend only on the lattice as well as on the coefficients A,C,D of the
difference equation for the Stieltjes function. In such a case, we have the
result that follows.

Corollary 2. Let A(x)DS(x) = C(x)MS(x) + D(x) with deg(A) ≤ 3,
deg(C) ≤ 2, deg(D) ≤ 1 subject to the condition (47). Under the previ-
ous notation, let βn = 0, n ≥ 0. Then, the γn’s are determined through:

γn+2 = γ1

n∏
j=0

sj +
n∑
k=0

tk

n∏
j=k+1

sj , n ≥ 0 , (72)

γ1 =
p1Θ0,1

−a3/p1 + 2p1d1 + c2
, (73)

with

sn =
(Θn−1/γn)(x0)

(Θn+1/γn+2)(x0)
, tn =

A(x0) + 2r(x0)(πn+1 + πn)(x0)

(Θn+1/γn+2)(x0)
, x0 = −p0/p1 ,

and

Θ0,1 = a1 − r1d0 − r0d1 + (p1d0 + p0d1 + c1)p0 + (p0d0 + c0)p1 .
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Proof : Take βn = 0, n ≥ 0. Evaluate (36) at x0 = −p0/p1. Thus, as M(x0) =
0, we get

−A(x0)− 2r(x0)(πn+1 + πn)(x0) + γn+2
Θn+1

γn+2
(x0) = γn+1

Θn−1

γn
(x0) . (74)

Therefore, (72) follows.

4.1.2. Condition (47) with a3 = 0. Let us take the case

deg(A) ≤ 2 , deg(C) = 2 , deg(D) = 1 . (75)

In such a case, the quantities given in Lemma 1 are as follow:

`n,2 =
c2

2
, `n,1 = Ln,1 ,

Θn,1

γn+1
= −c2

p1
,

Θn,0

γn+1
= Sn,0 −

c2

p2
1

βn+1 ,

πn,1 = (n+ 1)
c2

2p1
, πn,0 = Tn,0 +

c2

2p2
1

n∑
k=2

βk ,

with

Ln,1 =
na2

p1
+

2r1

p1

nc2

p1
(1 +

n

2
)− p1d0 − (p0 − β0)d1 −

c1

2
,

Sn,0 = −(Ln+1,1 + Ln,1 + p0Θn,1/γn+1)

p1
,

Tn,0 = −d0

2
− 1

2

Θ0,0

γ1
+

1

2p1

n−1∑
k=1

(
Lk+1,1 + Lk,1 −

c2p0

p1

)
.

Furthermore, by taking the x2-coefficient of (44), that is,

− `2
n,1 − 2`n,2`n,0 + γn+1

Θn,1

γn+1

Θn−1,1

γn+1
= −8r1πn,0πn,1

− 4r0π
2
n,1 − (c2

1 + 2c2c0)/4− 2a2πn,0 − 2a1πn,1 , (76)

we get the expression for `n,0,

`n,0 = τn +
c2

p2
1

γn+1 +

(
4r1(n+ 1) + 2

a0

c2

)
πn,0 , (77)

with

τn = −
`2
n,1

c2
+ r0

c2

p2
1

(n+ 1)2 +
(c2

1 + 2c2c0)

4c2
.
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Theorem 3. Under the degrees (75) and the previous notations, we have the
following difference equations for the recurrence coefficients, for all n ≥ 1:

γn+2 + γn+1 +
p1

c2

(
4r1(n+ 2) + 2

a0

c2

)
πn+1,0 +

p1

c2

(
4r1(n+ 1) + 2

a0

c2

)
πn,0

+
p1

c2
(p0 − βn+1)

Θn,0

γn+1
+
p1

c2
(τn+1 + τn) = 0 , (78)

γn+1 =
2Ln,1(τn + (4r1(n+ 1) + 2a0/c2) πn,0) +Gn

−2c2
p21
Ln,1 − c2

p1
(

Θn−1,0

γn
+

Θn,0

γn+1
)

, (79)

with the initial condition γ1 given by (62), and with Gn = −4r1π
2
n,0−8r0πn,0πn,1−

c1c0/2− 2a1πn,0 − 2a0πn,1.

Proof : To get (78) we use (77) in the equation obtained from the independent
term in (35),

`n+1,0 + `n,0 + (p0 − βn+1)
Θn,0

γn+1
= 0 .

To get (79) we take the x-coefficient of (44), that is,

−2`n,1`n,0 + γn+1

(
Θn,1

γn+1

Θn−1,0

γn
+

Θn,0

γn+1

Θn−1,1

γn

)
= Gn ,

with Gn = −4r1π
2
n,0− 8r0πn,0πn,1− c1c0/2− 2a1πn,0− 2a0πn,1. The use of `n,0

given by (77) into the above equation gives us (79).

4.2. m = 0 in (21): classical orthogonal polynomials on quadratic
lattices from compatibility relations. Let us take m = 0 in (21), that
is, A(x)DS(x) = C(x)MS(x) +D(x) with

deg(A) ≤ 2 , deg(C) ≤ 1 , deg(D) = 0 . (80)

were we consider, by writing

A(x) = a2x
2 + a1x+ a0 , C(x) = c1x+ c0 ,

the condition
a2 6= 0 or c1 6= 0 . (81)

In the account of (26)–(27), we have deg(ln) = 1, deg(Θn) = deg(πn) = 0.
Set

ln(x) = `n,1x+ `n,0 , Θn(x) = Θn,0 , πn(x) = πn,0, .

We have D = d0 = −(a2 + c1p1)/p
2
1.
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Lemma 2. Under the previous assumptions and notations, we have, for all
n ≥ 0,

`n,1 = n
a2

p1
− p1d0 −

c1

2
, (82)

Θn,0

γn+1
=

1

p1

(
−(2n+ 1)

a2

p1
+ 2p1d0 + c1

)
, (83)

πn,0 = −d0

2
+

1

2p1

(
a2

p1
n− 2p1d0 − c1

)
n , (84)

and

`n,0 =
2r1π

2
n,0 + c0c1/4 + a1πn,0

`n,1
, n ≥ 1 , `0,0 = −(p0− β0)d0− c0/2 . (85)

Here, p1, p0, r1 are the coefficients of p(x), r(x), defined in (6).

Proof : The equations (82)–(84) follow from Lemma 1.
The x-coefficient of (45) gives us (85).

Theorem 4. Let A(x)DS(x) = C(x)MS(x)+D(x) with deg(A) ≤ 2, deg(C)
≤ 1, deg(D) ≤ 0 subject to the condition (81). Consider the notations of the
previous lemma. The following holds:

γn+1 =
`2
n,0 − 4r0π

2
n,0 − c2

0/4− 2a0πn,0
Θn,0

γn+1

Θn−1,0

γn

, n ≥ 1 , (86)

βn+1 =
`n+1,0 + `n,0 + p0Θn,0/γn+1

Θn,0/γn+1
, n ≥ 0 , (87)

and the initial conditions β0 and γ1 given by

β0 =
p0d0 + c0 + (a1 − r1d0)/p1 − a2p0/p

2
1

d0 − a2/p2
1

, (88)

γ1 =
p1(a0 − r0d0 + ((p0 − β0)d0 + c0)(p0 − β0))

−a2/p1 + 2p1d0 + c1
. (89)

Proof : The equation (86) follows from the independent coefficient of (45),

−`2
n,0 + γn+1

Θn,0

γn+1

Θn−1,0

γn
= −4r0π

2
n,0 − c2

0/4− 2a0πn,0 .
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The equation (87) is obtained from the independent term of (35),

`n+1,0 + `n,0 + (p0 − βn+1)
Θn,0

γn+1
= 0 .

To obtain β0 and γ1 we equate coefficients in (38) and (39), thus getting

`0,1 = −p1d0 − c1/2 , (90)

`0,0 = −(p0 − β0)d0 − c0/2 . (91)

0 = a1 − r1d0 − (`0,1 − c1/2)(p0 − β0)− (`0,0 − c0/2)p1 , (92)

Θ0,0 = a0 − r0d0 − (`0,0 − c0/2)(p0 − β0) . (93)

The use of (90) and (91) in (92) yields β0. From (93) we have, using (91),

Θ0,0 = a0 − r0d0 + ((p0 − β0)d0 + c0)(p0 − β0) . (94)

From Θ0,0/γ1 given by

Θ0,0

γ1
=

1

p1
(−a2/p1 + 2p1d0 + c1)

combined with (94) we get γ1.

5. Examples
5.1. Dual Hahn polynomials. The Dual Hahn polynomials have the hy-
pergeometric representation [13]

Pn(x; γ, δ,N) = 3F2

(
−n, n+ γ + δ + 1,−x

γ + 1,−N
; 1

)
. (95)

The lattice x(s) and the polynomials p, r that follow from (7) are

x(s) = s(s+ γ + δ + 1) , p(x) = x+
1

4
, r(x) = x+

(γ + δ + 1)2

4
. (96)

{Pn}n≥0 is related to a linear functional L that satisfies D(φL) = M(ψL),
where the polynomials φ, ψ are given by [10]

φ(x) = (−1 + 2N + δ−γ)x+N(1 +γ)(1 +γ+ δ) , ψ(x) = −2x+ 2N(1 +γ) .
(97)

The Stieltjes function satisfies (18), ADS = CMS +D, with A,C given by
(20), thus,

A = Mφ+ 2r(x)− 1

2
Mψ , C = −1− Dφ+ Mψ . (98)
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where we used U1 = 1/2. The polynomial D is a constant, D = −c1/p1. As
we have deg(A) = deg(C) = 1, condition (81) of Section 4.2 holds.

From the formulae in Theorem 4 we recover [13, pp. 209], for all n ≥ 1 ,

βn = (n+γ+1)(n−N)+n(n−δ−N−1) , γn = n(n+γ)(n−1−N)(n−δ−N−1) ,

and β0 = −N(γ + 1), γ0 = 1.

5.2. Modification of Dual Hahn polynomials. We consider the following
modifiation of the Dual Hahn polynomials. We take the linear functional [10,
Sec. 2.4]

L̃ =

(
x+

(γ + δ + 1)2

4

)
L , (99)

being L the linear functional related to the Dual Hahn polynomials. L̃ sat-
isfies

D(φ̃L̃) = M(ψ̃L̃) ,

where the polynomials φ̃, ψ̃ are given by (see [10, Eq. (40)])

φ̃(x) = (r(x) + 1)φ(x) + 2r(x)ψ(x) , ψ̃(x) = (r(x) + 1)ψ(x) + 2φ(x) , (100)

with φ, ψ given in (97). Note that (96) holds. Recall that we are taking
α = 1 and x− c = r(x), with our notation r(x) for the polynomial U2(x), in
[10, Eq. (40)].

Denote by {P̃n}n≥0 the SMOP related to L̃, and its recurrence relation
coefficients by β̃n, γ̃n. The corresponding Stieltjes function satisfies (18),
ÃDS = C̃MS + D̃, with Ã, C̃ given by (20), thus,

Ã = Mφ̃− rDψ̃ − 1

2
Mψ̃ , C̃ = −Dφ̃+ Mψ̃ +

1

2
Dψ̃ . (101)

D̃ is a polynomial of degree one, with coefficients given by (48) and (49).
As we have deg(A) = deg(C) = 2, condition (75) of Sub-Section 4.1.2 holds.
From Theorem 3, the coefficients γ̃n, β̃n are governed through the difference
system (78)–(79).

Remark . The modification (99) is related to the Christoffel transformation
[23, Sec. 3]. In this case the modified recurrence relation coefficients are
known to be given in terms of the non-modified ones [23],

β̃n = βn+1−
Pn+1(c)

Pn(c)
+
Pn+2(c)

Pn+1(c)
, γ̃n = γn

Pn−1(c)Pn+1(c)

P 2
n(c)

, c = −(γ + δ + 1)2

4
.
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Note that here the Pn’s at c must be evaluated trough (95), whilst our for-
mulae in Theorem 3 give a relation for β̃n, γ̃n in terms of the lattice and the
polynomials involved in the difference equation for S̃.
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