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1. Introduction
As Lawvere has shown in his celebrated paper [Law73], when V is a closed

category the category V -Cat of V -enriched categories and V -functors is also
monoidal closed. This result extends neither to the cartesian structure nor
to the more general setting of (T, V )-categories. Indeed, cartesian closedness
of V does not guarantee cartesian closedness of V -Cat: take for instance
the category of (Lawvere’s) metric spaces P+-Cat, where P+ is the complete
half-real line, ordered with the ≥ relation, and equipped with the monoidal
structure given by addition +; P+ is cartesian closed but P+-Cat is not (see
[CH06] for details); and, even when the monoidal structure of V is the carte-
sian one, the category (T, V )-Cat of (T, V )-categories and (T, V )-functors
(see [CT03]) does not need to be cartesian closed, as it is the case of the
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category Top of topological spaces and continuous maps, that is (U, 2)-Cat
for U the ultrafilter monad.
Rosický showed in [Ros99] that Top is weakly cartesian closed, and, conse-

quently, that its exact completion is cartesian closed. Weak cartesian closed-
ness of Top follows from the existence of enough injectives in its full subcat-
egory Top0 of T0-spaces and the fact that they are exponentiable, and this
feature, together with several good properties of Top, gives cartesian closed-
ness of its exact completion. More precisely, Rosický has shown in [Ros99]
the following theorem.

Theorem 1.1. Let C be a complete, infinitely extensive and well-powered
category with (reg epi, mono)-factorizations such that f×1 is an epimorphism
whenever f is a regular epimorphism. Then the exact completion of C is
cartesian closed provided that C is weakly cartesian closed.

In this paper we use the setting of (T, V )-categories, for a quantale V
and a Set-monad T laxly extended to V -Rel to conclude, in a unified way,
that several topological categories over Set share with Top this interest-
ing property, which was recently used by Adámek and Rosický in the study
of free completions of categories [AR18]. In fact, the category (T, V )-Cat
is topological over Set [CH03, CT03], hence complete and with (reg epi,
mono)-factorizations such that f × 1 is an epimorphism whenever f is, and
it is infinitely extensive [MST06]. To assure weak cartesian closedness of
(T, V )-Cat we consider two distinct scenarios, either restricting to the case
when V is a frame – so that its monoidal structure is the cartesian one – or
considering the case when the lax extension is determined by a T-algebraic
structure on V , as introduced in [Hof07] under the name of topological theory.
In the latter case the proof generalizes Rosický’s proof for Top0, after ob-
serving that, using the Yoneda embedding of [CH09, Hof11], every separated
(T, V )-category can be embedded in an injective one, and, moreover, these
are exponentiable in (T, V )-Cat. For general (T, V )-categories one proceeds
again as in [Ros99], using the fact that the reflection of (T, V )-Cat into its
full subcategory of separated (T, V )-categories preserves finite products. As
observed by Rosický, the exact completion of Top relates to the cartesian
closed category of equilogical spaces [BBS04]. Analogously, our approach
leads to the study of generalized equilogical spaces, as developed in [Rib18].
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The paper is organized as follows. In Section 2 we introduce (T, V )-
categories and list their properties used throughout the paper. In Sec-
tion 3 we revisit the exponentiability problem in (T, V )-Cat, establishing
a sufficient criterion for exponentiability which generalizes the results ob-
tained in [Hof07, HS15]. In Section 4 we study the properties of injective
(T, V )-categories which will be used in the forthcoming section to conclude
that, under suitable assumptions, injective (T, V )-categories are exponen-
tiable (Theorem 5.5). This result will allow us to conclude, in Theorem 5.8,
that (T, V )-Cat is weakly cartesian closed, and, finally, thanks to Theorem
1.1, that the exact completion of (T, V )-Cat is cartesian closed. We con-
clude our paper with a section on examples, which include, among others,
metric spaces, approach spaces, probabilistic metric spaces, and bitopological
spaces.

2. The category of (T, V )-categories
Throughout V is a commutative and unital quantale, i.e V is a complete

lattice with a symmetric and associative tensor product ⊗, with unit k and
right adjoint hom, so that u ⊗ v ≤ w if, and only if, v ≤ hom(u,w), for all
u, v, w ∈ V . Further assume that V is a Heyting algebra, so that u ∧ − also
has a right adjoint, for every u ∈ V . We denote by V -Rel the 2-category
of V -relations (or V -matrices), having as objects sets, as 1-cells V -relations
r : X −→7 Y , i.e. maps r : X × Y → V , and 2-cells ϕ : r → r′ given by
componentwise order r(x, y) ≤ r′(x, y). Composition of 1-cells is given by
relational composition. V -Rel has an involution, given by transposition: the
transpose of r : X −→7 Y is r◦ : Y −→7 X with r◦(y, x) = r(x, y).
We fix a non-trivial monad T = (T,m, e) on Set satisfying (BC), i.e. T

preserves weak pullbacks and the naturality squares of the natural transfor-
mation m are weak pullbacks (see [CHJ14]). In general we do not assume
that T preserves products. Later we will make use of the comparison map
canX,Y : T (X × Y )→ TX × TY defined by canX,Y (w) = (TπX(w), TπY (w))
for all w ∈ T (X × Y ), where πX and πY are the product projections. More-
over, we assume that T has an extension to V -Rel, which we also denote by
T, in the following sense:

– there is a functor T : V -Rel→ V -Rel which extends T : Set→ Set;
– T (r◦) = (Tr)◦ for all V -relations r;
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– the natural transformations e : 1V -Rel → T and m : T 2 → T become
op-lax; that is, for every r : X −→7 Y ,

eY · r ≤ Tr · eX , mY · TTr ≤ Tr ·mX .

X
eX
//

_r
��

≤

TX
_ Tr
��

Y eY

// TY

TTX
mX

//

_TTr
��

≤

TX
_ Tr
��

TTY mY

// TY

We note that our conditions are stronger than the ones used in [HST14].
A (T, V )-category is a pair (X, a) where X is a set and a : TX −→7 X is a

V -relation such that
X

eX
//

1X

≤

""

TX
_ a
��

X

and T 2X
mX

//

_Ta
��

≤

TX
_ a
��

TX �
a

// X

that is, the map a : TX ×X → V satisfies the conditions:
(R) for each x ∈ X, k ≤ a(eX(x), x);
(T) for each X ∈ T 2X, x ∈ TX, x ∈ X, Ta(X, x)⊗ a(x, x) ≤ a(mX(X), x).

Given (T, V )-categories (X, a), (Y, b), a (T, V )-functor f : (X, a)→ (Y, b) is
a map f : X → Y such that

TX
Tf
//

_a
��

≤

TY
_ b
��

X
f

// Y

that is, for each x ∈ TX and x ∈ X, a(x, x) ≤ b(Tf(x), f(x)); f is said to be
fully faithful when this inequality is an equality.

(T, V )-categories and (T, V )-functors form the category (T, V )-Cat. If
(X, a : TX −→7 X) satisfies (R) (and not necessarily (T)), we call it a (T, V )-
graph. The category (T, V )-Gph, of (T, V )-graphs and (T, V )-functors, con-
tains (T, V )-Cat as a full reflective subcategory.
We chose to present the examples in detail in the last section. We mention

here, however, that guiding examples are obtained when one considers the
quantale 2 = ({0, 1},≤,&, 1) and the Lawvere’s half real line P+, that is
([0,∞],≥,+, 0), the identity monad I and the ultrafilter monad U on Set,
obtaining:
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– (I, V )-Cat is the category of V -categories and V -functors; in partic-
ular, (I, 2)-Cat is the category Ord of (pre)ordered sets and mono-
tone maps, while (I, P+)-Cat is the category Met of Lawvere’s metric
spaces and non-expansive maps (see [Law73]).

– (U, 2)-Cat is the category Top of topological spaces and continuous
maps.

– (U, P+)-Cat is the category App of Lowen’s approach spaces and
non-expansive maps (see [Low97]).

As shown in [CH03] (see also [CT03]).

Theorem 2.1. The forgetful functors (T, V )-Cat→ Set and (T, V )-Gph→
Set are topological.

This shows, in particular, that:
– (T, V )-Cat is complete and cocomplete.
– Monomorphisms in (T, V )-Cat are the morphisms whose underlying
map is injective; therefore, since the (T, V )-structures on any set form
a set, (T, V )-Cat is well-powered.

– Every topological category over Set has two factorization systems,
(reg epi, mono) and (epi, reg mono); in (T, V )-Cat the former one
is in general not stable (that is, regular epimorphisms need not be
stable under pullback – Top is such an example), but the latter one
is. Indeed, epimorphisms in (T, V )-Cat are the (T, V )-functors which
are surjective as maps, the forgetful functor (T, V )-Cat → Set pre-
serves pullbacks, and surjective maps are stable under pullback in
Set. Therefore, as f × 1Z is the pullback of f : X → Y along
pY : Y ×Z → Y , we conclude that f ×1Z is an epimorphism provided
f is.

(T, V )-Cat has a natural structure of 2-category: for (T, V )-functors
f, g : (X, a) → (Y, b), f ≤ g if g · a ≤ b · Tf . This condition can be
equivalently written as k ≤ b(eY (f(x)), g(x)) for every x ∈ X (see [CT03] for
details). We write f ' g if f ≤ g and g ≤ f .
Extensivity of (T, V )-Cat was studied in [MST06]:

Theorem 2.2. (T, V )-Cat is infinitely extensive.

In general (T, V )-Cat is not cartesian closed, while (T, V )-Gph is. In fact,
it was proved in [CHT03]:
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Theorem 2.3. (T, V )-Gph is a quasi-topos.

Weak cartesian closedness of (T, V )-Cat needs a thorough study of injec-
tive (T, V )-categories and some extra conditions. Namely we will use the
extension of the Set-functor T to V -Rel given by a topological theory in the
sense of [Hof07]. This is the subject of the following sections.

3. Exponentiable (T, V )-categories
Recall that an object C of a category C with finite products is exponen-

tiable whenever the functor C × − : C → C has a right adjoint. In this
section we present a sufficient condition for a (T, V )-category X to be expo-
nentiable in (T, V )-Cat, which generalises [Hof06, Theorem 4.3] and [Hof07,
Theorem 6.5]. To start, we recall that (T, V )-Cat can be fully embedded
into the cartesian closed category (T, V )-Gph of (T, V )-graphs and (T, V )-
functors, see [CHT03] for details. Here, for (T, V )-graphs (X, a) and (Y, b),
the exponential 〈(X, a), (Y, b)〉 has as underlying set

Z := {h : (X, a)× (1, k)→ (Y, b) | h is a (T, V )-functor},

which becomes a (T, V )-graph when equipped with the largest structure ba
making the evaluation map

ev : Z ×X → Y, (h, x) 7→ h(x)

a (T, V )-functor: for p ∈ TZ and h ∈ Z, put ba(p, h) as∨
{v ∈ V | ∀q ∈ (TπZ)−1(p), x ∈ X a(TπX(q), x) ∧ v ≤ b(T ev(q), h(x))},

where πX and πZ are the product projections. Note that the supremum above
is even a maximum since − ∧− distributes over suprema.
Given V -relations r : X −→7 X ′ and s : Y −→7 Y ′, we define in V -Rel

r ? s : X × Y −→7 X ′ × Y ′ by (r ? s)((x, y), (x′, y′)) = r(x, x′) ∧ s(y, y′).

Theorem 3.1. Assume that

T (X × Y )
_T (r?s)
��

canX,Y
//

≥

TX × TY
_ (Tr)?(Ts)
��

T (X ′ × Y ′)canX′,Y ′
// TX ′ × TY ′,

(3.i)
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for all V -relations r : X −→7 X ′ and s : Y −→7 Y ′. Then a (T, V )-category
(X, a) is exponentiable provided that

∨
x∈TX

(Ta(X, x) ∧ u)⊗ (a(x, x) ∧ v) ≥ a(mX(X), x) ∧ (u⊗ v), (3.ii)

for all X ∈ TTX, x ∈ X and u, v ∈ V .

Proof : We show that the (T, V )-graph structure ba on Z is transitive, for
each (T, V )-category (Y, b). To this end, let P ∈ TTZ, p ∈ TZ, h ∈ Z,
x ∈ X and w ∈ T (Z ×X) with TπZ(w) = mZ(P). We have to show that

(T (ba)(P, p)⊗ ba(p, h)) ∧ a(TπX(w), x) ≤ b(T ev(w), h(x)).

Since m has (BC), there is some Q ∈ TT (Z ×X) with TTπZ(Q) = P and
mZ×X(Q) = w. Hence, mX(TTπX(Q)) = TπX(w), and we calculate:

(T (ba)(P, p)⊗ ba(p, h)) ∧ a(TπX(w), x)
≤

∨
x∈TX

((T (ba)(TTπZ(Q), p) ∧ Ta(TTπX(Q), x))⊗ (ba(p, h) ∧ a(x, x)) (3.ii)

≤
∨

x∈TX

∨
q∈can−1(p,x)

T (ba ? a)(T canZ,X(Q), q)⊗ (ba ? a)(canZ,X(q), (h, x)) (3.i)

=
∨

q∈(TπZ)−1(p)
T (ba ? a)(T canZ,X(Q), q)⊗ (ba ? a)(canZ,X(q), (h, x))

=
∨

q∈(TπZ)−1(p)
T (ba × a)(Q, q)⊗ (ba × a)(q, (h, x))

≤
∨

q∈(Tπ−1
Z )(p)

Tb(TT ev(Q), T ev(q))⊗ b(T ev(q), h(x))

≤ b(mY · TT ev(Q), h(x)) = b(T ev(w), h(x)).

It is worthwhile to notice that, for ⊗ = ∧, the condition above is equivalent
to

∨
x∈TX

Ta(X, x) ∧ a(x, x) ≥ a(mX(X), x),

for all X ∈ TTX and x ∈ X; which in turn is equivalent to

a ·mX = a · Ta.
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4. Injective and representable (T, V )-categories
In this section we recall an important class of (T, V )-categories, the so-

called representable ones. More information on this type of (T, V )-categories
can be found in [CCH15, HST14]. We also recall from [CH09, Hof07, Hof11]
that every injective (T, V )-category is representable and that every separated
(T, V )-category can be embedded into an injective one.
Based on the lax extension of the Set-monad T = (T,m, e) to V -Rel, T

admits a natural extension to a monad on V -Cat, in the sequel also denoted
as T = (T,m, e) (see [Tho09]). Here the functor T : V -Cat → V -Cat
sends a V -category (X, a0) to (TX, Ta0), and with this definition eX : X →
TX and mX : TTX → TX become V -functors for each V -category X.
The Eilenberg–Moore algebras for this monad can be described as triples
(X, a0, α) where (X, a0) is a V -category and (X,α) is an algebra for the
Set-monad T such that α : T (X, a0) → (X, a0) is a V -functor. For T-
algebras (X, a0, α) and (Y, b0, β), a map f : X → Y is a homomorphism
f : (X, a0, α) → (Y, b0, β) precisely if f preserves both structures, that is,
whenever f : (X, a0) → (Y, b0) is a V -functor and f : (X,α) → (Y, β) is a
T-homomorphism.
There are canonical adjoint functors

(V -Cat)T >
K

**

M

jj (T, V )-Cat.

The functor K associates to each X = (X, a0, α) in (V -Cat)T the (T, V )-
category KX = (X, a), where a = a0 · α, and keeps morphisms unchanged.
Its left adjoint M : (T, V )-Cat → (V -Cat)T sends a (T, V )-category (X, a)
to (TX, Ta · m◦X ,mX) and a (T, V )-functor f to Tf . Via the adjunction
M a K one obtains a lifting of the Set-monad T = (T,m, e) to a monad on
(T, V )-Cat, also denoted by T = (T,m, e).
In this setting we can define ‘duals’ in (V -Cat)T and carry them into

(T, V )-Cat. Indeed, since T : V -Rel→ V -Rel commutes with the involution
(−)◦, with X = (X, a0, α) also (X, a◦0, α) is a T-algebra. Moreover, if (X, a)
is a (T, V )-category, we define Xop by mapping (X, a) into (V -Cat)T via M ,
dualizing the image in (V -Cat)T, and then carrying it back to (T, V )-Cat;
that is,

Xop = K((M(X, a))op) = (TX,mX · (Ta)◦ ·mX).
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Since the monad T = (T,m, e) on (T, V )-Cat is lax idempotent (i.e, of
Kock-Zöberlein type), an algebra structure α : TX → X on a (T, V )-category
X is left adjoint to the unit eX : X → TX. We call a (T, V )-category X
representable whenever eX : X → TX has a left adjoint in (T, V )-Cat;
equivalently, whenever there is some (T, V )-functor α : TX → X with α ·
eX ' 1X , since then

eX · α = Tα · eTX ≥ Tα · TeX ' 1TX .
However, a left adjoint α : TX → X to eX is in general only a pseudo-algebra
structure on X, that is,

α · eX ' 1X and α · Tα ' α ·mX .

A (T, V )-category X is injective whenever, for each fully faithful h : A→ B
in (T, V )-Cat and each (T, V )-functor f : A→ X, there is a (T, V )-functor
g : B → X with g · h ' f .

Proposition 4.1. Every injective (T, V )-category is representable.

Proof : Let X be a (T, V )-category. Since eX : X → TX is an embedding (it
is easily seen that a = e◦X · Ta · TeX), there is a (T, V )-functor α : TX → X
with α · eX = 1X , therefore X is representable.
In order to obtain a Yoneda embedding, we need to restrict our study

to extensions fulfilling our conditions of Section 2 and determined by a T-
algebra structure ξ : TV → V on (V, hom), so that we are in the setting of a
strict topological theory in the sense of [Hof07]. The T-algebra (V, hom, ξ) is
mapped by K into the important (T, V )-category (V, homξ), where homξ =
hom ·ξ.
We also note that the tensor product of V induces a canonical structure c

on X × Y defined by
c(w, (x, y)) = a(TπX(w), x)⊗ b(TπY (w), y),

where w ∈ T (X × Y ), x ∈ X, y ∈ Y . We put
(X, a)⊗ (Y, b) = (X × Y, c),

and this construction is in an obvious way part of a functor
⊗ : (T, V )-Cat× (T, V )-Cat→ (T, V )-Cat.

The proof of the following result can be found in [CH09] and [Hof11].
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Theorem 4.2. For every (T, V )-category (X, a), the V -relation a : TX −→7 X
defines a (T, V )-functor of type

a : Xop ⊗X → (V, homξ).
Moreover, the ⊗-exponential mate yX = paq : X → V Xop of a is fully faithful,
and the (T, V )-category PX = V Xop is injective. In fact, this construction
defines a functor P : (T, V )-Cat → (T, V )-Cat and y = (yX)X is a natural
transformation y : 1(T,V )-Cat → P .

Since yX is fully faithful, when X is injective there exists a (T, V )-functor
SupX : PX → X such that SupX · yX ' 1X . Moreover, as shown in [Hof11,
Theorem 2.7], SupX a yX .
For each (T, V )-category (X, a), yX is one-to-one if, and only if, (X, a) is

separated, i.e. for every f, g : (Y, b)→ (X, a), f ' g only if f = g (see [HT10],
for example).

Corollary 4.3. Every separated (T, V )-category embeds into an injective
(T, V )-category.

5. (T, V )-Cat is weakly cartesian closed
I order to achieve the result promised in the title of this section, we shall

show that, under certain conditions, every injective (T, V )-category is expo-
nentiable. This problem is considerable easier for V being a frame, that is,
assuming that ⊗ = ∧, as shown in [Hof14, Proposition 2.7].

Proposition 5.1. If the quantale V is a frame, i.e. if ⊗ = ∧ in V , then
every representable (T, V )-category is exponentiable. In particular, in this
case every injective (T, V )-category is exponentiable.

To treat the general case, in this section we consider that both maps

V ⊗ V ⊗
// V X

(−,u)
// X ⊗ V (5.iii)

are (T, V )-functors, for all u ∈ V . These morphisms induce an interesting
action of V on every injective (T, V )-category (X, a) as follows. The (T, V )-
functor

TXop ⊗X ⊗ V a⊗1
// V ⊗ V ⊗

// V

induces a (T, V )-functor ã : X ⊗ V → PX. We denote the composite

X ⊗ V ã
// PX

SupX
// X



CARTESIAN CLOSED EXACT COMPLETIONS IN TOPOLOGY 11

by ⊕, and

X
(−,u)

// X ⊗ V ã
// PX

SupX
// X,

assigning to each x ∈ X an element x⊕ u in X, by −⊕ u.
Analogously we will write x ⊕ u for T (− ⊕ u)(x), for every x ∈ TX and

u ∈ V . Note that (T, V )-functoriality of −⊕ u can be written as

a(x, y) ≤ a(x⊕ u, y ⊕ u),

for every x ∈ TX and y ∈ X. Moreover, for every u ∈ V and V -relation
r : X −→7 Y , we define the V -relation r ⊗ u : X −→7 Y by (r ⊗ u)(x, y) =
r(x, y)⊗ u. We will make use of the following extra condition.

T (a⊗ u) = Ta⊗ u (5.iv)

for any V -relation a and u ∈ V .

Lemma 5.2. For an injective (T, V )-category (X, a), with a = a0 ·α as usual,
the following holds, for every x, y ∈ X, x ∈ TX and u ∈ V :

(1) a0(x⊕ u, y) = hom(u, a0(x, y));
(2) a0(x, y ⊕ u) ≥ a0(x, y)⊗ u;
(3) a(x⊕ u, y) ≥ hom(u, a(x, y));
(4) a(x, y ⊕ u) ≥ a(x, y)⊗ u.

Moreover, if (5.iv) holds, then, for every X ∈ T 2X, y ∈ TX, u ∈ V ,
(5) Ta(X, y⊕ u) ≥ Ta(X, y)⊗ u.

Proof : (1) For every x, y ∈ X and u ∈ V ,

a0(x⊕ u, y) = a0(SupX(ã(x, u)), y) (by definition of ⊕)
= [ã(x, u), y∗] (because SupX a yX)
=

∧
x∈TX

hom(ã(x, u)(x), y∗(x)) (by definition of [ , ])

=
∧

x∈TX
hom(a(x, x)⊗ u, a(x, y)) (by definition of ã and y∗)

= hom(u, a0(x, y)),

because, using the fact that a = a0 · α and

a0(α(x), x)⊗ u⊗ hom(u, a0(x, y)) ≤ a0(α(x), x)⊗ a0(x, y) ≤ a0(α(x), y),
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for x ∈ TX, we can conclude that
hom(u, a0(x, y)) ≤

∧
x∈TX

hom(a0(α(x), x)⊗ u, a0(α(x), y)).

Taking x = eX(x), we see that this inequality is in fact an equality as claimed.
(2) Since, by hypothesis, −⊕ u is a (T, V )-functor, and so, in particular, a

V -functor (X, a0)→ (X, a0),
a0(x, y) ≤ a0(x⊕ u, y ⊕ u) = hom(u, a0(x, y ⊕ u)),

and then
a0(x, y)⊗ u ≤ hom(u, a0(x, y ⊕ u))⊗ u ≤ a0(x, y ⊕ u).

(3) One has
k ≤ a0(α(x), α(x)) = a(x, α(x))
≤ a(x⊕ u, α(x)⊕ u)
= a0(α(x⊕ u), α(x)⊕ u).

Using (1) we conclude that
hom(u, a(x, y)) = a0(α(x)⊕ u, y)

≤ a0(α(x⊕ u), α(x)⊕ u)⊗ a0(α(x)⊕ u, y)
≤ a0(α(x⊕ u), y) = a(x⊕ u, y).

(4) follows directly from (2), while (5) follows from (4).
It was shown in [HR13, Theorem 5.3] that injective V -categories are expo-

nentiable if, and only if, for all u, v, w ∈ V ,
w ∧ (u⊗ v) =

∨
{u′ ⊗ v′ | u′ ≤ u, v′ ≤ v, u′ ⊗ v′ ≤ w}. (5.v)

We have the following obvious fact.

Lemma 5.3. Let ϕ : V → W be a surjective quantale homomorphism; that
is, ϕ preserves the tensor, the neutral element, and suprema. Then, if V
satisfies condition (5.v), so does W .

Here we want to study conditions under which every injective (T, V )-
category is exponentiable. Therefore this condition is necessary for our result.
To summarise, in this section we will typically work under the following

Assumption 5.4. The maps ⊗ : V ⊗ V → V and (−, u) : X → X × V are
(T, V )-functors, T (a⊗u) = Ta⊗u for every injective (T, V )-category (X, a)
and every u ∈ V , and (5.v) holds.



CARTESIAN CLOSED EXACT COMPLETIONS IN TOPOLOGY 13

Theorem 5.5. Under Assumption 5.4, every injective (T, V )-category is ex-
ponentiable in (T, V )-Cat.

Proof : In order to conclude that, for X ∈ T 2X, x ∈ X, u, v ∈ V ,∨
x∈TX

(Ta(X, x) ∧ u)⊗ (a(x, x) ∧ v) ≥ a(mX(X), x) ∧ (u⊗ v),

we will show that, with y = Tα(X)⊕ u,
(Ta(X, y) ∧ u)⊗ (a(y, x) ∧ v) ≥ a(mX(X), x) ∧ (u⊗ v). (5.vi)

First we note that
Ta(X, Tα(X)⊕ u) ∧ u ≥ (Ta(X, Tα(X))⊗ u) ∧ u (by 5.2 (5))

= (Ta0(Tα(X), Tα(X))⊗ u) ∧ u
≥ (k ⊗ u) ∧ u = u.

and
a(Tα(X)⊕ u, x) ∧ v ≥ hom(u, a(Tα(X), x)) ∧ v

= hom(u, a0(α(Tα(X)), x)) ∧ v
= hom(u, a0(α(mX(X)), x)) ∧ v
= hom(u, a(mX(X), x)) ∧ v.

Hence
(Ta(X, y) ∧ u)⊗ (a(y, x) ∧ v) ≥ u⊗ (hom(u, a(mX(X), x) ∧ v).

Now, for v′ ∈ V with v′ ≤ v and u ⊗ v′ = v′ ⊗ u ≤ a(mX(X), x), we get
v′ ≤ hom(u, a(mX(X), x)), hence

u⊗ v′ ≤ u⊗ (hom(u, a(mX(X), x))).
Using our Hypothesis (5.v) we conclude that

u⊗ (hom(u, a(mX(X), x))) ≥ a(mX(X), x) ∧ (u⊗ v),
and so (5.vi) follows.

Theorem 5.6. If every injective (T, V )-category is exponentiable, then
(T, V )-Catsep is weakly cartesian closed.

Proof : For X, Y separated (T, V )-categories, consider the Yoneda embed-
dings yX : X → PX and yY : Y → PY , and the exponential 〈PX,PY 〉.
The elements of its underlying set can be identified with (T, V )-functors
E × PX → PY (where E is the generator of (T, V )-Cat mentioned before),
and the universal morphism ev : 〈PX,PY 〉×PX → PY with the evaluation
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map: ev(ϕ, x) = ϕ(x) (where, for simplicity, we identify the set E×PX with
PX). We can therefore define

� X, Y �= {ϕ : E × PX → PY | ϕ(yX(X)) ⊆ yY (Y )},
with the initial structure with respect to the inclusion ι of � X, Y � in
〈PX,PY 〉. Moreover, the morphism

� X, Y � ×X
ι×y

X
// 〈PX,PY 〉 × PX ev

// PY

factors through yY via a morphism

� X, Y � ×X ẽv
// Y.

Next we show that this is a weak exponential in (T, V )-Catsep.
Given any separated (T, V )-category Z, and a (T, V )-functor f : Z ×X →

Y , by injectivity of PY there exists a (T, V )-functor f ′ : Z × PX → PY
making the square below commute. Then, by universality of the evaluation
map ev, there exists a unique (T, V )-functor f : Z → 〈PX,PY 〉 making the
bottom triangle commute.

Z ×X f
//

1Z×y
X
��

Y

y
Y
��

Z × PX f ′
//

f×1P X
��

PY

〈PX,PY 〉 × PX
ev

77

The map f : Z → 〈PX,PY 〉, assigning to each z ∈ Z a map f(z) : PX →
PY , is such that ev(f(z), yX(x)) = f(z)(yX(x)) = yY (f(z, x)); that is,
f(z)(yX(X)) ⊆ yY (Y ), and this means that f(z) ∈� X, Y �. Hence we
can consider the corestriction f̃ of f to � X, Y �, which is again a (T, V )-
functor since � X, Y � has the initial structure with respect to 〈PX,PY 〉,
so that the following diagram commutes.

� X, Y � ×X ẽv
// Y

Z ×X
f

55

f̃×1X

OO
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In order to show that (T, V )-Cat is weakly cartesian closed, we follow the
proof of [Ros99]. Hence, first we show that:

Proposition 5.7. The reflector R : (T, V )-Cat → (T, V )-Catsep preserves
finite products.

Proof : We recall that, for any (T, V )-category (X, a), R(X, a) = (X̃, ã), with
X̃ = X/ ∼, where x ∼ y if k ≤ a(eX(x), y)∧ a(eX(y), x), and ã = ηX · a · η◦X ,
with ηX : X → X̃ the projection. This structure makes ηX both an initial
and a final morphism (see [HST14] for details).
Let f : R(X×Y )→ RX×RY be the unique morphism such that f ·ηX×Y =

ηX × ηY .
(X × Y, c)

ηX×ηY **

ηX×Y
// (R(X × Y ), c̃)

f
��

(RX ×RY, d)
From c(eX×Y (x, y), (x′, y′)) = a(eX(x), x′) ∧ b(eY (y), y′) it is immediate that
(x, y) ∼ (x′, y′) in X ×Y if, and only if, x ∼ x′ in X and y ∼ y′ in Y . There-
fore, f is a bijection. Assuming the Axiom of Choice, so that T preserves
surjections, we have, for every z ∈ T (R(X × Y )), (x, y) ∈ X × Y ,
c̃(z, [(x, y)]) = c(w, (x, y)) (for any w ∈ (TηX×Y )−1(z))

= d(T (ηX × ηY )(w), ([x], [y])) (because ηX × ηY is initial)
= d(Tf(z), ([x], [y]);

that is, f is initial and therefore an isomorphism.

Theorem 5.8. If every injective (T, V )-category is exponentiable, then
(T, V )-Cat is weakly cartesian closed. In particular,

(1) if the quantale V is a frame (that is, ⊗ = ∧), then (T, V )-Cat is
weakly cartesian closed;

(2) under Assumption 5.4, (T, V )-Cat is weakly cartesian closed.

Proof : Given (T, V )-categories (X, a), (Y, b), to build the weak exponential
� X, Y � we will show the cosolution set condition for the functor − ×
(X, a).
For each (T, V )-functor f : (Z, c)×(X, a)→ (Y, b) we consider its reflection

Rf : RZ × RX ∼= R(Z × X) → RY and we factorise it through the weak
evaluation in (T, V )-Catsep, Rf = ẽv · (Rf × 1RX), so that in the diagram
below the outer rectangle commutes.
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Then we define Zf = Z/ ∼ by
z ∼ z′ if f(z, x) = f(z′, x), for every x ∈ X, and Rf(ηZ(z)) = Rf(ηZ(z′)),
and equip it with the final structure for the projection qf : Z → Zf . Then
hf : Zf →� RX,RY �, with hf([z]) = Rf(ηZ(z)), is a (T, V )-functor since
its composition with qf is Rf · ηZ and qf is final. Then we factorise f via the
surjection qf×1X : Z×X → Zf×X as in the diagram below. Moreover, the
map f̂ : Zf × X → Y , with f̂([z], x) = f(z, x), is a (T, V )-functor because
ηY · f̂ = ẽv · (hf × ηX) is and ηY is initial.

Z ×X
f

//

ηZ×1X

��

qf ×1X

""

Y

ηY

��

RZ ×X

Rf×1X

��

Zf ×X

f̂

33

//

hf ×1X

||

(
∐
g Zg ×X) ∼= (

∐
g Zg)×X

ev

::

� RX,RY � ×X
1×ηX

//� RX,RY � ×RX
ẽv

// RY

Since the cardinality of Zf is bounded by the cardinality of the set
| � RX,RY � | × |Y ||X|, as witnessed by the injective map

Zf → | � RX,RY � | × |Y ||X|,
[z] 7→ (Rf(ηZ(z)), f(z,−))

there is only a set of possible (T, V )-categories Zf . Hence we can form its
coproduct, as in the diagram above, and consider the induced (T, V )-functor
ev : (∐g Zg)×X ∼= ∐

g(Zg×X)→ Y (note that the isomorphism follows from
extensivity of (T, V )-Cat).

6. Examples
In this section we use Theorem 5.8 to present examples of weakly cartesian

closed categories. Hence, in conjunction with the following result established
in [Ros99], we obtain examples of categories with cartesian closed exact com-
pletion since all other conditions are trivially satisfied in these examples.

Theorem 6.1. Let C be a complete, infinitely extensive and well-powered
category in which every morphism factorizes as a regular epi followed by a
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mono and where f × 1 is an epimorphism, for every regular epimorphism
f : A → B in C. Then, if C weakly cartesian closed, the exact completion
Cex of C is cartesian closed.

We note that, in order to conclude that (T, V )-Cat is weakly cartesian
closed, we have to check whether V and T satisfy conditions (3.i), (5.iii),
(5.iv), and (5.v).
First we analyse examples when T is the identity monad. In this particular

setting we only have to check that (5.v) holds. The category V -Cat is always
monoidal closed, as shown in [Law73]. Therefore, when ⊗ = ∧ in V , that is
when V is a frame considered as a quantale, then V -Cat is cartesian closed.
This is the case of 2, and so one concludes that Ord is cartesian closed.
Moreover, for V the lattice ([0,∞],≥) with ⊗ = ∧, V -Cat is the category of
ultrametric spaces, which is therefore also cartesian closed.
When V = P+, V -Cat is the category Met of Lawvere’s metric spaces

[Law73], which is not cartesian closed (see [CH06] for details). However, the
quantale P+ satisfies (5.v), and so from Theorem 5.8 it follows that Met is
weakly cartesian closed.
Metric and ultrametric spaces can be also viewed as categories enriched

in a quantale based on the complete lattice [0, 1] with the usual “less or
equal” relation ≤, which is isomorphic to [0,∞] via the map [0, 1]→ [0,∞],
u 7→ − ln(u) where − ln(0) = ∞. More in detail, we consider the following
quantale operations on [0, 1] with neutral element 1.

(1) For ⊗ = ∗ being the ordinary multiplication, via the isomorphism
[0, 1] ' [0,∞], this quantale is isomorphic to the quantale P+, hence
[0, 1]-Cat 'Met.

(2) For the tensor ⊗ = ∧ being infimum, the isomorphism [0, 1] ' [0,∞]
establishes an equivalence between [0, 1]-Cat and the category of ul-
trametric spaces and non-expansive maps.

(3) Another interesting multiplication on [0, 1] is the Łukasiewicz tensor
⊗ = � given by u�v = max(0, u+v−1). Via the lattice isomorphism
[0, 1]→ [0, 1], u 7→ 1− u, this quantale is isomorphic to the quantale
[0, 1] with “greater or equal” relation≥ and tensor u⊗v = min(1, u+v)
truncated addition. Therefore [0, 1]-Cat is equivalent to the category
of bounded-by-1 metric spaces and non-expansive maps. Moreover,
with respect to the “greater or equal” relation and truncated addition
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on [0, 1], the map
[0,∞]→ [0, 1], u 7→ min(1, u)

is a surjective quantale morphism; therefore, by Lemma 5.3, also [0, 1]
with the Łukasiewicz tensor satisfies (5.v).

(4) More generally, every continuous quantale structure ⊗ on the lattice
[0, 1] (with Euclidean topology and the usual “less or equal” rela-
tion) with neutral element 1 satisfies (5.v). This can be shown us-
ing the fact, proven in [Fau55] and [MS57], that every such tensor
⊗ : [0, 1] × [0, 1] → [0, 1] is a combination of the three operations on
[0, 1] described above. More precise:
(a) For u, v ∈ [0, 1] and e ∈ [0, 1] idempotent with u ≤ e ≤ v:

u⊗ v = min(u, v) = u.
(b) For every non-idempotent u ∈ [0, 1], there exist idempotents e

and f with e < u < f and such that the interval [e, f ] (with
the restriction of the tensor on [0, 1] and with neutral element f)
is isomorphic to [0, 1] either with multiplication or Łukasiewicz
tensor.

Now let w, u, v ∈ [0, 1]. We may assume u ≤ v. If u ⊗ v ≤ w, then
clearly
w ∧ (u⊗ v) = u⊗ v =

∨
{u′ ⊗ v′ | u′ ≤ u, v′ ≤ v, u′ ⊗ v′ ≤ w}.

We consider now w < u⊗ v ≤ u ≤ v. If w is idempotent, then
w = w ⊗ v, w ≤ u, v ≤ v;

otherwise there are idempotents e and f with e < w < f and [e, f ] is
isomorphic to [0, 1] either with multiplication or Łukasiewicz tensor.
Case 1: v ≤ f . Then the equation (5.v) holds since w, u ⊗ v, u, v ∈

[e, f ].
Case 2: f < v. Then w = w ∧ v = w ⊗ v, w ≤ u and v ≤ v.
We conclude that [0, 1]-Cat is weakly cartesian closed, for every con-
tinuous quantale structure ⊗ on [0, 1] with neutral element 1.

Now let V = ∆ be the quantale of distribution functions (see [HR13, CH17]
for details). As observed in [HR13], it verifies (5.v), and so we can conclude
from Theorem 5.8 that the category ∆-Cat of probabilistic metric spaces and
non-expansive maps is weakly cartesian closed.
When T is not the identity monad, Theorem 5.8 applies only when the

extension of T to V -Rel is given by a T-algebra structure ξ : TV → V
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on V (so that we are dealing with a strict topological theory in the sense
of [Hof07]), which we assume from now on. In this case, the extension of
T : Set→ Set to V -Rel is defined by
Tr : TX × TY → V

r(x, y) 7→
∨{

ξ · Tr(w)
∣∣∣∣ w ∈ T (X × Y ), TπX(w) = x, TπY (w) = y

}
for each V -relation r : X × Y → V .
Theorem 6.2. (1) The tensor product on the quantale V defines a (T, V )-

functor ⊗ : V ⊗ V → V .
(2) Let u ∈ V satisfying u·! ≥ ξ · Tu.

T1 Tu
//

!
��

≥

TV

ξ
��

1 u
// V

Then (−, u) : X → X × V is a (T, V )-functor, for every (T, V )-
category X.

(3) Let u ∈ V satisfying u·! = ξ ·Tu. Then T (r⊗u) = (Tr)⊗u, for every
V -relation r : X −→7 Y .

Proof : The first assertion is [Hof11, Proposition 1.4(1)]. To see (2), assume
that u ∈ V with u·! ≥ ξ · Tu. Let (X, a) be a (T, V )-category, x ∈ TX and
x ∈ X. Considering the map X !−→ 1 u−→ V , we have to show that

a(x, x) ≤ a(x, x) ∧ hom(T (u·!)(x), u),
which follows immediately from u·! ≥ ξ · Tu. Finally, to prove (3), let
r : X −→7 Y be a V -relation and u ∈ V with u·! = ξ · Tu. Note that
the V -relation r ⊗ u : X −→7 Y is given by

X × Y r−−−−→ V
〈1V ,u·!〉−−−−−−−→ V × V ⊗−−−−→ V.

Hence, applying the Set-functor T to the functions r : X × Y → V and
r ⊗ u : X × Y → V , we obtain

ξ · T (r ⊗ u) = ξ · T (⊗) · T 〈1V , u·!〉 · Tr
= ⊗ · (ξ × ξ) · canX,Y ·T 〈1V , u·!〉 · Tr
= ⊗ · 〈ξ, u·! · ξ〉 · Tr
= ⊗ · 〈1V , u·!〉 · ξ · Tr.
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Therefore, returning to V -relations, we conclude that T (r⊗u) = (Tr)⊗u.

Remark 6.3. If T1 = 1, then u·! = ξ · Tu for every u ∈ V .

In order to guarantee that (3.i) holds we need an extra condition on ξ.

Proposition 6.4. Assume that

T (V × V )
T (∧)

//

〈ξ·Tπ1,ξ·Tπ2〉
��

≤

TV

ξ
��

V × V ∧
// V.

Then, for all V -relations r : X −→7 X ′ and s : Y −→7 Y ′,

T (X × Y )
_T (r?s)
��

canX,Y
//

≥

TX × TY
_ Tr?Ts
��

T (X ′ × Y ′)canX′,Y ′
// TX ′ × TY ′.

Proof : First we note that, from the preservation of weak pullbacks by T , it
follows that the commutative diagram

T (A×B)
T (f×g)

//

canA,B

��

T (X × Y )
canX,Y

��

TA× TB
Tf×Tg

// TX × TY

is also a weak pullback.
Let w ∈ T (X × Y ), x′ ∈ TX ′ and y′ ∈ TY ′. Put (x, y) = canX,Y (w).

By the definition of the extension of T and since V is a Heyting algebra,
Tr(x, x′) ∧ Ts(y, y′) is given by

∨ξ · Tr(w1) ∧ ξ · Ts(w2)
∣∣∣∣ w1 ∈ T (X ×X ′) : w1 7→ x,w1 7→ x′

w2 ∈ T (Y × Y ′) : w2 7→ y,w2 7→ y′

 .
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Note that in
T (X × Y ×X ′ × Y ′)

∼=
��

T (X × Y )
can
��

T (X ×X ′ × Y × Y ′)
T (πX×πY )
oo

T (r×s)
//

can
��

T (V × V )
can
��

T (∧)
//

≤

TV

ξ

��

TX × TY T (X ×X ′)× T (Y × Y ′)
TπX×TπY

oo

Tr×Ts
// TV × TV
ξ×ξ

��

V × V ∧
// V

the left hand side is a weak pullback, the middle diagram commutes and
in the right hand side we have “lower path” ≤ “upper path” as indicated.
Therefore, for such w1 ∈ T (X × X ′) and w2 ∈ T (Y × Y ′), there exists
some v ∈ T (X × X ′ × Y × Y ′) which projects to w ∈ T (X × Y ) and to
(w1,w2) ∈ T (X × X ′) × T (Y × Y ′). Hence, taking also into account the
definition of the V -relation T (r ? s),

Tr(x, x′) ∧ Ts(y, y′)

≤ ∨ξ · T(∧) · T (r × s)(v)
∣∣∣∣ v ∈ T (X × Y ×X ′ × Y ′);

v 7→ w

v 7→ x′, v 7→ y′


≤ ∨{T (r ? s)(w,w′) | w′ ∈ T (X ′ × Y ′), canX ′,Y ′(w′) = (x′, y′)}.

Remark 6.5. We note that the inequality

T (V × V )
T (∧)

//

〈ξ·Tπ1,ξ·Tπ2〉
��

≥

TV

ξ
��

V × V ∧
// V

is always true.
Corollary 6.6. If the quantale V satisfies (5.v) and the diagrams

T (V × V )
T (∧)

//

〈ξ·Tπ1,ξ·Tπ2〉
��

TV

ξ
��

V × V ∧
// V

and
T1 Tu

//

!
��

TV

ξ
��

1 u
// V

commute, for all u ∈ V , then all Assumptions 5.4 are satisfied.
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Let T be the ultrafilter monad U = (U,m, e). Then, when V is any of
the quantales listed above but ∆, all the needed conditions are satisfied.
Therefore, in particular we can conclude that:

Examples 6.7. (1) The category Top = (U, 2)-Cat of topological spaces
and continuous maps is weakly cartesian closed (as shown by Rosický
in [Ros99]).

(2) The category App = (U, P+)-Cat of approach spaces and non-expansive
maps is weakly cartesian closed.

(3) In fact, for each continuous quantale structure on the lattice
([0, 1],≤) ' ([0,∞],≥), (U, [0, 1])-Cat is weakly cartesian closed. In
particular, the category of non-Archimedean approach spaces and non-
expansive maps studied in [CVO17] is weakly cartesian closed.

(4) If V is a completely distributive complete lattice with ⊗ = ∧, then,
with

ξ : UV → V, x 7→
∧
A∈x

∨
A,

all needed conditions are satisfied (see [Hof07, Theorem 3.3]) and
therefore (U, V )-Cat is weakly cartesian closed. In particular, with
V = P2 being the powerset of a 2-element set, we obtain that the cat-
egory BiTop of bitopological spaces and bicontinuous maps is weakly
cartesian closed (see [HST14]).

Remark 6.8. For V = ∆ the quantale of distribution functions, we do not
know if there is an appropriate compact Hausdorff topology ξ : UV → V
satisfying the conditions of this section.

Now let T be the free monoid monad W = (W,m, e). For each quantale V ,
we consider

ξ : WV → V, (v1, . . . , vn) 7→ v1 ⊗ · · · ⊗ vn, () 7→ k

which induces the extension W : V -Rel→ V -Rel sending r : X −→7 Y to the
V -relation Wr : WX −→7 WY given by

Wr((x1, . . . , xn), (y1, . . . , ym)) =
r(x1, y1)⊗ · · · ⊗ r(xn, yn) if n = m

⊥ if n 6= m.

The category (W, 2)-Cat is equivalent to the category MultiOrd of multi-
ordered sets and their morphisms (see [HST14]), more generally, (W, V )-
categories can be interpreted as multi-V -categories and their morphisms. The
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representable multi-ordered sets are precisely the ordered monoids, which
is a special case of [Her00, Her01] describing monoidal categories as repre-
sentable multi-categories (see also [CCH15]). We recall that the separated
injective multi-ordered sets are precisely the quantales (see [LBKR12] and
also [Sea10]), and we conclude:

Proposition 6.9. Every quantale is exponentiable in MultiOrd.

Theorem 6.10. If the quantale V is a frame (that is, ⊗ = ∧), then (W, V )-Cat
is weakly cartesian closed. In particular, MultiOrd is weakly cartesian
closed.

Finally, for a monoid (H, ·, h), we consider the monad H = (−×H,m, e),
with mX : X × H × H → X × H given by mX(x, a, b) = (x, a · b) and
eX : X → X ×H given by eX(x) = (x, h). Here we consider

ξ : V ×H → V, (v, a) 7→ v,

which leads to the extension −×H : V -Rel→ V -Rel sending the V -relation
r : X −→7 Y to the V -relation r ×H : X ×H −→7 Y ×H with

r ×H((x, a), (y, b)) =
r(x, y) if a = b,
⊥ if a 6= b.

In particular, (H, 2)-categories can be interpreted as H-labelled ordered sets
and equivariant maps.
For every quantale V and every v : 1→ V , the diagrams

V × V ×H ∧×1H
//

π1,2
��

V ×H
ξ=π1
��

V × V ∧
// V

and
1×H v×1H

//

!
��

V ×H
ξ
��

1 v
// V

commute, therefore we obtain:

Theorem 6.11. For every quantale V satisfying (5.v), the category (H, V )-Cat
is weakly cartesian closed.
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