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Rosicky’s proof of cartesian closedness of the exact completion of the category of
topological spaces can be extended to a wide range of topological categories over
Set, like metric spaces, approach spaces, ultrametric spaces, probabilistic metric
spaces, and bitopological spaces. In order to do so we prove a sufficient criterion
for exponentiability of (T, V')-categories and show that, under suitable conditions,
every (T, V)-injective category is exponentiable in (T, V')-Cat.
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1. Introduction

As Lawvere has shown in his celebrated paper [Law73], when V' is a closed
category the category V-Cat of V-enriched categories and V-functors is also
monoidal closed. This result extends neither to the cartesian structure nor
to the more general setting of (T, V')-categories. Indeed, cartesian closedness
of V' does not guarantee cartesian closedness of V-Cat: take for instance
the category of (Lawvere’s) metric spaces P,-Cat, where P, is the complete
half-real line, ordered with the > relation, and equipped with the monoidal
structure given by addition +; P, is cartesian closed but P,-Cat is not (see
[CHOG] for details); and, even when the monoidal structure of V' is the carte-
sian one, the category (T, V)-Cat of (T, V)-categories and (T, V)-functors
(see [CT03]) does not need to be cartesian closed, as it is the case of the
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category Top of topological spaces and continuous maps, that is (U, 2)-Cat
for U the ultrafilter monad.

Rosicky showed in [Ros99] that Top is weakly cartesian closed, and, conse-
quently, that its exact completion is cartesian closed. Weak cartesian closed-
ness of Top follows from the existence of enough injectives in its full subcat-
egory Top, of T'0-spaces and the fact that they are exponentiable, and this
feature, together with several good properties of Top, gives cartesian closed-
ness of its exact completion. More precisely, Rosicky has shown in [Ros99)
the following theorem.

Theorem 1.1. Let C be a complete, infinitely extensive and well-powered
category with (reg epi, mono)-factorizations such that fx1 is an epimorphism
whenever f is a reqular epimorphism. Then the exact completion of C is
cartesian closed provided that C s weakly cartesian closed.

In this paper we use the setting of (T,V)-categories, for a quantale V
and a Set-monad T laxly extended to V-Rel to conclude, in a unified way,
that several topological categories over Set share with Top this interest-
ing property, which was recently used by Adamek and Rosicky in the study
of free completions of categories [AR18]. In fact, the category (T, V)-Cat
is topological over Set [CHO3|, [CT03], hence complete and with (reg epi,
mono )-factorizations such that f x 1 is an epimorphism whenever f is, and
it is infinitely extensive [MSTO06]. To assure weak cartesian closedness of
(T, V)-Cat we consider two distinct scenarios, either restricting to the case
when V' is a frame — so that its monoidal structure is the cartesian one — or
considering the case when the lax extension is determined by a T-algebraic
structure on V', as introduced in [Hof07] under the name of topological theory.
In the latter case the proof generalizes Rosicky’s proof for Top,, after ob-
serving that, using the Yoneda embedding of [CH09, [Hof11], every separated
(T, V)-category can be embedded in an injective one, and, moreover, these
are exponentiable in (T, V')-Cat. For general (T, V')-categories one proceeds
again as in [R0s99], using the fact that the reflection of (T, V')-Cat into its
full subcategory of separated (T, V')-categories preserves finite products. As
observed by Rosicky, the exact completion of Top relates to the cartesian
closed category of equilogical spaces [BBS04]. Analogously, our approach
leads to the study of generalized equilogical spaces, as developed in [Rib18].



CARTESIAN CLOSED EXACT COMPLETIONS IN TOPOLOGY 3

The paper is organized as follows. In Section [2| we introduce (T,V)-
categories and list their properties used throughout the paper. In Sec-
tion |3 we revisit the exponentiability problem in (T, V')-Cat, establishing
a sufficient criterion for exponentiability which generalizes the results ob-
tained in [Hof07, [HS15]. In Section {4 we study the properties of injective
(T, V')-categories which will be used in the forthcoming section to conclude
that, under suitable assumptions, injective (T, V')-categories are exponen-
tiable (Theorem [5.5). This result will allow us to conclude, in Theorem [5.8]
that (T, V)-Cat is weakly cartesian closed, and, finally, thanks to Theorem
[L.1 that the exact completion of (T,V)-Cat is cartesian closed. We con-
clude our paper with a section on examples, which include, among others,
metric spaces, approach spaces, probabilistic metric spaces, and bitopological
spaces.

2. The category of (T, V)-categories

Throughout V' is a commutative and unital quantale, i.e V' is a complete
lattice with a symmetric and associative tensor product ®, with unit £ and
right adjoint hom, so that © ® v < w if, and only if, v < hom(u,w), for all
u,v,w € V. Further assume that V' is a Heyting algebra, so that u A — also
has a right adjoint, for every u € V. We denote by V-Rel the 2-category
of V-relations (or V-matrices), having as objects sets, as 1-cells V-relations
r: X =Y, ie mapsr: X xY — V, and 2-cells ¢ : » — ' given by
componentwise order r(x,y) < r'(z,y). Composition of 1-cells is given by
relational composition. V-Rel has an involution, given by transposition: the
transpose of 7 : X = Y is r° : Y + X with r°(y, z) = r(z,y).

We fix a non-trivial monad T = (T, m,e) on Set satisfying (BC), i.e. T
preserves weak pullbacks and the naturality squares of the natural transfor-
mation m are weak pullbacks (see [CHJ14]). In general we do not assume
that T preserves products. Later we will make use of the comparison map
canyy : T'(X xY) = TX xTY defined by canx y () = (T'rx(w), T'my (10))
for all v € T(X x Y), where my and 7y are the product projections. More-
over, we assume that T has an extension to V-Rel, which we also denote by
T, in the following sense:

— there is a functor 7" : V-Rel — V-Rel which extends T : Set — Set;
—T(r°) = (Tr)° for all V-relations r;
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— the natural transformations e : 1y grel — 7 and m : T? — T become
op-lax; that is, for every r: X -» Y,

ey -r <Tr-ex, my - TTr <Tr-myx.
X X TXx TTX 5 TX
7“% < %TT TT?"% < %T?"
YTTY TTY?YTY

We note that our conditions are stronger than the ones used in [HST14].
A (T, V)-category is a pair (X,a) where X isaset and a : TX + X is a
V-relation such that

X X 71X and 72X X TX
<

1y fa Taf < fl

X TX —— X

that is, the map a : T X x X — V satisfies the conditions:

(R) for each z € X, k < a(ex(x),z);

(T) for each X e T?X,r € TX, v € X, Ta(X,1) ® a(z,z) < a(mx(X), z).
Given (T, V)-categories (X, a), (Y,b), a (T, V)-functor f: (X,a) — (Y,b) is
a map f: X — Y such that

rx 1y

4 < b

that is, for each r € TX and x € X, a(r,z) < b(Tf(x), f(x)); f is said to be
fully faithful when this inequality is an equality.

(T, V)-categories and (T, V)-functors form the category (T,V)-Cat. If
(X,a:TX + X) satisfies (R) (and not necessarily (T)), we call it a (T, V')-
graph. The category (T, V)-Gph, of (T, V)-graphs and (T, V')-functors, con-
tains (T, V)-Cat as a full reflective subcategory.

We chose to present the examples in detail in the last section. We mention
here, however, that guiding examples are obtained when one considers the
quantale 2 = ({0,1},<,&,1) and the Lawvere’s half real line P,, that is
([0,00],>,+,0), the identity monad I and the ultrafilter monad U on Set,
obtaining:
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— (I, V)-Cat is the category of V-categories and V-functors; in partic-
ular, (I,2)-Cat is the category Ord of (pre)ordered sets and mono-
tone maps, while (I, P, )-Cat is the category Met of Lawvere’s metric
spaces and non-expansive maps (see [Law73]).

— (U, 2)-Cat is the category Top of topological spaces and continuous
maps.

— (U, Py)-Cat is the category App of Lowen’s approach spaces and
non-expansive maps (see [Low97]).

As shown in [CHO3] (see also [CT03]).

Theorem 2.1. The forgetful functors (T, V)-Cat — Set and (T, V)-Gph —
Set are topological.

This shows, in particular, that:

— (T, V)-Cat is complete and cocomplete.

— Monomorphisms in (T, V)-Cat are the morphisms whose underlying
map is injective; therefore, since the (T, V')-structures on any set form
a set, (T, V)-Cat is well-powered.

— Every topological category over Set has two factorization systems,
(reg epi, mono) and (epi, reg mono); in (T, V)-Cat the former one
is in general not stable (that is, regular epimorphisms need not be
stable under pullback — Top is such an example), but the latter one
is. Indeed, epimorphisms in (T, V)-Cat are the (T, V')-functors which
are surjective as maps, the forgetful functor (T, V)-Cat — Set pre-
serves pullbacks, and surjective maps are stable under pullback in
Set. Therefore, as f x 1y is the pullback of f : X — Y along
py : Y X Z — Y, we conclude that f x 17 is an epimorphism provided
f is.

(T,V)-Cat has a natural structure of 2-category: for (T, V)-functors
fig: (X,a) — (V)b), f < gifg-a < b-Tf. This condition can be
equivalently written as k < b(ey(f(x)), g(x)) for every x € X (see [CT03] for
details). We write f ~ g if f < gand g < f.

Extensivity of (T, V)-Cat was studied in [MSTO6]:

Theorem 2.2. (T, V)-Cat is infinitely extensive.

In general (T, V)-Cat is not cartesian closed, while (T, V)-Gph is. In fact,
it was proved in [CHTO3]:



6 M.M. CLEMENTINO, D. HOFMANN AND W. RIBEIRO
Theorem 2.3. (T, V)-Gph is a quasi-topos.

Weak cartesian closedness of (T, V)-Cat needs a thorough study of injec-
tive (T, V')-categories and some extra conditions. Namely we will use the
extension of the Set-functor 7' to V-Rel given by a topological theory in the
sense of [Hof07]. This is the subject of the following sections.

3. Exponentiable (T, V')-categories

Recall that an object C of a category C with finite products is exponen-
tiable whenever the functor C' x — : C — C has a right adjoint. In this
section we present a sufficient condition for a (T, V')-category X to be expo-
nentiable in (T, V')-Cat, which generalises [Hof06, Theorem 4.3] and [Hof07,
Theorem 6.5]. To start, we recall that (T, V)-Cat can be fully embedded
into the cartesian closed category (T, V)-Gph of (T, V)-graphs and (T, V)-
functors, see [CHTO03| for details. Here, for (T, V)-graphs (X, a) and (Y, ),
the exponential ((X,a), (Y, b)) has as underlying set

Z:={h:(X,a) x (1,k) = (Y,b) | his a (T, V)-functor},

which becomes a (T, V)-graph when equipped with the largest structure b
making the evaluation map

ev:ZxX =Y, (hyz) — h(x)
a (T, V)-functor: for p € TZ and h € Z, put b*(p, h) as
V{v eV |Vqe (Trz) " (p),x € X a(Trx(q),x) Av < b(Tev(q), h(z))},

where mx and 7z are the product projections. Note that the supremum above
is even a maximum since — A — distributes over suprema.

Given V-relations » : X - X’ and s : Y +— Y/, we define in V-Rel
r®s: X xY = X' xY' by (ros)((z,y), (@, y)) =r(x,2') As(y,y).

Theorem 3.1. Assume that

T(X xY) 5 TX x TY (3.4)
T(ros) f > f (Tr)o(T's)

T(X'xY')—TX xTY',

anX/’Y/
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for all V-relations r : X +— X' and s :' Y + Y'. Then a (T, V)-category
(X, a) is exponentiable provided that

6\T/X(Ta(%, p)Au) ® (a(z,z) Av) > almx(X),z) A (u®v), (3.i1)

forallX e TTX, x € X andu,v € V.

Proof: We show that the (T, V)-graph structure b* on Z is transitive, for
each (T, V)-category (Y,b). To this end, let P € TTZ, p € TZ, h € Z,
re X and w e T(Z x X) with Trz(w) = mz(P). We have to show that

(T@°) (B, p) @ b"(p, h)) A a(Tmx(w), z) < b(T ev(w), h(x)).

Since m has (BC), there is some Q € TT(Z x X) with TT7z(Q) = P and
mz«x(Q) =1. Hence, mx(TT7x(Q)) = Trx(w), and we calculate:

(T(") (B, p) @ 0% (p, h)) A a(Trx(w), )
< 6\T/X((T(ba)(TT7Tz(Q),13) ANTa(TTrx(Q),1) @ (b"(p, h) Aaly,z))  (B.ii)

<V V ( )T(ba ® a)(T cang x (), q) @ (b* ©® a)(cang x(q), (h,z)) (3.1)
re€TX gecan—t(px

= \/) ( )T(b“ ® a)(T canz x(Q),q) ® (b* ® a)(canz, x(q), (h, z))
qe(Trz)~Yp

= V.  TQO"xa)(Q,q9) @ 0" xa)(q,(h z))

q€(Trz)~1(p)
( \ ’ )Tb(TTev(Q),Tev(q)) R b(Tev(q), h(z))

qe T7r§1 p

<b(my -TTev(Q),h(z)) =b(T ev(to),h(z)). =

IA

It is worthwhile to notice that, for ® = A, the condition above is equivalent
to

G\T/X Ta(X,r) Na(x,z) = a(mx(X), z),

for all X € TTX and x € X; which in turn is equivalent to

a-myxy =a-Ta.
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4. Injective and representable (T, V)-categories

In this section we recall an important class of (T, V')-categories, the so-
called representable ones. More information on this type of (T, V')-categories
can be found in [CCH15, HST14]. We also recall from [CH09|, Hof07, [Hof11]
that every injective (T, V')-category is representable and that every separated
(T, V)-category can be embedded into an injective one.

Based on the lax extension of the Set-monad T = (7, m,e) to V-Rel, T
admits a natural extension to a monad on V-Cat, in the sequel also denoted
as T = (T,m,e) (see [Tho09]). Here the functor 7' : V-Cat — V-Cat
sends a V-category (X, ag) to (TX,Tap), and with this definition ex : X —
TX and my : TTX — TX become V-functors for each V-category X.
The Eilenberg-Moore algebras for this monad can be described as triples
(X, ap, ) where (X,ag) is a V-category and (X, «) is an algebra for the
Set-monad T such that « : T(X,a9) — (X,a9) is a V-functor. For T-
algebras (X, ag,a) and (Y, by, 3), a map f : X — Y is a homomorphism
f (X, a9, ) — (Y, by, ) precisely if f preserves both structures, that is,
whenever f : (X,a9) — (Y, by) is a V-functor and f : (X,a) — (Y, () is a
T-homomorphism.

There are canonical adjoint functors

K

(V-Cat)" 1 — (T,V)-Cat.

M

The functor K associates to each X = (X, ag, ) in (V-Cat)T the (T, V)-
category KX = (X, a), where a = ag - «, and keeps morphisms unchanged.
Its left adjoint M : (T,V)-Cat — (V-Cat)T sends a (T, V)-category (X, a)
to (TX,Ta-m%,mx) and a (T, V)-functor f to Tf. Via the adjunction
M 4 K one obtains a lifting of the Set-monad T = (7', m, e) to a monad on
(T, V)-Cat, also denoted by T = (T, m,e).

In this setting we can define ‘duals’ in (V-Cat)T and carry them into
(T, V)-Cat. Indeed, since T : V-Rel — V-Rel commutes with the involution
(—)°, with X = (X, ap, @) also (X, af, ) is a T-algebra. Moreover, if (X, a)
is a (T, V)-category, we define X° by mapping (X, a) into (V-Cat)T via M,
dualizing the image in (V-Cat)T, and then carrying it back to (T,V)-Cat;
that is,

X = K((M(X,a))®) = (TX,myx - (Ta)° - mx).
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Since the monad T = (7, m,e) on (T,V)-Cat is lax idempotent (i.e, of
Kock-Zoberlein type), an algebra structure o : TX — X on a (T, V')-category
X is left adjoint to the unit ex : X — TX. We call a (T, V)-category X
representable whenever ey : X — TX has a left adjoint in (T,V)-Cat;
equivalently, whenever there is some (T, V)-functor a : TX — X with « -
ex ~ 1lx, since then

ex - a=Ta-epx >Ta-Tex ~ 1rx.

However, a left adjoint o : T X — X to ex is in general only a pseudo-algebra
structure on X, that is,

a-ex ~ 1y and a-Ta~oa-my.

A (T, V)-category X is injective whenever, for each fully faithful h : A — B
in (T, V)-Cat and each (T, V)-functor f: A — X, there is a (T, V)-functor
g:B— X withg-h~f.

Proposition 4.1. Fvery injective (T, V')-category is representable.

Proof: Let X be a (T, V)-category. Since ex : X — T'X is an embedding (it
is easily seen that a = e% - Ta - Tex), there is a (T, V)-functor o : TX — X
with « - ex = 1x, therefore X is representable. [

In order to obtain a Yoneda embedding, we need to restrict our study
to extensions fulfilling our conditions of Section [2] and determined by a T-
algebra structure £ : TV — V on (V, hom), so that we are in the setting of a
strict topological theory in the sense of [Hof07]. The T-algebra (V,hom,¢) is
mapped by K into the important (T, V')-category (V,homg), where hom, =
hom -£.

We also note that the tensor product of V' induces a canonical structure ¢
on X x Y defined by

c(w, (,y)) = a(Tmx (w), 2) @ b(Twy (w),y),
where v € T(X xY), z € X,y €Y. We put
(X,a) @ (V,b) = (X x V,0),
and this construction is in an obvious way part of a functor
®: (T,V)-Cat x (T,V)-Cat — (T, V)-Cat.
The proof of the following result can be found in [CH09] and [Hof11].
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Theorem 4.2. For every (T, V)-category (X, a), the V-relationa : TX - X
defines a (T, V)-functor of type

a: X ®X — (V,homg).

Moreover, the ®-exponential mate y, = ‘o X = VX" of ais fully faithful,
and the (T,V)-category PX = VX" is injective. In fact, this construction
defines a functor P : (T,V)-Cat — (T,V)-Cat and y = (y,)x is a natural
transformation y : 11 yv).cat — P.

Since y is fully faithful, when X is injective there exists a (T, V')-functor
Supy : PX — X such that Supy -y, ~ 1x. Moreover, as shown in [Hof11],
Theorem 2.7}, Supy  y.

For each (T, V')-category (X,a), yy is one-to-one if, and only if, (X, a) is
separated, i.e. for every f,g: (Y,b) — (X, a), f ~ gonly if f = g (see [HT10],
for example).

Corollary 4.3. FEvery separated (T,V)-category embeds into an injective
(T, V')-category.

5. (T, V)-Cat is weakly cartesian closed

I order to achieve the result promised in the title of this section, we shall
show that, under certain conditions, every injective (T, V')-category is expo-
nentiable. This problem is considerable easier for V' being a frame, that is,
assuming that ® = A, as shown in [Hof14l, Proposition 2.7].

Proposition 5.1. If the quantale V' is a frame, i.e. if @ = A in V', then
every representable (T, V')-category is exponentiable. In particular, in this
case every injective (T, V')-category is exponentiable.

To treat the general case, in this section we consider that both maps

Ve —2 v x—"Y xgv (5.iii)
are (T,V)-functors, for all u € V. These morphisms induce an interesting
action of V' on every injective (T, V')-category (X, a) as follows. The (T, V)-

functor

TXPRXRV—2 VeV —2 5V

induces a (T, V)-functor @ : X ® V' — PX. We denote the composite

a Supx

PX X

XV
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by @, and

—,u a Su
x " xgv_—o px_ "  x

assigning to each x € X an element x & u in X, by — @ u.
Analogously we will write ¢ @ u for T'(— @ u)(x), for every ¢ € TX and
u € V. Note that (T, V)-functoriality of — @ u can be written as

a(r,y) <alr ®u,y @ u),

for every r € TX and y € X. Moreover, for every u € V and V-relation
r: X - Y, we define the V-relation r @ u : X = Y by (r ® u)(z,y) =
r(z,y) ® u. We will make use of the following extra condition.

Tla®@u)=Ta®u (5.iv)
for any V-relation a and u € V.

Lemma 5.2. For an injective (T, V)-category (X, a), with a = ag-« as usual,
the following holds, for every x,y € X, r€TX andu € V:

(1) ap(x & u,y) = hom(u, ap(zr,y));
(2) ao(z,y ®u) > ao(z,y) @ u;

(8) a(x @ u,y) > hom(u, a(x, y));
(4) a(r,y ® u) > alx,y) @ u.

Moreover, if (5.iv]) holds, then, for every X € T?°X, n e TX, u €V,
(5) Ta(X,n @ u) > Ta(X,y) @ u.

Proof: For every z,y € X and u € V,

ag(x ®u,y) = ag(Supx(a(x,u)),y) (by definition of @)
= la(z,u), y"] (because Supy 4y
= A hom(a(x,u)(x),y" (x)) (by definition of [, ])
reTX
= A hom(a(z,z) ® u,a(xr,y)) (by definition of @ and y*)
reTX

= hom(u, ag(x,y)),
because, using the fact that a = ag - @ and

aO(O‘(Zz)vl‘) ®u hom(u, ao(x,y)) < aO(a(F)a .27) ® a0($7y) < ao(a(ﬁ), y)v
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for r € T X, we can conclude that

hom(u, ap(z,y)) < G/T\X hom(ap(a(x), z) ® u, ao(a(r),y)).

Taking r = ex(x), we see that this inequality is in fact an equality as claimed.
Since, by hypothesis, — @ u is a (T, V)-functor, and so, in particular, a
V-functor (X, ap) — (X, ap),

ao(z,y) < ap(r @ u,y & u) = hom(u, ap(z,y B u)),
and then
ag(z,y) @ u < hom(u, ap(z,y B u)) @u < ap(z,y S u).
(3) One has

Using (1) we conclude that

= ao(a(r) ®u,y)

< ap(a(r @ u),ar) ®u) @ aglar) ® u,y)
< ap(a(t®u)y) =al @ uy).

follows directly from (2)), while (7)) follows from (). m

It was shown in [HR13, Theorem 5.3] that injective V-categories are expo-
nentiable if, and only if, for all u,v,w € V,

hom(u, a(r,y))

wA(u@v)=\V{uev|u <u,v <vd @v <wl. (5.v)
We have the following obvious fact.

Lemma 5.3. Let ¢ : V — W be a surjective quantale homomorphism; that
s, @ preserves the tensor, the neutral element, and suprema. Then, if V
satisfies condition (5.v]), so does W.

Here we want to study conditions under which every injective (T,V)-
category is exponentiable. Therefore this condition is necessary for our result.
To summarise, in this section we will typically work under the following

Assumption 5.4. The maps @ : V@V — V and (—,u) : X — X x V are

(T, V)-functors, T'(a ® u) = Ta @ u for every injective (T, V')-category (X, a)
and every u € V, and ({5.v)) holds.
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Theorem 5.5. Under Assumption , every injective (T, V')-category is ex-
ponentiable in (T, V)-Cat.

Proof: In order to conclude that, for X € T?X, 2 € X, u,v € V,
V (Ta(X,x) Au) @ (ar, ) Av) = a(mx(X),2) A (u @ v),

€T X
we will show that, with y = Ta(X) & u,
(Ta(X,9) ANu) @ (a(y, ) Av) > a(mx(X),z) A (u® v). (5.vi)

First we note that

Ta(X, Ta(X)Du)ANu > (Ta(X, Ta(X)) @u) Au (by B-2] (7))
= (Tag(Ta(X), Ta(X)) ®@u) Au
> (k®u) ANu=u.
and
a(Ta(X)®u,z) Av > hom(u,a(Ta(X),x)) Av
= hom(u, ap(a(Ta(X)),z)) Av
= hom(u, ap(a(mx(X)),x)) Av
= hom(u,a(mx(X),x)) Av
Hence

(Ta(X,9) ANu) @ (a(y,z) Av) > u ® (hom(u, a(mx(X),x) Av).
Now, for v € V with v/ < v and u® v = v @ u < a(mx(X),x), we get
v < hom(u,a(mx(X),x)), hence
u®v <u® (hom(u,a(mx(X),x))).
Using our Hypothesis we conclude that
u ® (hom(u,a(mx(X),x))) > a(mx(X),z) A (u® v),

and so ((5.vi)) follows. u

Theorem 5.6. If every injective (T,V')-category is exponentiable, then
(T, V)-Catgep, is weakly cartesian closed.

Proof: For X,Y separated (T,V')-categories, consider the Yoneda embed-
dings y,, : X — PX and y, : Y — PY, and the exponential (PX, PY).
The elements of its underlying set can be identified with (T, V')-functors
E x PX — PY (where E is the generator of (T, V)-Cat mentioned before),
and the universal morphism ev : (PX, PY) x PX — PY with the evaluation
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map: ev(p,r) = p(zr) (where, for simplicity, we identify the set F x PX with
PX). We can therefore define

KXYV >={p: ExXPX = PY | p(yx(X)) €y (Y)},

with the initial structure with respect to the inclusion ¢ of < X,Y > in
(PX, PY). Moreover, the morphism

<X,V > xX " (PX,PY)x PX —% . pY

factors through y, via a morphism

<XV >xX—Y Ly

Next we show that this is a weak exponential in (T, V')-Cats,.

Given any separated (T, V')-category Z, and a (T, V)-functor f: Z x X —
Y, by injectivity of PY there exists a (T, V)-functor f' : Z x PX — PY
making the square below commute. Then, by universality of the evaluation
map ev, there exists a unique (T, V)-functor f: Z — (PX, PY) making the
bottom triangle commute.

Ix X1 .y

1Z><yxl lyy
!

ZxPX 1 . py

f><1pxl /

(PX,PY) x PX

The map f : Z — (PX, PY), assigning to each z € Z a map f(z) : PX —
PY, s such that ev(F(),5x() = F()uy(@) = gy (f(z.2)); that is,
f(2)(yyx (X)) € y,(Y), and this means that f(z) €< X,Y >. Hence we
can consider the corestriction f of f to < X,Y >, which is again a (T, V)-
functor since < X,Y > has the initial structure with respect to (PX, PY),
so that the following diagram commutes.

<XV >xX Y .y
fX1XT /f

Z x X
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In order to show that (T, V')-Cat is weakly cartesian closed, we follow the
proof of [Ros99]. Hence, first we show that:

Proposition 5.7. The reflector R : (T,V)-Cat — (T, V)-Catg, preserves
finite products.

Proof: We recall that, for any (T, V)-category (X, a), R(X,a) = (X, a), with
X = X/ ~, where z ~ y if k < a(ex(z),y) Aalex(y),z), and & = nx - a-n%,
with ny : X — X the projection. This structure makes nx both an initial
and a final morphism (see [HST14] for details).

Let f : R(XxY) — RX xRY be the unique morphism such that f-nxyy =

nx X Ny.
NXxy

(X xY,¢c) ——— (R(X xY),¢)

nx Xny

(RX x RY,d)

From c(exxy(x,y), (2',y")) = alex(z),2") A b(ey(y),y) it is immediate that
(x,y) ~ (,y') in X x Y if, and only if, x ~ 2’ in X and y ~ ¢/ in Y. There-
fore, f is a bijection. Assuming the Axiom of Choice, so that T" preserves
surjections, we have, for every 3 € T(R(X x Y)), (z,y) € X x Y,

&G 1, 9)]) = (o, (2,1)) (for any 1 € (Trpc.r) ' (3)
— d(T(nx x ny)(w), ([«],[y])) (because ny x ny is initial)
— d(Tf(3). ([, [y):

that is, f is initial and therefore an isomorphism. |

Theorem 5.8. If every injective (T,V')-category is exponentiable, then
(T, V)-Cat is weakly cartesian closed. In particular,
(1) if the quantale V is a frame (that is, @ = A), then (T,V)-Cat is
weakly cartesian closed;
(2) under Assumption (T, V)-Cat is weakly cartesian closed.

Proof: Given (T, V)-categories (X, a), (Y,b), to build the weak exponential
< X, Y > we will show the cosolution set condition for the functor — x
(X, a).

For each (T, V)-functor f : (Z,¢) x (X, a) — (Y, b) we consider its reflection
Rf : RZ x RX = R(Z x X) — RY and we factorise it through the weak
evaluation in (T, V)-Catsyp, Rf = év - (Rf X 1gx), so that in the diagram
below the outer rectangle commutes.



16 M.M. CLEMENTINO, D. HOFMANN AND W. RIBEIRO

Then we define Zy = Z/ ~ by

z~ 2 if f(z,z) = f(Z,x), for every x € X, and Rf(nz(2)) = Rf(nz(%")),

and equip it with the final structure for the projection g5 : Z — Zy. Then
hi: Zy —-< RX,RY >, with h¢([z]) = Rf(nz(z)), is a (T, V)-functor since
its composition with ¢ is Rf -z and ar is final. Then we factorise f via the
sur3ect1on qr X1y : ZxX — Zf x X as in the diagram below. Moreover, the

map f Zyx X — Y, with f([z],x) = f(z,2), is a (T, V)-functor because
ny - f = &v - (hy X nx) is and ny is initial.

Z x X Y
y /
nzx1lx
RZ x Zrx X (I, Zg x X) ny
FfXIX thlX
< RX,RY > XXT<< RX,RY > xXRX — RY
X ev

Since the cardinality of Z; is bounded by the cardinality of the set
| < RX,RY > | x |Y|X], as witnessed by the injective map

Zy — | < RX,RY > | x |[Y|¥],
2] = (Rf(nz(2)), f(2,—))

there is only a set of possible (T, V)-categories Z;. Hence we can form its
coproduct, as in the diagram above, and consider the induced (T, V')-functor

v (Il Zg) x X = 11,(Z; x X) = Y (note that the isomorphism follows from
extensivity of (T, V')-Cat). _

6. Examples

In this section we use Theorem to present examples of weakly cartesian
closed categories. Hence, in conjunction with the following result established
in [Ros99], we obtain examples of categories with cartesian closed exact com-
pletion since all other conditions are trivially satisfied in these examples.

Theorem 6.1. Let C be a complete, infinitely extensive and well-powered
category in which every morphism factorizes as a reqular epi followed by a
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mono and where f X 1 is an epimorphism, for every reqular epimorphism
f:A— Bin C. Then, if C weakly cartesian closed, the exact completion
Cex of C is cartesian closed.

We note that, in order to conclude that (T, V)-Cat is weakly cartesian
closed, we have to check whether V and T satisfy conditions , ,
). and (5.

First we analyse examples when T is the identity monad. In this particular
setting we only have to check that holds. The category V-Cat is always
monoidal closed, as shown in [Law73]. Therefore, when ® = A in V, that is
when V' is a frame considered as a quantale, then V-Cat is cartesian closed.
This is the case of 2, and so one concludes that Ord s cartesian closed.
Moreover, for V' the lattice ([0, 00|, >) with ® = A, V-Cat is the category of
ultrametric spaces, which s therefore also cartesian closed.

When V = P,, V-Cat is the category Met of Lawvere’s metric spaces
[Law73], which is not cartesian closed (see [CHO06] for details). However, the
quantale P, satisfies (5.v]), and so from Theorem [5.§) it follows that Met is
weakly cartesian closed.

Metric and ultrametric spaces can be also viewed as categories enriched
in a quantale based on the complete lattice [0,1] with the usual “less or
equal” relation <, which is isomorphic to [0, co] via the map [0, 1] — [0, o],
u +— —In(u) where —In(0) = co. More in detail, we consider the following
quantale operations on [0, 1] with neutral element 1.

(1) For ® = % being the ordinary multiplication, via the isomorphism
[0,1] ~ [0, 0], this quantale is isomorphic to the quantale P, hence
0, 1]-Cat ~ Met.

(2) For the tensor ® = A being infimum, the isomorphism [0, 1] ~ [0, o]
establishes an equivalence between [0, 1]-Cat and the category of ul-
trametric spaces and non-expansive maps.

(3) Another interesting multiplication on [0, 1] is the fukasiewicz tensor
® = © given by u®v = max(0,u+v—1). Via the lattice isomorphism
[0,1] — [0,1], u — 1 — u, this quantale is isomorphic to the quantale
[0, 1] with “greater or equal” relation > and tensor u®v = min(1, u+v)
truncated addition. Therefore [0, 1]-Cat is equivalent to the category
of bounded-by-1 metric spaces and non-expansive maps. Moreover,
with respect to the “greater or equal” relation and truncated addition
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on [0, 1], the map
[0, 00] = [0, 1], w +— min(1, u)

is a surjective quantale morphism; therefore, by Lemma, , also [0, 1]
with the Lukasiewicz tensor satisfies ([5.v)).

(4) More generally, every continuous quantale structure ® on the lattice
[0,1] (with Euclidean topology and the usual “less or equal” rela-
tion) with neutral element 1 satisfies (5.v]). This can be shown us-
ing the fact, proven in [Faub5] and [MS57], that every such tensor
® : [0,1] x [0,1] — [0,1] is a combination of the three operations on
0, 1] described above. More precise:

(a) For u,v € [0,1] and e € [0, 1] idempotent with u < e < v:
u® v =min(u,v) = u.

(b) For every non-idempotent u € [0, 1], there exist idempotents e
and f with e < u < f and such that the interval [e, f] (with
the restriction of the tensor on [0, 1] and with neutral element f)
is isomorphic to [0, 1] either with multiplication or fukasiewicz
tensor.

Now let w,u,v € [0,1]. We may assume u < v. If u ® v < w, then

clearly

wAuev)=uv=\V{uav|v <uv <vd v <wl.
We consider now w < u ® v < u < v. If w is idempotent, then
w=wv, wlu vIU;

otherwise there are idempotents e and f with e < w < f and [e, f] is

isomorphic to [0, 1] either with multiplication or L.ukasiewicz tensor.

Case 1: v < f. Then the equation holds since w,u ® v,u,v €
e, f].

Case 2: f<v. Thenw=wAv=w®v, w<wuand v < v.

We conclude that [0, 1]-Cat is weakly cartesian closed, for every con-

tinuous quantale structure ® on [0, 1] with neutral element 1.

Now let V' = A be the quantale of distribution functions (see [HR13| [(CH17]
for details). As observed in [HR13], it verifies (5.v)), and so we can conclude
from Theorem that the category A-Cat of probabilistic metric spaces and
non-expansive maps is weakly cartesian closed.

When T is not the identity monad, Theorem applies only when the
extension of T to V-Rel is given by a T-algebra structure & : TV — V
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on V (so that we are dealing with a strict topological theory in the sense
of [Hof07]), which we assume from now on. In this case, the extension of
T : Set — Set to V-Rel is defined by

Tr :TX xXTY =V
r(r.0) = V{§- Tr(w) | w € T(X x Y), Trx(w) = &, Ty (w) = v}

for each V-relationr: X xY — V.

Theorem 6.2. (1) The tensor product on the quantale V' defines a (T, V)-
functor @ : VeV = V.
(2) Let uw € V satisfying u-! > & - Tu.

71 - 7V

1 s
l——V
Then (—,u) : X — X xV is a (T,V)-functor, for every (T,V)-
category X .
(8) Let u € V satisfying u-! = &-Tu. Then T(r@u) = (Tr) @u, for every
V-relationr : X +— Y.
Proof: The first assertion is [Hof1I, Proposition 1.4(1)]. To see (2)), assume
that w € V with u-! > £-Tu. Let (X,a) be a (T, V)-category, t € TX and
z € X. Considering the map X - 1% V., we have to show that

a(x, z) < a(x, z) Ahom(T (u!)(x), u),

which follows immediately from w-! > £ - Tw. Finally, to prove (3)), let
r: X = Y be a V-relation and v € V with u-! = £ - Tu. Note that
the V-relation r ® u : X + Y is given by

<1V,u-!>

XxY " Vv sV xV —2 5V

Hence, applying the Set-functor 7' to the functions r : X x Y — V and
reu: X xY —V . we obtain
E-Trou) =¢-T(®) - T(ly,u!) - Tr
=® - (& x§) - canyy ‘T (ly,ul) - Tr
=R - <f,u-! €> Tr
® - (ly,ul) - &-Tr.
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Therefore, returning to V-relations, we conclude that T'(r®@u) = (Tr)Qu. =
Remark 6.3. If T1 =1, then u-! =& - T'u for every u € V.
In order to guarantee that holds we need an extra condition on &.

Proposition 6.4. Assume that

T(A)
TV xV)—" TV
<«£-T7T1,§~T7Tz>l < lf

VXV ———V

Then, for all V-relationsr : X - X' and s : Y +— Y’,

T(XxY) S TX x TY
T(ros) i» > fTT@Ts

T(X' X Y') o TX' X TY".

Proof: First we note that, from the preservation of weak pullbacks by T, it
follows that the commutative diagram

T(A x B) "9 (X % v)

canAyBl JC&II}QY

TAXTB ——TX xTY
TfxTg

is also a weak pullback.

Let w e T(X xY), Y €e TX"and v € TY'. Put (r,y) = canxy(w).
By the definition of the extension of T" and since V is a Heyting algebra,
Tr(x,r') ANTs(y,y') is given by

\/{é-TT(mﬂ/\f.Ts(mz)‘mleT(XXX):mll_)}:’ml'—)x}.

e € T(Y X Y') : tog =5 1,105 > 1
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Note that in
TX xY xX'xY')

TX x V] (X % X x Y x YY) 22y vy 2y

can J{ can l can J

TXXTY%T(XXX)XT(YXY/)HTVXTV ¢
7T)(><T7TY TrxTs
fxsl =
V X V/\—>V

the left hand side is a weak pullback, the middle diagram commutes and
in the right hand side we have “lower path” < “upper path” as indicated.
Therefore, for such w; € T(X x X') and we € T(Y x Y’), there exists
some v € T(X x X' x Y xY’) which projects to to € T(X x Y) and to
(oy,109) € T(X x X') x T(Y x Y’). Hence, taking also into account the
definition of the V-relation T'(r ® s),

Tr(x,r') NTs(n,v')

U —to
gv{g-T(/\)-T(rxs ‘UETXXYXX’XY’) }

b= 0y
<V{T(r ®s)(,w’) | w' € T(X' xY’), canyry/(0') = (¢/,v')}. =

Remark 6.5. We note that the inequality
T(A)

T(VXV)4>TV
<@TwhsngJ > Jf
V xV - Vv

is always true.

Corollary 6.6. If the quantale V' satisfies (5.v)) and the diagrams

T(A) Tu
TVXV)————TV TT —=TV
<5Twh5ngl l& and !l Jé
VxV - 1% l——V

commute, for all w € V', then all Assumptions are satisfied.



22 M.M. CLEMENTINO, D. HOFMANN AND W. RIBEIRO

Let T be the ultrafilter monad U = (U, m,e). Then, when V is any of
the quantales listed above but A, all the needed conditions are satisfied.
Therefore, in particular we can conclude that:

Examples 6.7. (1) The category Top = (U, 2)-Cat of topological spaces
and continuous maps is weakly cartesian closed (as shown by Rosicky
in [Ros99)).

(2) The category App = (U, P,)-Cat of approach spaces and non-expansive
maps is weakly cartesian closed.

(3) In fact, for each continuous quantale structure on the lattice
([0,1], <) ~ ([0, 00],>), (U, [0, 1])-Cat is weakly cartesian closed. In
particular, the category of non-Archimedean approach spaces and non-
expansive maps studied in [CVO1T| is weakly cartesian closed.

(4) If V is a completely distributive complete lattice with ® = A, then,
with

E:UV =V e— A VA,
Aey
all needed conditions are satisfied (see [Hof07, Theorem 3.3]) and
therefore (U, V)-Cat is weakly cartesian closed. In particular, with
V = P2 being the powerset of a 2-element set, we obtain that the cat-
egory BiTop of bitopological spaces and bicontinuous maps is weakly
cartesian closed (see [HST14]).

Remark 6.8. For V = A the quantale of distribution functions, we do not
know if there is an appropriate compact Hausdorff topology & : UV — V
satisfying the conditions of this section.

Now let T be the free monoid monad W = (W, m, e). For each quantale V,
we consider

EWV =V, (v1,...,0p) H 01 Q- Quyp, () = k

which induces the extension W : V-Rel — V-Rel sending r : X + Y to the
V-relation Wr : WX -» WY given by

r(xy, Q- @ (g, yy) ifn=m
WT((Z.lv"'axn),(yl,...,ym)) = ( 1 yl) ( y) .
L if n # m.

The category (W, 2)-Cat is equivalent to the category MultiOrd of multi-
ordered sets and their morphisms (see [HST14]), more generally, (W,V)-
categories can be interpreted as multi-V-categories and their morphisms. The
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representable multi-ordered sets are precisely the ordered monoids, which
is a special case of [Her0O0, Her01] describing monoidal categories as repre-
sentable multi-categories (see also [CCHI5]). We recall that the separated
injective multi-ordered sets are precisely the quantales (see [LBKRI12] and
also [Seal(]), and we conclude:

Proposition 6.9. Fvery quantale is exponentiable in MultiOrd.

Theorem 6.10. If the quantale V is a frame (that is, @ = N), then (W, V')-Cat
is weakly cartesian closed. In particular, MultiOrd s weakly cartesian
closed.

Finally, for a monoid (H, -, h), we consider the monad H = (— x H,m,e),
with mx : X x H x H — X x H given by mx(z,a,b) = (z,a -b) and
ex : X — X x H given by ex(z) = (z,h). Here we consider

E:VxXH—=YV, (v,a) = v,

which leads to the extension — x H : V-Rel — V-Rel sending the V-relation
r: X - Y tothe V-relation r x H : X x H +— Y x H with

rx H((z,a),(y,b)) = {j_(x’y) i Z 7:& 27

In particular, (H, 2)-categories can be interpreted as H-labelled ordered sets
and equivariant maps.
For every quantale V' and every v : 1 — V', the diagrams

AX1gy vX1lyg

VxVxH—VxH 1xH—VxH
Wl,zl szm and !l Jf
V><V—>A V l——V

commute, therefore we obtain:

Theorem 6.11. For every quantale V' satisfying (5.v)), the category (H, V')-Cat
s weakly cartesian closed.
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