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ABSTRACT: More precisely, we are analyzing some of Simmons, Niefield and Rosen-
thal results concerning sublocales induced by subspaces. Simmons was concerned
with the question when the coframe of sublocales is Boolean; he recognized the
role of the axiom Tp for the relation of certain degrees of scatteredness but did
not emphasize its role in the relation between sublocales and subspaces. Niefield
and Rosenthal avoided discussing this condition altogether. In this paper we show
that the role of Tp in this question is crucial. Concentration on the properties of
Tp-spaces and technique of sublocales in this context allows us to present a simple,
transparent and choice-free proof of the scatteredness theorem.
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Introduction

A topological space X, more precisely its associated frame (X)) of open
sets, has typically more natural subobjects (sublocales) than subspaces. The
first result concerning the question when every sublocale is (induced by) a
subspace was presented by Simmons in [11]. More precisely, Simmons proved
a necessary and sufficient condition for the lattice of sublocales being Boolean
which is slightly different: if sublocales are in a one-to-one correspondence
with subspaces (subsets) they do form a Boolean algebra, while the other
implication does not hold. Later, Niefield and Rosenthal in [7] treated more
directly the question of every sublocale being spatial and gave a characteri-
zation of the respective frames. In both cases, however, the question of the
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one-to-one correspondence between subspaces and sublocales is somehow cir-
cumvented. While, as we have already pointed out, typically one has more
sublocales than subspaces, there are already cases when there are less sublo-
cales than subspaces. Namely, it turns out that unless the space in question
satisfies a certain very weak separation condition T, representation of sub-
spaces of X by sublocales of 2(X) is imperfect: distinct subspaces can induce
the same sublocale (it should be noted that in [11], Tp does appear — under
the name of Tz — in the discussion of “degrees of scatteredness”; in [7] it is
avoided).

In this paper we present a proof of the fact that for a Tp-space X, the
sublocales are in a one-to-one correspondence with subspaces iff the X is
scattered (without T it cannot be). Consequent use of properties of Tp-
spaces and the sublocale technique makes the proof simpler, and we think
more transparent, than those in [11, 7]. Also, since we do not need the
concept of a minimal prime (and that of an essential one) we can do without
a choice principle.

1. Preliminaries

1.1. Notation. A join (supremum) of a subset A C (X, <), if it exists, will
be denoted by \/ A, and we write a V b for \/{a,b}; similarly we write / A
and a A b for meets (infima).
The smallest element of a poset (the supremum \/ (), if it exists, will be
denoted by 0, and the largest one (the infimum A () will be denoted by 1.
An element p € X is prime if a Ab = p implies a = p or b = p (in a
distributive lattice this is equivalent with a Ab < p implying a < p or b < p).

1.1.1. Adjoint maps. If X, Y are posets we say that monotone maps f: X —
Y and ¢g: Y — X are adjoint, f to the left and g to the right, if

flx) <y e z<gy).

Recall that this is characterized by the pair of inequalities fg(y) < y and
r < gf(x), and that f resp. g preserves all the existing suprema resp. infima.
Furthermore, if X and Y are complete lattices then a monotone map f: X —
Y preserves all suprema iff it is a left adjoint, and a monotone map g: ¥ — X
preserves all infima iff it is a right adjoint.
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1.2. The category of frames. Recall that a frame is a complete lattice L
satisfying the distributivity rule

(VA Ab=V\{aAb|ac A} (frm)

for all A C L and b € L, and that a frame homomorphism h: L — M
preserves all joins and all finite meets. The resulting category is denoted by
Frm.

A coframe satisfies (frm) with the roles of joins and meets reversed.

1.2.1. The equality (frm) states, in other words, that for every b € L the
mapping — Ab = (z — x Ab): L — L preserves all joins (suprema). Hence
every — A b has a right Galois adjoint resulting in a Heyting operation —
with

aNb<c iff a<b—ec

Thus, each frame is a Heyting algebra (note that, however, the frame homo-
morphisms do not coincide with the Heyting ones so that Frm differs from
the category of complete Heyting algebras). The operation — and some of
its basic properties (e.g. a >a =1, a—b=1iff a < b, 1 - a = a, and
a— (b — ¢) = (a Ab)—c) will be used in the sequel (see [8, Appendix 1] for
more information).

1.3. The concrete category Loc. The functor 2: Top — Frm from the
category of topological spaces and continuous maps into that of frames (Q(f)
sending an open set U C Y to f~![U] for a continuous map f: X — Y in
Top) is a full embedding on an important and substantial part of Top,
the subcategory of sober spaces. This justifies to regard frames as a natural
generalization of spaces. Since €2 is contravariant, one introduces the category
of locales Loc as the dual of the category of frames. Often one just considers
the formal Frm® but it is of advantage to represent it as a concrete category
with specific maps as morphisms. For this purpose one defines a localic map
f: L — M as the (unique) right Galois adjoint of a frame homomorphism
h = f*: M — L. This can be done since frame homomorphisms preserve
suprema; but of course not every mapping preserving infima is a localic one.
We refer to [8] for more information about the category of locales.

1.4. Sublocales. A sublocale of a frame L is a subset S C L such that

(1) M C S implies A M € S, and
(2)ifae L and s € S thena — s € S.
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The system
S(L)
of all sublocales of L is a co-frame, with the lattice operations
ASi=S and \ Si={ANA|AC S}
1eJ 1eJ 1eJ 1€J
The top element of S(L) is L and the bottom is the sublocale O = {1} (the
empty sublocale).

1.4.1. Sublocales just defined are a natural representation of subobjects in
the category of locales (indeed S is a sublocale of L iff the imbedding map
j: S C L is an extremal monomorphism in the category Loc). Equivalently
we can represent subobjects of frames (locales) as frame congruences E on
L (the sublocale as above is then the adjoint to the quotient frame homo-
morphism L — L/FE); yet another representation is that by nuclei (see e.g.
[5, 8]).

1.4.2. Important special sublocales. For any a € L we have a sublocale

b(a) ={z—a|xeL}.

From the standard properties of the Heyting operation we immediately see
that it is really a sublocale; and obviously it is the smallest sublocale con-
taining a. One has that (see e.g. [8, I11.10])

the b(a)’s are precisely the Boolean sublocales of L.

Other sublocales we will work with are the points
p=A{p,1}

with p prime elements of L. These are precisely the sublocales with exactly
two elements (with exactly one non-trivial element).

Remark. Typical points of a frame Q(X) are the X ~ {z}. Note that there
may be others (a space is sober if there are only these), but they suffice for
the representations in Section 2.

1.5. Proposition. Let L be a distributive lattice and let a € L be comple-
mented. Then, for any supremum \/ x;, we have a AN \/ z; = \/(a A z;), and
for any infimum A x; we have a vV \x; = N(a V ;).

In particular, in any co-frame we have, for any complemented a,

aAN\z,=\(aAx;)

although this (frame) distributivity does not generally hold.
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Proof: If @’ is the complement of a we easily check that aAx < biff z < a’Vb.
Thus for any complemented a, (z +— a A z) is a left adjoint and (x — a V )
is a right adjoint. Use 1.1.1. |

1.6. The axiom Tp. In [1] the authors studied separation axioms between
Ty and Ti. In among them, particular importance gained the

Tp: for every x € X there is an open set U > x such that U \ {z} is still
open

(and hence U ~ {z} = U ~ {z}). We will need the following two facts from
3]-

1.6.1. Lemma. Let X satisfy Tp. Then every (X ~ {z}) U {x} is open.

Proof: (X ~ {z}) U {x} is obviously a neighborhood of every y € X ~ {z}.
But it is also a neighborhood of z: indeed choose an open U > x such that

U~ {z} =U~ {z}. Then
teU=U~{)u{z}=U~{zhufa} c (X~ {zhu{z}. =

1.6.2. Proposition. Let X satisfy Tp. Then the primes p = X ~ m are
covered, that is, if p = N\,.; Ui then p = Uy, for some k € J, not only for
finite J but for arbitrary ones (cf. [4]).

Proof: Let p = X\{aj} C U for an open U. Then thereisay € U~ (X~{z}),
hence y € U and y € {z} so that z € U and (X ~ {z}) U {z} C U. Hence
either X \ {z} = U; for some i or all the U; contain the open (X ~ {z})U{z}
and hence A, ; U; = int([),.; U;) is not p. m

Concerning terminology, it should be pointed out that the elements p such
that p = A,c,; implies p = x; for some i € J were referred to in [3]
as completely prime. That term, however, is generally taken to mean that
p < A;eyz; implies p < z; for some ¢ € J. Note that in an arbitrary space
X, a prime X ~ {z} is of the latter type iff z € A{U | U € Q(X),z € U}.
In particular, if « is isolated (that is, {z} is open) then X ~ {z} is always
completely prime.

Regarding the relationship between these two notions, any completely
prime p is clearly a covered prime, but not conversely: in the topology of
a Ti-space X, any X \ {z}, x € X, is obviously a covered prime but the
complete primes are only the X ~\ {z} with isolated x € X ([4, Remark 1]).
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1.7. Scattered and weakly scattered spaces. A space X is said to be
scattered if for every non-empty closed set A there is an isolated point a € A,
that is, there is an @ € A and an open U > a such that

UNA=/{a}.

It is weakly scattered (or corrupted [11]), if for every non-empty closed set A
there is an a € A and an open U 2 a such that

UnAC{al.
1.7.1. Observation. A Tp-space is scattered iff it is weakly scattered.

Proof: Consider an a € A and an open U 3 a such that U N A QE and
an open V' 3 a such that V \ {a} is open, that is, V \ {a} =V ~ {a}, and
hence

VnUu)nAcvn{al=(V~{a)U{a})n{a}={a}. =

2. Induced sublocales

2.1. Consider a space X and a subspace Y C X. then the embedding
j:Y C X is represented by the frame homomorphism

Q) =U—UNY): QX) = QYY)
and hence the frame congruence associated with Y is given by
Oy ={(U, V)| UNnY =VnNY}
It is easy to see that the localic map adjoint to €2(7) is given by
E(V)=int(X \NY)uV)

(since UNY CViff U C (X \NY)NV and U is open). Hence the sublocale
induced by Y is

Sy = E[QY)] ={int((X \Y)UV) | Vopenin Y} =
={int(X~Y)UUNY))|UeQX)}

The sublocale Sy is said to be induced by Y.
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2.2. One thinks of frames (locales) as of generalized spaces and this view is
basically right; at least for the so called sober spaces the frame Q(X) contains
all the information about X. One can surmise that this concerns also the
structure of induced sublocales as above, that is, that when thinking of the
locale Q2(X) as of (a representation of) X, the induced sublocales can be
thought of as (a representation of) the subspaces (we are not speaking of the
fact that there may be also new entities, the non-induced sublocales; they
enrich the theory and are very useful). But it is not in general so. Take, e.g.,
a non-Tp space X and an x € X such that no U \ {z} with U > «x is open.
Then UN(X N {z}) = VN (X~ {z}) only if U = V and hence Sx (3 = Sx.

We say that the representation S — Sy of subspaces is precise if it consti-
tutes a one-to-one correspondence between subspaces and induced sublocales.
One has the following (see e.g. [8, 2, 6]):

2.2.1. Proposition. Induced sublocales constitute a precise representation
of subspaces of X iff X is Tp.

Note. A mechanism of this fact useful for our purposes will be apparent in
3.2 below.

2.3. Representations of points. Denote by px, (briefly p,) the prime
X Az} in Q(X).

2.3.1. Lemma. Let Y be a subspace of X. We have k(py,) = px,,.

Proof: We immediately see that for @Y, the closure in Y,
—Y [ R
YAy =Y ~({y}nY)=Y{y}.

Obviously (X \Y) U (Y \ {y}) 2 X N {y} and if for an open U, U C
(XNY)U (Y N {y}) then U € X \ {y} (otherwise there were a z € U with
z € {y}, but then y € U and y is neither in X \Y nor in Y \ {y}). u

2.4. Proposition. Let Y be a subspace of X. Then
Sy = Vi{bxy [y €Y}

Proof: Recall the formula for the joins of sublocales from 1.4. The elements
of the right hand side are the meets

U=NX~{y} |lyecAACY =int( X~ {y} |yec A, ACY]
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Now if U is the interior as above we have, first, for every y € A also U C
X~ {y}, which is the same as y ¢ U, and, hence, whatever the A was, U is
also the interior of ({{X ~{y} | y ¢ U}. Now we have

X~ {} Iy e Uy S{X N {y} |y ¢ U}
but for an open V we have V' C X ~ {y} iff V C X ~\ {y} and hence

int( X~ {y} |yeY U=t {X~{y} |yeY U} =
=int(X N (Y\NU)) =int(X \Y)u (Y nU)).
Compare this with the formula for K in 2.1. |

2.5. Now from 2.3 and 2.4 we can conclude that
A sublocale S of QX)) is induced iff S = \/{Px. | px.€ S}.

3. The main theorem

3.1. Recall the notation p, = X \m from 2.3 (the X in px , will be always
the same and hence we can use the shorter notation), and p from 1.4.2. Also
recall from 1.6.2 that if X is Tp then every p, is a covered prime element.

3.2. Lemma. Let L = Q(X) with X a Tp-space and suppose that, for every
sublocale S C L,

S =V{p: | p €S} (3.2.1)
Then
S—ulS)={z|p. €S}, Mw—yM)=\V{p. |z M}
is a one-to-one correspondence between S(L) and P(X).
Proof: ~v(u(S)) = S is in (3.2.1). Next, obviously M C pu(y(M)); on the

other hand, if p, € v(M) = \/{p, | * € M} then p, = A, p. for some
A C M and therefore there is an € A C M such that p, = p,. |

3.3. Definition. A prime p in a frame L is a-regular if p = (p—a) —a.

3.3.1. Lemma. If L = Q(X) with X a Tp-space and if S(A(X)) is Boolean
then every a 1s a meet of a-reqular elements.

Proof: As each sublocale, also b(a) (recall 1.4.2) is complemented, and hence
by 1.5

b(a) - b(a) N V{ﬁx ‘ Dz € L} — V{ﬁm ‘ Dz € b(a)}7
and a € b(a). m
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3.4. Proposition. Let L = Q(X) with X a Tp-space. Then S(L) is Boolean
iff for each a € L, a # 1, there is an a-reqular element.

Proof: 1. If S(L) is Boolean then, in particular, a is by 3.3.1 a meet of a-
regular elements, and since a # 1, this meet is non-void.
IT. Let the statement hold and let S C L be an arbitrary sublocale. For an
a € S set

a/:/\{px ‘ a < Py GS}
We have to prove that a = o’ (then (3.2.1) holds and S(L) = B(X) is

Boolean).
If not, we have a < o’ and b = o’ — a # 1, and there exists a b-regular
element p. Since a € b(a), b =a'—a € b(a) and as p € b(b) C b(a) we have

a < p and by the definition of a’, ' < p. Thus,
p—=b=p—(d—a)=pAd)—>a=d—a=0h,
and p= (p—b)—b=>b—b =1, a contradiction. |

3.4.1. Remark. Note that we have used only the fact that the Boolean
(minimal) sublocales are complemented.

3.5.1. Lemma. An open U # X € Q(X) has a U-reqular X ~ {z} iff for
A= X \U there is an element v € A such that

re(XNAN{z)NA (3.5.1)
Proof: We need an x such that
UCX~{z} and (X~{2})=U)=UCX~{z}
(the latter is the essential inclusion from the equality). In other words,
¢ Uthatis, € A and z¢ (X~ {z})=U)=U. (%)

We have V — U = int((X ~ V) UU), hence (X ~ {z}) = U = int({z} UU)
and
((X\{a:_})—>U)—>U:int({7}UU)—>U:

nt((X < int({z} UU)UU) =
—int (X~ ({z}UD) UU)

(
(
mt(X\{:U} X\U)UU)
= int <A\{$}U X\A))



10 J. PICADO AND A. PULTR
Thus, () transforms to stating that there is an € A such that
r ¢ int <A\@U(X\A)>,

that is,

ze(XNAN{z})NA.
We will show that the x is in fact in the set under closure. First, observe
that _ o
(X NANA{z})NnAC{z}.

Indeed, if a € (X~ A~ {z}) thena ¢ A~ {z} and hence a ¢ (A~ {z}), that

is, a € {z} (and A is closed). Now denote for a moment V = X ~ A~ {z}.
We have V-1 A # () (since it has a non-empty closure); and hence = ¢ V
makes {} NV = () and a contradiction ) £ ANV C {x} C X V. m

3.5.2. Lemma. A space X satisfies (3.5.1) for every non empty A if and
only if it is weakly scattered.

Proof: 1. If (3.5.1) holds for a non-empty A set V = X . A~ {z} to obtain
reVNAC{z}.

II. Now let X be weakly scattered and let ) # A C X. Choose an open V
such that € VN A C {z} Thus we have

D=VNAN(X~{z})=Vn(A~{z}),
and hence = € (X ~ A~ {z}) N A. m

3.5.3. Theorem. Let X be a Tp-space. Then the following statements are

equivalent:

(1) S(2(X)) is Boolean.

(2) All sublocales of Q(X) are induced and precisely represent subspaces of
X.

(3) X is scattered.

(4) Each Boolean (that is, minimal) sublocale is complemented.

Proof: Follows immediately from 3.5.2, 3.4, 3.2, 3.4.1 and 1.7.1. |

3.5.4. Note. Since T is a necessary condition for the precise representa-
tion, the preceding theorem can be reformulated to a (perhaps more elegant)
statement that
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All sublocales of 2(X) are induced and precisely represent sub-
spaces of X if and only if X is Tp and scattered.

The results of [11] and [7] concern the booleanness even for the non-T} case
and the not necessarily precise representation of subspaces by sublocales.
Thus, the scope is broader while, on the other hand, the nature of the repre-
sentation of subspaces by sublocales is not quite specified. If we wish to have
this precise, Ty is a condition sine qua non. Furthermore, however, having to
assume this axiom makes the situation much simpler because of the covered
primeness of the X . {z}.

Let us point out that the importance of the axiom T in point-free topology,
in particular in fitting together spatial and point-free facts, is sometimes
underestimated. It appeared, first, in [1], in a technical context. But in the
same year, in [12], one of the authors proved that under this condition the
lattice of open sets determined the space (one of the first results of this kind).
It can be claimed that the importance of T is in the rank of that of sobriety.
The two properties are closely related, in fact they are, in a sense, dual to
each other (see [3, 6] and also the exercise in [5, I1.1.7]): while sobriety states
that one cannot add a point without changing the topology, Tp asserts that
one cannot subtract a point. And the fact crucial in this paper, namely that
Tp is equivalent with precise representation of subspaces by sublocales can be
viewed in the general setting as similarly important as the sobriety standing
for precise representation of continuous maps by localic ones ([5, 9]).

Note. While working on the present paper we learned the sad news that
Harold Simmons, the author of the fundamental theorem discussed here,
passed away. He was a great and resourceful mathematician, and a very nice
person. Since we are working, mostly, in point-free topology, we would like
to mention, besides the scatteredness theorems, and among his many other
achievements, also his role in the development of separation theory, notably
in subfitness (“conjunctivity” [10]). He will be missed.
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