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1. Introduction
Iterated distributions were introduced by Averous and Meste [2], in or-

der to construct a classification of lifetime distributions, and were initially
studied in a more systematic way by Fagiuoli and Pellerey [6]. The itera-
tion procedure described below produces what is also known as equilibrium
distributions in economics or actuarial activities, since they describe the dis-
tribution of the first drop below the initial reserve. Moreover, equilibrium
distributions play an important role in ageing relations (see, for example,
Chatterjee and Mukherjee [3]) or in renewal theory (see Cox [5]). A suitable
representation of the iterated distributions describes their tails as normalized
moments of stop-loss risk premiums with a given deductible, a common type
of contract in actuarial activity, with interest to the characterization of ruin
probabilities and insolvency. We obtain a characterization of the asymptotics
of these moments, with respect to their order, for initial random variables
with distribution in the Gamma or Weibull families. These results provide
simple numerical approximations for the stop-loss premiums.

Let us describe our framework and introduce the basic notation and trans-
formations. We will be assuming throughout that X is a nonnegative random
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variable with density function fX , distribution function FX , and tail function
FX = 1− FX .

Definition 1. For each x ≥ 0, define

TX,0(x) = fX(x) and µ̃X,0 =

∫ ∞
0

TX,0(t) dt = 1. (1)

For each s ≥ 1, define the s−iterated distribution induced by X, TX,s by its
tail TX,s = 1− TX,s as follows:

TX,s(x) =
1

µ̃X,s−1

∫ ∞
x

TX,s−1(t) dt where µ̃X,s =

∫ ∞
0

TX,s(t) dt, (2)

assuming the integrals above are finite.

The distribution TX,2 is known as the equilibrium distribution of X. Hence,
the iteration process above defines, for each s ≥ 1, the equilibrium distribu-
tion TX,s of a random variable with tail TX,s−1. Thus, the iteration procedure
given in Definition 1 may be restated in terms of the iterated equilibrium dis-
tribution.

Definition 2. The (s − 1)−iterated equilibrium distribution of X has tail
given by TX,s, that is, the s−iterated distribution induced by X described in
Definition 1.

Taking into account this identification, we shall refer throughout to iterated
distributions instead of iterated equilibrium, as these only differ on the count
of the iteration steps.

It is easily verified that the s−iterated distribution induced by an expo-
nential random variable X is exactly the same exponential distribution as
X. That is, the exponential distributions are fixed points with respect to
the iteration procedure introduced in Definition 1. Moreover, it is also easily
verified that explicit identification of the iterated distributions may become
in general quite complex once we leave the case of X being exponentially
distributed.

As already mentioned, iterated distributions were used by Averous and
Meste [2] to classify the distribution of X with respect to its tail behavior.
General properties of the iterated distributions were studied in Fagiuoli and
Pellerey [6] and Nanda et al. [10], but to the best of our knowledge, the
behavior of the iterated distributions with respect to the iteration step has
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not been studied before. In this paper, we will be mainly interested on this
behavior of iterated distributions as the iteration step grows.

Although the iterated distributions are defined in a recursive way, the fol-
lowing theorem gives a useful closed form representation.

Theorem 3 (Lemma 2 and Remark 3 in Arab and Oliveira [1]). Assume X is
an absolutely continuous nonnegative random variable with finite moment of
order s−1 for s = 1, 2, . . .. Then the s−iterated tail TX,s may be represented
as

TX,s(x) =
1

EXs−1

∫ ∞
x

fX(t)(t− x)s−1 dt =
1

EXs−1
E(X − x)s−1

+ , (3)

where (X − x)+ = max(0, X − x) is the residual lifetime at age x.

Remark 4. It follows from (3) that the s−iterated distribution may be in-
terpreted as a normalized survival moment of order s − 1. It is also worth
mentioning that (3) means that, up to a normalizing factor, the s−iterated
distribution is the stop-loss transform of order s−1, E(X−x)s−1

+ , a common
quantity of interest in actuarial models (see, for example, Cheng and Pai [4],
Nair et al. [8], Tsai [12] or Rachev and Rüschendorf [11], among many other
references).

Although Theorem 3 provides a closed representation for TX,s, it does not
seem to be very helpful for actual calculations. An illustrative example, that
we will be exploring in detail later, is obtained by assuming that X has
distribution in the Gamma or Weibull families, which are important classes
of distributions in many different research fields such as reliability theory.

The paper is organized as follows: In Section 2, we provide a formula
for the higher order moments of the iterated distributions. In Section 3, a
recursive representation for the high order iterated distributions of a con-
volution is obtained and this result is used to find an expression for the
iterated distributions of a random variable that is Gamma distributed with
integer shape parameter. In Section 4, we derive an explicit expression for
the s−iterated distribution of a Gamma distributed random variable, still
assuming the shape parameter is an integer and furthermore, we study the
limit behavior of the iterated distribution as the iteration step tends to in-
finity, now for general shape parameter. Finally in Section 5, we identify the
limit behavior for the iterated distributions induced from the Weibull family
of distributions.
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2. Moments of iterated distributions
We shall start by a characterization of the moments of iterated distribu-

tions. First, remark that the normalizing constants µ̃X,s in (2) are obviously
the mathematical expectation of the s−iterated distributions. These first or-
der moments have been characterized, in terms of moments of the inducing
random variable, in Corollary 2.1 by Nanda et al. [9]:

µ̃X,s =
1

s

EXs

EXs−1
. (4)

The following result extends (4), characterizing higher order moments of
the iterated distributions.

Proposition 5. Assume X is an absolutely continuous nonnegative random
variable with finite moment of order m + s − 1, where m ≥ 1 and s ≥ 2.
Then the s−iterated distribution induced by X has a finite moment of order
m given by

µs,m =

(
m+ s− 1

m

)−1 EXm+s−1

EXs−1
.

Proof : It follows from (2) that the s−iterated distribution has density
1

µ̃X,s−1
TX,s−1. So, using the first representation for TX,s−1 in (3), we have

µs,m =
s− 1

EXs−1

∫ ∞
0

∫ ∞
x

xm(t− x)s−2f(t) dt dx.

By inverting the integration order, we easily find that

µs,m =
s− 1

EXs−1

∫ ∞
0

∫ t

0

xm(t− x)s−2f(t) dx dt

=
s− 1

EXs−1

Γ(m+ 1)Γ(s− 1)

Γ(m+ s)

∫ ∞
0

tm+s−1f(t) dt,

where Γ is the Euler function, which leads to the desired result.

The following description for the variance of iterated distributions is now
straightforward.

Corollary 6. Assume X is an absolutely continuous nonnegative random
variable with finite moment of order s + 1. The variance of the s−iterated
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distribution induced by X is

σ2
s =

1

s

EXs

EXs−1

(
2

s+ 1

EXs+1

EXs
− 1

s

EXs

EXs−1

)
.

As mentioned earlier, the exponential distributions are fixed points for the
iteration procedure, so one could expect to have iterated distributions con-
verging to the exponential. The above corollary shows that this may not
happen. Indeed, it follows immediately that if the quotient EXs

EXs−1 is bounded
with respect to s ≥ 1, then lims→+∞ σ

2
s = 0, implying that the equilibrium

distributions are, in such cases, converging to a degenerate distribution. We
will prove later that the Weibull distributions satisfy this asymptotic degen-
eracy.

3. Iterated distribution of convolutions
Summing independent random variables is a common way to introduce new

families of distributions, appearing as convolution powers built upon some
initial distribution. With this in mind, we shall derive a characterization for
the iterated distribution for the n-th convolution power based on expressions
for the (n − 1)-th convolution power. For this purpose, it is convenient
to describe the distribution in terms of their densities rather than using
distribution functions. Of course, as follows from Definition 1, the density
fs for the s−iterated distribution is, up to multiplication by a constant, the
tail for the (s− 1)−iterated distribution:

fs(x) =
1

µ̃X,s−1
TX,s−1(x) = (s− 1)

E(X − x)s−2
+

EXs−1

=
(s− 1)

EXs−1

∫ ∞
x

(t− x)s−2f(t) dt.

(5)

In the sequel, we will be representing the convolution of density functions by
∗ defined as follows:

f ∗ g(x) =

∫ x

0

f(t)g(x− t) dt.

Moreover, the expression fn∗ will represent the n-th convolution power of a
density function f .
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Theorem 7. Let X1, . . . , Xn be nonnegative i.i.d random variables with the
same distribution as X and define Sn = X1 + · · · + Xn. For every s, n ≥ 2,
the density of the s−iterated distribution induced by Sn is given by

fn∗s (x) =
µ

(n−1)∗
s−1

µn∗s−1

f ∗ f (n−1)∗
s (x) +

1

µn∗s−1

s−1∑
`=1

(
s− 1

`

)
µ

(n−1)∗
s−`−1 µ`f`+1(x), (6)

where µn∗s = ESsn and µs = EXs.

Proof : Using (5) for the n-th convolution power and reversing the integration
order, we find that

fn∗s (x) =
(s− 1)

µn∗s−1

∫ ∞
x

(t− x)s−2fn∗(t) dt

=
(s− 1)

µn∗s−1

∫ ∞
x

(t− x)s−2

(∫ t

0

f(u)f (n−1)∗(t− u) du

)
dt

=
(s− 1)

µn∗s−1

∫ x

0

f(u)

(∫ ∞
x

f (n−1)∗(t− u)(t− x)s−2 dt

)
du

+
(s− 1)

µn∗s−1

∫ ∞
x

f(u)

(∫ ∞
u

f (n−1)∗(t− u)(t− x)s−2 dt

)
du

=
(s− 1)

µn∗s−1

∫ x

0

f(u)

(∫ ∞
x−u

f (n−1)∗(v)(v + u− x)s−2 dv

)
du

+
(s− 1)

µn∗s−1

∫ ∞
x

f(u)

(∫ ∞
0

f (n−1)∗(t)(t+ u− x)s−2 dt

)
du

= I1 + I2. (7)

We rewrite I1 as

I1 =
(s− 1)

µn∗s−1

∫ x

0

f(u)
µ

(n−1)∗
s−1

(s− 1)
f (n−1)∗
s (x− u) du

=
µ

(n−1)∗
s−1

µn∗s−1

f ∗ f (n−1)∗
s (x).

(8)
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As what regards I2, we have that

I2 =
(s− 1)

µn∗s−1

∫ ∞
x

f(u)

(∫ ∞
0

f (n−1)∗(t)(t+ u− x)s−2 dt

)
du

=
(s− 1)

µn∗s−1

∫ ∞
x

f(u)

(
s−2∑
`=0

(
s− 2

`

)
(u− x)`

∫ ∞
0

ts−2−`f (n−1)∗(t) dt

)
du

=
(s− 1)

µn∗s−1

∫ ∞
x

f(u)

(
s−2∑
`=0

(
s− 2

`

)
(u− x)`µ

(n−1)∗
s−2−`

)
du

=
(s− 1)

µn∗s−1

s−2∑
`=0

(
s− 2

`

)
µ

(n−1)∗
s−2−`

∫ ∞
x

(u− x)`f(u) du

=
(s− 1)

µn∗s−1

s−2∑
`=0

(
s− 2

`

)
µ

(n−1)∗
s−2−`

µ`+1

`+ 1
f`+2(x)

=
1

µn∗s−1

s−1∑
`=1

(
s− 1

`

)
µ

(n−1)∗
s−1−` µ`f`+1(x). (9)

The conclusion (6) now follows by combining (7), (8) and (9).

The result above provides a recursive formula for the high order iterated
distributions of the convolution fn∗(x). A simple application is given next,
identifying explicitly the iterated distributions induced by integer shape pa-
rameter Gamma distributions.

Example 8. The Γ(2, λ) is the 2-nd convolution power of the exponential
distribution with hazard rate λ, whose density function is f(x) = λe−λx, for
x ≥ 0. With the notation introduced above, the density function g(x) of
the Γ(2, λ) distribution is represented as g(x) = f 2∗(x), hence the s−iterated
distribution induced by the Γ(2, λ) distribution has density gs(x) = f 2∗

s (x),
and we may use (6) to obtain a recursive representation.

As the exponential is a fixed point for the iterative procedure introduced in
Definition 1, we have f 1∗

s (x) = fs(x) = f(x) = λe−λx, therefore µ1∗
s−1 is the

moment of order s− 1 of an exponential random variable with hazard rate λ,

that is, µ1∗
s−1 = (s−1)!

λs−1 . Moreover, as the 2-nd convolution power is the Γ(2, λ),
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we also know that µ2∗
s−1 = Γ(s+1)

λs−1 = s!
λs−1 . Furthermore,∫ x

0

f(t)f 1∗
s (x− t) dt =

∫ x

0

λe−λtλe−λ(x−t) dt = λ2

∫ x

0

e−λx dt = λ2xe−λx

and

1

µn∗s−1

s−1∑
`=1

(
s− 1

`

)
µ

(n−1)∗
s−`−1 µ`f`+1(x) =

λs−1

s!

s−1∑
`=1

(
s− 1

`

)
(s− `− 1)!

λs−`−1

`!

λ`
λe−λx

=
λ(s− 1)

s
e−λx.

Hence, the s−iterated distribution induced by the Γ(2, λ) distribution has
density

gs(x) = f 2∗
s (x) =

1

s
λ2xe−λx +

s− 1

s
f(x). (10)

This approach may be extended to general Gamma distributions with inte-
ger valued shape parameter. The argument goes along the same line, needing
some extra effort on the manipulation of some combinatorial sums. We first
state an auxiliary combinatorial lemma that is useful for obtaining the results
that follow.

Lemma 9. For every m, k ≥ 1, we have that
m∑
j=0

(
k + j

k

)
=

(
k +m+ 1

m

)
.

Proof : This follows easily by induction on m.

Proposition 10. Let X be a random variable with distribution Γ(n, λ), and
f(x) = λe−λx be the density of an exponential distribution with hazard rate
λ > 0. For every s, n ≥ 2, the density function of the s−iterated distribution
induced by X is

gs(x) = fn∗s (x) =
n− 1

n+ s− 2
f ∗ f (n−1)∗

s (x) +
s− 1

n+ s− 2
f(x). (11)

Proof : As gs(x) = fn∗s (x), we will use the recursive representation from The-
orem 7. Note that the moments of convolutions µn∗s−1 are just the moments
of order s− 1 of the Γ(n, λ) distribution. Hence

µn∗s−1 =
1

λs−1

(n+ s− 2)!

(n− 1)!
and

µ
(n−1)∗
s−1

µn∗s−1

=
n− 1

n+ s− 2
. (12)
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Furthermore,

1

µn∗s−1

s−1∑
`=1

(
s− 1

`

)
µ

(n−1)∗
s−`−1 µ`f`+1(x)

=
(n− 1)!λs−1

(n+ s− 2)!

s−1∑
`=1

(
s− 1

`

)
Γ(n+ s− `− 2)

Γ(n− 1)λs−`−1

`!

λ`
λe−λx

= (n− 1)λe−λx
s−1∑
`=1

(
s− 1

`

)
`!

(n+ s− `− 3)!

(n+ s− 2)!

= (n− 1)
λe−λx

n+ s− 2

s−1∑
`=1

(s− 1)!

(s− 1− `)!
(n+ s− (`+ 3))!

(n+ s− 3)!

=
(n− 1)λe−λx

(n+ s− 2)

1(
n+s−3
n−2

) s−1∑
`=1

(
n+ s− `− 3

n− 2

)
=

(s− 1)

(n+ s− 2)
f(x), (13)

where the last equality follows by applying Lemma 9. The proof is concluded
by rewriting (6) taking into account (12) and (13).

The representation just proved in Proposition 10 allows for a first charac-
terization of the behavior of the iterated distributions as the iteration step
goes to +∞.

Corollary 11. Let X be a random variable with distribution Γ(n, λ). Then,
for each x ≥ 0 fixed, lims→+∞ gs(x) = f(x), where f(x) is the density of an
exponential distribution with hazard rate λ.

Proof : The proof follows easily by observing that the convolution that ap-
pears in the first term on the right hand side of (11) is bounded by λ. Allowing
s to tend to +∞ we have the desired result.

One could prefer to have a recursive characterization for the density of the
s−iterated distribution involving only elementary operations, that is, avoid-
ing convolutions on the recursive expression. This can be obtained by iter-
atively using (6) to describe the (n − 1)-th convolution power that appears
in the right-hand side of (6). We apply this technique for random variables
that are Gamma distributed and this leads to a long algebraic manipulation
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proving the representation given below. Note that the iterated distributions
induced by the Gamma family will be studied with a more explicit approach
in the next section.

Proposition 12. Let X be a random variable with distribution Γ(n, λ), with
λ > 0, and let n ≥ 2. Then,

µn∗s−1f
n∗
s (x)− µ(n−1)∗

s−1 f (n−1)∗
s (x)

=
(s− 1)!

λs−1

(
λn−1xn−2

(n− 2)!
e−λx

(
λx

n− 1
− 1

)
+ 1

−
(
n+ s− 4

s− 2

)
+ e−λx

n−2∑
k=2

(
s+ k − 2

k

)
λn−kxn−k−1

(n− k − 1)!

)
.

Proof : In order to obtain an alternative to the characterization in Proposi-
tion 10 without convolutions, let us pick up from the expression in Theorem 7
which can be written as

µn∗s−1f
n∗
s (x) = µ

(n−1)∗
s−1 f ∗ f (n−1)∗

s (x) +
s−1∑
`=1

(
s− 1

`

)
µ

(n−1)∗
s−`−1 µ`f`+1(x). (14)

We may rewrite this for the (n− 1)-fold convolution, to get

µ
(n−1)∗
s−1 f (n−1)∗

s (x) = µ
(n−2)∗
s−1 f ∗ f (n−2)∗

s (x) +
s−1∑
`=1

(
s− 1

`

)
µ

(n−2)∗
s−`−1 µ`f`+1(x).

The first term on the right in (14) may be written as f ∗(µ(n−1)∗
s−1 f

(n−1)∗
s )(x), so

it can be replaced by the previous expression to find, after a rearrangement
of the terms:

µn∗s−1f
n∗
s (x) = µ

(n−2)∗
s−1 f 2∗ ∗ f (n−2)∗

s (x)

+
s−1∑
`=1

(
s− 1

`

)
µ`

(
µ

(n−2)∗
s−`−1 f ∗ f`+1(x) + µ

(n−1)∗
s−`−1 f`+1(x)

)
.
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Again, we apply (14) to the first term on the right-hand side above. So,
iterating this substitution, we finally get the representation:

µn∗s−1f
n∗
s (x) = µs−1f

(n−1)∗ ∗ fs(x)

+
s−1∑
`=1

(
s− 1

`

)
µ`

(
µs−`−1f

(n−2)∗(x) + µ2∗
s−`−1f

(n−3)∗(x)

+ · · ·+ µ
(n−2)∗
s−`−1 f(x) + µ

(n−1)∗
s−`−1

)
∗ f`+1(x).

(15)

We may, of course, rewrite the representation above for (n − 1)-fold convo-
lution:

µ
(n−1)∗
s−1 f (n−1)∗

s (x) = µs−1f
(n−2)∗ ∗ fs(x)

+
s−1∑
`=1

(
s− 1

`

)
µ`

(
µs−`−1f

(n−3)∗(x) + µ2∗
s−`−1f

(n−4)∗(x)

+ · · ·+ µ
(n−3)∗
s−`−1 f(x) + µ

(n−2)∗
s−`−1

)
∗ f`+1(x),

(16)

from which follows that

µn∗s−1f
n∗
s (x)− µ(n−1)∗

s−1 f (n−1)∗
s (x)

= µs−1

(
f (n−1)∗ − f (n−2)∗

)
∗ fs(x)

+
s−1∑
`=1

(
s− 1

`

)
µ`

(
µs−`−1f

(n−2)∗ − µ(n−2)∗
s−`−1

)
∗ f`+1(x)

+
s−1∑
`=1

(
s− 1

`

)
µ`

(
n−2∑
k=2

(
µk∗s−`−1 − µ

(k−1)∗
s−`−1

)
f (n−k−1)∗

)
∗ f`+1(x).
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Since f is the exponential density, the iterated density f` = f , hence, we
may rewrite:

µn∗s−1f
n∗
s (x)− µ(n−1)∗

s−1 f (n−1)∗
s (x)

= µs−1

(
fn∗ − f (n−1)∗

)
+

s−1∑
`=1

(
s− 1

`

)
µ`

(
µs−`−1f

(n−1)∗ − µ(n−2)∗
s−`−1 f

)
+

s−1∑
`=1

(
s− 1

`

)
µ`

(
n−2∑
k=2

(
µk∗s−`−1 − µ

(k−1)∗
s−`−1

)
f (n−k)∗

)
= A1 + A2 + A3.

We may now compute each of these three terms. Recalling that the convolu-
tion of exponentials is a gamma density, and the expressions for the moments,
it follows easily that

A1 =
(s− 1)!

λs−1

λn−1xn−2

(n− 2)!
e−λx

(
λx

n− 1
− 1

)
.

Recall that

A2 =
s−1∑
`=1

(
s− 1

`

)
µ`

(
µs−`−1f

(n−1)∗ − µ(n−2)∗
s−`−1 f

)

=
s−1∑
`=1

(
s− 1

`

)
`!

λs−1

(
(s− `− 1)!f (n−1)∗ − (n+ s− `− 4)!

(n− 3)!
f

)
.

So, we need to compute two summations:

s−1∑
`=1

(
s− 1

`

)
`!

λs−1
(s− `− 1)! =

(s− 1)!

λs−1
.

and, using Lemma 9,

s−1∑
`=1

(
s− 1

`

)
`!

λs−1

(n+ s− `− 4)!

(n− 3)!
=

(s− 1)!

λs−1

s−1∑
`=1

(
n+ s− `− 4

n− 3

)

=
(s− 1)!

λs−1

(
n+ s− 4

s− 2

)
.
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We now compute

A3 =
s−1∑
`=1

(
s− 1

`

)
µ`

(
n−2∑
k=2

(
µk∗s−`−1 − µ

(k−1)∗
s−`−1

)
f (n−k)∗

)
.

Note first that µk∗0 − µ
(k−1)∗
0 = 0, so the summation ranges only from ` = 1

up to s− 2. Further, for ` > 0,

µk∗` − µ
(k−1)∗
` =

`

λ`
(k + `− 2)!

(k − 1)!
.

Replacing these expressions and inverting the summations, we find

A3 =
s−2∑
`=1

(s− 1)!

`!(s− `− 1)!

`!

λ`

(
n−2∑
k=2

(
µk∗s−`−1 − µ

(k−1)∗
s−`−1

)
f (n−k)∗

)

=
n−2∑
k=2

s−2∑
`=1

(s− 1)!

(s− `− 2)!

1

λs−1

(s+ k − `− 3)!

(k − 1)!
f (n−k)∗

=
(s− 1)!

λs−1

n−2∑
k=2

s−2∑
`=1

(
s+ k − `− 3

k − 1

)
f (n−k)∗

=
(s− 1)!

λs−1

n−2∑
k=2

(
s+ k − 2

k

)
,

using Lemma 9 for the final equality.

4. Iterated distributions induced by Gamma distribu-
tions

Given a random variable X, the iterated distributions induced by X
θ , where

θ > 0, are easily related to the iterated distributions induced by X. Indeed,
it follows immediately from (3) that, for every s ≥ 1 and θ > 0, T X

θ ,s
(x) =

TX,s(
x
θ ). Therefore, in order to characterize the iterated distributions induced

by a Gamma distributed random variable, it is enough to treat the case
where X has distribution Γ(α, 1). We first derive an explicit expression for
the s−iterated distribution when the shape parameter α is an integer.
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Theorem 13. Assume X is Γ(α, 1) distributed with integer shape parameter
α ≥ 2. For every s ≥ 2, the s−iterated distribution induced by X has tail
given by

TX,s(x) = e−x +
e−x(
α+s−2
α−1

) α−1∑
`=1

(
s+ α− `− 2

α− `− 1

)
x`

`!
. (17)

Proof : We start by calculating the stop-loss transform of order s for the
random variable X.

E(X − x)s+ =
1

Γ(α)

∫ ∞
x

(t− x)stα−1e−tdt

=
e−x

Γ(α)

∫ ∞
0

us(u+ x)α−1e−udu

= e−x
(s+ α− 1)!

(α− 1)!
+ e−x

α−1∑
k=1

(s+ α− 1− k)!

(α− 1− k)!

xk

k!
,

where the last equality follows by applying the binomial expansion. The
result follows by writing

TX,s(x) =
1

EXs−1
E(X − x)s−1

+ =
(α− 1)!

(α + s− 2)!
E(X − x)s−1

+ .

Note that the representation (17) can also be derived using (11) recursively.
However, the argument used above makes the derivation much simpler.

The formula obtained in (17) allows for an easy and direct verification that
it is compatible with the result of Corollary 11, that is, that TX,s converges
pointwise to the survival function of the exponential distribution as s −→
+∞. However, as in Corollary 11, this convergence is only established for
the case where the shape parameter is an integer.

The remaining part of this section extends the characterization of the point-
wise limit behavior of the Gamma distribution, to non-integer shape param-
eter. To this end, we need a way to control the iterated tails with respect to
the variation of the shape parameter. For this purpose, we recall a definition
introduced by Fagiuoli and Pellerey [6].

Definition 14. Let X and Y be nonnegative valued random variables and
s ≥ 1. The random variable Y is said to be larger than X in s−FR ordering

(X ≤s−FR Y ) if
TY,s
TX,s

is nondecreasing in x ≥ 0.
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The definition given above introduces an order relation between nonnega-
tive random variables that, according to the result that follows, is hereditary
with respect to the iteration parameter. Note that although the result is
known, we were not able to find its proof in any published paper. Therefore,
the proof is provided here for the sake of completeness.

Lemma 15 (Theorem 3.4 in Fagiuoli and Pellerey [6]). Assume X and Y
are nonnegative valued random variables and s ≥ 1. If X ≤s−FR Y , then
X ≤(s+1)−FR Y .

Proof : Let a be a positive real number. In order to prove that
TY,s+1

TX,s+1
is in-

creasing, it is enough to prove that H(x) = T Y,s+1(x) − aTX,s+1(x) changes
sign at most once in the order “−,+”, when x traverses from 0 to +∞. It is
easily verified that H ′(x) has the same sign variation as V (x) = −(T Y,s(x)−
bTX,s(x)), where b = aEXs−1EY s

EXsEY s−1 . Now, using the fact that
TY,s
TX,s

is nonde-

creasing, the sign variation of H ′ is either “−”, “+” or “+,−”. Taking into
account that limx→+∞H(x) = 0, we get that the sign variation of H(x) is at
most “−,+”.

Next, we establish the s−FR order relationship within the Gamma family
of distributions.

Theorem 16. Let X be a random variable with distribution Γ(α, 1) and Y be
a random variable with distribution Γ(β, 1) where α, β > 0. Then X ≤s−FR Y
if and only if α < β.

Proof : Taking into account Lemma 15, it is enough to prove that X ≤1−FR Y ,

that is, that
TY,1
TX,1

is nondecreasing. For this purpose, it is enough to prove

that, for every a > 0, H(x) = T Y,1(x)− aTX,1(x) changes sign at most once
when x goes from 0 to +∞, and that if the change occurs it is in the order
“−,+”. Differentiating, we find that

H ′(x) = a
fX(x)

EX
− fY (x)

EY
= xα−1e−x

(
a

Γ(α)
− xβ−α

Γ(β)

)
.

As β > α, the sign variation of H ′(x) is “+,−”, so the sign variation of H(x)
is either “+” or “−,+” which means that H(x) is nondecreasing, hence
X ≤1−FR Y .
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Before addressing the proof of the limit behavior of the iterated distribu-
tions, we quote here, with a suitable rephrasing, a result needed in course
of the proof. Recall that for a random variable X, the failure rate of its
distribution function FX at x is defined as fX(x)/FX(x).

Lemma 17 (Theorem 12 in Arab and Oliveira [1]). Let X be a random
variable with distribution Γ(α, θ), where θ > 0, and s ≥ 1 an integer. If
α > 1 (resp., α < 1), then the failure rate of the s−iterated distribution
induced by X is increasing (resp., decreasing).

Theorem 18. Let X be a random variable with distribution Γ(α, 1), where
α > 0. Then, for each x ≥ 0 fixed, lims→+∞ TX,s(x) = e−x.

Proof : For the purpose of this proof, we shall denote by T α,s(x) the s−iterated
distribution induced by a Gamma random variable with shape parameter α.
Hence, TX,s(x) = T α,s(x). We separate the proof into three cases, depending
on the value of α.

The case α = 1.: This means that X is exponentially distributed, which
is a fixed point for the iteration procedure, so the conclusion is obvious.

The case α > 1.: If α is integer, the result follows from Corollary 11. If α
is not an integer, choose some integer β > α, and consider two random
variables X1 and X2 with distribution Γ(1, 1) and Γ(β, 1), respectively.
Then Theorem 16 implies that, for every s ≥ 1, X1 ≤s−FR X ≤s−FR X2,
which further implies that

e−x = T 1,s(x) ≤ T α,s(x) ≤ T β,s(x).

so, using again Corollary 11, the proof is concluded.
The case α < 1.: According to Lemma 17, the failure rate correspond-

ing to the s−iterated distribution induced by X is decreasing, which
implies that T α,s(x) ≤ T α,s+1(x), for every x ≥ 0 and s ≥ 1. More-
over, from Theorem 16, it follows T α,s(x) ≤ e−x, hence the limit
g(x) = lims→+∞ T α,s(x) exists and g(x) ≤ e−x, for every x ≥ 0. Now,
we want to prove that the latter inequality is, indeed, an equality. For
this purpose, define

Us(x) = T α+1,s(x)− Tm+1,s(x),
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where m is an integer. By applying (3), we get that

T α+1,s+1(x) =
1

Γ(α + s+ 1)

∫ ∞
x

(t− x)stαe−t dt

=
s

α + s
T α+1,s(x) +

α

α + s
T α,s+1(x).

Hence,

Us+1 − Us

=
s

α + s
T α+1,s +

α

α + s
T α,s+1 −

(
s

m+ s
Tm+1,s +

m

m+ s
Tm,s+1

)
−(T α+1,s − Tm+1,s)

=
m

m+ s

(
Tm+1,s − Tm,s+1

)
+

α

α + s

(
T α,s+1 − T α+1,s

)
.

For m = 1 and using (17), the latter expression becomes

Us+1(x)− Us(x) =
1

s(s+ 1)
xe−x +

α

α + s

(
T α,s+1(x)− T α+1,s(x)

)
.

Recall that T α,s+1 ≤ g(x), while, based again on Lemma 17, we have
that T α+1,s ≥ e−x. Therefore

Us+1(x)− Us(x) ≤ 1

s(s+ 1)
xe−x − α

α + s
(e−x − g(x)). (18)

Assume now that g(x) < e−x. Then, for each x ≥ 0 fixed and s
(depending on x) large enough, the upper bound in (18) becomes
negative, implying that Us(x) is decreasing with respect to s. As, by
definition, Us is negative valued this is not compatible with the fact
that lims→+∞ Us(x) = 0. Hence, indeed g(x) = e−x.

For a general Gamma random variable, the following result is immediate.

Corollary 19. Assume X is a random variable with distribution Γ(α, θ),
where α, θ > 0. Then, for each x ≥ 0 fixed,

lim
s→+∞

TX,s(x) = lim
s→+∞

T Y,s

(x
θ

)
= e−

x
θ ,

where Y ie a random variable with distribution Γ(α, 1).
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Remark 20. The characterization of the limits as the iteration step goes
to infinity provides an approximation for the moments of the residual life-
time. Indeed, assuming that X has distribution Γ(α, θ) with α, θ > 0, and
by recalling (3), it follows from the previous discussion that, for each x ≥ 0
fixed,

lim
s→+∞

1

EXs−1
E(X − x)s−1

+ = e−
x
θ .

Hence, for s large enough, an approximation for the higher order stop-loss
transform E(X − x)s−1

+ , is obtained by considering

E(X − x)s−1
+ ≈ e−

x
θEXs−1 = e−

x
θ θs−1 Γ(α + s− 1)

Γ(α)
.

5. Iterated distributions induced by Weibull variables
The Weibull family of distributions is also an important class in reliability

theory and lifetime models. Although an explicit and closed form represen-
tation for the iterated distributions induced from this family does not seem
possible, we may identify the limit behavior as the iteration step goes to +∞.
Recall the following representation, mentioned in the proof of Theorem 27 in
the corrigendum for [1].

Proposition 21. Let X be a random variable with absolutely continuous
distribution with density fX and distribution function FX. Then, for s ≥ 1,

TX,s(x) =

∫ ∞
x

∫ ∞
x1

· · ·
∫ ∞
xk−1

Hk(xk) dxk · · · dx2dx1,

where

Hk(x) =
1∏k

j=1 µ̃X,s−j
TX,s−k(x).

Proof : Replace successively the representation of each TX,s as an integral,
as given by the definition of the iterated distributions, and the result follows
immediately.

We also quote here the characterization corrersponding to Lemma 17 about
Weibull distributions.

Lemma 22 (Theorem 10 in Arab and Oliveira [1]). Let X be a random
variable with Weibull distribution with shape parameter α > 0, and s ≥ 1
an integer. If α > 1 (resp. α < 1), then the failure rate of the s−iterated
distribution induced by X is increasing (resp. decreasing).
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Theorem 23. Let X be Weibull distributed with shape parameter α > 0.
Then, for every x > 0 fixed,

lim
s→+∞

TX,s(x) =


0 if α > 1,

e−x if α = 1,

1 if α < 1.

Proof : We need to separate the proof into three different cases, depending
on the value for α. As mentioned before, it is enough to treat the case where
the hazard rate is 1.

The case α = 1.: This is obvious, as this Weibull distribution becomes
the exponential distribution.

The case α > 1.: By taking k = s − 1 in the representation given in
Proposition 21, we get

TX,s(x) =
1

EXs−1

∫ ∞
x

∫ ∞
x1

· · ·
∫ ∞
xs−2

FX(xs−1) dxs−1 · · · dx2dx1. (19)

We may bound the inner integral above:∫ ∞
xs−2

FX(xs−1) dxs−1 =

∫ ∞
xs−2

e−x
α
s−1 dxs−1

=
e−x

α
s−2

αxα−1
s−2

− α− 1

α

∫ ∞
xs−2

e−x
α
s−1

xαs−1

dxs−1 ≤
e−x

α
s−2

αxα−1
s−2

.

The next integral in the representation (19) is∫ ∞
xs−3

∫ ∞
xs−2

FX(xs−1) dxs−1dxs−2 ≤
∫ ∞
xs−3

e−x
α
s−2

αxα−1
s−2

dxs−2.

Multiplying and dividing this integrand by αxα−1
s−2 , and integrating by

parts, we find the upper bound∫ ∞
xs−3

∫ ∞
xs−2

FX(xs−1) dxs−1dxs−2 ≤
e−x

α
s−3

α2x
2(α−1)
s−3

.

Iterating now this argument, it follows that

TX,s(x) ≤ 1

EXs−1

e−x
α

αs−1x(s−1)(α−1)
.
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Remember that EXs−1 = Γ(1+ s−1
α ), and using Stirling approximation

for Gamma function, limx→+∞
Γ(1+x)√
2πx(xe)

x = 1, we get

EXs−1αs−1x(s−1)(α−1) ≈
√

2π
s− 1

α

(
s− 1

eα

) s−1
α

αs−1x(s−1)(α−1)

≈
√

2π
s− 1

α

((
s− 1

eα

) 1
α

αxα−1

)s−1

,

which goes to +∞ when s −→ +∞, consequently, lims→+∞ TX,s(x) =
0.

The case α < 1.: First, we study the sign variation of

Vs(x) = TX,s+1(x)− e−βx =
1

Γ(1 + s
α)

∫ ∞
x

(t− x)s−1tα−1e−t
α − e−βx,

where β ≥ 0. We will describe the sign variation of

V ′s (x) = βe−βx − s
Γ
(
1 + s−1

α

)
Γ
(
1 + s

α

) TX,s(x).

If we represent V ′s analogously as done in Proposition 21, its sign
variation may be described from the sign variation of

Hs−1(x) =
βs

(s− 1)!
e−βx − s

Γ
(
1 + s

α

)e−xα
=

s

Γ
(
1 + s

α

)e−βx(βs
s!

Γ
(

1 +
s

α

)
− eβx−xα

)
,

which coincides with the sign variation of the large parenthesis above.
Since α < 1 the function eβx−x

α

has a minimum and therefore the pos-
sible sign variations for Hs−1 are “−,+,−”,“−” or “+,−”. Hence the
possible sign variations for V ′s are “−,+,−”, “+,−” or “−”. Recalling
that Vs(0) = 0 and limx→+∞ Vs(x) = 0+, the latter sign variation is
not compatible. In order to decide among the two remaining possible
sign variations for V ′s , “−,+,−” or “+,−”, we start by remarking
that

V ′s (0) = β −
sΓ
(
1 + s−1

α

)
Γ
(
1 + s

α

) = β − A(s).
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Now, we use the Stirling approximation to describe the asymptotic
behavior of A(s), as s −→ +∞. So, assuming that s is large enough,
we have that

A(s) ≈
s
√

2π s−1
α

(
s−1
αe

) s−1
α√

2π s
α

(
s
αe

) s
α

≈ s

((
1− 1

s

)s−1
eα

s

)1/α

≈ s

(
1

e

eα

s

)1/α

=
α1/αs

s1/α
,

hence lims→+∞A(s) = 0. Moreover, it is easy to verify that A(s)
eventually becomes decreasing. Therefore, it follows that, for s ≥ s0,
V ′s (0) ≥ 0, ruling out the sign variation “−,+,−”. Thus, the only
possible sign variation for V ′s is “+,−” which implies that Vs(x) ≥ 0.
In other words, TX,s ≥ e−βx for sufficiently large s and by choosing β
sufficiently close to zero, this means that lims→+∞ TX,s −→ 1.

Remark 24. The result of Theorem 23 provides upper and lower bounds for
the higher order stop-loss transform of a random variable X with a Weibull
distribution. In the case where the shape parameter is α < 1, then for suffi-
ciently large s ≥ s0 and βs0 > 0 we have that

e−βs0xΓ
(

1 +
s

α

)
≤ E(X − x)s+ ≤ Γ

(
1 +

s

α

)
,

where the notation βs0 highlights the dependence between the two parameters.
For the case of α > 1, the moments of the residual lifetime approach zero as
s −→ +∞.
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