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DAM BREAK PROBLEMS INVOLVING DISPERSIVE
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Abstract: The ability of numerical models to deal with wave breaking processes
and dry areas is of paramount importance for applications in coastal zones and dam
breaks. The mathematical models commonly used in such real problems are usually
based on Boussinesq-type equations and, to a small extend, on Serre equations.
However, these standard models are weakly dispersive and must be appropriately
modified to deal with breaking waves and dry areas. Indeed, nearshore and dam
break problems involve complex wave dynamics and highly dispersive wave processes
can easily arise. In those cases, it is well known that weakly dispersive models like
the ones based on classical Boussinesq or Serre equations are unreliable for an
accurate simulation of the phenomena involved.

In this work we extend the applicability of an improved Serre model, herein
denoted by Serreα,β, to include the wave breaking process, the broken waves prop-
agation, and dry areas. We provide a comprehensive set of numerical examples
involving wave propagation over exposed and submerged structures, as well as dam
break problems. The numerical experiments show the accuracy and robustness of
the proposed model. Particular attention is given to bottom friction modeling,
where the standard Manning’s assumption is compared with a more realistic for-
mulation. Also noteworthy is the simulation of wave breaking problems with highly
dispersive effects. The advantages of the Serreα,β model over the standard Serre
model for these challenging cases are clear.

Keywords: Extended Serre equations; Saint-Venant equations; Dispersive waves;
Breaking waves; Improved bottom friction; Wave-structure interaction.

1. Introduction
Accurate simulation of water waves propagation is very important in the

coastal regions management. One relevant example is the wave’s interaction
with seawalls or underwater bars. These are structures build near the coast
that have the function of protecting it against coastal erosion and flooding.
Another context in which water wave models play a crucial role is in the
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simulation of flooding due to dam breaking events. In both cases, an accurate
simulation allows not only the design of more efficient structures, but also
the prevention and mitigation of hazards.

In order to deal with the complex nearshore water dynamics, a coastal
model must be able to reproduce wave breaking and dry areas. Most of
the approaches for wave breaking consist in the introduction of additional
dissipative terms in existing wave’s models. The role of these terms is to
account for the decay of the water wave height inside the breaking region.
Strategies to localize the breaking point are also required. In addition, the
presence of dry areas means that we need to consider bottom friction effects.
This brings additional numerical challenges since the friction term is stiff and
dominant in dry or almost dry regions. In these conditions it is also important
to use numerical schemes that have the positivity preserving property.

Another important aspect is the presence of dispersive and nonlinear ef-
fects. Wave dispersion strength is measured by the parameter % = h0/l,
where h0 is the reference depth and l the wavelength. The nonlinearity
strength is measured by ε = a/h0, with a the typical wave amplitude. It is
well known that nearshore wave dynamics is strongly nonlinear [2]. This is
particularly true at the end of the shoaling zone and also in the surf and swash
zones. As the wave shoals up a slope and in very shallow water conditions,
it steepens accumulating higher harmonics (dominant nonlinearity) that are
released on wave breaking or on a downslope (dominant dispersive effects).
After this process, the wave can eventually recover producing an irregular
pattern, more or less complex. It is important to highlight that in the lit-
erature dispersive effects are usually analyzed separately from breaking, see,
e.g., [16] and references therein. In this work, we show that a complete model
must include simultaneously nonlinearity, wave breaking, and dispersive ef-
fects. Moreover, dispersion is so relevant, that models with weakly dispersive
properties are not accurate enough.

Numerical models that solve the Saint-Venant equations [12], the Boussi-
nesq equations [4], and the Serre or Green & Naghdi equations [41] are com-
monly used in coastal wave modeling. These models can be classified based
on their dispersion and nonlinear properties. The Saint-Venant equations
are weakly nonlinear and non-dispersive, i.e., some nonlinear terms and all
terms of dispersive origin are ignored. Therefore, the Saint-Venant equations
are suitable for wave propagation in the breaking zone. The Boussinesq
equations are weakly dispersive and weakly nonlinear, i.e., it is assumed that
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ε� 1 and %� 1. Due to these properties the standard Boussinesq equations
have a limited applicability for nearshore applications. Several modifications
to the Boussinesq equations have been proposed. For example, in [32, 52, 36],
the dispersive properties were improved by adding terms of dispersive origin
and in [53, 21], fully nonlinear Boussinesq-type models are presented. The
standard Serre equations, like Boussinesq, are weakly dispersive, however,
they are also fully nonlinear.

Despite being fully nonlinear Serre equations are inadequate for break-
ing zones. The problem is that near breaking points a singularity appears
and the assumptions made to derive the equations are invalid [2]. To over-
come this limitation some recent studies have proposed a hybrid approach
[49, 39, 20, 31]. Since shock discontinuities are well resolved by Saint-Venant,
this approach portrays breaking waves as shock waves and in the break-
ing zone a switch from Serre to Saint-Venant is made. Other limitation of
the standard Serre equations is the weak dispersivity. This is a significant
drawback for complex wave dynamics and several modifications have been
proposed to overcome it [14, 52, 21, 6, 31, 10]. For example, following the ap-
proach used in [32] for Boussinesq, dispersion characteristics were improved
in [14] considering additional terms of dispersive origin. An efficient nu-
merical scheme to solve this improved Serre system, denoted Serreα,β, was
recently presented in [16].

The goal of this paper is to extend the Serreα,β model to include wave
breaking and dry regions. By doing so, we obtain an accurate model cover-
ing all the nearshore wave processes. The relevance of improved dispersion
properties is highlighted. This paper is organized as follows. In Section 2 we
briefly deduce the Serreα,β model. Following [16], we write the model in a
decoupled dispersive-hyperbolic form suitable for numerical implementation.
Next, in Section 3, we present the strategies used to embed wave breaking
and bottom friction. Here, we deviate from the standard Manning’s assump-
tion and use a more realistic formulation for friction. The numerical scheme
is presented in Section 4. We propose a hybrid approach combining finite
volume and finite difference. Numerical experiments are given in Section 5
and we finish in Section 6 with some conclusions.

2. The Serreα,β Model
As illustrated in Figure 1, we consider the one-dimensional horizontal case

and represent by b(x) the time constant bathymetry, by u(x, t) the flow
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velocity, and by h(x, t) = h0 + η(x, t) − b(x) the water height, with η(x, t)
the free surface elevation and h0 the reference depth. Here, x is the spatial
variable and t is the time variable.

b(x)

h0

η

h(x, t) = h0 + η(x, t)− b(x)

u(x, t)

Figure 1. Sketch of the domain and main notation.

Following [16, 17] the one-dimensional version of the classical Serre equa-
tions with bottom friction can be written in the following compact form{

ht + (hu)x = 0

(I + hT 1
h
)((hu)t + (hu2 + 1

2gh
2)x + ghbx)− hT (gηx) + hQ(u) = −σ

ρ ,

(1)
where g is the gravitational acceleration, I is the identity operator, Q is
defined by

Q(v) = h(2hx + bx)(vx)
2 +

4

3
h2vxvxx + hbxxvvx + (ηxbxx +

h

2
bxxx)v

2 (2)

and T 1
h

= T ( vh) with T given by

T (v) = −h
2

3
vxx − hhxvx + (bxηx +

h

2
bxx)v. (3)

Still in (1), at the right-hand side of the momentum equation we have the
friction term −σ/ρ, with ρ the fluid density and σ the friction at the bottom.

To obtain an efficient numerical scheme for Serre system (1) we use a
splitting approach to decouple the dispersive and nonlinear terms. Let S(t)
be the solution operator of (1) and let us assume for now that

S(t) = Sd(t) ◦ Snl(t) (4)

where Snl(t) is the solution operator associated with the nonlinear part{
ht + (hu)x = 0

(hu)t + (hu2 + 1
2gh

2)x + ghbx = −σ
ρ ,

(5)
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and Sd(t) is the solution operator of the dispersive part{
ht = 0

(I + hT 1
h
)((hu)t)− hT (gηx) + hQ(u) = 0.

(6)

We observe that system (5) corresponds to the classical Saint-Venant system
with friction at bottom level.

To obtain the proposed Serreα,β system we follow [14] and add and subtract
to the momentum equation of (6) the term

hT α,β1
h

((hu)t),

with

T α,β(v) = −βh
2

3
vxx − αhhxvx + α(bxηx +

h

2
bxx)v. (7)

Using also the classical approximation ut = −gηx and the fact that ht = 0
we get{

ht = 0

(I + hT 1
h

+ hT α,β1
h

)((hu)t)− h(T − T α,β)(gηx) + hQ(u) = 0.
(8)

Denoting the solution operator of (8) by Sα,βd we define our Serreα,β model
as

Sα,β(t) = Sα,βd (t) ◦ Snl(t). (9)

Remark 2.1 Serre and the proposed Serreα,β systems are equivalent up
to order O(σ2) and the classical one is recovered when α = β = 0.

Remark 2.2 Another well-known model [3] with improved dispersive
properties can be obtained by setting

Sθ(t) = Sθd(t) ◦ Snl(t), (10)

with Sθd(t) given by{
ht = 0

(I + hθT 1
h
)((hu)t)− hT (gηx) + hQ(u) = 0,

with θ ≥ 0. For non-breaking and non-friction problems with strong disper-
sive effects it was shown in [16] that the proposed model (9) offers noticeable
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improvements over (10). Naturally, the advantages over traditional Serre (1)
are even more significant.

3.Wave Breaking and Bottom Friction Modeling
In this section we discuss the strategies adopted to model wave breaking

and bottom friction. These two features are crucial in any coastal wave
model. We start by explaining how breaking is embedded in Serreα,β.

3.1. Wave Breaking. When a wave approaches the shoreline the water
depth decreases and the wave becomes very step. Simultaneously, the crest
velocity increases, and when it exceeds the overall wave velocity the crest
breaks and separates from the wave. This turbulent phenomenon, character-
ized at large scales by strong energy dissipation and wave height reduction,
is called wave breaking. Equations specifically designed for turbulent behav-
ior, e.g., RANS (Reynolds-Average Navier-Stokes), have been employed to
simulate this process [24]. However, due to the heavy computational cost,
depth-averaged equations, such as Serre, are still preferred. The problem is
that these equations are invalid in the breaking zone and they need to be
complemented with wave breaking methodologies.

Most of the available techniques are based on local ad-hoc dissipative terms.
These terms are added to the wave model (e.g., Serre or Boussinesq-type
equations), with the goal of capturing energy dissipation in the breaking
zone. The popular eddy viscosity approach [27] considers the term

Dhu = ∂x(ν(hu)x), (11)

where ν is the so-called eddy viscosity. The term (11) is to be added at
the wave models momentum equation. In our case, the second equation of
(1). The major criticism to this approach is the lack of physical meaning
of the parameters used to express the eddy viscosity. In order to obtain a
better aproximation some authors have used k-l turbulent models [36, 26, 55].
In general the eddy viscosity is written using the Prandtl and Kolmogorov
relation, which assumes that ν can be written as a product of a turbulent
kinetic energy (k) and a turbulent length scale (l). The several approaches
differ in the way that k and l are calculated. For example, in [26], l is
assumed proportional to the water height h and k is the solution of a partial
differential equation.
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In [9], the authors used energy principles to claim that a more physically
sounded model is obtained when an additional term is also added to the
continuity equation. The proposed model is based on the two breaking terms

Dh = ∂x(dhhx), (12)

Dhu = ∂x(dhu(hu)x), (13)

where (13) is included in the momentum equation and (12) is the extra term
that appears in the continuity equation. Exploiting arguments developed
in [11, 13, 44] the authors also suggest expressions for the functions dh and
dhu. Basically, they are of exponential type, centered around the moving
wave crest and dependent on the local still water depth. Estimates for the
parameters involved are also given.

Let us also mention the friction-type wave breaking models, which are
based on terms of the form fdu, with fd a dissipation function dependent on
h [51, 50, 17]. The rationale behind this approach is that energy dissipation
due to wave breaking can be related to surface friction. Finally, we refer the
roller-type models [45, 5, 13], based on terms of type Rx, with R a function
that depends on u and h. This physically solid approach relies on the concept
of “surface-roller”, the air-water mixing region formed in front of the breaking
wave. In this context, energy dissipation occurs due to friction between the
wave and the roller. In both models the extra terms are included in the
momentum equation.

A numerical comparison against experimental data was performed in [42]
using eddy viscosity [36], roller [5], and friction [50] models. It was concluded
that the three models were equally accurate at predicting wave height. In [9],
the numerical experiments favored the proposed model (based on (12)-(13))
over the eddy viscosity model given in [27]. In both cases the authors used
Boussinesq-type equations.

In this work we adopt a different wave breaking strategy. Our approach,
presented for the first time in [49], consists is switching locally from Serreα,β
to the Saint-Venant system when the wave is about to break. The motiva-
tion is to explore the splitting strategy (9) presented in Section 2. Recall

that Serreα,β is decoupled in a dispersive part Sα,βd (t) and a nonlinear part
Snl(t) which is exactly the Saint-Venant system. Therefore, breaking can be
easily incorporated by simply ignoring the contribution from the dispersive
term Sα,βd (t). This methodology has proven to be efficient and has gained
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considerable popularity [25, 20, 31, 48, 26, 49]. This technique is also physi-
cally meaningful. In fact we can see breaking waves fronts as shocks and it is
well known that the Saint-Venant system admit shock waves solutions that
dissipate energy. Morevoer, it doesn’t requires additional ad-hoc dissipative
terms. Naturally, like the models previously presented, this is still a limited
view of the complex wave breaking phenomenon.

In [26], this hybrid strategy was compared with a eddy viscosity model
using Serre and Boussinesq-type equations. The numerical results suggest
that the performance of the two strategies is identical. One drawback of the
hybrid approach is the appearance of numerical instabilities when the switch
is made, particularly for fine meshes. We refer that similar issues occur, e.g.,
in some eddy viscosity models when the diffusive terms are activated [27].
Here, we achieve a smooth transition by using the sigmoidal function

f(t) =
1

1 + exp(−4(10t− 1))
, t ≥ 0.

A different approach, where the transition is embedded as a kind of boundary
condition is proposed in [20].

Hwc

Hwt

Hw

Lnl

Figure 2. Definition sketch of a breaking wave and related variables.

Concerning breaking modeling we still need to present the mechanisms used
to activate and deactivate the breaking process. There are several strategies
and the optimal one is problem dependent [20, 25, 26, 48, 9, 29]. In this
work, we consider that a wave starts to break when the front slope angle
exceeds a predefined threshold, i.e.,

|ηx| ≥ φi. (14)

For breaking termination we use one of following two conditions, the front
slope angle satisfies

|ηx| ≤ φf , (15)
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or the wave’s Froude number (F ) verifies F ≤ Ff , with

F =

(
(2Hwc/Hwt + 1)2 − 1

8

)1/2

(16)

and where Hwc and Hwt (see Figure 2)) are the water depth at the wave’s
crest and trough, respectively. We consider two breaking termination condi-
tions because in some experimental tests one gives better results, or is more
robust, than the other. For breaking initiation we found condition (14) ac-
curate enough for all the experiments. The optimal values of φi, φf , and
Ff depend on several aspects like, type of breaking model, forms of wave
breaking (spilling, plunging, or surging), and employed numerical scheme.

Some efforts have been made in order to predict the optimal wave break-
ing parameters φi, φf , and Ff . One such case is [54] where, using extensive
experimental data, the authors propose two empirical formulas for φi. One
such formula expresses φi as a function of local wave parameters, while the
other relates φi with the relative water depth and bed slope. The extensive
data analyzed in that work also shows that φi can be in the range of 0.15
to 0.8. Note that condition (14) is based on the fact that when a wave ap-
proaches shallow waters the wave front angle increases and beyond a critical
threshold the wave crest becomes unstable and breaks. The breaking termi-
nation condition (15) is closely related with the breaking initiation condition
(14). Naturally, for the same experiment, the value φf must be lower than
the one adopted for φi. Let us also note that (16) can be obtained from the
ratio of conjugate depths in a hydraulic jump. In this sense the value F = 1
means that there is no jump and as F increases we observe a transition from
a smooth undular jump to a undular jump characterized by shock waves and
breaking phenomena. The application of Froude number to wave breaking is
based on the relation between the increasing Froude number and the develop-
ment of wave breaking mechanism in a hydraulic jump. Using this analogies
some authors have estimated that the transition from non-breaking wave to
breaking wave occurs for F equal 1.36 [38].

If a breaking wave is identified we also need to define the extension of the
region, denoted Lnl, around the breaking point that is governed by Snl(t), i.e.,
the Saint-Venant system. The common practice is to use a value proportional
to the wave front height, Lnl = CHw = C(Hwc − Hwt), for C > 1. The
value of C must be sufficient larger to avoid that non-physical dispersion
effects influence the break region, we have set C = 10. In Figure 2 we give
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an illustration of the notation used in the breaking model. The proposed
methodology can be summarized as follows:

• If (14) is false; solve Sα,β(t) = Sα,βd (t) ◦ Snl(t).
• If (14) is true; a wave is breaking.

Calculate Lnl and solve Sα,β(t) = Snl(t) in Lnl and Sα,β(t) =

Sα,βd (t) ◦ Snl(t) elsewhere.
• If (15) (or (16)) is false; the wave is still breaking.

Calculate Lnl and solve Sα,β(t) = Snl(t) in Lnl and Sα,β(t) =

Sα,βd (t) ◦ Snl(t) elsewhere.
• If (15) (or (16)) is true; the wave stopped breaking.

Solve Sα,β(t) = Sα,βd (t) ◦ Snl(t).
Naturally, more than one breaking point can be identified in the compu-

tational domain. In that case all the breaking wave fronts are followed and
the breaking algorithm is applied to each one of them.

3.2. Bottom Friction. Bottom friction is a energy dissipation process con-
sequence of the interaction between a viscous fluid (water) and a rough sur-
face (sea-bottom). This process has a strong impact on erosion and sediment
transport, two crucial aspects in coastal management. Friction is strongly
influenced by several factors like sea-bottom roughness and morphology, wa-
ter depth, and velocity. Another friction-inducting factor that is frequently
overlooked by wave models is the current. This may not be relevant for lab-
oratory experiments, but in real life applications any complete coastal model
must take it into account. For instance, it is known that breaking waves,
particularly surging breaking, induce strong currents in the surf zone.

In this work, we express bottom friction using the usual quadratic depen-
dence on velocity, σ/ρ = τbu|u|, with τb a friction coefficient. This parame-
terization can be seen as a particular case of the more general, τlu+ τthu|u|,
with τl and τt laminar and turbulent coefficients, respectively.

Most of the formulations used to express τb are based on empirical laws.
For example, from laboratory experiments with uniform turbulent flow in
open-channel, Manning [33] presented the following law

S =
n2
ku|u|
R4/3

, (17)

where S is the open-channel slope, nk is the so-called Manning’s coefficient,
related with the channel roughness, and R is the hydraulic radius, the ratio
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between the water area A and the wetted perimeter P . To realize how S
is related with bottom friction let us consider a open-channel with bottom
angle ζ and length L, and let us assume that the only forces are the water
impelling force Fg, given by,

Fg = gρAL sin(ζ),

and the opposite resisting force Fb due to bottom friction,

Fb = σPL.

Since the flow is uniform the two forces are of equal magnitude and we easily
deduce

σ = gρR sin(ζ).

Using Manning’s equation (17) to evaluate S, together with the usual ap-
proximation R ≈ h and the small-angle condition sin(ζ) ≈ S, we get,

σ

ρ
= g

n2
k

h1/3
u|u| = τbu|u|. (18)

The friction coefficient τb defined by (18) is the most widely used in the
literature.

More well founded parameterizations can however be obtained. One such
option is presented next. Following [17], we set

σ

ρ
=

1

2
τcwu|u|,

with τcw a coefficient that accounts for current (τc) and wave (τw) friction.
Denoting by uc the current velocity we define τcw by

τcw =
|uc|

|uc|+ |u|
τc +

|u|
|uc|+ |u|

τw.

This expression can be extended to accommodate the friction arising from
the pressure gradient acting on the bottom roughness (τp). In this case, it
reads

τcw =
|uc|

|uc|+ |u|
τc +

|u|
|uc|+ |u|

(τw + τp).

Several expressions have been presented for the coefficients τc, τw, and τp. We
adopt the ones of [19]. They are built on the work developed in [47, 23, 43],
which is devoted to the analysis of a two-equation turbulent boundary layer
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model of the k-l type [23]. For a single current and rough turbulent flow the
suggest parameterizations are

τc =
k2(

ln

(
h

z0

)
− 1

)2 , τw = c1 exp

(
c2

(
KN

A

)c3)
, and τp = c4

(
KN

A

)
,

with k the von Kármán’s constant (k = 0.4), z0 the roughness length (z0 =
KN/30), A = T |u|/2π with T the wave period, and ci, i = 1, . . . , 4, empirical
coefficients. After experimental fitting they were set to c1 = 0.00140, c2 =
4.5840, and c3 = 0.1340. Regarding c4, it was set to 0.48 as given in [43].
For our laboratory like experiments we ignore current and pressure friction
and we get term

σ

ρ
=

1

2
τwu|u| =

1

2
c1 exp

(
c2

(
KN

A

)c3)
u|u|. (19)

The optimal value of the parameter KN is problem dependent. It is usually
assumed [15] that KN and nk (the Manning’s coefficient) are related by the
equation

nk =
1

21.1

(
KN

2.5

)1/6

. (20)

4. Numerical Scheme
The splitting strategy (9) decouples the proposed Serreα,β model in a hy-

perbolic part Snl(t) and a dispersive part Sα,βd (t). This separation allows us
to use different methodologies suitable for each term. A brief description of
our strategy is presented next.

4.1. Spatial Discretization. To solve the hyperbolic part we resort to the
efficient high-order finite volume method presented in [8], see also [30]. This
is a positivity-preserving scheme in the sense that preserves the positivity of
water depth h. This crucial physical restriction brings additional challenges
for the numerical methods particularly near dry or almost dry conditions,
i.e., h ∼ 0.

Let us consider the one-dimensional domain Ω = [xL, xR] and the uniform
cell-centered finite volume mesh, x̄i+1 = x̄i + ∆x, i = 1, . . . , N − 1, with
x̄1 = xL+ ∆x/2 and x̄N = xR−∆x/2. Let us also define x̄i±1/2 = x̄i±∆x/2,
i = 1, . . . , N , with x̄1−1/2 = xL and x̄N+1/2 = xR. Taking the friction term
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(19) and the change of variables w = h + b and q = hu, we rewrite the
hyperbolic system (5) in the conservative form

Ut + F (U, b)x = N(U, b) +M(U, b),

with U = (w, q)T,

F (U, b) =

(
q,

q2

w − b
+

1

2
g(w − b)2

)T

, N(U, b) = (0,−g(w − b)bx)T , and

M(U, b) =

(
0,−1

2
c1 exp

(
c2

(
2πKN(w − b)

T |q|

)c3) 1

(w − b)2
q|q|
)T

,

with c1 = 0.00140, c2 = 4.5840, and c3 = 0.1340. If we use Manning’s friction
term (18), we get

M(U, b) =

(
0,−gn2

k

1

(w − b)7/3
q|q|
)T

.

With this notation, the proposed finite volume method takes the form

d

dt
Ui(t) = −

Hi+1/2(t)−Hi−1/2(t)

∆x
+Ni(t) +Mi(t), (21)

where Ui(t) represents the numerical approximation at x̄i and Hi+1/2(t) are
the numerical fluxes

Hi+1/2(t) =
a+
i+1/2F (U−i+1/2, bi+1/2)− a−i+1/2F (U+

i+1/2, bi+1/2)

a+
i+1/2 − a

−
i+1/2

+
a+
i+1/2a

−
i+1/2

a+
i+1/2 − a

−
i+1/2

(
U+
i+1/2 − U

−
i+1/2

)
. (22)

Here, U+
i+1/2 = Ũi(xi+1/2) and U−i+1/2 = Ũi+1(xi+1−1/2) with Ũi(x) defined as

Ũi(x) = Ui + (Ux)i(x− x̄i), xi−1/2 < x < xi+1/2,

where (Ux)i denotes the numerical derivative calculated with the generalized
minmod limiter. In (22), the local propagation speeds a±i+1/2 are determined

by

a+
i+1/2 = max

{
u+
i+1/2 +

√
gh+

i+1/2, u
−
i+1/2 +

√
gh−i+1/2, 0

}
,

a−i+1/2 = min
{
u+
i+1/2 −

√
gh+

i+1/2, u
−
i+1/2 −

√
gh−i+1/2, 0

}
.
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Note that u = q/h, therefore to obtain an accurate approximation for u when
h ∼ 0 we use the formula

u =
2(w − b)q

(w − b)2 + max((w − b)2, ε2)
, (23)

with ε = min((∆x)4, 1e-5). This formula changes the computation of u only
when h < ε. Other formulas could be used without affecting the method
robustness [30, 8]. At last, the source termsNi(t) andMi(t) are approximated
by

Ni(t) =

(
0,−g

(bi+1/2 − bi−1/2)((w
−
i+1/2 − bi+1/2) + (w+

i−1/2 − bi−1/2))

2∆x

)T

and

Mi(t) =

(
0,−1

2
c1 exp

(
c2

(
2πKN(wi − bi)|qi|
T (q2

i + max(q2
i , ε

2)

)c3)
(

wi − bi
(wi − bi)2 + max((wi − bi)2, ε2)

)2

qi|qi|

)T

,

or

Mi(t) =

(
0,−gn2

k

(
wi − bi

(wi − bi)2 + max((wi − bi)2, ε2)

)7/3

qi|qi|

)T

,

for Manning’s friction. Note the use of a formula analogous to (23) to com-
pute 1/(w − b) and 1/|q|. In the following we denote by SerreMα,β the combi-
nation of the proposed model with Manning’s friction.

Remark 4.1 This is a second-order accurate scheme that reduces to first-
order near non-smooth regions. In some cases it may be necessary to recalcu-
late w±i+1/2 to guarantee the positivity of the scheme. For ease of presentation,

we refer again to [30, 8] for further details. Information about the linear dis-
persion properties of similar finite difference and finite volume methods can
be found in [20, 56].

Now we address the dispersive part (8). We define the approximation
points, xi+1 = xi + ∆x, i = 1, . . . , N , with x1 = xL and xN+1 = xR. Note
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that these nodes coincide with the finite volume nodes x̄i±1/2. Since ht = 0,
system (8) reduces to the equation

(I + T + T α,β)ut = g(T − T α,β)(ηx)−Q(u),

with T , T α,β, and Q the differential operators given by (3), (7), and (2),
respectively. Applying standard second-order centered finite differences,

vx(xi) ≈
vi+1 − vi−1

2∆x
, vxx(xi) ≈

vi+1 − 2vi + vi+1

∆x2
, and

vxxx(xi) ≈
−vi−2 + 2vi−1 − 2vi+1 + vi+2

2∆x3
,

we get the system of ordinary differential equations (odes)

d

dt
u(t) = MFD(u(t)). (24)

where MFD denotes a linear finite difference operator (see [16] for details).
The hybrid approach finite difference finite volume means that some rela-

tions are required to carry the numerical approximations from one mesh to
the other. Whenever necessary we use the following fourth-order approxima-
tions,

v̄i = − 1

24
vi−1 +

13

24
vi +

13

24
vi+1 −

1

24
vi+2

for the switch from finite difference to finite volume, and

vi = − 1

12
v̄i−2 +

7

12
v̄i−1 +

7

12
v̄i −

1

12
v̄i+1

for the switch from finite volume to finite difference.
In the following, reflecting boundary conditions are always assumed. They

are implemented considering two additional fictitious nodes at the right
and at the left end of the computational domain. At the right we set
uN+1 = −uN−1 and uN+2 = −uN−2 for the finite difference approximation
and wN = wN−1, wN+1 = wN−2, qN = qN−1, and qN+1 = qN−2 for the finite
volume approximation. At the left end of the domain we proceed similarly.
When required, we simulate absorbing boundary conditions by expanding
the computational domain by a size large enough.
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4.2. Time Discretization. In the time domain t ∈ [0, T ] we consider the
time mesh tm = tm−1+∆tm, m = 1, . . . ,M−1, with t0 = 0 and tM = T . From
the numerical point of view the splitting strategy (9) is approximated by a
second-order Strang scheme. Thus, from time level tm−1 to tm the numerical
solution associated to Serreα,β is given by

(hm, um) = Snl(∆tm/2) ◦ Sα,βd (∆tm) ◦ Snl(∆tm/2)(hm−1, um−1).

After the spatial discretization Snl(·) and Sα,βd (·) refer to the systems of odes
(21) and (24), respectively.

To solve (24) we use a second-order strong stability preserving Runge-Kutta
method [22]. For the generic odes system

d

dt
w(t) = L(w(t)),

it is defined by

w(1) = wm + ∆tmL(wm)

wm+1 =
1

2
wm +

1

2
w(1) +

1

2
∆tmL(w(1)).

For the system of odes related with the hyperbolic part (21) we resort to a
new class of semi-implicit Runge-Kutta methods [7]. This class of methods
is specifically design for odes systems of the form

d

dt
w(t) = F (w(t)) +G(w(t))w(t), (25)

where F (w(t)) and G(w(t)) represent a non-stiff and a possibly stiff term,
respectively. These methods treat the non-stiff term F (w(t)) explicitly and
the stiff term G(w(t))w(t) in a mixed way, G(w(t)) explicitly and w(t) im-
plicitly. Note that (21) can be written in the form (25) and the stiffness
arises in the friction term M(t) when h → 0. As detailed in [7] this new
class of semi-implicit schemes has the advantage of preserving the positivity
of the spatial discretization. It is also simpler to implement when compared
with traditional implicit schemes that treat the term G(w(t))w(t) implicitly.
Moreover, like in the implicit ones, the associated time step restriction de-
pends only on the explicit discretization of the non-stiff term F (w(t)). For
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(25), the adopted semi-implicit second-order method reads

w(1) =
wm + ∆tmF (wm)

1−∆tmG(wm)

w(2) =
3

4
wm +

w(1) + ∆t
(1)
m F (w(1))

4(1−∆t
(1)
m G(w(1)))

w(3) =
1

3
wm +

2(w(2) + ∆t
(2)
m F (w(2)))

3(1−∆t
(2)
m G(w(2)))

wm+1 =
w(3) − (∆tm)2F (w(3))G(w(3))

1 + (∆tmG(u(3)))2
. (26)

For our finite volume method the Courant-Friedrich-Lvy (CFL) time step
stability condition is given by

∆tm ≤
∆x

2a
, with a = max

i
{a+

i+1/2,−a
−
i+1/2}. (27)

In (26), the notation ∆t
(j)
m refers to the CFL condition associated with w(j),

j = 1, 2. To ensure the positivity of the solution the time step ∆tm needs to

satisfy ∆tm ≤ ∆t
(j)
m , j = 1, 2. Otherwise, we have to restart the time scheme

with ∆tm = k∆t
(1)
m (or ∆tm = k∆t

(2)
m ), with k ∈ (0, 1); we used k = 0.9.

5. Numerical Experiments
In this section we test our model as well as the proposed numerical im-

plementation. We use a problem with known theoretical solution and sev-
eral laboratory experiments. The laboratory experiments are divided in two
groups: weakly dispersive waves and strongly dispersive waves.

In all the following experiments, and when friction is considered, the Man-
ning coefficient is equal to 0.01 (m-1/3s) or 0.02 (m-1/3s). These are common
values for the roughness of glass-type or concrete surfaces like the ones used
in the experiments reported in this paper [20, 25, 40]. Regarding the break-
ing parameters, their estimation a priori is an unsolved problem and they
have to be individually adjusted in order to reflect the particular charac-
teristics of each experiment. Nevertheless, the values used in the following
sections are similar to many values found in the literature [20, 25, 48, 29].
In what concerns the dispersion parameters α and β their optimal value is
also problem dependent. Based on our experimental work, the combination
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(α, β) = (0.04, 0.07) seems to be a good initial guess. Some attempts have
been made to estimate the optimal values of the dispersion parameters as-
sociated with improved Serre-type systems, see e.g., [14, 3]. However, the
analysis is not problem-independent and several restrictions are made.

5.1. Solitary wave propagation. We start our numerical experiments with
the propagation of a solitary wave over a flat bottom. For this simple case
we can obtain an analytic solution for Serreα,β with α and β equal to zero,
which corresponds to classical Serre. The solution is given by

h(x, t) = h0 + a(sech(K(x− Ct− x0)))
2, u = C(1− h0/h),

where a is the wave amplitude, x0 is the initial position of the wave crest,
K =

√
3a/(4h2

0(h0 + a)), and C = c0

√
1 + a/h0, with c0 =

√
gh0.

We use this example to illustrate the convergence rate of our numerical
scheme. We define the domain [0, 100] (m) and the constants h0 = 1 (m),
a = 0.5h0, and x0 = 20 (m). We run the simulation until T = 15 (s)
using successively smaller mesh sizes, namely, ∆x = 0.2 (m), ∆x = 0.1 (m),
∆x = 0.05 (m), and ∆x = 0.025 (m). To measure the error we use the
discrete L∞ norm ‖ ·‖∞. We denote by Eη and Eu the difference between the
numerical solution and the theoretical solution of η and u, respectively. Like
in the following sections, the time step is fixed by the CFL condition (27).
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Figure 3. Solitary wave propagation over a flat bottom. Esti-
mated convergence rate for η (in the left) and for u (in the right).
The solid line represents the best fitting least square line.

In Figure 3 we plot the log(‖Eη‖∞) and log(‖Eu‖∞) versus log(∆x). The
convergence rate is estimated by the slope of the best fitting least square
line. The values obtained are 1.84 for η and 1.82 for u. For this smooth
example these values are in close agreement with the expected second order
convergence rate.
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5.2.Weakly dispersive waves. The next set of experiments illustrates the
ability of our approach to accurately simulate wave breaking and propagation
over dry areas. We focus on weakly dispersive waves, meaning that the
parameters α and β are set to zero. In all examples we use the breaking
parameters φi = 0.5 and φf = 0.4. The parameter Ff was not considered.

Also presented is a comparison between the results obtained with Man-
ning’s friction formula (18) and those obtained with the proposed one (19).
To perform this comparison we first tuned the Manning’s friction coefficient
nk. Afterwards, we used formula (20) to obtain the corresponding value of
the parameter KN . No attempt was made to optimize KN or the parameters
c1, c2, and c3 arising in (19).

5.2.1. Synolakis [46] - Solitary wave run-up and run-down over a sloping
beach. Our first experiment refers to the run-up and run-down of a breaking
solitary wave over a slopping beach [46]. The experimental setup is given
in Figure 4, it shows the beach with a slope of 1 : 19.85 and the still water
depth h0 = 1 (m).
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m
)

Figure 4. Schematic representation of the setup used in the
experiment of Synolakis (1987). The horizontal grey line corre-
sponds to the initial still water depth, h0 = 1 (m).

The solitary wave with amplitude a = 0.3 (m) is initially centered around
x0 = 25.5 (m). Simulations were performed with ∆x = 0.1 (m) and Man-

ning’s coefficient nk = 0.02. Snapshots of the wave at the time t∗ = t
√
g/h0

are given in Figure 5. They show the wave propagating before breaking, at
t∗ = 15, the breaking phase, at t∗ = 20, and the run-up phase, at t∗ = 25 and
t∗ = 30. A good agreement between numerical simulation and experimental
data is observed in all phases.

The breaking phase occurs approximately between t∗ = 18 and t∗ = 23.
This is well predicted by our model and is illustrated in Figure 6.

In 2012 the US National Tsunami Hazard Mitigation Program (NTHMP)
conducted a model benchmarking workshop [35]. The models that passed a
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Figure 5. Comparison between numerical (solid line) and ex-
perimental data (dots) at four different times for the Synolakis
(1987) experiment.
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Figure 6. Snapshots of the soliary wave propagation in the Syn-
olakis (1987) experiment; the area between two dash lines corre-
sponds to breaking regions.

series of pre-established tests were approved for tsunami inundation model-
ing. One of the benchmark tests was based on the Synolakis (1987) exper-
iment. The models had to achieved a normalized root-mean-squared-error
(RMSE) smaller than 10% at the times shown in Figure 5. In Table 1 we
compare the error of our approach with the average error of the approved
models. As can be seen, the error of our Serreα,β is bellow the average error

Run-up Phase - Normalized RMSE (%)

t∗ = 15 t∗ = 20 t∗ = 25 t∗ = 30 Mean
Serreα,β 3 8 6 3 5
SerreMα,β 4 10 5 3 6
NTHMP 7 9 6 4 7

Table 1. Comparison of the normalized RMSE with respect to
the Synolakis (1987) experiment; proposed Serreα,β, SerreMα,β, and
mean of the four models presented in NTHMP (2012).
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at all times. The results with SerreMα,β are also given, and they show that the
Manning’s friction formula is less accurate.

Snapshots of the run-down phase are given in Figure 7. Again, we can
observe a good agreement between numerical simulation and experimental
data.
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Figure 7. Comparison between numerical (solid line) and ex-
perimental data (dots) at four different times for the run-down
phase of the Synolakis (1987) experiment.

The normalized RMSE for the run-down phase is given in Table 2. For this
phase Serreα,β and SerreMα,β achieved a similar performance. We note that the
NTHMP benchmark test did not include the run-down phase.

Run-down Phase - Normalized RMSE (%)

t∗ = 55 t∗ = 60 t∗ = 70 t∗ = 80 Mean
Serreα,β 5 5 3 3 4

Table 2. Normalized RMSE for Serreα,β with respect to the
Synolakis (1987) experiment.

In Table 3 we analyze the sensitivity of our implementation to the mesh
size ∆x. The same mean of normalized RMSE for the run-up and run-down
phases prove the robustness against this parameter.

5.2.2. CADAM Project [34] - Dam break flow over a triangular hump.
The CADAM (Concerted Action on Dambreak Modelling), was a European
project whose main goal was to push forward the numerical simulation of
dam break events [34, 28]. During the project duration a database of tests
cases was created. One of such tests cases is shown in the top left image of
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Mean of Normalized RMSE (%)

Phase ∆x = 0.1 (m) ∆x = 0.05 (m) ∆x = 0.025 (m)
Run-up 5 5 5

Run-down 4 4 4

Table 3. Mean of normalized RMSE in the Synolakis (1987)
experiment in function of ∆x.
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Figure 8. The figure in the top left corner shows a schematic
representation of the setup used in the CADAM project (2000).
The dots indicate the gauges positions. The remaing figures show
a comparison between numerical (solid line) and experimental
data (dots) at the five gauges.

Figure 8. It consists of a reservoir with a gate located at x = 15.5 (m). The
initial water depth upstream was 0.75 m and downstream the channel was
dry. At time equal zero the gate is open and the water floods the dry portion
of the channel interacting with a triangular obstacle. The reservoir is closed
at the upstream end and open at the downstream end. To collect data seven
gauges were placed across the reservoir.
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Figure 9. Snapshots of the flow propagation in the CADAM
project (2000); the area between two dash lines corresponds to
breaking regions.

The results of our simulation are given in Figure 8, and they illustrate the
good agreement between numerical and experimental data. In Figure 9 we
show snapshots of the numerical wave at four different times. The first two
images, at t = 13.53 (s) and t = 20.01 (s), show the wave after interacting
with the obstacle. Part of the wave overtakes the obstacle and other part is
reflected creating a breaking wave traveling back in the upstream direction.
At t = 30.50 (s) the breaking wave is now moving in the opposite downstream
direction after being reflected in the solid wall at the upstream end. Finally,
at t = 41.60 (s), the wave is no longer breaking and it is overtaking the
triangular obstacle for the second time. For this test we used ∆x = 0.1 (m)
and nk = 0.01.
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Figure 10. Comparison of the RMSE at the seven gauges of the
CADAM Project (2000); SerreMα,β (black line) and Serreα,β (grey
line).

In this example, as illustrated in Figure 10, Serreα,β is slightly more ac-
curate than SerreMα,β. The most noticeable difference is at the last gauge,
located after the obstacle at x = 35.5 (m).
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The initial condition for h is discontinuous across the dam location. To
avoid numerical instabilities we use the expression

h(x, 0) = hd +
hu − hd

2

(
1 + tanh

(
xg − x
δ

))
, (28)

where hd and hu are the water depth downstream and upstream, respectively,
xg is the gate location, and δ is a small positive parameter that we set equal
to 0.1 [37].

5.2.3. Roeber et al. [40] - Solitary wave propagating over an exposed reef. In
last example of this section we analyze the interaction of a solitary wave with
an idealized fringing reef [40]. The experimental setup is shown in Figure 11.
The outer reef has a slope of 1/12 and the still water depth of 2.5 (m) leaves
the reef crest exposed by 6 (cm) and the reef flat submerged by 14 (cm) of
water.
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Figure 11. Schematic representation of the setup used in the
experiment of Roeber et al. (2010). The horizontal gray line
represents the initial still water depth, h0 = 2.5 (m).

The solitary wave with amplitude a/h0 = 0.3 and initially centered around
x0 = 15 (m), shoals over the outer reef and breaks just before the crest

at around t∗ = 67, with t∗ = t
√
g/h0. The flume is closed at both ends

and a series of breaking and reflection events occur during the experiment.
The comparison between the experimental data recorded at ten different
gauges and the numerical simulation is depicted in Figure 12. The data
starts at t∗ = 95.7, after the first passage of the wave front by all the gauges.
Overall, our model reproduces the experimental data with good accuracy.
For later times, as the wave dynamics becomes more and more complex,
some discrepancies start to appear. For this simulation we used ∆x = 0.1
(m) and nk = 0.02.

Wave profiles at four different times are given in Figure 13. At t∗ = 71.11
we see the first interaction of the wave front with the still water in the reef
flat. An hydraulic jump is originated and a downstream propagating bore is
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Figure 12. Comparison between numerical (solid line) and ex-
perimental data (dots) at the ten gauges of the Roeber et al.
(2010) experiment.

seen at t∗ = 79.36. At t∗ = 97.25 the bore is already moving upstream after
being reflected by the solid wall at the downstream end. By time t∗ = 120.02
the bore has crossed the reef crest creating and hydraulic jump at the top
of the outer reef. This wave dynamics is in accordance with the description
presented in [40].

The comparison between SerreMα,β and Serreα,β is given in Figure 14. Here,

Serreα,β is more accurate than the Manning based SerreMα,β at seven of the

ten gauges. At the remaining three gauges SerreMα,β has a smaller RMSE in
one of them, x = 61.5 (m), and the RMSE is identical at the other two,
x = 54.4 (m) and x = 65.2 (m).
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Figure 13. Snapshots of the soliary wave propagation in the
Roeber et al. (2010) experiment; the area between two dash
lines corresponds to breaking regions.
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Figure 14. Comparison of the RMSE at the ten gauges of the
Roeber et al. (2010) experiment; SerreMα,β (black line) and Serreα,β
(grey line).

5.3. Highly dispersive waves. In this section we illustrate the ability of
our approach to deal with wave breaking and highly dispersive effects simul-
taneously. The goal is to highlight the superiority of the improved Serreα,β
over classical Serre. In the simulation of such type of processes, besides the
breaking parameters, also the parameters α and β become relevant. For the
experiments of this section we used Ff instead of φf for breaking termination.

5.3.1. Carmo et al. [18] - Dam break flow over a wet and flat channel. Our
first test case is a laboratory dam break problem presented in [18]. As shown
in the top left image of Figure 15, it consists of a reservoir with a gate located
at x = 3.8 (m). The initial water depth upstream and downstream was 0.099
m and 0.051 m, respectively. The channel was open at the downstream end
and closed at the upstream end. Three gauges were placed at the downstream
portion of the channel.

To simulate this experiment we have used ∆x = 0.01 (m) and the initial
condition (28) with δ = 0.05. The parameters α and β were set equal to
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Figure 15. The figure in the top left corner shows a schematic
representation of the setup used in the experiment of Carmo et
al. (1993). The dots indicate the gauges positions. The remaing
figures show a comparison between numerical (solid line) and
experimental data (dots) at the three gauges.
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Figure 16. Snapshots of the simulated Carmo et al. (1993)
experiment at two different times. The area between the dash
lines corresponds to breaking regions.

0.04 and 0.1, respectively. For breaking we used φi = 0.43 and Ff = 1.32,
and we found the friction term to be negligible. The images of Figure 15
show that the numerical results are in close agreement with the laboratory
data. The wave height is well predicted and no significant phase distortion
is observed. Two wave snapshots at time t = 2.42 (s) and t = 2.66 (s) are
given in Figure 16. They show the front wave breaking as reported in [18].

In Figure 17 we give the numerical results obtained with classical Serre
at the last two gauges. Here the dispersive effects are more relevant and
a significant phase discrepancy is observed. Note that the height of the
breaking front wave is well predicted. This suggests that the differences
observed are in fact due to the weakly dispersive properties of Serre. At the
first gauge the results are similar to the ones obtained with Serreα,β.
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Figure 17. Comparison between the classical Serre model (solid
line) and experimental data (dots) at the last two gauges used in
the experiment of Carmo et al. (1993).

5.4. Beji et al. [1] - Periodic wave propagation over a submerged
bar. Our last experiment deals with the propagation of a sinusoidal wave
over a submerged bar [1]. The setup is illustrated in the top left image of
Figure 18. It shows the bar with a front slope of 1:20 and a back slope of
1:10. The initial water height is h0 = 0.4 (m), leaving the 0.3 (m) high bar
completed submerged. The incident wave height is 0.027 (m), the frequency
is 1/2.5 (s), and the wavelength is 4.7904 (m). This challenging case involves
wave shoaling, wave breaking, and higher harmonic release.
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Figure 18. The figure in the top left corner shows a schematic
representation of the setup used in the experiment of Beji et al.
(1993). The horizontal gray line represents the initial still water
depth, h0 = 0.4 (m). The dots indicate the gauges positions. The
remaing figures show a comparison between Serreα,β (solid line)
and experimental data (dots) at the first three gauges.

To simulate the incident wave we used an input condition at the left bound-
ary [16]. The mesh size was set to ∆x = 0.015 (m) and the breaking parame-
ters were set to φi = 0.5 and Ff = 1.08. We also defined α = 0.04, β = 0.07,
and the friction term nk = 0.02. In Figure 18 we present the comparison
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between Serreα,β and experimental data collected with three gauges placed
at the bar crest. The results reveal that the wave shape is well captured by
our model.
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Figure 19. Snapshots of the flow propagation in the Beji et al.
(1993) experiment; the area between the two dash lines corre-
sponds to the breaking region.

Two snapshots of the wave are given in Figure 19. They show one of the
first moments after a wave front begins to break, at t = 21.71 (s), and one of
last moments before the wave front stops breaking, at t = 23.50 (s). These
results reveal that our model correctly predicts the onset and duration of
breaking.
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Figure 20. Comparison between numerical (solid line) and ex-
perimental data (dots) at the last three gauges. From left to
right: Serreα,β and classical Serre.

For the comparison between Serreα,β and classical Serre we use the data
recorded with three gauges placed after the bar crest. The results of the
simulations are given in Figure 20. Unlike Serre, the proposed Serreα,β is
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capable of reproduce the experimental data with good accuracy. The limi-
tations of Serre are clearly evident at the last gauge located at x = 17 (m).
During the shoaling phase the wave accumulates higher harmonics that are
released as highly dispersive waves during the breaking phase and on the
downward slope. Therefore, the last gauge is the most challenging since the
higher harmonic are already fully released. At the gauges of Figure 18 Serre
and Serreα,β have a similar behavior.
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Figure 21. Comparison of the RMSE at the six gauges of the
Beji et al. (1993) experiment; SerreMα,β (black line) and Serreα,β
(grey line).

The comparison between SerreMα,β and Serreα,β is given in Figure 21. It
shows that Serreα,β results in a somewhat lower RMSE at all gauges except
the first one.

6. Conclusion
In this paper we propose, implement, and test a complete wave model

for nearshore and dam break simulation. Our approach is based on a Serre
system with improved dispersion properties. We complement this system
with a wave breaking methodology and friction terms.

For breaking we follow a well established strategy that consists in ignor-
ing all the dispersive terms in the neighborhood of a breaking wave. This
strategy takes advantage of our splitting scheme that separates the model in
a hyperbolic part and a dispersive part. A high order positivity preserving
finite volume method is used to discretize the hyperbolic part and finite dif-
ference are used to discretize the dispersive part. For friction we propose a
more physically based alternative to the usual Manning formula. The nu-
merical results suggest that the proposed formulation is more accurate than
the one based in Manning.

Our model is tested against several experimental problems. We separate
the problems in two groups: weakly dispersive waves and highly dispersive
waves. In the first group we focus on the breaking and friction methodologies.
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The model proved to be efficient and robust. The second group is particularly
challenging and innovating since it involves wave breaking and dispersive
effects. These complex examples reveal the limitations of classical Serre
system and highlight the advantage of our improved Serre system.
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