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Abstract: The situation, common in the current literature, is that of a whole fam-
ily of location-scale/scale invariant test statistics, indexed by a parameter λ ∈ Λ,
is available to test the goodness of fit of F , the underlying distribution function of
a set of independent real-valued random variables, to a location-scale/scale family
of distribution functions. The power properties of the tests associated with the dif-
ferent statistics usually depend on the parameter λ, called the “tuning parameter”,
which is the reason that its choice is crucial to obtain a performing test procedure.
In this paper, we address the automatic selection of the tuning parameter when
Λ is finite, as well as the calibration of the associated goodness-of-fit test proce-
dure. Examples of existing and new tuning parameter selectors are discussed, and
the methodology presented of combining different test statistics into a single test
procedure is applied to well known families of test statistics for normality and ex-
ponentiality. A simulation study is carried out to access the power of the different
tests under consideration, and to compare them with the fixed tuning parameter
procedure, usually recommended in the literature.
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1. Introduction

Given a sample X1, . . . , Xn of independent and identically distributed real-
valued random variables from a distribution function F , assume that Tn,λ =
Tn,λ(X1, . . . , Xn), for λ ∈ Λ, is a finite family of statistics for testing the
hypothesis

H0 : F ∈ F , (1)

against a general alternative hypothesis, where F is either a location-scale
family,

F =
{

F0((· − b)/a) : a > 0, b ∈ R
}

(2)
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2 C. TENREIRO

or a scale family of distribution functions,

F =
{

F0(·/a) : a > 0
}

, (3)

with F0 a known distribution function on R. If the test statistics Tn,λ are
location-scale invariant in case (2), that is, Tn,λ(νX1 + µ, . . . , νXn + µ) =
Tn,λ(X1, . . . , Xn), for each ν > 0 and µ ∈ R, or scale invariant in case
(3), that is, Tn,λ(νX1, . . . , νXn) = Tn,λ(X1, . . . , Xn), for each ν > 0, the
distribution of Tn,λ under H0 does not depend on F . Therefore, if large
values of Tn,λ are significant, each one of the tests with critical regions
{Tn,λ(X1, . . . , Xn) > cn,λ(α)}, has a level of significance at most equal to α,
that is, PF

(

Tn,λ(X1, . . . , Xn) > cn,λ(α)
)

≤ α, for all F ∈ F , where α ∈ ]0, 1[,

and cn,λ(α) = F−1
Tn,λ

(1−α) denotes the quantile of order 1−α of Tn,λ under H0.

Of course, if the distribution functions of all Tn,λ under H0, are continuous
on R, the test procedures associated with the previous critical regions have a
level of significance exactly equal to α. The power properties of the previous
test procedures usually depend on the parameter λ which is the reason that
its choice is crucial to obtain a performing test procedure.
The previous situation, where a finite family of test statistics is available

for testing the hypothesis H0, is now common in the current literature as
evidenced by the works of Epps and Pulley (1983), Baringhaus and Henze
(1991), Henze (1993), Güntler and Henze (2000), Klar (2001), Henze and
Meintanis (2002), Meintanis (2004, 2004a), and Meintanis et al. (2014), where
goodness-of-fit tests for the normal, exponential, Cauchy, Laplace, or logistic
distributions, based on the empirical characteristic function, the probability
weighted characteristic function, the integrated empirical distribution func-
tion or the Laplace transform, are proposed (for related work, see also Henze
and Zirkler, 1990, Fan, 1998, Tenreiro, 2005, 2007). In all these situations
the test statistics Tn,λ, λ ∈ Λ, are either location-scale invariant in case (2)
or scale invariant in case (3). More precisely, they can be written in the form
Tn,λ(X1, . . . , Xn) = T̄n,λ(Y1, . . . , Yn) with

(Y1, . . . , Yn) = g(X1, . . . , Xn), (4)

where g is a known function given by g(X1, . . . , Xn) =
(

X1−b̂n
ân

, . . . , Xn−b̂n
ân

)

,

in case (2), and by g(X1, . . . , Xn) =
(

X1

ân
, . . . , Xn

ân

)

, in case (3), where ân =

ân(X1, . . . , Xn) is a location invariant and scale equivariant estimator of the
scale parameter a, i.e., ân(νX1 + µ, . . . , νXn + µ) = ν ân(X1, . . . , Xn), for



AUTOMATIC SELECTION OF THE TUNING PARAMETER 3

each ν > 0 and µ ∈ R, and b̂n = b̂n(X1, . . . , Xn) is a location-scale equi-

variant estimator of location parameter b, i.e., b̂n(νX1 + µ, . . . , νXn + µ) =

ν b̂n(X1, . . . , Xn) + µ, for each ν > 0 and µ ∈ R.
Focusing our attention on the normality test introduced by Epps and

Pulley (1983), the considered test statistic is defined as a weighted L2-
distance between the empirical characteristic function of the scaled residual
Yj = (Xj − X̄n)/Sn, j = 1, . . . , n, given by ϕn(t) =

1
n

∑n
j=1 exp

(

itYj
)

, t ∈ R,

and the characteristic function ϕ(t) = exp(−t2/2) of the standard Gaussian
density φ(x) = (2π)−1/2 exp(−x2/2), x ∈ R, where X̄n = n−1

∑n
j=1Xj and

S2
n = n−1

∑n
j=1(Xj − X̄n)

2, are the sample mean and the sample variance,

respectively. The weight function is given by t 7→ exp(−λ2t2), where λ a
strictly positive real number that needs to be chosen by the user. Therefore
the Epps-Pulley test statistic is given by

Tn,λ = n

∫

R

|ϕn(t)− ϕ(t)|2 exp(−λ2t2)dt = 2π
1

n

n
∑

i,j=1

Q(Yi, Yj; λ), (5)

with Q(u, v; λ) = φ(2λ2)1/2(u−v)−φ(1+2λ2)1/2(u)−φ(1+2λ2)1/2(v)+φ(2+2λ2)1/2(0),
for u, v ∈ R, λ ∈ ]0,+∞[, and φh(·) = φ(·/h)/h, h > 0. The simplicity of
the previous expression shows the attractive feature of the considered weight
function (see Henze and Zirkler, 1990, and Fan, 1998, for the relation between
the Epps-Pulley test statistic and the Bickel-Rosenblatt test statistic). From
a practical point of view, it is well known that the finite sample performance
of the Epps-Pulley test is very sensitive to the choice of λ. Choosing a small
value of λ, which means letting the weight function decay slowly, will produce
a test sensitive to short tailed or high moment alternatives, whereas large
values of λ, which means putting most of the mass of the weight function
near zero, are adequate for detecting alternative distributions with long tails,
symmetric or asymmetric (cf. Tenreiro, 2009). Note that for large values of
λ the considered weight function puts most of its mass near the origin, and
then, the previous behaviour can be seen as a consequence of the fact that
the tail behaviour of a probability distribution is reflected by the behaviour
of its characteristic function at the origin (cf. Kawata, 1972, pp. 419–420).
The exponentiality tests introduced in Henze and Meintanis (2002), is an-

other example where a whole family of test statistics is available to the user.
In this case the test statistics are based on a weighted L2-distance between
the empirical Laplace transform of the scaled data Yj = Xj/X̄n, j = 1, . . . , n,



4 C. TENREIRO

defined by ψn(t) = 1
n

∑n
j=1 exp

(

− tYj
)

, t ≥ 0, and the Laplace transform
of the unit exponential distribution ψ(t) = 1/(1 + t), t ≥ 0, with weight
function t 7→ (1 + t)2 exp(−λt), for λ > 0. Thus, the Henze-Meintanis test
statistic is given by

Tn,λ = n

∫ ∞

0

(

ψn(t)− ψ(t)
)2
(1 + t)2 exp(−λt)dt

=
1

n

n
∑

j,k=1

1 + (Yj + Yk + λ+ 1)2

(Yj + Yk + λ)3
− 2

n
∑

j=1

1 + Yj + λ

(Yj + λ)2
+
n

λ
, (6)

for λ ∈ ]0,+∞[. As the Epps-Pulley test for normality, the Henze-Meintanis
test for exponentiality is very sensitive to the choice of λ. As remarked by
Baringhaus and Henze (1991, p. 552) (see also Henze and Meintanis, 2002,
p. 148), from Tauberian theorems on Laplace transform (cf. Feller, 1971,
Chapter XIII.5), it is known that the tail behaviour of a probability distribu-
tion concentrated on [0,∞[ is reflected by the behaviour ot its Laplace trans-
form at zero and vice versa. Therefore, choosing a small value of λ, which
means letting the weight function decay slowly, gives high power against al-
ternative distributions having a point mass or infinite density at zero, and a
large value of λ means putting most of the mass of the weight function near
zero, which should give high power against alternatives that greatly differ in
tail behaviour with respect to the exponential distribution.
As illustrated by the previous examples, the parameter λ acts as a tuning

parameter, through which the user can increase the power of the test toward
some particular direction along the alternative distribution set. However, as
the formulation of a specific alternative hypothesis is, in general, impossible in
a real situation, the usual practice is to evaluate the test power performance
for λ varying in a finite set Λ, and then suggesting a selection of λ that
produces a test with a reasonable power against a wide range of alternative
distributions. However, this strategy of taking a fixed tuning parameter
does not prevent the user from obtaining a test that achieves a very low
power against some of the considered alternative distributions (cf. Henze
and Meintanis, 2002).
Some efforts have been made in order to combine, based on the available

data, test procedures associated to different values of the tuning parame-
ter λ into a single test procedure that could show a good power perfor-
mance against a wide range of alternative distributions. This was the case of
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the multiple test approach, considered in Klar (2001), Fromont and Laurent
(2006) and Tenreiro (2011, 2017), which can be viewed as an improvement
of the classical Bonferroni multiple test procedure. The proposed test leads
to the rejection of the null hypothesis if one of the statistics Tn,λ, for λ ∈ Λ,
is larger than its (1−u) quantile under the null hypothesis, the level u being
calibrated so that the resulting multiple test has a level of significance at
most equal to α. Thus, the associated critical region is given by

{

max
λ∈Λ

(

Tn,λ − cn,λ(u)
)

> 0
}

, (7)

for some u ∈ ]0, 1[. This testing procedure is closely related to the single-
step minP multiple testing procedure based on minima of unadjusted p-
values (cf. Dudoit and van der Lann, 2008, pp. 117–121). Unlike classical
Bonferroni multiple, that can be obtained by taking u = α/|Λ|, where |Λ|
denotes the cardinality of Λ, the previous rejection region takes into account
the dependence structure among the test statistics Tn,λ for λ ∈ Λ. As the
previous critical region can be written as

{

Tn,λ̄u
> cn,λ̄u

(u)
}

, where

λ̄u = λ̄u(X1, . . . , Xn) = argmax
λ∈Λ

(

Tn,λ(X1, . . . , Xn)− cn,λ(u)
)

, (8)

the previous multiple test procedure can be seen as a test based on a data-
dependent procedure for selecting the tuning parameter λ: for a given sample
of size n, one selects the value λ in Λ for which the test statistic Tn,λ shows
stronger evidence, at level u, against the null hypothesis.
More recently, Allison and Santana (2015) proposed an alternative data-

dependent method, based on the bootstrap, for choosing the tuning param-
eter. They considered the test with critical region {Tn,λ∗ > cn,λ∗(α)}, where
λ∗ = λ∗(X1, . . . , Xn) is obtained by maximizing the bootstrap power, that is,

λ∗ = λ∗(X1, . . . , Xn) = argmax
λ∈Λ

1

B

B
∑

k=1

I
(

T̄n,λ(Y
∗
k1, . . . , Y

∗
kn) > cn,λ(α)

)

,

where (Y ∗
k1, . . . , Y

∗
kn) is a bootstrap random sample of size n drawn with re-

placement from the empirical distribution function of the transformed sample
(Y1, . . . , Yn) defined by (4), B ∈ N is the considered number of bootstrap sam-
ples, and I(A) denotes the indicator function of the set A. Unfortunately, the
proposed method presents two important drawbacks. Firstly, the suggested
bootstrap procedure, as based on a bootstrap random sample drawn from the
empirical distribution function of the transformed sample (4), and not from
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the empirical distribution function of the original sample, does not always
produce a good approximation for the power associated with the distribution
of the observations. Secondly, by using the quantiles of order 1 − α of each
one of the test statistics Tn,λ to define the critical region, the proposed test
is not correctly calibrated and may reach a level of significance much bigger
than α (see Section 4, Figure 1). In order to overcome these problems, we
consider in this paper the test with critical region

{

Tn,λ̃u
> cn,λ̃u

(u)
}

, for

u ∈ ]0, 1[, where the modified tuning parameter selector λ̃u, is defined by

λ̃u(X1, . . . , Xn) = argmax
λ∈Λ

1

B

B
∑

k=1

I
(

Tn,λ(X
∗
k1, . . . , X

∗
kn) > cn,λ(u)

)

, (9)

with X∗
kj = XU(k−1)n+j

, for k = 1, . . . , B and j = 1, . . . , n, where Ul, for
l = 1, . . . , nB, are independent copies of the discrete uniform distribution on
{1, . . . , n}, and u is calibrated so that the test has a level of significance at
most equal to α. Although not assumed or discussed in this paper, if, for
B and n large enough, the mean in (9) gives a good approximation for the
probability PF (Tn,λ(X1, . . . , Xn) > cn,λ(u)), we might expect that λ̃u mimics
the behaviour of the ideal tuning parameter

λu(F ) = argmax
λ∈Λ

PF

(

Tn,λ(X1, . . . , Xn) > cn,λ(u)
)

, (10)

this being the main motivation for the previous definition of λ̃u. As λ̃u
depends on U = (Ul, l = 1, . . . , nB) ∈ {1, . . . , n}nB, any statement on this
tuning parameter selector should always be interpreted conditionally on U .
However, by the law of large numbers, different choices of U , essentially lead
to tuning parameter selectors with similar behaviours.
The paper is organised as follows. Sections 2 and 3 deal with the calibration

and the consistency of the tests with critical region {Tn,λ̂u
> cn,λ̂u

(u)}, where
λ̂u = λ̂u(X1, . . . , Xn) is a general family of measurable functions, indexed by
u ∈ ]0, 1[, taking values in Λ, which are either location-scale invariant in case
(2) or scale invariant in case (3). The cases of the tuning parameter selectors
λ̄u and λ̃u, defined by (8) and (9), respectively, are analysed in detail. In
Sections 4 and 5 we will restrict our attention to the cases where Tn,λ is
either the test statistic for normality of Epps and Pulley (1983), or the test
statistic for exponentiality of Henze and Meintanis (2002). We conclude that
the proposed calibration procedure is effective, and, as a result of a simulation
study, we deduce that the tests based on λ̄u and λ̃u are serious competitors
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for the tests based on a fixed tuning parameter usually recommended in the
literature, and perhaps should be employed in practice, in the absence of
any information about the type of deviation from the null model. All the
proofs and some auxiliar results are deferred to Section 6. The simulations
and plots in this article were carried out using the R software (R Core Team,
2014).

2. The calibration procedure

In this section we will denote by Tn,λ, for λ ∈ Λ, a finite family of test
statistics for testing the hypothesis (1), whose large values are considered
significant. We will also assume that such test statistics are either location-
scale invariant in case (2) or scale invariant in case (3). This assumption
enables us to consider that the quantiles of order 1 − u of Tn,λ under H0,
denoted, as before, by cn,λ(u) = F−1

Tn,λ
(1 − u), are known quantities as they

can be approximated by performing Monte Carlo experiments under the null
hypothesis.
Given a general invariant tuning parameter selector λ̂u = λ̂u(X1, . . . , Xn),

that is, a family of measurable functions indexed by u ∈ ]0, 1[, taking values
in Λ, which are either location-scale invariant in case (2) or scale invariant
in case (3), we have

{

Tn,λ̂u
>cn,λ̂u

(u)
}

⊂
{

max
λ∈Λ

(

Tn,λ − cn,λ(u)
)

>0
}

=
⋃

λ∈Λ

{

Tn,λ>cn,λ(u)
}

, (11)

from which we conclude that it is always possible to choose u ∈ ]0, 1[ such
that the test with critical region {Tn,λ̂u

> cn,λ̂u
(u)}, has a level of significance

at most equal to the nominal level α:

Theorem 1. Given an invariant tuning parameter selector λ̂u, and α ∈ ]0, 1[,
then for all 0 < u ≤ α/|Λ|, we have

PF

(

Tn,λ̂u
> cn,λ̂u

(u)
)

≤ α, for all F ∈ F ,

where the probability PF

(

Tn,λ̂u
> cn,λ̂u

(u)
)

, we denote by ψλ̂(u), is independent
of F , for F ∈ F .

Note that the previous assumptions are fulfilled by the tuning parameter
selector λ̄u given by (8), and, conditionally on U = (Ul, l = 1, . . . , nB), by
λ̃u defined by (9).
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2.1. A first calibration stage. Although important, as it assures that the
Type I error of the test with critical region {Tn,λ̂u

> cn,λ̂u
(u)}, may be put

under a preassigned level of significance α through an appropriate choice of
u, Theorem 1 does not provide a criterium for such a choice. Taking into
account that the test should have a level of significance not only less than
or equal to α but also as close to α as possible, the practical selection of u
will be performed by considering a regular grid Gp = {uk, k ∈ Ip} on the
interval ]0, 1[, where u1 = p and uk+1 = uk + p, for some 0 < p ≤ α/|Λ|, and
taking u = uλ̂n,α,p, where u

λ̂
n,α,p is the largest value of Gp satisfying ψλ̂(u) :=

PF0

(

Tn,λ̂u
> cn,λ̂u

(u)
)

≤ α, that is,

uλ̂n,α,p = max{u ∈ Gp : ψλ̂(u) ≤ α}. (12)

We present in the next theorem a set of sufficient conditions on ψλ̂ assuring

that the test with critical region {Tn,λ̂u
> cn,λ̂u

(u)}, for u = uλ̂n,α,p, has a level
of significance as close to α as possible, when p tends to zero.

Theorem 2. Given an invariant tuning parameter selector λ̂u, let α ∈ ]0, 1[,

and uλ̂n,α,p given by (12). If ψλ̂ is increasing on ]0, 1[, with limu↑1 ψλ̂(u) = 1,

we have limp↓0 uλ̂n,α,p = uλ̂n,α, where

uλ̂n,α = sup{u ∈ ]0, 1[ : ψλ̂(u) ≤ α}, (13)

is such that α/|Λ| ≤ uλ̂n,α < 1. Moreover, if ψλ̂ is continuous on ]0, 1[, we
have

lim
p↓0

sup
F∈F

PF

(

Tn,λ̂up
> cn,λ̂up

(up)
)

= sup
F∈F

PF

(

Tn,λ̂u
> cn,λ̂u

(u)
)

= α,

where up and u stand for uλ̂n,α,p and uλ̂n,α, respectively.

The previous general result allows us to present a set of sufficient conditions
on the null distribution of the statistics Tn,λ, weaker that those considered
in Tenreiro (2011, Theorem 1), assuring that the test associated with the

critical region {Tn,λ̄u
> cn,λ̄u

(u)}, with λ̄u given by (8) and u = uλ̄n,α,p given
by (12), has a level of significance not only inferior, but also as close to α as
possible, when p tends to zero.
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Theorem 3. If the distribution function of Tn,λ under H0 is continuous, for
all λ ∈ Λ, then, for α ∈ ]0, 1[ we have

lim
p↓0

sup
F∈F

PF

(

Tn,λ̄up
> cn,λ̄up

(up)
)

= sup
F∈F

PF

(

Tn,λ̄u
> cn,λ̄u

(u)
)

= α,

where up and u stand for uλ̄n,α,p and u
λ̄
n,α given by (12) and (13), respectively,

with α/|Λ| ≤ uλ̄n,α ≤ α.

2.2. A second calibration stage. Under the assumptions of Theorem 3 on
the null distribution of the statistics Tn,λ, it can be proved that limu↑1ψλ̂(u) =

1, for any invariant tuning parameter selector λ̂u (see Section 6, Proposition
1). However, the same set of assumptions does not necessarily assure that
ψλ̂ is increasing and continuous on ]0, 1[. Therefore, under the assumptions

of Theorem 3 the test with critical region {Tn,λ̂u
> cn,λ̂u

(u)}, with u = uλ̂n,α,p
given by (12), has a level of significance no bigger than α, but we cannot
affirm that its level of significance becomes as close to α as possible, when
p tends to zero. Next, we will see that this goal can be achieved if a second
calibration stage is performed.
For a fixed u ∈ ]0, 1[, consider the family of critical regions

{

Tn,λ̂u
>

cn,λ̂u
(v)

}

, indexed by v ∈ ]0, 1[. Although it is natural to take for u the

value uλ̂n,α,p obtained in the first calibration stage, this is not assumed in
what follows. Define

vλ̂u
n,α,q = max{v ∈ Gq : ψλ̂u

(v) ≤ α}, (14)

where ψλ̂u
is given by ψλ̂u

(v) := PF0

(

Tn,λ̂u
> cn,λ̂u

(v)
)

, and Gq = {vk, k ∈ Iq},
is a regular grid on the interval ]0, 1[, with v1 = q and vk+1 = vk+q, for some
0 < q < u.

Theorem 4. Given an invariant tuning parameter selector λ̂u, where u is
assumed to be fixed in ]0, 1[, if the distribution function of Tn,λ under H0 is
strictly increasing (on the set {t ∈ R : 0 < FTn,λ

(t) < 1}) and continuous, for

all λ ∈ Λ, then, for α ∈ ]0, 1[, we have limq↓0 vλ̂u
n,α,q = vλ̂u

n,α, where

vλ̂u
n,α = sup{v ∈ ]0, 1[ : ψλ̂u

(v) ≤ α}, (15)
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is such that max(u, α/|Λ|) ≤ vλ̂u
n,α < 1, whenever ψλ̂(u) ≤ α, and α/|Λ| ≤

vλ̂u
n,α ≤ u, whenever ψλ̂(u) > α. Moreover, we have

lim
q↓0

sup
F∈F

PF

(

Tn,λ̂u
> cn,λ̂u

(vu,q)
)

= sup
F∈F

PF

(

Tn,λ̂u
> cn,λ̂u

(vu)
)

= α,

where vu,q and vu stand for vλ̂u
n,α,q and vλ̂u

n,α, respectively.

This general result gives us a set of sufficient conditions on the null dis-
tribution of the statistics Tn,λ, assuring that, conditionally on U = (Ul, l =

1, . . . , nB), the test with critical region {Tn,λ̃u
> cn,λ̃u

(vu)}, with u = uλ̃n,α,p

and vu = vλ̃u
n,α,q given by (12) and (14), respectively, has a level of significance

not only less than or equal but also as close to α as possible, when q tends
to zero.

3. Consistency against fixed alternatives

Under some general assumptions, the test procedures considered in the pre-
vious section detect an alternative F /∈ F , if such an alternative is detected
by all the test statistics Tn,λ, for λ ∈ Λ. Next we will restrict our attention to
the tests that use a single calibration stage. However, similar results can be
derived for the test procedures considered in subsection 2.2, where a second
calibration stage is used.

Theorem 5. Under the conditions of Theorem 2, let F /∈ F , and assume

that Tn,λ
p−→ +∞, under F , for all λ ∈ Λ. If Tn,λ

d−→ T∞,λ, under H0,
with FT∞,λ

strictly increasing (on the set {t ∈ R : 0 < FT∞,λ
(t) < 1}), for all

λ ∈ Λ, then
PF

(

Tn,λ̂u
> cn,λ̂u

(u)
)

−→ 1, as n→ ∞,

where u stands for uλ̂n,α given by (13).

In the particular case of the tuning parameter selector λ̄u given by (8), it
is interesting to note that the previous consistency result may be obtained
under weaker assumptions. In fact, the test with critical region {Tn,λ̄u

>

cn,λ̄u
(u)}, with u = uλ̄n,α, detects any alternative F /∈ F that is detected by

at least one of the tests based on Tn,λ, for λ ∈ Λ. This attractive property of
the tuning parameter selector λ̄u is stated in the following result.

Theorem 6. Under the conditions of Theorem 3, let F /∈ F , and assume

there exists λ ∈ Λ such that Tn,λ
p−→ +∞, under F . If Tn,λ

d−→ T∞,λ, under
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H0, where FT∞,λ
is strictly increasing (on the set {t ∈ R : 0 < FT∞,λ

(t) < 1}),
then

PF

(

Tn,λ̄u
> cn,λ̄u

(u)
)

−→ 1, as n→ ∞,

where u stands for uλ̄n,α given by (13).

4. Combining the EP and HM test statistics

In this and the following section we will restrict our attention to the families
of test statistics of Epps and Pulley (1983) and of Henze and Meintanis
(2002), given by (5) and (6), respectively (henceforth denoted by EP and
HM). In the former case, the parametric family F is given by (2), with
F0 the distribution function of the standard Gaussian distribution, whereas
in the latter it is given by (3), with F0 the distribution function of the unit
exponential distribution. We start by showing that both test statistic families
satisfy the assumptions of Theorems 3 and 4 stated in the previous section.

Theorem 7. The null distribution functions of the EP test statistics (for
n ≥ 3), and of the HM test statistics (for n ≥ 2), are strictly increasing (on
the set {t ∈ R : 0 < FTn,λ

(t) < 1}) and continuous, for all λ ∈ ]0,+∞[.

Taking into account Theorems 3 and 4, the previous result enables us to
conclude that, either for the EP test statistic family (n ≥ 3), or for the HM
test statistic family (n ≥ 2), the test with critical region

{

Tn,λ̄u
> cn,λ̄u

(u)
}

,

with λ̄u given by (8) and u = uλ̄n,α given by (13), has an exact α level of

significance. The same is true for the test with critical region
{

Tn,λ̃up
>

cn,λ̃up
(vup

)
}

, with λ̃u, up = uλ̃n,α,p, and vup
= v

λ̃,up
n,α , given by (9), (12) and (14),

respectively. Moreover, from the results presented in Section 3, and those of
Baringhaus and Henze (1988, Theorems 3 and 4), and Henze and Meintanis
(2002, Theorems 2.3 and 2.7), we deduce that the previous tests are consistent
against each nondegenerated non-normal distribution with finite variance,
when Tn,λ, λ ∈ Λ, is the EP test statistic family, and they are consistent
against each nonnegative non-exponential distribution not degenerated at
zero, when Tn,λ, λ ∈ Λ, is the HM test statistic family.
In order to implement the previous test procedures in practice, where the

values uλ̄n,α and v
λ̃up
n,α , are replaced by the approximations uλ̄n,α,p and v

λ̃up
n,α,q,

respectively, the values ψλ̄(u), ψλ̃(u) and ψλ̃up
(v), with up = uλ̃n,α,p, need to

be approximated by Monte Carlo experiments under the null hypothesis, for
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Figure 1. Estimates of ψλ̄(u) and ψλ̃(u), for u ∈ ]0, 0.2[ and
n = 50, for the EP and HM test statistic families with Λ =
{0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3.5, 5}. These plots describe the
level of significance of the test procedures based on the tuning
parameter selectors λ̄u and λ̃u, as a function of u.

u and v varying on the regular grid Gp = {wk, k ∈ Ip}, on the interval ]0, 1[,
where w1 = p and wk+1 = wk + p, for some 0 < p ≤ α/|Λ|. For that,
we use 100,000 simulations under the null hypothesis of the involved test
statistics Tn,λ, λ ∈ Λ, and the R function quantile(·,type=7) for estimating
the 1 − u quantiles cn,λ(u), for u varying on Gp with p = 0.0001. Further
100,000 simulations are used for estimating the probabilities ψλ̄(u), ψλ̃(u)

and ψλ̃up
(v), for u and v varying on Gp. In the evaluation of λ̃u, B = 100

bootstrap samples are used.
We always take Λ = {0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3.5, 5}, a set of tun-

ing parameters that includes the range of values for λ considered by Epps
and Pulley (1983) and Henze and Meintanis (2002). Although the choice
of the set Λ, of relevant values for the tuning parameter λ, may be based
on some preliminar information, the previous set Λ is meant for the most
common situation in practice where no relevant information about the alter-
native hypothesis is available. For n = 50 we show in Figure 1 the graphics
of the functions ψλ̄(u) and ψλ̃(u), for u ∈ ]0, 0.2[, that describe the estimated
levels of significance of the test procedures based on the tuning parameter
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λ̄u λ̃u λ̄u λ̃u

n uλ̄n,α,p EL uλ̃n,α,p EL uλ̄n,α,p EL uλ̃n,α,p EL

Normality test Exponentiality test

α = 0.01

20 0.0032 0.0092 0.0049 0.0096 0.0040 0.0101 0.0042 0.0101

50 0.0029 0.0098 0.0037 0.0095 0.0037 0.0099 0.0038 0.0099

100 0.0029 0.0099 0.0039 0.0102 0.0038 0.0096 0.0039 0.0095

α = 0.05

20 0.0183 0.0487 0.0325 0.0484 0.0220 0.0487 0.0225 0.0501

50 0.0172 0.0497 0.0264 0.0494 0.0217 0.0497 0.0223 0.0499

100 0.0173 0.0502 0.0277 0.0509 0.0218 0.0499 0.0224 0.0499

Table 1. Estimates of uλ̄n,α,p and uλ̃n,α,p, for a preassigned level
α, based on regular grids of size 0.0001 on the interval ]0, 1[,
and estimates of the nominal levels of significance (EL) for the
tests based on the EP and HM families of test statistics. For the
estimation of the nominal levels, the number of replications for
each case is 100, 000.

selectors λ̄u and λ̃u, respectively, as a function of u. As observed in Sec-
tion 1, from these graphics we clearly see that choosing u = α for λ̃u, as
suggested by Allison and Santana (2015), leads to a badly calibrated test
procedure with a level of significance bigger than α. Similar graphics have
been observed for other sample sizes. The suggested continuity of ψλ̃(u) ex-
plains the similar results observed in practice for the test with critical region
{

Tn,λ̃up
> cn,λ̃up

(vup
)
}

, that includes two calibration stages, and the test with

critical region
{

Tn,λ̃up
> cn,λ̃up

(up)
}

, that includes a single calibration stage.

For this reason, and because it is less time-consuming than the test with two
calibration stages, only the test with a single calibration stage is henceforth
considered.
For α = 0.01, 0.05, and sample sizes n = 20, 50, 100, we present in Table 1

estimates of the levels uλ̄n,α,p and u
λ̃
n,α,p, for the preassigned level of significance

α, based on regular grids of size 0.0001 on the interval ]0, 1[, and estimates
of the nominal levels of significance for the tests based on the EP and HM
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families of test statistics. The estimation of the nominal levels was based on
100,000 simulations under the null hypotheses. With some few exceptions,
the preassigned level α is inside its approximate 95% confidence interval,
revealing the effectiveness of the calibration procedures.

5. Finite sample power analysis

In order to study the performance of the tests based on the data-based
tuning parameter selectors λ̄u and λ̃u, a simulation study is conducted for
each one of the Epps-Pulley and Henze-Meintanis families of test statistics.
Other than to assess their empirical power, the simulation study is also meant
to compare the previous tests with the fixed tuning parameter procedures,
usually recommended in the literature. For the Epps-Pulley test of normality,
we take λ = λEP := 1/

√
2, which is one of the two values for λ recommended

in the pioneering work of Epps and Pulley (1983), and also considered in other
studies like those of Baringhaus et al. (1989) and Arcones and Wang (2006)
(see also Tenreiro, 2009). For the Henze-Meintanis test of exponentiality, we
take λ = λHM := 1, which is one of the two values for λ recommended in
Henze and Meintanis (2002). As before the nominal levels α = 0.01, 0.05 and
the sample sizes n = 20, 50, 100 are considered. All the power estimates are
based on 10, 000 samples from the considered alternatives.
Although the following conclusions are based on a simulation study car-

ried out for large sets of alternative distributions usually considered in power
studies for testing normality (see Epps and Pulley, 1983, Romão et al., 2010,
Yap and Sim, 2011), and exponentiality (see Henze, 1993, Henze and Meinta-
nis, 2002, 2005), we limit ourselves to present in Tables 2 and 3 the empirical
power results for some of the considered alternatives. In these tables: LN(θ)
denotes the lognormal distribution with density (θx)−1(2π)−1/2 exp(−(logx)2/
(2θ2))I(x ≥ 0); W(θ) denotes the Weibull distribution with density θxθ−1

exp(−xθ)I(x ≥ 0); LF(θ) denotes the linear increasing failure rate distribu-
tion with density (1+ θx) exp(−x− θx2/2)I(x ≥ 0); and PW(θ) denotes the
power distribution with density θ−1x1/θ−1I(0 ≤ x ≤ 1), where x ∈ R.
For all the considered alternatives, the tests based on the data-dependent

tuning parameter selectors performed similarly. Being clearly less time-
consuming than the bootstrap-based method for choosing λ, our preference
goes to λ̄u. For the generality of the considered alternatives, these data-
dependent tuning parameter selectors compare well with the fixed tuning
parameters λEP or λHM, none of them being the best over the considered set
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α = 0.01 α = 0.05
n = 20 n = 50 n = 100 n = 20 n = 50 n = 100

# 1 Uniform distribution
λEP 0.01 0.14 0.68 0.09 0.48 0.93
λ̄u 0.03 0.18 0.64 0.13 0.43 0.87

λ̃u 0.04 0.15 0.55 0.14 0.39 0.80

# 2 Logistic distribution
λEP 0.05 0.07 0.12 0.13 0.19 0.27
λ̄u 0.04 0.07 0.12 0.11 0.18 0.26

λ̃u 0.03 0.07 0.11 0.09 0.16 0.22

# 3 LN(0.5) distribution

λEP 0.30 0.76 0.98 0.50 0.90 1.00
λ̄u 0.27 0.74 0.98 0.46 0.89 1.00

λ̃u 0.24 0.71 0.97 0.36 0.82 0.99

# 4 Normal mixture 0.8N(0, 1) + 0.2N(3, 1)

λEP 0.11 0.45 0.86 0.28 0.69 0.95
λ̄u 0.08 0.34 0.78 0.23 0.59 0.92

λ̃u 0.08 0.32 0.74 0.19 0.52 0.86

# 5 Tukey(5) distribution

λEP 0.02 0.03 0.05 0.08 0.10 0.16
λ̄u 0.04 0.12 0.34 0.12 0.27 0.56

λ̃u 0.04 0.11 0.33 0.13 0.27 0.56

Table 2. Empirical power results for the normality tests based
on the Epps-Pulley test statistic family. The power estimates are
based on 10, 000 samples from the considered alternatives.

of alternative distributions. This is illustrated by the alternative distribu-
tions # 1, # 2 and # 3 shown in Tables 2 and 3.
For the alternative distributions # 4 in both tables, the tests based on the

fixed tuning parameters λEP or λHM are slightly more powerful than those
based on the data-dependent tuning parameter selectors. For the normality
test this is a consequence of small and large values of λ, as λ = 0.1 or λ = 5,
included in the set Λ. In fact, for the considered normal mixture alternative
the power of the Epps-Pulley tests seems to behave like an inverted U-shaped
function of λ. In the case of the exponential test, the power of the Henze-
Meintanis tests for the considered alternative, is very low for small values of
λ. Therefore, the inclusion of the value λ = 0.1 in the set Λ, may explain the
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α = 0.01 α = 0.05
n = 20 n = 50 n = 100 n = 20 n = 50 n = 100

# 1 Standard uniform distribution
λHM 0.22 0.73 0.99 0.53 0.92 1.00
λ̄u 0.13 0.76 1.00 0.46 0.96 1.00

λ̃u 0.13 0.76 1.00 0.46 0.96 1.00

#2 W(0.8) distribution

λHM 0.12 0.32 0.63 0.25 0.51 0.80
λ̄u 0.16 0.36 0.65 0.31 0.56 0.82

λ̃u 0.16 0.35 0.64 0.31 0.55 0.82

#3 LN(1.5) distribution

λHM 0.49 0.87 0.99 0.62 0.93 1.00
λ̄u 0.53 0.89 0.99 0.65 0.94 1.00

λ̃u 0.52 0.89 0.99 0.65 0.94 1.00

#4 LF(2) distribution

λHM 0.07 0.31 0.72 0.27 0.62 0.91
λ̄u 0.03 0.23 0.68 0.17 0.55 0.91

λ̃u 0.03 0.23 0.68 0.17 0.55 0.91

# 5 PW(2) distribution

λHM 0.07 0.15 0.30 0.17 0.30 0.50
λ̄u 0.25 0.54 0.84 0.44 0.73 0.94

λ̃u 0.25 0.54 0.85 0.44 0.73 0.94

Table 3. Empirical power results for the exponentiality tests
based on the Henze-Mentainis test statistic family. The power
estimates are based on 10, 000 samples from the considered alter-
natives.

inferior power attained for this alternative by the tests based on the data-
dependent tuning parameter selectors. This is a price to pay for having tests
with a reasonable power against a wide range of alternative distributions.
The power results reported for alternatives # 5 in Tables 2 and 3, illustrate

the already mentioned weak point of the strategy of taking a fixed tuning pa-
rameter in the absence of any prior information on the underlying alternative
distribution. The usually recommended tuning parameters λEP or λHM lead
to tests that achieve a very low power against these alternatives, for which a
smaller tuning parameter value would be a better choice. As values as small
as λ = 0.1 or λ = 0.25, have been included in the set Λ, the tests based
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on the considered data-dependent tuning parameter selectors perform much
better than the recommended fixed tuning parameters for these alternatives.
As any goodness-of-fit test, the tests considered in this paper have a prefer-

ence for some finite-dimensional space of alternatives, and cannot pay equal
attention to an infinite number of orthogonal alternatives (see Janssen, 2000).
However, the considered tests based on the data-dependent tuning parame-
ter selectors λ̄u and λ̃u have shown to be serious competitors for the recom-
mended tests based on a fixed tuning parameter, and perhaps should be used
— especially λ̄u because is less time-consuming than λ̃u —, in the absence of
any information regarding the type of deviation from the null model.

6. Proofs

Proof of Theorem 1: The first part of Theorem 1 follows from (11) as it
implies that

PF

(

Tn,λ̂u
> cn,λ̂u

(u)
)

≤ |Λ|u, (16)

for all u ∈ ]0, 1[, where |Λ| denotes the cardinality of Λ. In order to prove
that the probability PF

(

Tn,λ̂u
> cn,λ̂u

(u)
)

, is independent of F , for F ∈ F , it

is enough to use the invariance properties of Tn,λ and λ̂u. �

Proof of Theorem 2: Let I λ̂n,α = {u ∈ ]0, 1[: ψλ̂(u) ≤ α}. As we are

assuming that ψλ̂ is increasing, we have In,α = ]0, uλ̂n,α[ or I
λ̂
n,α = ]0, uλ̂n,α],

where uλ̂n,α = sup I λ̂n,α. Taking into account (16), we get ψλ̂(α/|Λ|) ≤ α,

and therefore α/|Λ| ≤ uλ̂n,α. On the other hand, as limu↑1 ψλ̂(u) = 1, we

necessarily have uλ̂n,α < 1. Using this fact, take p > 0 small enough such that

Gp∩ ]0, uλ̂n,α[ 6= ∅ and Gp∩ ]uλ̂n,α, 1[ 6= ∅, where Gq is the considered regular grid

on the interval ]0, 1[. By the definition of uλ̂n,α,p, we have ψλ̂(u
λ̂
n,α,p) ≤ α, that

is, uλ̂n,α,p ∈ I λ̂n,α; thus u
λ̂
n,α,p ≤ uλ̂n,α. On the other hand, as ψλ̂(u

λ̂
n,α,p + p) > α

we have uλ̂n,α,p + p /∈ I λ̂n,α, and uλ̂n,α,p + p ≥ uλ̂n,α. We have proved that

uλ̂n,α,p ≤ uλ̂n,α < uλ̂n,α,p+ p, for p > 0 small enough, from which we deduce that

limp↓0 uλ̂n,α,p = uλ̂n,α. Taking into account the continuity of ψλ̂, we finish the

proof by showing that ψλ̂(u
λ̂
n,α) = α. Let us consider um ∈ I λ̂n,α such that

um ↑ uλ̂n,α. Therefore we get ψλ̂(u
λ̂
n,α) = ψλ̂(limm um) = limm ψλ̂(um) ≤ α.

Using the fact that uλ̂n,α < 1, let us consider a sequence um ∈ ]0, 1[ such that
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um ↓ uλ̂n,α. As uλ̂n,α is the supremum of I λ̂n,α we have ψλ̂(um) > α for allm ∈ N,

and therefore ψλ̂(u
λ̂
n,α) = ψλ̂(limm um) = limm ψλ̂(um) ≥ α. �

Proof of Theorem 3: For u ∈ ]0, 1[ we have
{

min
λ∈Λ

pn,λ < u
}

⊂
{

Tn,λ̄u
> cn,λ̄u

(u)
}

⊂
{

min
λ∈Λ

pn,λ ≤ u
}

, (17)

where pn,λ denotes the p-value pn,λ = inf
{

α ∈ ]0, 1[ : Tn,λ > cn,λ(α)
}

, with
inf ∅ = 1 (see Lehmann and Romano, 2005, Subsection 3.3). As FTn,λ

is
continuous for all λ ∈ Λ, pn,λ is, under H0, uniformly distributed on the in-
terval [0, 1], and the distribution function of minλ∈Λ pn,λ under H0, we denote
by Fm, is continuous on R. Finally from (17) we get ψλ̄(u) = Fm(u) ≥ u,

for u ∈ ]0, 1[, and the stated result follows from Theorem 2, where uλ̄n,α =
sup{u ∈ ]0, 1[ : Fm(u) ≤ α} ≤ α. �

Before given de proof of Theorem 4, we state two auxiliary results on the
function ψλ̂(u) := PF0

(

Tn,λ̂u
> cn,λ̂u

(u)
)

, defined for u ∈ ]0, 1[. Firstly, note

that from inequality (16), we have limu↓0 ψλ̂(u) = 0, for any invariant tuning

parameter selector λ̂u. The limit of ψλ̂(u) when u ↑ 1, is given in the following
proposition, where FTn,λ

denotes the null distribution function of Tn,λ.

Proposition 1. If FTn,λ
is continuous, for all λ ∈ Λ, then limu↑1 ψλ̂(u) = 1.

In the following proposition we analyse the case where λ̂u = λ̇, for all
u ∈ ]0, 1[, with λ̇ = λ̇(X1, . . . , Xn) a measurable function that takes values
in Λ, which is either location-scale invariant in case (2) or scale invariant in
case (3).

Proposition 2. If FTn,λ
is strictly increasing (on the set {t ∈ R : 0 <

FTn,λ
(t) < 1}) and continuous, for all λ ∈ Λ, and λ̂u = λ̇, for all u ∈ ]0, 1[,

then the function ψλ̂ is increasing and continuous on ]0, 1[.

Proof of Theorem 4: For u fixed in ]0, 1[ define the invariant tuning

parameter selector λ̂v by λ̂v = λ̂u, for all v ∈ ]0, 1[. Using Propositions 1

and 2, the stated result follow from Theorem 2, where uλ̂n,α,p = vλ̂u
n,α,q and

uλ̂n,α = vλ̂u
n,α. �

Proof of Theorem 5: Let F /∈ F , such that Tn,λ
p−→ +∞ under F ,

for all λ ∈ Λ. As α/|Λ| ≤ uλ̂n,α = u, for each λ ∈ λ we have PF

(

Tn,λ >

cn,λ(u)
)

≥ PF

(

Tn,λ > cn,λ(α/|Λ|)
)

, since cn,λ(u) ≤ cn,λ(α/|Λ|). Moreover,
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from the continuity of F−1
T∞,λ

, and the convergence F−1
Tn,λ

(t) → F−1
T∞,λ

(t), for all

0 < t < 1 (see Shorack and Wellner, 1986, pp. 3–10), we get cn,λ(α/|Λ|) =
F−1
Tn,λ

(1−α/|Λ|) → F−1
T∞,λ

(1−α/|Λ|), which implies that supn∈N cn,λ(α/|Λ|) <
+∞. Therefore, we conclude that PF

(

Tn,λ > cn,λ(u)
)

→ 1, as n → ∞, for

all λ ∈ Λ. Finally, the stated result follows from the equality PF

(

Tn,λ̂u
>

cn,λ̂u
(u)

)

=
∑

λ∈Λ PF

(

Tn,λ > cn,λ(u), λ̂u = λ
)

. �

Proof of Theorem 6: Let F /∈ F , and take λ ∈ Λ such that Tn,λ
p−→ +∞

under F . Proceeding as in the proof of Theorem 5, for u = uλ̄n,α we conclude

that PF

(

Tn,λ > cn,λ(u)
)

→ 1, as n → ∞, and the stated result follows from

the fact that PF

(

Tn,λ̄u
> cn,λ̄u

(u)
)

≥ PF

(

Tn,λ > cn,λ(u)
)

. �

Proof of Theorem 7: The Epps and Pulley test statistics given by (5) are
nonconstant whenever n ≥ 3, and well defined on Dn, where D

c
n =

{

x ∈
R

n : x1 = · · · = xn
}

. Therefore, they are nonconstant and well defined with
probability one, whenever n ≥ 3, and F is such that µnF (Dn) = 1. This
condition is fulfilled whenever F is absolutely continuous on R, which occurs
under the null hypothesis of normality. Regarding the Henze and Meintanis
test statistics given by (6), they are nonconstant whenever n ≥ 2, and well
defined on the set Dn = {x ∈ R

n : x1, . . . , xn > 0}. Therefore, they are
nonconstant and well defined with probability one, whenever n ≥ 2, and F
is such that µnF (Dn) = 1, where µF denotes the probability distribution of
F and µnF is the product measure. This condition is satisfied whenever F is
such that F (0) = 0, which is true under the null hypothesis of exponentiality.
We start by proving that FTn,λ

is strictly increasing on the set {t ∈ R : 0 <
FTn,λ

(t) < 1}. For that, let us take s, t ∈ R with s < t and 0 < FTn,λ
(s) ≤

FTn,λ
(t) < 1. As µnF0

(

{x ∈ Dn : Tn,λ(x) ≤ s}
)

> 0 and µnF0

(

{x ∈ Dn :

Tn,λ(x) > t}
)

> 0, the sets {x ∈ Dn : Tn,λ(x) ≤ s} and {x ∈ Dn : Tn,λ(x) > t}
are nonempty, which implies, from the continuity of Tn,λ and the fact that Dn

is open and connected, that the set {x ∈ Dn : s < Tn,λ(x) < t} = T−1
n,λ(]s, t[)

is a nonempty open subset of Dn. Taking into account that µF0
is either the

standard Gaussian or the unit exponential probability distributions on R,
we conclude that µnF0

(

T−1
n,λ(]s, t[)

)

> 0, which finally implies that FTn,λ(s) <
FTn,λ

(t).
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Next we will prove that FTn,λ
is continuous on R. For that, we start by

showing that is enough to prove that

µF0

(

(T x2,...,xn

n,λ )−1(y)
)

= 0, for all (x2, . . . , xn) ∈ Dn−1 and y ∈ R, (18)

where T x2,...,xn

n,λ is the section of Tn,λ determined by (x2, . . . , xn), defined, for

z ∈ R, by T x2,...,xn

n,λ (z) = Tn,λ(z, x2, . . . , xn). In fact, from Fubini’s theorem

and the fact that µn−1
F0

(Dc
n−1) = 0, we have

µnF0

(

T−1
n,λ(y)

)

= µn−1
F0

⊗ µF0

(

T−1
n,λ(y)

)

=

∫

µF0

((

T−1
n,λ(y)

)x2,...,xn
)

dµn−1
F0

(x2, . . . , xn)

=

∫

Dn−1

µF0

((

T−1
n,λ(y)

)x2,...,xn
)

dµn−1
F0

(x2, . . . , xn)

=

∫

Dn−1

µF0

(

(T x2,...,xn

n,λ )−1(y)
)

dµn−1
F0

(x2, . . . , xn),

where
(

T−1
n,λ(y)

)x2,...,xn = {z ∈ R : (z, x2, . . . , xn) ∈ T−1
n,λ(y)} = (T x2,...,xn

n,λ )−1(y)

is the section of T−1
n,λ(y) determined by (x2, . . . , xn). Therefore, under (18) we

get µnF0

(

T−1
n,λ(y)

)

= 0, for all y ∈ R, which enables us to conclude that FTn,λ

is continuous on R.
Finally, in order to establish (18) it is enough to take into account that

T x2,...,xn

n,λ is a nonconstant analytic function on R, for each (x2, . . . , xn) ∈ Dn−1.

In fact, for those functions the set (T x2,...,xn

n,λ )−1(y), for y ∈ R, is either empty

or consists entirely of isolated points (cf. Carathéodory, 1983, p. 138), which
implies that µF0

(

(T x2,...,xn

n,λ )−1(y)
)

= 0, as µF0
is an absolutely continuous

probability distribution on R. �
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