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1. Introduction and initial observations
The purpose of this paper is to study hereditary extremal disconnectedness

of frames and its equivalent form of complete extremal disconnectedness vis-
à-vis to hereditary normality.

There is a specific duality between topological normality (N) and extremal
disconnectedness (ED) that relies on the circumstance that a space is N [resp.,
ED] if and only if every two disjoint closed [resp., open] sets are separated
by disjoint open [resp., closed ] sets. We refer to [20, 21, 22], and especially to
the recent paper [16], for more details. A similar duality holds in a pointfree
context (cf. Definition 1.4).

Both N and ED fail to be hereditary properties. They are, respectively,
closed-hereditary and open-hereditary — i.e. each closed [resp., open] sub-
space of a normal space [resp., extremally disconnected space] is normal
[resp., extremally disconnected]. The topological cases are well-known. For

Received December 7, 2018.

1
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the pointfree cases we refer to [16] and [14]. It may be worth mentioning
that hereditary ED is useful in modal logic (cf. [2]).

It is well known that a topological space X is hereditarily normal (HN) if
and only if it is completely normal (CN) — i.e. if every two separated subsets
of X are separated by disjoint open subsets of X (recall that A,B ⊆ X are
separated if A ∩B = ∅ = A ∩B).

Bearing in mind the duality between N and ED, one can consider the
concept of a completely extremally disconnected (CED) space as one in which
every two separated subsets are separated by disjoint closed subsets. This
is of course equivalent to the statement that every two separated sets have
disjoint closures. Without being named, such a concept was investigated in
[3] (also cf. [7]) and proved to be equivalent to hereditary ED. We record the
following:

Proposition 1.1. ([3]). The following are equivalent for any topological
space X:

(1) X is hereditarily extremally disconnected.
(2) Any two separated subsets of X have disjoint closures.
(3) X is completely extremally disconnected.

A characterization of CN solely in terms of the lattice O(X) of all open
sets of X is given in [27]:

Proposition 1.2. ([27, 10]) The following are equivalent for any topological
space X:

(1) X is completely normal.
(2) For every open sets A,B ⊆ X, there exist open sets U, V ⊆ X such that

U ∩ V = ∅, A ∪ U ⊇ B and B ∪ V ⊇ A.

When phrased in terms of the dual lattice O(X)op, condition (2) of Propo-
sition 1.2 becomes a characterization of CED. Indeed, the following holds:

Proposition 1.3. The following are equivalent for any topological space X:

(1) X is completely extremally disconnected.
(2) For any open sets A,B ⊆ X, A−B ∩B − A = ∅.
(3) For any open sets A,B ⊆ X, there exist open sets U, V ⊆ X such that

U ∪ V = X, A ∩ U ⊆ B and B ∩ V ⊆ A.

Proof : (1)⇒(2): Let A and B be open in X. The result follows immediately
from Proposition 1.1 and the fact that A − B and B − A are separated.
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Indeed, (A−B) ∩B − A ⊆ A ∩X − A = ∅ and dually.

(2)⇒(3): Let A and B be open in X and take U = X − A−B and V =
X −B − A. By hypothesis A−B ∩ B − A = ∅ and thus U ∪ V = X. On
the other hand, A−B ⊆ A−B = X − U and so A ∩ U ⊆ B. Dually, we
have that B ∩ V ⊆ A.

(3)⇒(1): We prove that X satisfies condition (2) in Proposition 1.1. Let
A,B ⊆ X be separated. Consider U = X − A and V = X −B. By hypoth-
esis there exist open sets U ′, V ′ ⊆ X such that U ′∪V ′ = X, U ∩U ′ ⊆ V and
V ∩ V ′ ⊆ U . Since B ⊆ X − A = U and B ⊆ X − V it follows that

B ⊆ U − V ⊆ U − (U ∩ U ′) = U − U ′ ⊆ X − U ′.
Dually, A ⊆ X − V ′. Hence A ∩B ⊆ X − (U ′ ∪ V ′) = ∅.

Following [30], a topological property P is said to be lattice-invariant if,
when X has P and the lattices O(X) and O(Y ) are isomorphic, the space Y
has property P too. In particular, Propositions 1.2 and 1.3 show that both
complete N and complete ED are lattice-invariant.

Moreover, Propositions 1.2 and 1.3 also indicate how to formulate complete
N and complete ED in an arbitrary (bounded) lattice. We thus have the
following definitions:

Definitions 1.4. Let L be a (bounded) lattice with bounds 0 and 1. Then:

(1) L is normal if

∀a, b ∈ L [a ∨ b = 1 ⇒ ∃u, v ∈ L : u ∧ v = 0, a ∨ u = 1 = b ∨ v]. (N)

(2) L is extremally disconnected if the dual lattice Lop is normal — i.e.

∀a, b ∈ L [a ∧ b = 0 ⇒ ∃u, v ∈ L : u ∨ v = 1, a ∧ u = 0 = b ∧ v]. (ED)

(3) L is completely normal if

∀a, b ∈ L ∃u, v ∈ L : u ∧ v = 0, a ∨ u ≥ b, b ∨ v ≥ a. (CN)

(4) L is completely extremally disconnected if Lop is completely normal —
i.e.

∀a, b ∈ L ∃u, v ∈ L : u ∨ v = 1, a ∧ u ≤ b, b ∧ v ≤ a. (CED)

Remark 1.5. Condition (CN) appears in [1, 2.4] under the name of relative
normality). Note that (CN) is really stronger than (N), for if a∨ b = 1, then
a∨u ≥ b and b∨ v ≥ a imply a∨u = b∨ v = 1. By a dual argument, (CED)
implies (ED).
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Fact 1.6. Any completely normal and extremally disconnected lattice is com-
pletely extremally disconnected. Dually, any normal and completely extremally
disconnected lattice is completely normal.

Proof : Let a, b ∈ L. By complete normality there exist u, v ∈ L such that
u ∧ v = 0, a ∨ u ≥ b and b ∨ v ≥ a. Since L is extremally disconnected
there exist x, y ∈ L such that x ∨ y = 1, x ∧ v = 0 and y ∧ u = 0. Hence
a ∧ x ≤ (b ∨ v) ∧ x ≤ b and b ∧ y ≤ (a ∨ u) ∧ y ≤ a.

Fact 1.7. The following are equivalent for any lattice L:

(1) L is completely normal and extremally disconnected.
(2) L is normal and completely extremally disconnected.
(3) L is completely normal and completely extremally disconnected.

In particular, if L = O(X), then X is HN and ED if and only if X is N
and HED (cf. [12, 6R] and [23]) if and only if X is HN and HED.

2. Some background on pointfree topology

We recall some basic notions and facts about frames and locales. For
further information see [25].

The category Frm of frames has as objects those complete lattices L in
which

a ∧
∨
B =

∨
{a ∧ b | b ∈ B} (2.1)

for all a ∈ L and B ⊆ L. Morphisms, called frame homomorphisms, are
those maps between frames that preserve arbitrary joins (in particular, the
top element 1) and finite meets (in particular, the bottom element 0).

The lattice Ω(X) of open subsets of a space X is the typical example of a
frame. For any continuous map f : X → Y , the mapping Ω(f) : Ω(Y )→ Ω(X)
defined by Ω(f)(U) = f−1[U ] is a frame homomorphism. The category of
locales is the opposite category of Frm.

Remark 2.1. Note that in the case of a frame L, conditions (CN) and
(CED) are, by Propositions 1.2 and 1.3, both conservative extensions of their
topological counterparts — i.e. a topological space X is CN (resp., ED) if
and only if the frame L = O(X) satisfies CN (resp., CED).

With L a frame and a ∈ L, the map a ∧ (·) : L → L preserves arbitrary
joins and thus has a right (Galois) adjoint a→ (·) : L→ L determined by

a ∧ c ≤ b iff c ≤ a→ b. (2.2)
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Thus, a → b =
∨
{c ∈ L | a ∧ c ≤ b}. The pseudocomplement of a ∈ L is

a∗ = a → 0. Then: a ∧ a∗ = 0, a ≤ a∗∗, a∗∗∗ = a∗ and (
∨
A)∗ =

∧
a∈A a

∗ for
all A ⊆ L (but the dual de Morgan law is not true in general; we only have
(
∧
A)∗ ≥

∨
a∈A a

∗). In particular, (·)∗ is order-reversing.
An S ⊆ L is a sublocale of L if, for any A ⊆ S, a ∈ L and b ∈ S, we

have
∧
A ∈ S (in particular, 1 ∈ S) and a → b ∈ S. The set S(L) of all

sublocales of L forms a coframe (i.e. a complete lattice satisfying the dual
of (2.1)) under inclusion. Arbitrary infima coincide with intersections, {1} is
the bottom element and L is the top element. Regarding suprema, there is
the formula ∨

i∈I
Si = {

∧
A | A ⊆

⋃
i∈I
Si} (2.3)

for every {Si | i ∈ I} ⊆ S(L).
Since S(L) is the dual of a complete Heyting algebra, it has co-pseudocom-

plements, usually called pseudodifferences or remainders (see [11] for more
information). We shall denote the pseudodifference of an S in S(L) by LrS
and will use the formula

LrS =
⋂
{R ∈ S(L) | R ∨ S = L}.

In case S is complemented, the pseudodifference LrS is the complement and
in that case we simply refer to it as Sc.

For any a ∈ L, the sets

c(a) = ↑a and o(a) = {a→ x | x ∈ L}= {x ∈ L | a→ x = x}

are special sublocales of L referred to, respectively as closed and open sublo-
cales. They are complements of each other in S(L). Furthermore, the map
a 7→ o(a) is a lattice embedding L ↪→ S(L) that preserves arbitrary joins.
Therefore, denoting by o[L] the sublattice of S(L) consisting of all open
sublocales, L and o[L] are isomorphic frames.

On the other hand,

a ≤ b iff c(a)⊇c(b), c(a) ∨ c(b) = c(a ∧ b) and
⋂
i∈I

c(ai) = c(
∨
i∈I
ai).

In particular, this means that the set c[L] of closed sublocales of L is a
sub-coframe of S(L).

In the following, given any A ⊆ L, we shall denote by o[A] and c[A] the
sets

o[A] = {o(a) | a ∈ A} and c[A] = {c(a) | a ∈ A}.
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Given a sublocale T of L, its closure is defined by

T =
⋂
{c(a) | T ⊆ c(a)} = c(

∧
T ).

In particular, o(a) = c(a∗).
A sublocale T is dense whenever T = L, that is, 0 =

∧
T ∈ T . An impor-

tant distinctive feature of pointfree topology, known as the Isbell’s Density
Theorem [25], is the existence in any frame of a least dense sublocale, namely
its Booleanization

BL = {x→ 0 | x ∈ L}.
For any sublocale T of L, S(T ) ⊆ S(L) (note that, furthermore, if S and

T are sublocales of L with S ⊆ T , then S ∈ S(T )). Non-empty infima in
S(T ), being given by intersection, coincide with infima in S(L). On the other
hand, formula (2.3) shows that arbitrary suprema in S(T ) also coincide with
suprema in S(L): for any Ai ∈ S(T ), i ∈ I, we have

S(L)∨
i∈I

Ai = {
∧
R | R ⊆

⋃
i∈I
Ai} ⊆ T

and thus
S(L)∨
i∈I

Ai =
S(T )∨
i∈I

Ai. (2.4)

Given a sublocale T of L let ρT : L→ T be the surjective frame homomor-
phism defined by

ρT (a) =
∧
{t ∈ T | t ≥ a} ∈ T. (2.5)

It is easy to verify that the open sublocales of T (that we denote as oT (t),
t ∈ T ) are precisely the intersections o(a)∩T (a ∈ L): indeed, oT (t) = o(t)∩T
for any t ∈ T , and for any a ∈ L, o(a) ∩ T = oT (ρT (a)). Analogously for the
closed sublocales. For each A ⊆ T we shall denote by oT [A] and cT [A] the
sets

oT [A] = {oT (a) | a ∈ A} and cT [A] = {cT (a) | a ∈ A}.

3. Complete extremal disconnectedness

Complete normality formulated in frames appeared for the first time in
the literature with [18] (see also [28]), in the following form: a frame is
completely normal if every pair S, T of separated sublocales of L (i.e. such
that S∩T = {1} = S∩T ) is separated by open sublocales, that is, there exist
open sublocales U and V of L such that U ∩V = {1}, S ⊆ U and T ⊆ V . As
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proved in [10, Proposition 3.3], this is equivalent to condition (CN) above.
In what follows we will show a dual characterization for condition (CED).

We start with the following easy characterization:

Proposition 3.1. A frame L is completely extremally disconnected if and
only if it satisfies the strong De Morgan’s law

(a→ b) ∨ (b→ a) = 1 (SDM)

for all a, b ∈ L.

Proof : Sufficiency is obvious since a ∧ (a → b) = a ∧ b for any a, b ∈ L.
Regarding necessity, let a, b ∈ L. By hypothesis, there are u, v ∈ L such that
u ∨ v = 1, a ∧ u ≤ b and b ∧ v ≤ a. Hence 1 = u ∨ v ≤ (a→ b) ∨ (b→ a) by
adjunction (2.2).

Next characterization is the pointfree counterpart of a characterization of
hereditary ED presented in [2, Proposition 2.1]. In order to prove it, we
need first some technical observations concerning Booleanizations of closed
sublocales.

First, it should be remarked that any sublocale S of a frame L is a frame
itself with the same meets as in L, and since the Heyting operation→ depends
on the meet structure only, with the same Heyting operation. Consequently,
for each a ∈ L, the Booleanization of c(a) is given by

Bc(a) = {x→ a | x ∈ c(a)} = {x→ a | x ∈ L}.

Note that this is the smallest sublocale of L containing a. Hence Bc(a) = Bc(b)

if and only if a = b.

Lemma 3.2. For any a, b ∈ L we have:

(a) Bc(a→b) = o(a) ∩Bc(b).
(b) c(a) ∩Bc(b) = {1} iff a→ b = b iff b ∈ o(a).

(c) c(a→ b) = o(a) ∩ c(b).

Proof : (a) If y = x → (a → b) ∈ Bc(a→b) then, using some basic properties
of the Heyting operator, we may conclude that

y = a→ (x→ b) ∈ o(a) and y = (x ∧ a)→ b ∈ Bc(b);

conversely, if y ∈ o(a)∩Bc(b) then y = a→ y = x→ b for some x ∈ L, hence

y = a→ (x→ b) = x→ (a→ b) ∈ Bc(a→b).
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(b) It follows immediately from (1) since

c(a)∩Bc(b) = {1} iff Bc(b) ⊆ o(a) iff Bc(a→b) = Bc(b) iff a→ b = b iff b ∈ o(a).

(c) From a → b ∈ o(a) ∩ c(b) it follows that c(a → b) ⊆ o(a) ∩ c(b). On the
other hand, c(b) ⊆ c(a∧ b) = c(a)∨ c(a→ b) and thus o(a)∩ c(b) ⊆ c(a→ b).

Hence o(a) ∩ c(b) ⊆ c(a→ b).

Proposition 3.3. The following are equivalent for a frame L:

(1) L is completely extremally disconnected.
(2) For any open sublocales A,B of L, A ∩Bc ∩B ∩ Ac = {1}.
(3) For any open sublocales A,B of L, there exist open sublocales U, V such

that U ∨ V = L, A ∩ U ⊆ B and B ∩ V ⊆ A.

Proof : (1)⇒(2): Let A = o(a) and B = o(b) be open sublocales. Then it
follows from Lemma 3.2 (c) and (SDM) that

A ∩Bc ∩B ∩ Ac = c(a→ b) ∩ c(b→ a) = c((a→ b) ∨ (b→ a)) = {1}.
(2)⇒(3): Let A = o(a) and B = o(b) and consider U = o(a→ b) and
V = o(b→ a). By hypothesis (and Lemma 3.2 (c)) we conclude that

{1} = A ∩Bc ∩B ∩ Ac = c(a→ b) ∩ c(b→ a)

and thus U ∨ V = o(a→ b) ∨ o(b→ a) = L. On the other hand,

A ∩ U = o(a) ∩ o(a→ b) = o(a ∧ b) ⊆ B.

Dually, we have that B ∩ V ⊆ A.

(3)⇒(1): Let a, b ∈ L. By hypothesis there exist open sublocales U = o(u)
and V = o(v) such that U ∨ V = L, o(a) ∩ U ⊆ o(b) and o(b) ∩ V ⊆ o(a).
Then u, v ∈ L satisfy (CED).

Now, recall that a sublocale S of L is nowhere dense in L if S ∩BL = {1}
([19]). We say that two sublocales S and T of L are almost disjoint if S ∩ T
is a nowhere dense sublocale in both sublocales S and T , i.e.

S ∩ T ∩BS = {1} = S ∩ T ∩BT .

Next characterization is the pointfree extension of a characterization of
completely ED spaces from [3].

Proposition 3.4. The following are equivalent for a frame L:

(1) L is completely extremally disconnected.
(2) Any two almost disjoint closed sublocales of L are disjoint.
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(3) Any two separated sublocales of L have disjoint closures.

Proof : (1)⇒(2): Let c(a), c(b) be a pair of almost disjoint closed sublocales.
This means that

c(b) ∩Bc(a) = c(a) ∩ c(b) ∩Bc(a) = {1}
and

c(a) ∩Bc(b) = c(a) ∩ c(b) ∩Bc(b) = {1}.
Therefore, by Lemma 3.2 (b), a→ b = b and b→ a = a. Finally, by (SDM)
we conclude that a ∨ b = 1, that is, c(a) ∩ c(b) = {1}.
(2)⇒(3): Let S, T be a pair of separated sublocales and S = c(a) and
T = c(b). Then S ∩ T = {1}, that is, T ⊆ o(a). Moreover, since b =

∧
T ∈

T ⊆ o(a), it follows from Lemma 3.2 (b) that

S ∩ T ∩BT ⊆ S ∩BT = c(a) ∩Bc(b) = {1}.

Analogously, S ∩ T ∩BS = {1}. Consequently, S and T are almost disjoint
and hence disjoint, by hypothesis.

(3)⇒(1): Let a, b ∈ L and S = o(a) ∩ c(b) and T = o(b) ∩ c(a). Then
S ∩ T ⊆ c(b) ∩ o(b) = {1} and S ∩ T ⊆ o(a) ∩ c(a) = {1}, hence S and
T are separated. By the hypothesis and Lemma 3.2 (c), S = c(a → b) and
T = c(b→ a) are disjoint, that is, (a→ b) ∨ (b→ a) = 1.

4. Complete extremal disconnectedness vs. complete
normality

The duality expressed in 1.4 may be formulated in a more extended setting
permitting a simultaneous treatment of several variants of normality and
extremal disconnectedness (as proposed in [16]). In what follows we shall
speak about a lattice L being normal (resp. extremally disconnected) with
respect to some fixed A ⊆ L. In this terminology, L is A-normal or completely
A-normal (A-N or A-CN for short) if it satisfies condition (N) or (CN) of
Definition 1.4 with a, b, u, v ∈ A. Analogously, L is extremally A-disconnected
or completely extremally A-disconnected (A-ED or A-CED for short) if it
satisfies condition (ED) or (CED) of Definition 1.4 with a, b, u, v ∈ A.

Examples 4.1. The standard example for A is L; then, the A-notions are
just the standard notions. In the case of a frame L, the case we are most
interested, there are other interesting examples (cf. [16]):
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(1) A = RegL: in this case, A-normal = mildly normal and extremally
A-disconnected = extremally disconnected.
(Recall that the regular part of L, denoted RegL, is the set of all regular
elements of L, that is, the elements a ∈ L such that a∗∗ = a.)

(2) A = δ-RegL: A-normal = δ-normal and extremally A-disconnected =
extremally δ-disconnected.
(An element a of L is δ-regular whenever a =

∨
n∈N an with an ≺ a, i.e.,

a∗n ∨ a = 1, and the set of all δ-regular elements is denoted by δ-RegL.)
(3) A = CozL: in this case, any frame is A-normal while the class of ex-

tremally A-disconnected frames is precisely the class of F -frames.
(The cozero part of L, denoted CozL, is the set of all cozero elements
of L, that is, the elements a ∈ L such that a =

∨
n an for some an ≺≺ a,

n = 1, 2, · · · , where x ≺≺ a expresses the familiar relation that x is really
inside, or completely below, a. This is the largest interpolative relation
contained in ≺.)

However, we cannot apply the dualizing process 1.4 directly in frames since
the dual lattice of a frame is not a frame in general.

Yet, if all elements in A are complemented in L then, for the set Ac of
complements of all elements in A, Ac-normality is precisely extremal A-dis-
connectedness while extremal Ac-disconnectedness is A-normality, and the
two notions may be treated simultaneously.

Therefore the familiar result that the sublocale lattice S(L) is isomorphic
to the coframe obtained by freely adjoining to Lop a complement for each
a ∈ L provides a way of dealing with the duality in frames ([16]). Indeed, it
suffices to embed L in the coframe S(L) via the isomorphism

L ∼= o[L] ⊆ S(L).

Then L will be (completely) A-normal iff the lattice S(L) is (completely)
o[A]-normal. But now, any element of o[A] is complemented, hence L will be
(completely) A-normal iff S(L) is (completely) extremally c[A]-disconnected.

Similarly, L will be (completely) extremally A-disconnected iff the lat-
tice S(L) is (completely) extremally o[A]-disconnected, that is, (completely)
c[A]-normal.

To illustrate this idea we have a first result that characterizes completely
A-normal frames and completely extremally A-disconnected frames (for any
A ⊆ L) at once, with a single proof. Before presenting it, we need to intro-
duce some terminology and notation.
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For A = o[A] or A = c[A] let Ac be the set of complements of all elements
of A. We say that two sublocales S and T of L are A-separated if there exist
F,G ∈ Ac such that

S ⊆ F, T ⊆ G and S ∩G = {1} = T ∩ F.
Further, we say that S and T are separated by A-sublocales if there exist
sublocales U and V in A such that

U ∩ V = {1}, S ⊆ U and T ⊆ V.

Remark 4.2. We may speak further about the A-closure of a sublocale T ,
that is,

clA(T ) =
⋂
{c(a) | T ⊆ c(a), a ∈ A}

(for A = L this is just the standard closure). Whenever A is closed under
joins, clA(T ) belongs to c[A] and it is of course the smallest sublocale in
c[A] that contains T . Then it is easy to check that sublocales S and T are
o[A]-separated if and only if

S ∩ clA(T ) = {1} = clA(S) ∩ T.
The selection A = L recovers this way the original definition in [18].

Proposition 4.3. For any frame L and any A ⊆ L, the following are equiv-
alent for A = o[A] or A = c[A]:

(1) S(L) is completely A-normal.
(2) Every pair of A-separated sublocales of L is separated by A-sublocales.

Proof : (1)⇒(2): Let S and T be A-separated. Then there exist F,G ∈ Ac

such that S ⊆ F , T ⊆ G and S ∩ G = {1} = T ∩ F . Of course, F c, Gc ∈ A
and therefore, by hypothesis, there exist U, V ∈ A such that U ∩ V = {1},
Gc ⊆ F c∨U and F c ⊆ Gc∨V . Moreover, {1} = S∩G ⊇ S∩F ∩U c = S∩U c,
from which it follows that S ⊆ U , and {1} = T ∩ F ⊇ T ∩G∩ V c = T ∩ V c,
from which it follows that T ⊆ V .
(2)⇒(1): Let F,G ∈ A and S = F c ∩ G, T = F ∩ Gc. Clearly, S ⊆ F c,
T ⊆ Gc and S ∩ Gc = {1} = F ∩ T c. By hypothesis, there exist U, V ∈ A
satisfying U ∩ V = {1}, S ⊆ U and T ⊆ V . This means that

F c ∩G = S ⊆ U ⇔ F c ∩G ∩ U c = {1} ⇔ G ⊆ F ∨ U and

F ∩Gc = T ⊆ V ⇔ F ∩Gc ∩ V c = {1} ⇔ F ⊆ G ∨ V.
Corollary 4.4. For any frame L and any A ⊆ L, the following are equiva-
lent :



12 J. GUTIÉRREZ GARCÍA, T. KUBIAK AND J. PICADO

(1) L is completely A-normal.
(2) Every pair of o[A]-separated sublocales of L is separated by o[A]-sublocales.

Corollary 4.5. For any frame L and any A ⊆ L, the following are equiva-
lent :

(1) L is completely A-disconnected.
(2) Every pair of c[A]-separated sublocales of L is separated by c[A]-sublocales.

Proposition 4.3 can be expanded to the next result which extends Propo-
sition 3.3 of [10].

Proposition 4.6. For any frame L and any A ⊆ L, the following are equiv-
alent for A = o[A] or A = c[A]:

(1) S(L) is completely A-normal.
(2) For every S, T ∈ S(L) satisfying S ⊆ F ⊆ T and S ⊆ Gc ⊆ T for some

F,G ∈ A, there exist U, V ∈ A such that S ⊆ V ⊆ U c ⊆ T .
(3) For every S, T ∈ S(L) satisfying S ∨F = L = G∨T for some F,G ∈ A

such that F ⊆ T and G ⊆ S, there exist U, V ∈ A such that U∩V = {1},
V c ⊆ S and U c ⊆ T .

Proof : (1)⇒(2): Let S ⊆ F ⊆ T and S ⊆ Gc ⊆ T . By (1), there are
U, V ∈ A such that U ∩ V = {1}, G ⊆ F ∨ U and F ⊆ G ∨ V . Of course,
V ⊆ U c. Moreover,

S ⊆ F ∩Gc ⊆ (G ∨ V ) ∩Gc = V ∩Gc ⊆ V and

U c = (U c ∩ F ) ∨ (U c ∩ F c) ⊆ (U c ∩ F ) ∨Gc ⊆ T.

(2)⇒(3): Let S ∨ F = L = G ∨ T as in the hypothesis. Then

LrS ⊆ F ⊆ T and LrS ⊆ Gc ⊆ T.

By (2) there exist U, V ∈ A such that LrS ⊆ V ⊆ U c ⊆ T . Clearly,
U ∩ V = {1}, V c ⊆ Lr(LrS) ⊆ S and U c ⊆ T .

(3)⇒(1): Let F,G ∈ A and consider S = F c ∨ G and T = F ∨ Gc. Clearly,
S ∨ F = L = G ∨ T , F ⊆ T and G ⊆ S. Consequently, by (3), there are
U, V ∈ A such that U ∩ V = {1}, V c ⊆ S and U c ⊆ T . Then, finally,
F ∨ U ⊇ F ∨ T c = F ∨G ⊇ G and G ∨ V ⊇ G ∨ Sc = G ∨ F ⊇ F .

Again, the case A = c[A] yields immediately the dual result for ED:

Corollary 4.7. For any frame L and any A ⊆ L, the following are equiva-
lent :
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(1) L is completely A-disconnected.
(2) For every S, T ∈ S(L) satisfying S ⊆ c(a) ⊆ T and S ⊆ o(b) ⊆ T for

some a, b ∈ A, there exist u, v ∈ A such that S ⊆ c(v) ⊆ o(u) ⊆ T .
(3) For every S, T ∈ S(L) satisfying S ∨ c(a) = L = c(b) ∨ T for some

a, b ∈ A such that c(a) ⊆ T and c(b) ⊆ S, there exist u, v ∈ A such that
u ∨ v = 1, o(v) ⊆ S and o(u) ⊆ T .

5. Heredity properties

Recall from Section 1 that an L = O(X) is hereditary ED if and only it
is completely ED. In this section we prove that this equivalence extends to
arbitrary frames by proving the equivalence between completely A-normal
frames and hereditarily A-normal frames (for any sublattice A of L).

A frame L is called hereditarily normal [13] whenever every sublocale of L
is normal. Dually, we say that L is called hereditarily ED if every sublocale
of L is ED.

More generally, for a fixed A ⊆ L, we say that L is hereditarily A-nor-
mal in case every sublocale T of L is AT -normal, for AT = ρT [A] ⊆ T
(recall the mapping ρT ). This is the same as saying that the lattice S(T ) is
oT [AT ]-normal for every sublocale T of L. Dually, we say that L is hereditarily
A-disconnected if every sublocale T of L is AT -disconnected, that is, S(T ) is
cT [AT ]-normal for every sublocale T of L.

For any sublocale T of L and A ⊆ S(L) let

AT = {S ∩ T | S ∈ A} ⊆ S(T ).

Then, for the case of a sublattice A ⊆ L we have:

Theorem 5.1. For any frame L and any sublattice A of L, the following are
equivalent for A = o[A] or A = c[A]:

(1) S(L) is completely A-normal.
(2) For each T ∈ S(L), S(T ) is AT -normal.
(3) For each T ∈ A, S(T ) is AT -normal.

Proof : (1)⇒(2): Let T be a sublocale of L and FT = F ∩ T , GT = G ∩ T
(with F,G ∈ A) such that FT ∨GT = T , that is, F ∨G ⊇ T . By hypothesis
there exist U, V ∈ A such that U ∩ V = {1}, F ∨ U ⊇ G and G ∨ V ⊇ F .
Then

UT = U ∩ T, VT = V ∩ T ∈ AT
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and UT ∩ VT = {1}. On the other hand, by (2.4),

FT ∨ UT = (F ∨ U) ∩ T ⊇ FT ∨GT = T

and, similarly, GT ∨ VT = T . This shows that S(T ) is AT -normal.

(2)⇒(3): It is obvious.

(3)⇒(1): We shall prove that S(L) is completely A-normal using Proposi-
tion 4.3. So let S and T be A-separated and F,G ∈ Ac such that S ⊆ F ,
T ⊆ G and S ∩G = {1} = F ∩ T and consider

R = F c ∨Gc ∈ A
(R is indeed in A since A being a sublattice of L means that both o[A] and
c[A] are closed under finite joins). By hypothesis, S(R) is AR-normal. Since
F c = F c∩R,Gc = Gc∩R ∈ AR and F c∨Gc = R, there exist U, V ∈ A such
that

(U ∩R) ∩ (V ∩R) = {1} and F c ∨ (U ∩R) = R = Gc ∨ (V ∩R).

Since A is a sublattice of L it follows that o[A] and c[A] are closed under
finite meets and so U ′ = U ∩Gc ∈ A and V ′ = V ∩ F c ∈ A. We have

U ′ ∩ V ′ = (U ∩Gc) ∩ (V ∩ F c) ⊆ U ∩ V ∩R = {1}.
Moreover, from F c ∨ (U ∩ R) = R it follows that R ⊆ F c ∨ U . Then
S ∩ U c ⊆ F ∩ U c ⊆ Rc = F ∩G ⊆ G and thus S ∩ (U c ∨G) ⊆ S ∩G = {1}.
Hence S ⊆ U ′. Similarly, T ⊆ V ′.

For A = o[A] we have

AT = {o(a) ∩ T | a ∈ A} = {oT (ρT (a)) | a ∈ A} = oT (AT )

and hence we get:

Corollary 5.2. For any frame L and any sublattice A of L, the following
are equivalent :

(1) L is completely A-normal.
(2) L is hereditarily A-normal.
(3) Each open sublocale of the form o(a) with a ∈ A is Ao(a)-normal.

In particular, for A = L we have Ao(a) = o(a) and, therefore, both Theo-
rem 3.7 of [10] and Proposition 3.3 of [13] follow:

Corollary 5.3. The following are equivalent for any frame L:

(1) L is completely normal.
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(2) L is hereditarily normal.
(3) Each open sublocale of L is normal.

For A = c[A] we have

AT = {c(a) ∩ T | a ∈ A} = {cT (ρT (a)) | a ∈ A} = cT (AT )

and hence we also get:

Corollary 5.4. For any frame L and any sublattice A of L, the following
are equivalent :

(1) L is completely A-disconnected.
(2) L is hereditarily A-disconnected.
(3) Each closed sublocale of the form c(a) with a ∈ A is Ac(a)-normal.

Finally, for A = L we have Ac(a) = c(a) and we get immediately the
announced result for ED:

Corollary 5.5. The following are equivalent for any frame L:

(1) L is completely extremally disconnected.
(2) L is hereditarily extremally disconnected.
(3) Each closed sublocale of L is extremally disconnected.

Remark 5.6. Since a topological space may have more sublocales than sub-
spaces, so far it was not immediately clear that the pointfree notions of hered-
itary normality and hereditary extremal disconnectedness are conservative.
This follows now immediately from Corollaries 5.3 and 5.5 and Remark 2.1.

6. Heredity and density

A property P of frames is said to be hereditary if each sublocale of a frame
satisfying P also satisfies P , and it is said to be closed-hereditary [resp.,
open-hereditary ] if it is hereditary for closed [resp., open] sublocales.

A natural question arises: when checking hereditary normality of a frame
L do we really need to check normality of all the open sublocales? We end
the paper with the new observation that it suffices to check it for dense and
open sublocales. One of possible arguments for it depends only on the fact
that normality is closed-hereditary and its heredity is equivalent to its open-
heredity (examples of the same situation include collectionwise normality and
κ–collectionwise normality for frames [15]):
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Proposition 6.1. Let P be a property of frames which is closed-hereditary
and such that heredity of P is equivalent to open-heredity. For L a frame the
following are equivalent :

(1) Each sublocale of L has property P .
(2) Each dense sublocale of L has property P .
(3) Each open and dense sublocale of L has property P .

Proof : (3)⇒(1): This is the only non-trivial implication that need to be

shown. Consider an open sublocale o(a) and its closure o(a) = c(a∗). The
sublocale

S = o(a) ∨ (Lrc(a∗)) = o(a) ∨ o(a∗) = o(a ∨ a∗)
is also open. Further, S is dense in L:

S = c((a ∨ a∗)∗) = c(a∗ ∧ a∗∗) = c(0) = L.

Thus, S has property P . Moreover, S ∩ c(a∗) = o(a) ∩ c(a∗) ⊆ o(a), that is,
o(a) = c(a∗)∩S. Hence o(a) is closed in S. Since P is closed-hereditary, then
o(a) has also the property and the conclusion follows from the assumption
that heredity of P is equivalent to open-heredity.

Remark 6.2. It is interesting that when P = normality, we can prove the
implication (3)⇒(1) without assuming that heredity of P is equivalent to
open-heredity. This is a novelty even for the case of topological normality
(see Corollary 6.4). For that, consider an open sublocale o(a) of L and
u, v ∈ o(a) satisfying

1 = u
o(a)
∨ v = a→ (u ∨ v).

By the proof above S = o(a)∨o(a∗) is an open and dense sublocale of L hence
normal. Moreover, u, v ∈ o(a) ⊆ S, a → (u ∨ v) = 1 and a∗ → (u ∨ v) = 1
(since a∗ =

∧
o(a) ≤ u ∨ v). Hence

u
S
∨ v = (a ∨ a∗)→ (u ∨ v) = (a→ (u ∨ v)) ∧ (a∗ → (u ∨ v)) = 1.

Then, by the normality of S, there exist x, y ∈ S such that x ∧ y = 0S = 0
and

u
S
∨ x = 1 = v

S
∨ y.

Now consider a→ x and a→ y in o(a). Notice that

(a→ x) ∧ (a→ y) = a→ (x ∧ y) = a→ 0 = 0o(a).
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Moreover, a ≤ a ∨ a∗ ≤ u ∨ x ≤ u ∨ (a→ x), since

1 = u
S
∨ x = (a ∨ a∗)→ (u ∨ x).

Hence

u
o(a)
∨ (a→ x) = a→ (u ∨ (a→ x)) = 1,

and it can be proved in a similar way that v
o(a)
∨ (a→ y) = 1.

After Remark 6.2 we have a small contribution to general topology. The
point of the proposition and the corollary which follow should have been
known (but is not) since Urysohn told us in his celebrated 1925 paper that
it is not necessary to check all subspaces for whether they are normal.

Mimicking the proof in 6.1 for a topological space X, an arbitrary open
subspace A of X, and S = A ∪ (XrA), we get:

Proposition 6.3. Let P be a topological property which is closed-hereditary
and such that heredity of P is equivalent to open-heredity. For X a topological
space the following are equivalent :

(1) Each subspace of X has property P .
(2) Each dense subspace of X has property P .
(3) Each open and dense subspace of X has the property P .

Corollary 6.4. For X a topological space the following are equivalent :

(1) X is hereditarily normal.
(2) Each dense subspace of X is normal.
(3) Each open and dense subspace of X is normal.

Examples 6.5. Besides topological normality, among examples of topolog-
ical properties P which are closed-hereditary and such that heredity of P is
equivalent to open-heredity of P are the following:

(1) P = collectionwise normality ([9, 5.1.C (a)] and [17, Lemma 1]),
(2) P = compactness ([29, Theorem 1]),
(3) P = Lindelöfness ([9, 3.8.4 and 3.8.A (b)]),
(4) P = paracompactness ([9, 5.1.29 and 5.1.F (a)]).

This list is not exhaustive (cf. e.g. diagram 4.1 in [5]). Another way of
extending it is to require cardinal restrictions. As an example, we mention
κ-collectionwise normality (cf. [9, 3.8.A]). We note that hereditarily compact
spaces are also called Noetherian spaces. They play an important role in
algebraic geometry (cf. [4, Chap. II, § 4, Proposition 9]).
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Since normality [resp., extremal disconnectedness] is closed-hereditary [resp.,
open-hereditary], and extremal disconnectedness is dense-hereditary (cf. [26,
Theorem 6.2 (b)]), we have the following enrichment to the discussion of
heredity in spaces which are both normal and extremally disconnected (cf.
[7] and [8]).

Corollary 6.6. For X a topological space the following are equivalent :

(1) Each subspace of X is normal and extremally disconnected.
(2) Each open [closed ] subspace of X is normal and extremally disconnected.
(3) Each dense subspace of X is normal and extremally disconnected.
(4) Each open and dense subspace of X is normal and extremally discon-

nected.

A subset of a topological space is dense in the space if its only closed
superset is the whole space. Dually, a subset of a topological space is said to
be codense if its only open superset is the whole space. The earliest references
for the concept of topological codensity, we are aware of, goes back to [24]
and [20].

The concept of codensity deads if points are closed. But it is quite vital
otherwise, and gives rise to another interesting result: normality is codense
hereditary.

Proposition 6.7. A topological space is normal if and only if each its codense
subspace is normal.

Proof : Let X be a normal space and A be its codense subspace. Let K1 and
K2 be closed and disjoint in A. Then K1 and K2 are traces on A of closed
subsets F1 and F2 of X. Since

A ⊆ X − (F1 ∩ F2),

hence F1 ∩ F2 = ∅ on account of A being codense. Hence F1 and F2 have
disjoint open neighborhoods in X whose intersections with A are disjoint
open neighborhoods of K1 and K2 in A. Hence A is normal. The converse is
obvious, for X is codense in X.

We end with the extension of this result to frames. In pointfree topology
codense sublocales are considered in [6]: a sublocale T of a frame L is codense
if T ◦ = L, where T ◦ =

⋂
{o(a) | T ⊆ o(a)} is the fitting closure on sublocales.

Of course, we may now speak about the A-closure of a sublocale T for A =
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o[A] or A = c[A] (and an arbitrary A ⊆ L), that is, the sublocale

clA(T ) =
⋂
{A ∈ A | T ⊆ A}

(that may not belong to A, unless A is closed under intersections). We then
say that S is A-dense whenever clA(T ) = L. The case when A = c[A], with
A = L, covers the usual density while A = o[A] and A = L covers codensity.

Proposition 6.8. For any frame L and any sublattice A of L, the following
are equivalent for A = o[A] or A = c[A]:

(1) S(L) is A-normal.
(2) For each A-dense T ∈ S(L), S(T ) is AT -normal.

Proof : The implication (2)⇒(1) is trivial since L is A-dense. Conversely, let
T be an A-dense sublocale of L. Consider F1 = G1 ∩ T and F2 = G2 ∩ T in
AT with F1 ∨ F2 = T , that is, T ⊆ G1 ∨ G2 ∈ A (since A is a sublattice of
L) and G1 ∨G2 = L (since T is A-dense). Hence, by hypothesis, there exist
U1, U2 ∈ A such that U1 ∩ U2 = {1} and G1 ∨ U1 = L = G2 ∨ U2. Let

V1 = U1 ∩ T, V2 = U2 ∩ T ∈ AT .

Clearly, V1 ∩ V2 = {1} and F1 ∨ V1 = T = F2 ∨ V2.

For A = o[L] and A = c[L] we get, respectively:

Corollary 6.9. (1) A frame L is normal iff each codense sublocale of L is
normal.

(2) A frame L is extremally disconnected iff each dense sublocale of L is
extremally disconnected.

Acknowledgements
The authors acknowledge financial support from the Ministry of Econ-

omy and Competitiveness of Spain (grant MTM2015-63608-P) and from the
Basque Government (grant IT974-16). JP also acknowledges support from
the Centre for Mathematics of the University of Coimbra (funded by the
Portuguese Government through FCT/MEC and co-funded by the European
Regional Development Fund through the Partnership Agreement PT2020).
The research work that originated this paper was started during a visit of
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