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Abstract: In this paper we consider a non-variational two-phase free boundary
problem ruled by the infinity Laplacian. Our main result states that normalized
viscosity solutions in B1 are universally Lipschitz continuous in B1/2, which is the
optimal regularity for the problem. We make a new use of the Ishii-Lions’ method,
which works as a surrogate for the lack of a monotonicity formula and is bound to
be applicable in related problems.
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1. Introduction
A celebrated result, due to Alt, Caffarelli and Friedman in [1], states that

any local minimizer of the functional,

J(u) :=

∫
|Du|2 + λ2

+χ{u>0} + λ2
−χ{u≤0}dx, (1.1)

with λ+ > λ− ≥ 0, is universally Lipschitz continuous; that is, the Lipschitz
norm in B1/2 of a normalized minimizer, |u| ≤ 1 in B1, is bounded by a
universal constant. The proof is based on a rather powerful monotonici-
ty formula, known in the literature as the Alt-Caffarelli-Friedman (ACF)
monotonicity formula.
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Although important advances towards generalizing the ACF monotonicity
formula have been carried out, e.g. in [2, 4, 3, 14, 16, 17], it seems that
such an impressive tool is indeed restricted to problems governed by linear
operators. In particular, it is still wildly open whether local minimizers of

Jp(u) :=

∫
|Du|p + λp

+χ{u>0} + λp
−χ{u≤0}dx, (1.2)

with p > 2, are Lipschitz continuous. The best known regularity, obtained
in [12], is Log-Lipschitz, that is, minimizers are continuous with a modulus
of continuity of the type ω(σ) = σ log(1/σ). As

σ < σ log(1/σ) < σα, 0 < σ ≪ 1,

this is weaker than Lipschitz continuity but implies the C0,α Hölder continu-
ity, for every 0 < α < 1. In the one-phase case, that is, under the assumption
u ≥ 0, the Lipschitz regularity of minimizers of (1.2) is known to hold, see
[7].

Minimizers up of (1.2) solve a two-phase free boundary problem, in that
they are p-harmonic in their phases, i.e., they solve

−∆pup := −div
(
|Dup|p−2Dup

)
= 0 in {up > 0} ∪ {up < 0},

and satisfy the free boundary condition(
(up)

+
ν

)p − ((up)−ν )p = 1

p− 1
(λp

+ − λp
−) on ∂{up > 0} ∪ ∂{up < 0}, (1.3)

in the sense of measures, and classically along any differentiable piece of
the free boundary ∂{up > 0} ∪ ∂{up < 0}. Here (up)

+
ν and (up)

−
ν denote

the normal derivatives in the inward direction to {up > 0} and {up < 0},
respectively. For the non-variational version of this problem, no regularity
results are available in the literature.

To understand what happens when p → ∞, let up be a local minimizer of
the energy functional Jp. Arguing as in [12], it is possible to derive uniform
in p local Hölder estimates for {up}. Passing to the limit as p → ∞, it is
classical to verify that the limiting function u∞ satisfies

−∆∞u∞ := −
⟨
D2u∞Du∞, Du∞

⟩
= 0 in {u∞ > 0} ∪ {u∞ < 0},

in the viscosity sense. Concerning the free boundary condition (1.3), it con-
verges, at least heuristically, to

(u∞)+ν = max
{
(u∞)−ν , λ+

}
. (1.4)
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In fact, we can rewrite (1.3) in the form
(up)

+
ν = max

{
(up)

−
ν , λ+

}
Gp

(
(up)

−
ν , λ+, λ−

)
,

where

Gp (a, b, c) =

[(
a

max {a, b}

)p

+
1

p− 1

(
b

max {a, b}

)p (
1−

(c
b

)p)] 1
p

,

for a ≥ 0 and 0 ≤ c < b, and we have
lim
p→∞

Gp = 1,

which is obvious if a ≥ b and, if a < b, follows from the fact that, for p large
enough,

1

2p
≤
(a
b

)p
+

1

p− 1

(
1−

(c
b

)p)
≤ 1 +

1

p− 1
.

Now, if at a free boundary point x0, one has (u∞)−ν (x0) ≥ λ+, then, by the
limiting free boundary condition (1.4) above,

(u∞)+ν (x0) = (u∞)−ν (x0),

that is, u crosses the free boundary in a differentiable fashion. In the com-
plementary case (u∞)−ν (x0) < λ+, it is straightforward to show that (1.4) is
equivalent to

max
{
(u∞)+ν , (u∞)−ν

}
= λ+.

We are thus naturally led to the singular non-variational free boundary
problem, ruled by the infinity Laplacian,{

−∆∞u = 0 in Ω±(u)

max{u+ν , u−ν } = Λ on R(u),
(1.5)

where Λ > 0 is given, and
Ω±(u) := Ω+(u) ∪ Ω−(u); R(u) := ∂Ω±(u) ∩B1,

with
Ω+(u) := {u > 0} ∩B1 and Ω−(u) := {u < 0} ∩B1.

The main result we obtain is that any normalized viscosity solution of (1.5),
in a sense to be detailed, is universally Lipschitz continuous. We stress that
Lipschitz estimates are sharp for such a free boundary problem, as simple
examples show. It is also timely to note that, since R(u) is unknown, such
a gradient control is far from being obvious or easy to obtain. For related
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issues, where specific bounds are prescribed on unknown sets and a PDE is
given in the complementary regions, we refer for instance to [9].

While it is clear that a function satisfying ∆∞u = 0 in {u > 0} ∪ {u < 0}
is locally Lipschitz continuous in its phases, the corresponding estimates de-
generate as one approaches their (unknown) boundaries. Thus, the main
difficulty when proving the optimal regularity for our problem is the Lip-
schitz regularity across the free boundary. Furthermore, the fact that the
infinity Laplacian is elliptic only in the direction of the gradient causes major
difficulties in the study of (sharp) regularity estimates for problems ruled by
such an operator. Our strategy to obtain Theorem 2.1 relies on doubling
variables, in the spirit of the Ishii-Lions’ method [10], in a fashion carefully
designed to match the structure of the infinity Laplacian. See [8, 11, 13]
for more on this highly degenerate operator and also [15], for another free
boundary problem involving it.

The paper is organized as follows. In the next section, we define precisely
what we mean by a solution of (1.5) and state our main result. The rest of
the paper is devoted to its proof; in section 3 we derive pointwise estimates
for interior maxima of a certain function, which will be instrumental in the
sequel; section 4 brings the definition of an appropriate barrier; the proof
is carried out in section 5 and ultimately amounts to the analysis of an
alternative.

2. Definition of solution and main result
We will consider very weak solutions of problem (1.5) for which we never-

theless obtain optimal regularity results. The appropriate notion is that of
viscosity solution and we need to first recall the definition of jet, given, e.g.,
in [6].

Let u : Ω ⊂ Rn → R and x̂ ∈ Ω. Denoting by S(n) the set of all n × n
symmetric matrices, the second-order superjet of u at x̂, J2,+

Ω u(x̂), is the set
of all ordered pairs (p,X) ∈ Rn × S(n) such that

u(x) ≤ u(x̂) + ⟨p, x− x̂⟩+ 1

2
⟨X(x− x̂), x− x̂⟩+ o

(
|x− x̂|2

)
.

The subjet is defined by putting J2,−
Ω u(x̂) := −J2,+

Ω (−u)(x̂). For x̂ ∈ Ω, we
also denote by J

2,±
Ω u(x̂) the set of all pairs (p,X) ∈ Rn×S(n) for which there

exist sequences xn ∈ Ω and (pn, Xn) ∈ J2,±
Ω u(xn), such that (xn, pn, Xn) →

(x̂, p,X).
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We are now ready to disclose in what sense the equation and the free
boundary condition in (1.5) are to be interpreted.

Definition 2.1. A lower semi-continuous function u is a viscosity subsolution
of (1.5) in B1 if the following two conditions hold:

(i) for each x ∈ Ω±(u) and (ξ,M) ∈ J
2,+
B1

u(x), we have

−⟨Mξ, ξ⟩ ≤ 0;

(ii) for each x ∈ R(u), (ξ,M) ∈ J
2,+
B1

u(x) and t > 0, we have

u

(
x− t

ξ

|ξ|

)
≥ −Λt+ o(t).

An upper semi-continuous function u is a viscosity supersolution of (1.5)
in B1 if the following two conditions hold:

(i) for each x ∈ Ω±(u) and (ξ,M) ∈ J
2,−
B1

u(x), we have

−⟨Mξ, ξ⟩ ≥ 0;

(ii) for each x ∈ R(u), (ξ,M) ∈ J
2,−
B1

u(x) and t > 0, we have

u

(
x+ t

ξ

|ξ|

)
≤ Λt+ o(t).

A continuous function u is a viscosity solution of (1.5) in B1 if is both a
viscosity subsolution and a viscosity supersolution.

Remark 2.1. The equation is interpreted in the usual way in the context of
the infinity Laplacian. Now, if x ∈ ∂{u > 0} is a point of differentiability
and, say, (ξ,M) ∈ J

2,−
B1

u(x), then

∇u+(x) · ξ

|ξ|
= lim

t→0

u
(
x+ t ξ

|ξ|

)
t

≥ |ξ|,

which yields
u+ν (x) = |∇u+(x)| ≥ |ξ|.
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On the other hand, the free boundary condition (ii), along with the subjet
estimate, gives

t|ξ|+ 1

2
t2
⟨
M

ξ

|ξ|
,
ξ

|ξ|

⟩
+ o

(
t2
)
≤ u

(
x+ t

ξ

|ξ|

)
≤ Λt+ o(t).

Dividing the above inequality by t and letting t → 0 yields

Λ ≥ |ξ|.

Thus, the interpretation of the free boundary condition given above is a (very)
weak representative of the corresponding flux balance in (1.5).

We can now state the main theorem of this article, the optimal regularity
for viscosity solutions of (1.5).

Theorem 2.1 (Lipschitz regularity). Any viscosity solution u of (1.5), in
the sense of Definition 2.1, is locally Lipschitz continuous. Moreover, there
exists a universal constant C > 0, depending only on dimension and Λ, such
that, for all x0 ∈ B1/2,

sup
Bρ(x0)

|u(x)− u(y)| ≤ C∥u∥L∞(B1)ρ,

for all 0 < ρ ≤ 1
10.

Remark 2.2. It is worth pointing out that Theorem 2.1 still holds for the
slightly more general problem

−∆∞u ≥ 0 in Ω+(u)

−∆∞u ≤ 0 in Ω−(u)

max{u+ν , u−ν } = Λ on R(u),

for which a Lipschitz estimate for viscosity solutions still follows from the
strategy we put forward. See also [5] for Lipschitz estimates for viscosity
subsolutions of −∆∞v = 0.

3. Pointwise estimates for interior maxima
In this section we start preparing for the proof of Theorem 2.1, by deriving

pointwise estimates involving the intrinsic structure of the infinity Laplacian
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at interior maximum points of a certain continuous function. Such a pow-
erful analytic tool will be used, so to speak, as a surrogate for the absence
of a monotonicity formula in this non-variational two-phase free boundary
problem.

Lemma 3.1. Let v ∈ C(B1), 0 ≤ ω ∈ C2(R+) and set

w(x, y) := v(x)− v(y) and φ(x, y) := Lω(|x− y|) + ϱ
(
|x|2 + |y|2

)
,

with L, ϱ positive constants. If the function w − φ attains a maximum at
(x0, y0) ∈ B 1

2
× B 1

2
, then, for each ε > 0, there exist Mx,My ∈ S(n), such

that
(Dxφ(x0, y0),Mx) ∈ J

2,+
B1/2

v(x0), (3.1)

(−Dyφ(x0, y0),My) ∈ J
2,−
B1/2

v(y0), (3.2)
and the estimate

⟨MxDxφ(x0, y0), Dxφ(x0, y0)⟩ − ⟨MyDyφ(x0, y0), Dyφ(x0, y0)⟩

≤ 4Lω′′(ρ) (Lω′(ρ) + ϱρ)
2
+ 16ϱ

(
L2ω′(ρ)2 + ϱ2

)
(3.3)

holds, where ρ = |x0 − y0|.

Proof : Under the hypothesis of the lemma, let us consider a local maximum,
(x0, y0) ∈ B 1

2
× B 1

2
, of w − φ. By [10, Theorem 3.2], for each ε > 0, there

exist matrices Mx,My ∈ S(n) such that (3.1) and (3.2) hold, and(
Mx 0

0 −My

)
≤ A+ ϵA2

for

A :=

(
Mω −Mω

−Mω Mω

)
+ 2ϱ I2n×2n,

where

Mω := Lω′′(|x0 − y0|)
(x0 − y0)⊗ (x0 − y0)

|x0 − y0|2

+L
ω′(|x0 − y0|)
|x0 − y0|

(
I − (x0 − y0)⊗ (x0 − y0)

|x0 − y0|2

)
. (3.4)
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In particular, we have

⟨MxDxφ(x0, y0), Dxφ(x0, y0)⟩ − ⟨MyDyφ(x0, y0), Dyφ(x0, y0)⟩

≤ ⟨Mω(Dxφ(x0, y0)−Dyφ(x0, y0)), Dxφ(x0, y0)−Dyφ(x0, y0)⟩

+ 2ϱ
(
|Dxφ(x0, y0)|2 + |Dyφ(x0, y0)|2

)
+ ϵλ, (3.5)

where

λ :=
⟨
A2 (Dxφ(x0, y0), Dyφ(x0, y0)) , (Dxφ(x0, y0), Dyφ(x0, y0))

⟩
.

Now, for ν := x0−y0
|x0−y0| , we have

Dxφ(x0, y0) = Lω′(ρ)ν + 2ϱx0 (3.6)

and
−Dyφ(x0, y0) = Lω′(ρ)ν − 2ϱy0, (3.7)

and thus, with ι = 2(Lω′(ρ)ρ−1 + ϱ), we have

Dxφ(x0, y0)−Dyφ(x0, y0) = ι(x0 − y0).

It then follows from (3.4) that

⟨Mω(Dxφ(x0, y0)−Dyφ(x0, y0)), Dxφ(x0, y0)−Dyφ(x0, y0)⟩

= ι2⟨Mω(x0 − y0), (x0 − y0)⟩ = ι2Lω′′(ρ)ρ2

= 4Lω′′(ρ) (Lω′(ρ) + ϱρ)
2
. (3.8)

Moreover, observe that

|Dxφ(x0, y0)|2 + |Dyφ(x0, y0)|2 = 2L2ω′(ρ)2 + 4Lϱω′(ρ)ρ

+ 4ϱ2(|x0|2 + |y0|2).

Using Cauchy’s inequality, we obtain the estimate

4Lϱω′(ρ)ρ ≤ (2Lω′(ρ))2

2
+

(2ϱρ)2

2
= 2L2ω′(ρ)2 + 2ϱ2ρ2

and then

|Dxφ(x0, y0)|2 + |Dyφ(x0, y0)|2 ≤ 4L2ω′(ρ)2 + 2ϱ2ρ2

+ 4ϱ2(|x0|2 + |y0|2).
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Since max{|x0|, |y0|, ρ} ≤ 1/2, we obtain

|Dxφ(x0, y0)|2 + |Dyφ(x0, y0)|2 ≤ 4(L 2ω′(ρ)2 + ϱ2). (3.9)

Finally, if λ > 0, choose

ϵ =
8ϱ
(
L2ω′(ρ)2 + ϱ2

)
λ

,

otherwise choose ϵ freely. Using (3.8) and (3.9) in (3.5), together with this
choice of ϵ, we obtain (3.3) and the proof is complete.

4. Building an appropriate barrier
In this section, we derive an ordinary differential estimate which will be

used to derive geometric properties related to problem (1.5). For positive
constants κ and θ, to be chosen later, we consider the barrier function

ω(t) = t− κ t1+θ for 0 < t < 1. (4.1)

Proposition 4.1. Given positive parameters a, b, and d, there exist positive
constants L, κ and θ, depending only on such parameters and universal
constants, such that

aL3ω′′(t)ω′(t)2 + bL2ω′(t)2 + d < −1, (4.2)

for all L ≥ L. Moreover, there holds

ω(t) > 0,
1

2
≤ ω′(t) ≤ 1 and ω′′(t) < 0, (4.3)

for any 0 < t < 1.

Proof : By direct computation, one obtains

− ω′′(t)ω′(t)2 = κ(1 + θ)θ
(
tθ−1 − 2κ(1 + θ)t2θ−1 + κ2(1 + θ)2t3θ−1

)
.

Hence, by choosing (and fixing hereafter) 1/2 ≤ θ ≤ 1, we obtain

−ω′′(t)ω′(t)2 ≥ κ(1 + θ)θ (1− 2κ(1 + θ))

≥ 4κ

3
(1− 4κ) =: κ > 0,
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provided κ < 1/4. In view of this and ω′(t) ≤ 1, we obtain

aL3ω′′(t)ω′(t)2 + bL2ω′(t)2 + d < −aκL3 + bL2 + d.

Then, we select L large such that estimate (4.2) holds for every L ≥ L. The
first and third estimates in (4.3) follow immediately. We conclude the proof
by observing that

ω′(t) ≥ 1− κ(1 + θ) ≥ 1− 2κ ≥ 1

2
.

5. Proof of the main theorem
In this final section, we prove Theorem 2.1. The strategy is to assume, for

the sake of contradiction, that the Lipschitz norm of viscosity solutions to
(1.5) cannot be controlled universally. This means that, for a given Γ > 0, to
be chosen universally large, we can find a viscosity solution u = uΓ of (1.5),
such that

Γ ≤ [u]Lip. (5.1)
Hence, for constants L and ϱ, to be chosen later depending only on Γ and
∥u∥L∞(B1), assumption (5.1) implies the existence of a pair of points

(x0, y0) ∈ B1/2 ×B1/2

such that
u(x0)− u(y0)− Lω(|x0 − y0|)− ϱ(|x0|2 + |y0|2) > 0. (5.2)

It follows from (5.2) that x0 ̸= y0 and
ϱ(|x0|2 + |y0|2) ≤ 2∥u∥L∞(B1). (5.3)

Thus, in order to guarantee that x0, y0 are interior points in B1/2, we select
ϱ := 9∥u∥L∞(B1).

Next, we note that ω is twice continuously differentiable in a small neigh-
borhood of η := |x0 − y0| > 0, and thus Lemma 3.1 guarantees the existence
of

(ξx,Mx) ∈ J
2,+
B1/2

u(x0) and (ξy,My) ∈ J
2,−
B1/2

u(y0)

satisfying
⟨Mxξx, ξx⟩ − ⟨Myξy, ξy⟩ ≤ aL3ω′′(η)ω′(η)2 + b L2ω′(η)2 + d, (5.4)
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for universal positive parameters a, b and d. We have further used the fact
that ω′′(η) < 0. Hence, by (5.4) and Proposition 4.1, there exists L ≫ 1,
such that

⟨Mxξx, ξx⟩ − ⟨Myξy, ξy⟩ < −1, (5.5)

for all L ≫ L.

In what follows, we want to prove that x0 must belong to R(u) ∪ Ω+(u)
and y0 has to belong to R(u) ∪ Ω−(u). In addition,

{x0, y0} ∩ R(u) ̸= ∅ and {x0, y0} ∩ R(u) ̸= {x0, y0}.

For that purpose, we initially note that (5.2) yields

u(x0)− u(y0) > 0. (5.6)

Hence, if x0 were to be in Ω−(u), then y0 would necessarily also belong
to Ω−(u). However, from Definition 2.1, u is infinity sub-harmonic in its
negative phase, Ω−(u). Thus, the LHS of (5.5) should be non-negative,
which yields a contradiction.

Arguing similarly, if one assumes y0 ∈ Ω+(u), then x0 would also have to
be in Ω+(u), and the same reasoning employed above would lead us to a
contradiction. Likewise, the case {x0, y0} ∩ R(u) = ∅ is ruled out. Finally,
from (5.6), we must have {x0, y0} ∩ R(u) ̸= {x0, y0}.

We are now left with two cases to investigate. The following picture gives
an impressionistic view of the subsequent analysis.

u>0

u<0

x0
b

b

y0

x0

b

y0

ρ

point of maximum

nonsingular point

R(u)

ρ∼∥u∥∞

b

b

u=0u=0
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Case 1. Suppose x0 ∈ Ω+(u) and y0 ∈ R(u). Since (ξy,My) ∈ J
2,−

u(y0), we
have

u(x) ≥ ⟨ξy, x− y0⟩+
1

2
⟨My(x− y0), (x− y0)⟩+ o

(
|x− y0|2

)
,

for all x ∈ B1/2. Hence, choosing x = y0 + t ξy/|ξy| and applying the free
boundary condition from Definition 2.1, yields

Γt+ o(t) ≥ t2

2|ξy|2
⟨Myξy, ξy⟩+ t|ξy|+ o(t2), (5.7)

for each t < 1/2. In addition, as x0 ∈ Ω+(u), estimate (5.5) yields
− ⟨Myξy, ξy⟩ < −1. (5.8)

Thus, from (5.7), we can further estimate
Γt+ o(t) ≥ t|ξy|+ o(t2), t < 1/2. (5.9)

On the other hand, from (3.7), we obtain
ξy = Lω′(η)η−1(x0 − y0)− 2ϱ y0,

and hence, from estimate (4.3), we know there holds

|ξy| ≥
L

2
− 2ϱ > 0. (5.10)

Thus, dividing (5.9) by t, we reach
Γ + o(1) ≥ O(L) + o(t). (5.11)

Finally, if we choose L universally large and let t → 0, a contradiction is
obtained in (5.9).
Case 2. Suppose, alternatively, that y0 ∈ Ω−(u) and x0 ∈ R(u). Arguing
similarly as in Case 1, we obtain

⟨Mxξx, ξx⟩ < −1. (5.12)

Since (ξx,Mx) ∈ J
2,+

u(x0), by selecting x = x0 − t ξx/|ξx| in Definition 2.1,
we obtain the estimate

− Γt+ o(t) ≤ t2

2|ξx|2
⟨Mxξx, ξx⟩ − t|ξx|+ o(t2) ≤ −t|ξx|+ o(t2), (5.13)

where the last inequality follows from (5.12). In addition, from (3.6), we
have

ξx = Lω′(η)η−1(x0 − y0) + 2ϱ x0
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and thus, from Proposition 4.1, we can estimate

|ξx| ≤ L+ 2ρ. (5.14)

Finally, combining (5.13) with (5.14), yields an estimate similar to (5.11).
Proceeding as in Case 1, we reach a contradiction. The proof of Theorem 2.1
is now complete.
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