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Abstract: We consider ribbon shapes, not necessarily connected, whose rows,
with at least two boxes in each, are in monotone length order. These ribbons are
uniquely defined by a pair of partitions: the row partition consisting of the row
lengths in decreasing order, and the overlapping partition whose entries count the
total number of columns with two boxes in the successive ribbon shapes obtained
by sequentially subtracting the longest row. The support of such ribbon Schur
functions, considered as a subposet of the dominance order lattice on partitions,
has the row partition as bottom element, and, as top element, the partition whose
two parts consist of the total number of columns, and the total number of columns
of length two respectively. We give a complete system of linear inequalities in terms
of the partition pair defining the aforesaid ribbon shape under which the ribbon
Schur function attains all the Schur interval when expanded in the basis of Schur
functions. We then conclude that the Gaetz-Hardt-Sridhar necessary condition for
a connected ribbon to have full equivalence class is equivalent to the condition for a
monotone connected ribbon to have full Schur support. That is, the set of partitions
with full equivalence class is a subset of those monotone connected ribbons with full
Schur support. M. Gaetz, W. Hardt and S. Sridhar conjectured that the necessary
condition is also sufficient which translates now to every monotone connected ribbon
with full Schur support has full equivalence class. The main tool of our analysis
is the structure of the companion tableau of a ribbon Littlewood-Richardson (LR)
tableau detected by the descent set defined by the composition whose parts are the
ribbon row lengths.
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1. Introduction and statement of results
Littlewood-Richardson (LR) coefficients, non negative integers, arise in a

variety of areas of mathematics [Fu00]. Determining its positivity without
evaluating its actual value is of importance. There exists a variety of combi-
natorial models, collectively called Littlewood-Richardson rules (the original
model conjectured in [LiRi34] and proved in [Sch77, Tho78]) to compute LR
coefficients, and to show their positivity it is enough to exhibit an object
in a chosen combinatorial model. Linear inequalities on triples of partitions
guaranteeing their positivity have arisen from studying eigenvalues of a sum
of Hermitian matrices [Ho62, Kl98, KnTa99, Fu00]. Given the skew parti-
tion A := λ/µ, with µ ⊆ λ partitions, it is known that it uniquely defines
a subposet [r(A), c(A)′] in the dominance order lattice of partitions of |A|,
the number of boxes of A, where the bottom element r(A) is the partition
formed by the row lengths of A, and the top element c(A)′ is the conjugate of
the partition c(A) formed by the column lengths of A. The meaning of this
interval is that, given the partition ν of |A|, the LR coefficient cνA := cλµ,ν > 0

only if ν ∈ [r(A), c(A)′] and, in particular, c
r(A)
A = c

c(A)′

A = 1 (see,for instance,
[Az99, Mc08] and references therein). Indeed it is not enough ν ∈ [r(A), c(A)′]
to guarantee that cνA > 0 [KnTa99, Fu00].

The LR coefficient cνA is a structure coefficient. It arises, for example, as
the multiplicity of the Specht module Sν in the decomposition of the skew
Specht module SA into irreducible representations of the symmetric group∑
|A|,

SA ∼=
⊕

ν∈[r(A),c(A)′]

(Sν)⊕c
ν
A; (1.1)

and, in the algebra of symmetric functions, as a coefficient of the Schur
function sν in the expansion of the skew Schur function sA in the basis of
Schur functions sν,

sA =
∑

ν∈[r(A),c(A)′]

cνAsν. (1.2)

The expansion (1.2) is also the image of the character of SA under the Frobe-
nius characteristic map. Another way to look either at expansions (1.1) or
(1.2) is that given A = λ/µ, µ ⊆ λ, they generate all possible positive LR
coefficients cνA := cλµ,ν. In view of these expansions, [r(A), c(A)′] is then the
Schur interval of the skew shape A, and the Schur support [A] of the skew
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shape A is the set of partition shapes ν where either Sν appears with positive
multiplicity in (1.1) or sν appears with nonzero coefficient in (1.2),

[A] := {ν : cνA > 0} ⊆ [r(A), c(A)′]. (1.3)

The skew shape A is said to have full Schur support when in (1.3) the support
coincides with the Schur interval.

A very general problem in the calculus of shapes is the classification of skew
shapes A whose Schur support consists of the whole interval [r(A), c(A)′] in
the dominance order lattice of partitions. (See also Question 5.1 in [McWi12,
Section 5].) In other words, given the partition ν of |A|, we ask under which
conditions one has, cνA > 0 if and only if ν ∈ [r(A), c(A)′]. In the special
case of requiring all coefficients cνA = 1, the multiplicity free full interval,
a classification was given in [ACM17]. We here give, in Theorem 1.7, a
full Schur support classification for monotone ribbon shapes, not necessarily
connected, with at least two boxes in each row, in terms of linear inequal-
ities (1.8) satisfied by the partition pair (α, p) consisting of the row and
overlapping partitions defining the monotone ribbon shape (see Proposition
3.3). The significance of this classification also amounts to the classification
of connected ribbons with full equivalence class ([GaHaSr17, Definition 7]),
that is, connected ribbons whose Schur support is invariant under any or-
der rearrangement of the rows. More precisely, monotone connected ribbons
with full equivalence class only exist among those with full Schur support.
This is a recent input on our study of monotone ribbons having full Schur
support and comes from the work by Gaetz, Hardt, Sridhar and Quoc Tran
[GaHaSr17, GaHaSrTr17] where the support equality among connected rib-
bon Schur functions under any order rearrangement of the rows is addressed.
The set of connected ribbons with full equivalence class has partitions as rib-
bon representatives. Lemma 1.11 shows that the Gaetz-Hardt-Sridhar neces-
sary condition [GaHaSr17, Theorem II.1] for connected ribbons to have full
equivalence class is equivalent to our classification, in Theorem 1.7, of mono-
tone connected ribbons with full Schur support. Theorem 1.12 concludes
that a monotone connected ribbon with full equivalence class has full Schur
support. For monotone connected ribbons with at most four rows, ribbons
with full equivalence class coincide with ribbons with full Schur support.

Earlier work on calculus of skew shapes are, for instance, Schur support
containments by Pylyavskyy, McNamara and van Willigenburg [DoPy07,
McWi12], skew shapes with the same Schur support or skew Schur function
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equalities by McNamara and van Willigenburg [Mc08, McWi09]. In particu-
lar, ribbon Schur functions were already considered by MacMahon [Mac17,
199–202] and Foulkes [Fo76] with representation-theoretic significance by the
last. Finally, it is worth noting that Reiner, Shimozono [ReShi98] and R. I.
Liu [Liu12] have considered Specht modules and, therefore, Schur functions
for more general diagrams than skew shapes. However, apart percentage-
avoiding diagrams [ReShi98], the combinatorial description of the coefficients
for the Schur expansion is not known in general.

1.1. Overlapping partition of a monotone ribbon and descent set
of a SYT. Arbitrary connected ribbons (diagrams corresponding to skew
shapes containing no 2 × 2 rectangle) are in bijection with compositions
assigning to the ribbon the row lengths. Thanks to the π-rotation symme-
try of LR coefficients [St99, ACM09], the Schur support classification of LR
monotone ribbons may be reduced to ribbons with row lengths in monotone
decreasing order. Decreasing monotone ribbons with rows in length at least
two, have at most columns of length two which occur exactly when two rows
overlap: the overlapping partition p, read in reverse order, records sequen-
tially, by accumulation, the number of columns of length two from the bottom
to the top rows of the ribbon (see Section 3 and Definition 3.1). Proposition
3.3 shows that monotone ribbons, not necessarily connected, with at least
two boxes in each row in monotone length order, are in bijection, up to an
antipodal rotation, with partition pairs (α, p) where the `(α) parts of the
row lengths partition α = (α1, . . . , α`(α)) are in length at least two, and the
`(p) parts of the overlapping partition p = (p1, . . . , p`(α)−1, 0) are assigned by
a multiset of {`(α) − k, . . . , 2, 1} of cardinality `(α) − k ≤ `(p) ≤ `(α) − 1
with k ∈ {1, . . . , `(α)}. We often denote these ribbons by Rp

α, or just say
the partition α with overlapping partition p to mean that p is the overlap-
ping partition of the ribbon Rp

α. The Schur interval of our ribbon Rp
α, with

k = `(α)− p1 connected components, is

[Rp
α] ⊆ [α, (|α| − `(α) + k, `(α)− k)]. (1.4)

Example 1.1. The partition pair (α = (3, 3, 2, 2, 2), p = (2, 2, 1, 1, 0)) where
p1 = `(α) − 3 = 2 and `(p) = `(α) − 1 = 4, defines the monotone rib-
bon Rp

(3,3,2,2,2), below, with 3 connected components, and Schur interval
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[(3, 3, 2, 2, 2), (10, 2)],

. (1.5)

Our classification is based on the fact that given a monotone ribbon with
row lengths at least two, defined by the partition pair (α, p), the existence
of a companion tableau [LecLen17, Nak05, Appendix] for an LR filling of
Rp
α with content ν, is equivalent to show that the triple of partitions α, p

and ν satisfy a certain system of linear inequalities (1.6) in Theorem 1.5.
The companion tableau of a LR connected ribbon Rα is detected by the
descent set S(α) = {α1, α1 +α2, . . . , α1 + · · ·+α`(α)−1} of its standardization
(see sections 2.1 and 2.2). The following alternative description of the LR
coefficients in the expansion (1.2) is known [Fo76, Ge84, Ge93], counting
exactly standardized companion tableaux of connected LR ribbons.

Theorem 1.2. [Fo76, Ge84, Ge93]. Let α be any composition of N and Rα

the corresponding connected ribbon shape. Then

sRα =
∑
ν

dν,αsν,

where ν runs on the set of partitions of N , and dν,α is the number of stan-
dard Young tableaux (SYT) of shape ν and descent set S(α) = {α1, α1 +
α2, . . . , α1 + · · ·+ α`(α)−1}.

This means that given the connected ribbon Rα, the LR ribbon coefficient
cνRα = dν,α is positive if and only if there exists a semistandard Young tableau
(SSYT) tableau of shape ν and content α whose standardization has descent
set S(α) = {α1, α1+α2, . . . , α1+· · ·+α`(α)−1}. For ordered compositions with
parts of length at least two, we show, in Theorem 1.5, that the existence of
such standard Young tableau guaranteeing the positivity of cνRα is equivalent
to require that the triple of partitions α, ν and p = (`(α) − 1, . . . , 2, 1, 0)
satisfy a certain system of linear inequalities (1.6). More generally, we prove
that the characterization is valid for monotone ribbons with k components by
replacing the stair partition p of `(α)−1 with a multiset of {`(α)−k, . . . , 1} of
cardinality `(α)−k ≤ `(p) ≤ `(α)− 1, where k ∈ {1, . . . , `(α)}. Our method
then consists of explicitly identifying in a SSYT of shape ν and content the
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partition α, the obstructions for being a companion tableau for a monotone
LR ribbon, with the goal to remove them through a rotation procedure (see
Subsection 4.2). This removal is possible whenever linear inequalities (1.6)
are satisfied by the triple of partitions (α, p, ν). More precisely, the effective
obstructions, detected by the overlapping partition p, correspond to some
elements in S(α) which are not in the descent set of the standardized tableau.
Thus to exhibit the positivity of a such LR ribbon coefficient one just needs
to exhibit a companion tableau for the ribbon LR filling. To minimize the
number of obstructions that we have to deal with we work out on a SSYT
with canonical filling (see Section 2.4).

1.2. Monotone ribbons: witness vectors and their slacks. Put x+ :=
max{0, x} where x is a real number. To a monotone ribbon Rp

α, we associate

a sequence {g̃i}`(p)−1
i=1 of `(p) − 1 witness vectors, and to each witness g̃i we

assign the slack pi+1 − 1, for i ∈ {1, . . . , `(p)− 1}.
Definition 1.3. Let α be a partition with parts at least two and with overlap-

ping partition p. For each i ∈ {1,. . . , `(p)−1}, put %i−1 :=

`(α)∑
q=i+1

αq−pi+1 > 0

the rest of order i of Rp
α, that is, the total number of columns in the last

`(α)− i rows of Rp
α. Define the i-witness vector of Rp

α to be the nonnegative
vector g̃i = (g̃i1, . . . , g̃

i
i) where g̃ij := [%i − αj]+ , j = 1, . . . , i. The slack of the

i-witness vector is pi+1 − 1, for i ∈ {1, . . . , `(p) − 1}. If `(p) = 0, 1, Rp
α has

no witness vectors.

The size |g̃i| :=
∑i

j=1 [%i − αj]+ of the i-witness vector g̃i is said to fit its

slack, if |g̃i| ≤ pi+1 − 1, otherwise is said to be oversized.

Remark 1.4. For i ∈ {1,. . . , `(p) − 1}, %i exceeds the total number of
columns in the last `(α)− i rows of Rp

α. In any LR filling of Rp
α the i+1’s are

filled in the last `(α)− i rows, and thereby its number is < %i. For i ∈ {1,. . . ,
`(p)− 1}, g̃i = 0 if and only if αi ≥ %i.

1.3. Statement of main results. Our key result is Theorem 1.5 which
determines cνRpα > 0 without determining its actual value. It gives a set of
linear inequalities on the partition triple (α, p, ν) as necessary and sufficient
conditions for the positivity of cνRpα. The inequalities are explained by the
combinatorial interpretation of α � ν in the dominance order on partitions
(see Remark 2.2), and the obstruction of the overlapping partition p to the
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partitions dominating α. When p = 0, we have no such obstruction, cνRα is a
Kostka number, and α � ν characterizes completely the aforesaid positivity.

Theorem 1.5. Let α be a partition with parts at least two and overlapping
partition p = (p1, . . . , p`(α)−1, 0), and ν a partition of |α|. Then

cνRpα > 0⇔


ν ∈ [α, (|α| − p1, p1)],

νi ≤
`(α)∑
q=i

αq − pi, for 1 ≤ i ≤ `(p).
(1.6)

In particular, when `(p) = `(α)−1, that is, pi = `(α)− i, 1 ≤ i ≤ `(α), there
exists a SYT of shape ν with descent set S(α) if and only if the right hand
side of (1.6) is satisfied.

The necessary and sufficient condition (1.6) is easily read: ν ∈ [α, (|α| −
p1, p1)] is in the support of Rp

α if and and only if the νi < %i−1, with %0 :=
|α| − p1 + 1, for i = 1, . . . , `(p). With this on hand we give a criterion to
decide when Rp

α has full Schur support, that is, when one has cνRpα > 0 if and
only if ν ∈ [α, (|α|−p1, p1)]. The test assigns to each i ∈ {1, . . . , `(p)−1} the
i-witness vector of Rp

α and compares its size with the slack pi+1− 1 ≥ 0. The
existence of a single witness fitting its slack prevents the full Schur support
because it can be used to construct a partition in the Schur interval but not
in the support. This is the case of a witness of size zero, that is, when the
partition α has αi ≥ %i for some 1 ≤ i ≤ `(p)− 1.

Theorem 1.6. Let α be a partition with parts≥ 2, and overlapping partition
p = (p1, . . . , p`(α)−1, 0). Then [Rp

α] $ [α, (|α| − p1, p1)] if and only if `(p) ≥ 2
and, for some 1 ≤ i ≤ `(p)−1, the size of the i-witness vector g̃i fits its slack,
that is,

i∑
j=1

[%i − αj]+ ≤ pi+1 − 1. (1.7)

In this case, αj + g̃ij ≥ %i ≥ pi+1 − 1 − |g̃i|, j = 1, . . . , i, whose decreasing

rearrangement is the partition (α1 + g̃i1, . . . , αi + g̃ii, %i, pi+1− 1− |g̃i|)+ of |α|
in the Schur interval of Rp

α but not in the support of Rp
α.

The equivalent statement for full Schur support is

Theorem 1.7. Let α be a partition with parts≥ 2, and overlapping partition
p = (p1, . . . , p`(α)−1, 0). Then [Rp

α] = [α, (|α| − p1, p1)] if and only if either
`(p) < 2 or `(p) ≥ 2 and, in this case, for every 1 ≤ i ≤ `(p)−1, the i-witness
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vector of Rp
α is oversized with respect to its slack, that is,

i∑
j=1

[%i − αj]+ ≥ pi+1, 1 ≤ i ≤ `(p)− 1. (1.8)

Remark 1.8. Rp
α has full support only if

αi < %i ⇔ αi ≤
`(α)∑
q=i+1

αq − pi+1, 1 ≤ i ≤ `(p)− 1.

The following is a generalization of [GaHaSrTr17, Theorem 3.6] to mono-
tone disconnected ribbons with `(p) ≤ 3 which contain the monotone con-
nected ribbons of length ≤ 4.

Corollary 1.9. In particular,
(a) when p = (2, 1, 0`(α)−2), [Rp

α] = [α, (|α| − 2, 2)] if and only if

α1 < %1 ⇔ α1 <

`(α)∑
q=2

αq. (1.9)

(b) when p = (3, 2, 1, 0`(α)−3), [Rp
α] = [α, (|α| − 3, 3)] if and only if

α1 <

`(α)∑
q=2

αq − 2 and α2 <

`(α)∑
q=3

αq. (1.10)

In [GaHaSr17, Theorem II.1], that we reproduce below as Theorem 1.10
for the reader convenience, a necessary condition is given for a connected
ribbon with parts at least two, to have full equivalence class [GaHaSr17,
Definition 7]. This necessary condition combined with Theorem 1.7 shows
that a monotone connected ribbon with parts ≥ 2 has full equivalence class
only if it has full Schur support. That is, full equivalence classes only exist
among monotone connected ribbons with full Schur support.

Theorem 1.10. [GaHaSr17, Theorem II.1] Let α be a partition with parts
≥ 2 and Rα a connected ribbon. If α has full equivalence class then

Nj := max{k :
∑

1≤i≤j
αi<k

(k−αi) ≤ `(α)− j− 2} < %j, 1 ≤ j ≤ `(α)− 2. (1.11)

For monotone connected ribbons, inequality (1.11) is equivalent to inequal-
ity (1.8) in Theorem 1.7 characterizing full Schur support.
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Lemma 1.11. For all j ∈ {1, . . . , `(α)− 2},

Nj := max{k :
∑

1≤i≤j
αi<k

(k−αi) ≤ `(α)−j−2} < %j ⇔
∑

1≤i≤j
αi<%j

(%j−αi) ≥ `(α)−j−1.

(1.12)

In addition, combining Theorem 1.7 with [GaHaSrTr17, Theorem 3.6], one
has

Theorem 1.12. Let α be a partition with parts ≥ 2 and Rα a connected
ribbon. If α has full equivalence class then Rα has full support. When
`(α) ≤ 4, α has full equivalence class if and only if Rα has full support.

Proofs of main results will be delayed until sections 4, 5 and 6.

1.4. Organization of the paper. This paper is organized in seven sections
with the following contents. The next section, divided in seven subsections,
contains the basic terminology, definitions and results that we shall be using
throughout the paper. We highlight the concepts of descent set of a semistan-
dard Young tableau versus SYT and Proposition 2.1 in Subsection 2.2, the
combinatorial interpretation of dominance order on partitions, in Subsection
2.3, enlightening inequalities (1.6), and companion tableau of an LR tableau,
in Subsection 2.6, our key tool in the proof of the existence of a monotone
ribbon LR filling with given shape and content or the positivity of a ribbon
LR coefficient.

Section 3 is divided in four subsections. Subsection 3.1 defines (Definition
3.1) and discusses overlapping partition of a ribbon, with row lengths at
least two, that we shall use in the (connected or not) monotonic case, and,
in the last section, in the connected case with row lengths in any order.
It is shown that monotone ribbons not necessarily connected are uniquely
defined by the row lengths partition and the overlapping partition. It is
recalled in Subsection 3.2 that the descent set of a standard Young tableau
detects the companion tableau of a LR connected ribbon. The enumerative
characterization of LR connected ribbon coefficients cνRα in Theorem 1.2 is
generalized to disconnected ribbons.

Given T a SSYT of shape ν and weight α the descent set of the stan-
dardization of T is a subset of S(α). As our study reduces to ribbons Rα

with α a partition, the serious rejection for T to be a companion tableau for
a LR ribbon of shape Rα occurs when it leads to a filling of Rα with the
same letter in a column of length two. In Subsection 3.3, we translate the
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numbers in S(α) and not in the descent set of the standardized T , giving
rise to the aforesaid violation, to the critical numbers set of T , a subset of
{2, . . . , `(α)}. In addition, as our monotone ribbons may be disconnected,
the overlapping partition is used to detect the effectiveness of the critical
numbers of a companion tableau of a LR ribbon of shape Rp

α, as explained
in Subsection 3.4.

Section 4 gives the proof of Theorem 1.5 which determines by means of a set
of linear inequalities on the partition triple (α, p, ν), the positivity cνRpα > 0
without determining its actual value. Assuming the linear inequalities on
the right hand side of (1.6), the goal is to exhibit a companion tableau for
a LR filling of the shape Rp

α. The semistandard tableau of shape ν and
weight α with canonical filling (Subsection 2.4) is picked, and then if neces-
sary one modifies its filling according to a certain rotation procedure to avoid
p-effective critical numbers so that the new tableau is a companion tableau
of an LR filling with weight ν of the shape Rp

α. The linear inequalities on
the right hand side of (1.6) guarantee that our rotation procedure is suc-
cessful. Section 5 gives the proof of Theorem 1.6 and Theorem 1.7, logically
equivalent, which classify the monotone ribbons with full Schur support, and
Corollary 1.9 which gives a simple version of those inequalities in the case
where the overlapping partition has at most length four. Illustrative exam-
ples are also provided.

In section 6, the bridge between the classification of monotone connected
ribbons with full Schur support and those with full equivalence class [GaHaSr17]
is established. More precisely, Lemma 1.11 shows that for monotone con-
nected ribbons, the inequality (1.11), in Theorem 1.10, [GaHaSr17, Theorem
II.1], giving a necessary condition for full equivalence class, is equivalent to
the inequality (1.8), in Theorem 1.7, characterizing the full Schur support.
The bridge allows to prove Theorem 1.12 which states that every partition
with full equivalence class has full Schur support. Instances on the coinci-
dence of these two classifications are provided. More importantly, Corollary
6.4 shows, as observed in Remark 6.5, that a non monotone connected ribbon
of length three may have full Schur support while its monotone rearrange-
ment does not have.

Section 7 generalizes, in Theorem 7.1, the necessary condition, in Theorem
1.5, for the LR coefficient cνRα positivity, with α a partition, to connected
ribbons Rβ with β a composition. Remark 7.2 shows that if these inequalities
on the triple (β, p, ν) with β a composition and p the overlapping partition
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of Rβ, are also sufficient, then the classification on partitions having full
equivalence class and full Schur support is the same, and, henceforth, the
Gaez-Hardt-Shridar conjecture [GaHaSr17, Conjecture II.4] claiming that
the necessary condition (1.11) for a partition to have full equivalence class is
also sufficient, is true.
Acknowledgements. We are thankful to the organizers of workshop Posi-
tivity in Algebraic Combinatorics, BIRS, Banff, Alberta, August 14-16, 2015,
for the opportunity to present our work on full Schur supports, to João Gou-
veia for useful discussions and suggesting the phrasing of witness vector with
its slack which allowed economy and clarification in our redaction, and to M.
Gaez, W. Hardt, S. Sridhar and P. Pylyavskyy for letting us know the paper
[GaHaSr17] on full equivalence classes.

2. Preliminaries
2.1. Partitions, compositions and tableaux. A partition λ is an ordered
list of positive integers λ1 ≥ λ2 ≥ · · · ≥ λ`(λ) > 0 where λi are the parts and

`(λ) the length of λ. We say that |λ| :=
∑`(λ)

i=1 λi is the size of λ and that
λ is a partition of |λ|. It is convenient to set λk = 0 for k > `(λ). The
Young diagram of the partition λ = (λ1, λ2, . . . , λ`(λ)), or Young diagram of
shape λ, is the collection of |λ| boxes arranged in `(λ) left-aligned rows, in
the lower right quadrant of the plane, where the ith row has λi boxes, for
1 ≤ i ≤ `(λ). We shall identify a partition with its Young diagram. Given the
partition λ, the conjugate or transpose partition λ′ is the partition obtained
by transposing the Young diagram of λ. A filling T of a Young diagram of
shape λ with positive integers is called semistandard if the integers increase
weakly across rows (row semistandard condition) and strictly down columns
(column standard condition). Such a filled-in Young diagram of shape λ is
called a semistandard Young tableau (SSYT) T of shape λ. The weight or
content of a SSTY is the sequence α = (α1, α2, . . .), where αi is the number
of integers i in the filling of the tableau.

A composition α with `(α) parts is a sequence of `(α) positive integers.
The partition α+ is the monotone nonincreasing rearranging of α. The size
of α is defined to be |α| := |α+|, in which case we say α is a composition
of |α|. The length of α is `(α) = `(α+). If β = (β1, . . . , β`(β)) is another
composition, we define the concatenation of α and β to be the composition
α.β = (α1, . . . , α`(α), β1, . . . , β`(β)) of length `(α) + `(β).
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We denote by Tab(λ, α) the set of all SSYTs of shape λ and content the
composition α. For λ a partition and α a composition of |λ|, the Kostka
number Kλ,α is defined to be Kλ,α := #Tab(λ, α).

A skew shape or (skew Young diagram) λ/µ is obtained by removing the
Young diagram µ from the top-left corner of the Young diagram λ, when µ
is contained in λ as Young diagrams, or equivalently, when µi ≤ λi, for all
i ≥ 1. In particular, when µ is the empty partition 0, we have λ/0 = λ. The
size of λ/µ is |λ/µ| := |λ| − |µ|. An horizontal strip is a skew diagram which
has at most one box in each column. The basic form of a skew shape is the
skew diagram obtained by deleting any empty row and any empty column.
The skew shape λ/µ in the basic form defines the composition λ − µ that
we simply write λ/µ if there is no danger of confusion. A skew shape is said
to be connected if there exists a path between any two boxes of the diagram
using only north, east, south and west steps such that the path is contained
in the diagram. A SSYT of skew shape λ/µ and weight ν is a semistandard
filling of the the skew-shape λ/µ of weight ν.

2.2. Descent set of a standard tableau. If a SSYT T of size n (n boxes)
has entries in [n] := {1, 2, . . . , n}, each necessarily appearing exactly once,
then T is said to be a standard Young tableau (SYT).

A SSYT T in Tab(λ, α) may also be regarded as a sequence 0 = λ0 ⊆
λ1 ⊆ · · · ⊆ λ`(α) = λ of partitions such that each skew shape λi/λi−1 is
an horizontal strip of size αi. Simply insert an i in each box of the strip
λi/λi−1 [St99]. The standard order on a semistandard Young tableau is the
numerical ordering of the labels with priority, in the case of equality, given by
the rule southwest=smaller, northeast=larger. The standardization T̂ of a
semistandard tableau T ∈ Tab(λ, α) is the enumeration of the labeled boxes
according to the standard order of T , that is, the enumeration of the boxes
across the sequence 0 = λ0 ⊆ λ1 ⊆ · · · ⊆ λ`(α) where each horizontal strip
λi/λi−1 of size αi is read SW-NE. For instance, the following are SSYT’s with
shape λ = (4, 3, 2) and content α = (2, 4, 2, 1), and their standardizations,
respectively:

T =

1 1 2 2
2 2 3
3 4 Q =

1 1 2 2
2 2 4
3 3 ∈ Tab(λ, α), T̂ =

1 2 5 6
3 4 8
7 9 Q̂ =

1 2 5 6
3 4 9
7 8 .

(2.1)
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The descent set D(U) of a SYT U of shape λ is defined to be the subset
of [|λ| − 1] formed by those entries i of U for which i+ 1 appears in a strict
lower row of U than i. There is a one-to-one natural correspondence between
subsets of [|λ| − 1] and compositions of |λ| [St99, Fo76]. The composition
α = (α1, . . . , α`(α)) gives rise to the subset S(α) := {α1, α1 +α2, . . . , α1 +α2 +
· · ·+α`(α)−1}, with cardinality `(α)− 1, of [|α| − 1], and vice-versa. Hence a
SYT of shape λ has descent set S(α) for some composition α of |λ|. In (2.1),
for example,

D(T̂ ) = {2, 6, 8} = S(α) and D(Q̂) = {2, 6} $ S(α). (2.2)

However, Q̂ is also the standardization of V =

1 1 2 2
2 2 3
3 3 ∈ Tab(λ, β =

(2, 4, 3)) with β = (α1, α2, α3 + α4). In particular, Tab((4, 0), (2, 2)) has
a sole element whose standardization has descent set the empty set, and
Tab((4, 4), (4, 2, 2)) has a sole element whose standardization has descent set
{4} & S(4, 2, 2).

Given T ∈ Tab(λ, α), the descent set D(T ) of the SSYT T is the subset
S of {1, . . . , `(α) − 1} that consists of s ∈ {1, . . . , `(α) − 1} for which there
exists a pair of entries s and s + 1 in T such that s + 1 appears in a strict
lower row of T than s. When T is a SYT, that is, T ∈ Tab(λ, (1|λ|)), we
recover the notion of descent set in a SYT, where D(T ) is a subset S of
[|λ| − 1]. We show next that a SYT of shape λ has descent set S(α) if and
only if it is the standardization of some SSYT in Tab(λ, α) with descent set
S = {1, . . . , `(α)− 1}. A SYT of shape λ has descent set S(β) ⊆ S(α) if and
only if it is the standardization of some SSYT in Tab(λ, α) with descent set
S ⊆ {1, . . . , `(α)− 1} and S(β) = {

∑s
j=1 αj : s ∈ S} ⊆ S(α).

Proposition 2.1. Given a partition λ and a composition α of |λ|, there exists
a bijection between Tab(λ, α) and the set of all SYT’s of shape λ with descent

set a subset of S(α), defined by the map T 7→ T̂ . Moreover, if T ∈ Tab(λ, α)

and S = {s1 < · · · < s|S|} then D(T̂ ) = {
∑s

j=1 αj : s ∈ S} = S(β) ⊆ S(α)

with β = (β1, . . . , β|S|, |α| − β|S|) such that βi − βi−1 =
∑si

j=1 αj −
∑si−1

j=1 αj,
1 ≤ i ≤ |S| and β0 := 0.

Proof : Let 0 = λ0 ⊆ λ1 ⊆ · · · ⊆ λ`(α) = λ be the sequence of partitions
defining T ∈ Tab(λ, α). The standardization T̂ of a SSYT T ∈ Tab(λ, α) is
the enumeration of the boxes across the sequence 0 = λ0 ⊆ λ1 ⊆ · · · ⊆ λ`(α)
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defining T where each horizontal strip λi/λi−1 of size αi is read SW-NE. This

means that T̂ is a SYT of shape λ and its descent set D(T̂ ) = {
∑s

j=1 αj :
s ∈ S} ⊆ S(α) where S consists of s ∈ {1, . . . , `(α)− 1} for which the most
SW box in λs+1/λs appears strictly below the most NE box in λs/λs−1.

Given U a SYT of shape λ and with descent set S(β) ⊆ S(α) for some
composition β of |λ|, the standardization may be reversed to give a SSYT
in Tab(λ, β). A SYT of shape λ with descent set S(β) defines the sequence
of partitions 0 = θ0 ⊆ θ1 ⊆ · · · ⊆ θ`(β) = λ where each θj consists of the
β1 + · · ·+ βj boxes of U with the entries given by [β1 + · · ·+ βj]. Therefore
filling each horizontal strip θj/θj−1 with βj j’s, for all j ∈ [`(β)] gives a
SSYT in Tab(λ, β). Because D(U) = S(β) ⊆ S(α), given j ∈ [`(β)], βj =
αk+1 + · · · + αk+d for some {k + 1, . . . , k + d} ⊆ [`(α)]. Then we may fill
the βj boxes of the horizontal strip θj/θj−1, from SW-NE, with αk+1 k+ 1’s,
αk+2 k + 2’s, . . . , αk+s k + d’s to obtain a SSYT in Tab(λ, α). �

2.3. Dominance order on partitions. The dominance order on partitions
of the same size n, is defined by setting λ � µ if |λ| = |µ| = n and

λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi,

for i = 1, . . . ,min{`(λ), `(µ)}. Equivalently, the Young diagram of µ is ob-
tained by lifting at least one box in the Young diagram of λ. Observe that
λ � µ if and only if µ′ � λ′. The pair (Pn,�) with Pn the set of all partitions
of n is a lattice with maximum element (n) and minimum element (1n), and
is self dual under the map which sends each partition to its conjugate. The
interval [λ, µ] in Pn denotes the set of all partitions ν such that λ � ν � µ.

Remark 2.2. Note that if λ � µ, the inequalities µi ≤
`(λ)∑
q=i

λq = λi+

`(λ)∑
q=i+1

λq,

for 1 ≤ i ≤ `(λ), are always satisfied. For 1 ≤ i ≤ `(λ), either µi is
obtained by lifting boxes from (λi+1, . . . , λ`(λ)) to λi, in which case, λi ≤ µi ≤
λi +

∑`(λ)
q=i+1 λq, or µi is obtained by lifting boxes from λi to (λ1, . . . , λi−1), in

which case, µi ≤ λi ≤ λi +
∑`(λ)

q=i+1 λq.

2.4. The canonical filling in Tab(ν, α). Let α be an arbitrary composition
and ν a partition such that |ν| = |α|. We exhibit a representative element
of Tab(ν, α), see also [JaVi17]. The proof provides an α-weight canonical
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filling of a Young diagram of shape ν. The canonical filling enjoys descent
properties to be used later, see Section 3.3 and Proposition 3.13.

Lemma 2.3. Let α be any composition and ν a partition such that α+ � ν.
Then, Kν,α > 0 and Tab(ν, α) has a canonical filling representative of the
shape ν with weight α. It is constructed by filling horizontal strips greedily,
from the bottom to the top of ν, starting with the longest columns, while
rows are filled from right to left.

Proof : Assume that α+ � ν. Then s := `(α) ≥ `(ν) = m, and the shape
ν = (ν1, . . . , νm) has m rows and ν1 columns. We will show by induction
on s that we can construct a SSYT T of shape ν and weight α by filling
horizontal strips greedily, from bottom to the top of ν, starting with the
longest columns, while rows are filled from right to left. The case s = 1 is
trivial. So, assume s ≥ 2. If α = (α1, . . . , αs−1, α

+
s ), then fill in, as above,

α+
s entries of the shape ν with letters s. The remaining shape ν̂ satisfy

(α+
1 , . . . , α

+
s−1) � ν̂ and, by the inductive step, there is a filling as above of

the shape ν̂ with content (α1, . . . , αs−1). Therefore, there is also a filling of
the shape ν as above, with content (α1, . . . , αs−1, α

+
s ).

Consider now the case α = (α1, . . . , α
+
s , . . . , αs−1, α

+
i ), where the entry

α+
s is in position 1 ≤ k < s. Let (s; s − 1) and (k; s − 1) be trans-

positions of the symmetric group Ss. Write α̃ = (s; s − 1)(k; s − 1)α =
(α1, . . . , αs−1, . . . , α

+
i , α

+
s ). From the previous case, there is a filling of the

shape ν with content α̃. Consider now the two bottom row strips filled with
α+
i letters s− 1, and α+

s letters s. We refill these strips first with α+
i letters

s, and then with α+
s letters s − 1, to obtain a filling of the shape ν with

content (α1, . . . , αs−1, . . . , α
+
s , α

+
i ). Subtracting the strip filled with α+

i , we
get a shape ν̃ filled with content (α1, . . . , αs−1, . . . , α

+
s ). By the inductive

hypotheses, it can also be filled in the way described above with content
(α1, . . . , α

+
s , . . . , αs−1). Rejoining the strip α+

i we get the desired filling. �

Example 2.4. Below are examples of SSYT’s of partition shape with canon-
ical filling:

1 2 2 3 4
3 5 5 6 6
4
5
6

1 1 1 2 2 2 2
2 3 3 4 4 5 5
4 4 5 5 5 6
5 5
6 6

1 1 1 2 2 2 3 3 3 5 5 6
3 4 5 5 5 6 6
5 5 6 6 6 7
6 6
7 7
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1 1 1 2 2 2
2 2 3 3 4 4
3 4 5 5 5
4 5
5

The previous lemma gives a constructive proof of the only if part of (c) in
the next proposition.

Proposition 2.5. [Fu97, Sa01, St99] Let α be a composition and ν a parti-
tion of |α|. Then

(a) Kν,α+ = Kν,α,
(b) Kα+,α = 1,
(c) α+ � ν if and only if Kν,α > 0.

For instance, in (2.1), α+ = (4, 2, 2, 1) � λ.

2.5. Skew-Schur functions, LR tableaux and Littlewood-Richardson
rule. Let Λ denote the ring of symmetric functions in the variables x =
(x1, x2, . . .) over Q, say. The Schur functions sλ form an orthonormal basis
for Λ, with respect to the Hall inner product, and may be defined in terms
of SSYT by

sλ =
∑
T

xT =
∑
T

xt11 x
t2
2 x

t3
3 · · · ∈ Λ, (2.3)

where the sum is over all SSYT of shape λ and ti ≥ 0 is the number of
occurrences of i in T [St99]. The notion of Schur functions can be generalized
to apply to skew shapes λ/µ. Replacing λ by λ/µ in (2.3) gives the definition
of the skew Schur function sλ/µ ∈ Λ as a sum of monomial weights over all
SSYTs of skew shape λ/µ. We identify sλ/µ with the skew Schur function
indexed by the skew Young diagram in the basic form.

The reading word w of a SSYT T is the word obtained by reading the
entries of T from right to left and top to bottom. If, for all positive integers
i and j, the first j letters of w includes at least as many i′s as (i+ 1)′s, then
we say that w is a Yamanouchi word. Clearly, the content of a Yamanouchi
word is a partition. Yamanouchi words of content ν are in bijection with
standard Young tableaux of shape ν [Fu97, Section 5.3]. Each SYT U of
shape ν specifies a Yamanouch word wU = w1 · · ·w|ν| of content ν, in the
alphabet [`(ν)], where the number u ∈ [|ν|] is in the wuth row of the SYT,
and this map is one-to-one. Moreover, one has wj ≥ wj+1 unless j ∈ D(U)
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in which case wj < wj+1. In (2.1), for example,

wT̂ = 11 2211 32 3 and wV̂ = 11 2211 332 (2.4)

are Yamanouchi words of content ν = (4, 3, 2), where D(T̂ ) = {2, 6, 8} and

D(V̂ ) = {2, 6}.
A Littlewood–Richardson (LR) tableau [LiRi34] is a SSYT whose reading

word is Yamanouchi. We denote by LR(λ/µ, ν) the set of all LR tableaux
of shape λ/µ and content ν. When µ is empty, λ = ν and the LR tableau of
shape ν and content ν, denoted Y (ν), is called the Yamanouchi tableau of
shape ν. In fact, Y (ν) is the unique SSYT of shape and content ν, precisely,
the SSYT that is filled with i’s in row i. The structure constants cνλ/µ in

the expansion (1.2) of the skew Schur function sλ/µ, in the basis of Schur
functions, are given by the Littlewood–Richardson rule which states that the
Littlewood–Richardson coefficient cνλ/µ = #LR(λ/µ, ν), the number of LR

tableaux with skew shape λ/µ and content ν [LiRi34, St99].

2.6. LR tableaux and companion tableaux. LR tableaux in LR(λ/µ, ν)
can be replaced by their companion tableaux which are certain SSYTs in
Tab(ν, λ/µ) whose standardizations encode the Yamanouchi reading words
of the LR tableaux in LR(λ/µ, ν). Given G ∈ Tab(ν, λ/µ), the contain-

ment of the descent set of Ĝ in S(λ/µ) guarantees that the filling of λ/µ
with Yamanouchi reading word wĜ satisfies the row semistandard condition.

Thus any tableau G ∈ Tab(ν, λ/µ) specifies through Ĝ a filling of the skew
shape λ/µ with the Yamanouchi reading word wĜ of content ν with the row
semistandard condition satisfied but not necessarily the standard condition
of the column filling. In addition, by Proposition 2.1, we know that, a filling
of the skew shape λ/µ with a Yamanouchi reading word satisfying the row
semistandard condition is encoded by a SYT of shape ν with descent set in
S(λ/µ). For example, the two Yamanouchi words in (2.4) give fillings for the
skew shape λ/µ = (2, 4, 2, 1) where all satisfy the row semistandard condi-
tion. The word wV̂ does not garantee the column standard condition in the
filling

wT̂ = 112211323,

1 1
1 1 2 2

2 3
3 ; wV̂ = 112211332,

1 1
1 1 2 2

3 3
2 ,



18 O. AZENHAS AND R. MAMEDE

1 1
1 1 2 2

3 3
2 .

Given H ∈ LR(λ/µ, ν) the companion tableau G of H is the SSYT in
Tab(ν, λ/µ) whose νi entries of each row i of G are the numbers of the
rows of H where the νi i’s are filled in. This defines a bijection between
LR(λ/µ, ν) and a subset LRν,λ/µ, of Tab(ν, λ/µ) that sends H ∈ LR(λ/µ, ν)
to G ∈ LRν,λ/µ. Therefore, the LR coefficient in (1.2) also satisfies

cνλ/µ = #LR(λ/µ, ν) = #LRν,λ/µ. (2.5)

The set LRν,λ/µ may be characterized in several ways: by linear inequalities
as in [GeZe86]; or observing that Tab(ν, λ/µ) is a subset of the gln-crystal
B(ν) consisting of all SSYTs of shape ν in the alphabet [n] := {1, . . . , n},
n ≥ `(λ), [Kwo09, BumSch16]. The highest weight element of B(ν) is Y (ν)
and LRν,λ/µ consists of the vertices G in B(ν) such that Y (µ)⊗G is a highest
weight element of weight λ of B(µ)⊗B(ν) [Kwo09, Section 4.3].

Given G ∈ Tab(ν, α), for each 1 ≤ i ≤ `(ν), and j ≥ i, let χij denote the

multiplicity of letter j in row i of G. Note that, for j = 1, . . . , `(α), χij = 0,
whenever 1 ≤ j < i. Fix µ ⊆ λ so that α = λ/µ. One then has the bijection,

φλ/µ : LRν,λ/µ = {G ∈ Tab(ν, α): Y (µ)⊗G ≈gln Y (λ) } −→ LR(λ/µ, ν)

G 7→ φλ/µ(G),

(2.6)

such that φλ/µ(G) is the ν-weight semistandard filling of λ/µ by putting χij
letters i, starting from the left, in row j of the skew-shape λ/µ, for i =
1, . . . , `(ν), and j = 1, . . . , `(α). The reading word of φλ/µ(G) is precisely the
Yamanouchi word of weight ν, wĜ = w1 · · ·wα1

wα1+1 · · ·wα1+α2
wα1+α2+1 · · ·

wα1+···+α`(α)−1 · · ·w|α|. That is, LRν,λ/µ consists of those tableaux in Tab(ν, α)
assigning to the skew shape λ/µ a semistandard filling of content ν whose
reading word is the Yamanouchi wĜ (hence an LR filling). Theorem 1.2
characterises LRν,Rα

in the case of connected ribbons Rα.

2.7. Schur support and symmetries. The definition (1.3) of Schur sup-
port of the skew shape λ/µ can be rephrased as follows: ν ∈ [λ/µ] if and
only if LR(λ/µ, ν) 6= ∅, equivalently, LRν,λ/µ 6= ∅.
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LR coefficients satisfy a number of symmetries [St99, ACM09, AKT16],
including: cνλ/µ = cµλ/ν, c

ν
λ/µ = cν

(λ/µ)
◦ where (λ/µ)◦ is the π-rotation of λ/µ,

and cνλ/µ = cν
′

λ′/µ′. As a consequence [λ/µ] = [(λ/µ)◦] and [(λ/µ)′] = [λ/µ]′

where

sλ/µ = s(λ/µ)◦ and sλ′/µ′ =
∑

ν∈[r(λ/µ),c(λ/µ)′]

cνλ/µsν′.

The full support of one of the shapes λ/µ, (λ/µ)′ or (λ/µ)◦ implies the full
support of any of the others. When λ/µ is not connected, and consists of two
connected components A and B, and may themselves be either Young dia-
grams or skew Young diagrams, then the combinatorial definition of (skew)
Schur function (2.3) gives [St99] sλ/µ = sAsB = sBsA. This means that a skew
Schur function is invariant under permutation and rotation of the connected
components.

3. Ribbons
A ribbon is a skew shape which does not contain a 2× 2 block as a subdi-

agram and it is connected when each pair of consecutive rows intersects in
exactly one column. Thus, any composition α = (α1, . . . , α`(α)) determines a
unique connected ribbon consisting of `(α) rows (or parts) < αi > of length
αi, for i = 1, . . . , `(α), from top to bottom.

Given the composition α, Rα will denote a ribbon (not necessarily con-
nected) where row lengths from top to bottom are given by the parts of α
and adjacent rows overlap in at most one column. If each row is at least two
boxes in length then the column length is at most two otherwise the column
length might be bigger than two. If β is another composition, the direct sum
Rα⊕Rβ of the ribbons Rα and Rβ, is the ribbon Rα·β where the ribbons Rα

and Rβ have no edge in common. In general, Rα is a direct sum of connected
ribbons unless otherwise stated.

3.1. Overlapping partition of a ribbon with parts at least two. In this
subsection, we only consider compositions α with parts ≥ 2, and therefore
the ribbon Rα has columns of length at most two.

Definition 3.1. Let α be an arbitrary composition with parts ≥ 2. The
overlapping partition of Rα is the partition p = (p1, p2, . . . , p`(α)−1, 0), `(p) ≤
`(α) − 1, such that pi is the number of columns of length two among the
smallest `(α) − i + 1 rows of Rα in lowest position, for i = 1, . . . , `(α).
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When α is a partition, pi is the number of columns of length two in the last
`(α)− i+ 1 rows of Rα for i = 1, . . . , `(α).

Observe that

`(α)∑
j=i

α+
j − pi is the number of columns of Rα \ (

i−1⋃
j=1

< α+
j >),

for 1 ≤ i ≤ `(α). In particular, |α| − p1 is the number of columns of Rα

and thus the Schur interval of a ribbon Rα with overlapping partition p is
[α+, (|α| − p1, p1)]. When α is a partition, one obtains (1.4) as a special case
of this interval.

Proposition 3.2. Let α be a composition with parts ≥ 2. For 1 ≤ i ≤ `(α),
let ki ∈ {1, . . . , `(α)} be the number of connected components (ribbons) of

Rα \ (
i−1⋃
j=1

< α+
j >). Then pi = `(α)− (i− 1)−ki, for i = 1, . . . , `(α)− 1, with

0 ≤ p`(α)−1 ≤ 1, and

p ⊆ (`(α)−1, . . . , 2, 1, 0) ⊆ (|α|−α+
1 =

`(α)∑
j=2

α+
j , . . . , |α|−

`(α)−1∑
j=1

α+
i = α+

` (α), 0),

(3.1)
where the set of distinct entries of p is contained in {`(α)−1, `(α)−2, . . . , 2, 1, 0}.

Proof : Observe that, p1 = `(α)−k1 ∈ {0, 1, 2, . . . , `(α)−1} and by induction
on i ≥ 1, pi = `(α)− (i−1)−ki is the first entry of the overlapping partition

of Rα \ (
i−1⋃
j=1

< α+
j >), 1 ≤ i ≤ `(α). Henceforth 0 ≤ pi+1 ≤ pi ≤ `(α) − i ≤

s∑
j=i+1

α+
j , for i = 1, . . . , `(α)− 1. �

A ribbon Rα is connected if and only if p1 = `(α) − 1, otherwise p1 ∈
{0, 1, 2, . . . , `(α) − 2}. It is an horizontal strip if p1 = 0. When α = α+, a
ribbon Rα+ (not necessarily connected) is uniquely defined by the partition
α and its overlapping partition p and hence Rp

α denotes such ribbon. In fact,
more can be said. It is shown next that monotone ribbons with at least
two boxes in each row are in bijection with pairs of partitions (α, p) where
the parts of p are assigned by a multiset of {`(α) − k, . . . , 1} of cardinality
`(α) − k ≤ `(p) < `(α) with k ∈ {1, . . . , `(α)}. Recall Example 1.1, R(3) ⊕



FULL SCHUR SUPPORT AND FULL EQUIVALENCE CLASSES 21

R(3,2) ⊕ R(2,2) = R
(2,2,1,1,0)
(3,3,2,2,2) is defined by the partition pair (3, 3, 2, 2, 2) and

p = (2, 2, 1, 1, 0).

Proposition 3.3. Let α be a partition with parts≥ 2 and let k ∈ {1, . . . , `(α)}.
There is a bijection between ribbons Rα with k connected components and
multisets of {`(α) − k, . . . , 2, 1} of cardinality `(α) − k ≤ `(p) ≤ `(α) − 1
assigning the parts of the overlapping partition p.

Proof : Let Rα with k connected components. One has p1 = `(α) − k, and,
for 2 ≤ i ≤ `(α), pi = pi−1 if rows i and i − 1 of Rα do not overlap, and
pi = pi−1 − 1 otherwise. In particular, 0 ≤ p`(α)−1 ≤ 1. Henceforth the parts
of p form a multiset of {`(α)−k, `(α)−k−1, . . . , 2, 1} of cardinality `(α)−k ≤
`(p) ≤ `(α)− 1. Let Rα and R̃α be two distinct ribbons (skew shapes do not
coincide) with k connected components and overlapping partitions p and p̃
respectively. Let us choose the first i ∈ {2, . . . , `(α)} such that rows i and
i − 1 in one of them overlap and in the other do not. Then pq = p̃q, for
1 ≤ q ≤ i−1, and pi = pi−1−1 and p̃i = pi−1 or reciprocally, and thus p 6= p̃.

Let us consider a multiset of {`(α)−k, `(α)−k−1, . . . , 2, 1} of cardinality
`(α)− k ≤ `(p) ≤ `(α)− 1, and p = (p1, p2, . . . , p`(p), 0

`(α)−`(p)) the partition
where {p1, p2, . . . , p`(p) = 1} is the given multiset. We have to construct
a ribbon Rα with k components and overlapping partition p. Put the last
`(α) − `(p) rows of Rα pairwise disconnected and, observing that p`(p) = 1,
whenever pi+1 = pi rows i and i + 1 of Rα do not overlap, and pi+1 = pi − 1
otherwise for 1 ≤ i ≤ `(p). �

Remark 3.4. Observe that if α is not a partition, in general α and p do
not uniquely define a disconnected ribbon with more than two connected
components. For instance, below α = (2).(3, 2).(3, 2) = (2).(3, 2, 3).(2), and
R(2) ⊕R(3,2) ⊕R(3,2), R(2) ⊕R(3,2,3) ⊕R(2) are distinct ribbons with the same
overlapping partition p = (2, 1, 0, 0, 0),

R(2).(3,2).(3,2) =
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R(2).(3,2,3).(2) = .

Example 3.5. (a) Ribbons with shape Rp
α, for α = (4, 4, 3, 2) = α+, `(α) =

4:

R(0,0,0,0)
α =

R(3,2,1,0)
α =

R(2,1,0,0)
α =

R(2,2,1,0)
α =

R(2,1,1,0)
α =

(b) Rα = R(2,3,2,3) with `(α) = 4 and p = (3, 1, 0, 0) ⊆ (3, 2, 1, 0). The

sequence of ribbons Rα \ (∪i−1
j=1 < α+

j >), 1 ≤ i ≤ `(α), is depicted below

, , , .
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3.2. LR ribbons and companion tableaux. Let α be an arbitrary com-
position. As we have seen in (2.6), if one picks G ∈ Tab(ν, α) to be the com-
panion tableau of some LR ribbon in LR(Rα, ν) the Yamanouchi word wĜ
has to guarantee in the filling of Rα the standard condition in the columns.
The overlapping of two consecutive rows reduces to at most one column.
Thus for ribbon shapes Rα one has just to avoid the violation of the stan-
dard condition on the overlapping row pairs which just occurs in one column.
In other words, whenever, in Rα, rows αk and αk+1 overlap then in the read-
ing word wĜ the subword wα1+···+αkwα1+···+αk+1 is strictly increasing which

means α1 + · · ·+ αk is a descent of Ĝ. In the case of connected ribbons Rα,
this is exactly the content of Theorem 1.2: to avoiding the violation of the
semistandard condition on the overlapping row pairs it requires the descent
set of the standardization of the companion tableau to be equal to S(α). To
figure out what are the conditions to be imposed on the entries of a SSYT to
be the companion of an LR ribbon, we take into account the bijection (2.6),
whose domain we now extend to the set Tab(ν, α). Thanks to Proposition
2.1 we may define the bijection

Definition 3.6. Let ν be a partition and α an arbitrary composition of |ν|.
Given T ∈ Tab(ν, α), for each 1 ≤ i ≤ `(α), and j ≥ i, let χij denote the
multiplicity of letter j in row i of T . Given a ribbon Rα, define the map

ϕRα : Tab(ν, α) −→
{

ν-Yamanouchi fillings of Rα

with row semistandard condition

}

such that ϕRα(T ) is the filling of Rα by putting χij letters i in each row strip
< αj >, starting from the left, for i = 1, . . . , `(ν), and j = 1, . . . , `(α), that
is, the reading word of ϕRα(T ) is wT̂ .

Remark 3.7. When Rα is an horizontal strip, the map ϕRα : Tab(ν, α) −→
LR(Rα, ν) is a bijection and cνRα = Kν,α.

Example 3.8. Let ν = (6, 4, 2) and α = (4, 2, 2, 2, 2).

(a) Let T =

1 1 1 1 2 4
2 3 3 5
4 5 ∈ Tab(ν, α) with D(T̂ ) = S(α) and χ1

1 =
4, χ1

2 = 1, χ1
3 = 0, χ1

4 = 1, χ1
5 = 0, χ2

2 = 1, χ2
3 = 2, χ2

4 = 0, χ2
5 = 1, χ3

3 = 0, χ3
4 =

1, χ3
5 = 1.. Considering the overlapping sequence p = (4, 3, 2, 1, 0) for α,
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we get the tableau

ϕRpα(T ) =

1 1 1 1
1 2

2 2
1 3

2 3 .

with Yamanouchi reading word wT̂ satisfying both requirements of semistan-
dard property. Thus, ϕRpα(T ) ∈ LR(Rαp, ν), and T is the companion tableau
of ϕRpα(T ).

(b) Next, one exhibits the violation of the column semistandard condition of

ϕRpα(T ) in the two possible ways. Consider nowQ =

1 1 1 1 2 2
3 3 4 5
4 5 and V =

1 1 1 1 3 3
2 2 4 5
4 5 in Tab(ν, α) where S(α) = {4, 6, 8, 10}, D(Q̂) = {6, 8, 10} =

S(α) \ {4}, wQ̂ = 1111 11223232, w4 = w5, and D(V̂ ) = {4, 8, 10} = S(α) \
{6}, wV̂ = 111122 113232, w6 > w7.

If p = (4, 3, 2, 1, 0), the strict increasing filling along columns of ϕRpα(Q)
and ϕRpα(V ) fails in the overlapping of the rows < α1 > and < α2 >, and
< α2 > and < α3 >, respectively:

ϕRpα(Q) =

1 1 1 1
1 1

2 2
2 3

2 3 , ϕRpα(V ) =

1 1 1 1
2 2

1 1
2 3

2 3 6∈ LR(Rp
α, ν).

(i) In the first case, wα1
= wα1+1, if we instead consider the overlapping se-

quence p̃ = (3, 3, 2, 1, 0), then Q becomes the companion tableau of ϕRp̃α(Q) ∈
LR(Rp̃

α, ν).
(ii) In the second case, wα1+α2

> wα1+α2+1, we keep p but change V to

U =

1 1 1 1 2 3
2 3 4 5
4 5 , where D(Û) = {4, 6, 8, 10}, then U is the companion
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tableau of ϕRpα(U) ∈ LR(Rp
α, ν),

ϕRp̃α(Q) =

1 1 1 1
1 1

2 2
2 3

2 3 , ϕRpα(U) =

1 1 1 1
1 2

1 2
2 3

2 3 .

Example 3.9. (a) Let α = (3, 3, 2, 3, 3) and ν = (4, 4, 1). Let

Q =

1 1 2 2
3 4 4 5
5 , V =

1 2 3 4
5 6 7 9
8 ∈ Tab(ν, α).

The descent set D(Q̂) = {α1 + α2 = 4, α1 + α2 + α3 + α4 = 7} = S(α) \
{α1, α1 + α2 + α3}; and the descent set D(V̂ ) = S(α). The tableaux Q
and V are companion tableaux of the following LR fillings for R(2).(2,1).(2,2) =
R(2) ⊕R(2,1) ⊕R(2,2),

ϕRα(Q) =

1 1
1 1
2

2 2
2 3 ϕRα(V ) =

1 1
1 2
2

1 3
2 2 .

From Proposition 2.1 we easily conclude

Proposition 3.10. Let G ∈ Tab(ν, α) and Rα a ribbon. Then
(a) ϕRα(G) ∈ LR(Rα, ν) if and only if whenever two consecutive rows j

and j + 1 of Rα overlap then
∑j

k=1 αk is in the descent set of Ĝ.

(b) if Rα is connected, ϕRα(G) is an LR ribbon if and only if S(α) = D(Ĝ).
(c) if Rα = ⊕ki=1Rα̃i is a direct sum of k connected ribbons, ϕRα(G) is an

LR ribbon if and only if S(α) \ {
∑r

i=1 |α̃i|, 1 ≤ r ≤ k} ⊆ D(Ĝ).

Corollary 3.11. (a) Let Rα be a connected ribbon and ν a partition such
that |ν| = |α|. Then

(1) LRν,Rα
= {G ∈ Tab(ν, α) : S(α) = D(Ĝ) }.

(2) cνRα = dν,α the number of standard Young tableaux of shape ν with
descent set S(α).

(b) Let α = α̃1 · · · · · α̃s and Rα = ⊕ki=1Rα̃i a direct sum of k connected
ribbons Rα̃i. Then
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(1) LRν,Rα
= {G ∈ Tab(ν, α) : S(α) \ {

∑r
i=1 |α̃i|, 1 ≤ r ≤ k} ⊆ D(Ĝ) }.

(2) cνRα is the number of standard Young tableaux of shape ν whose de-
scent set, a subset of S(α), contains S(α) \ {

∑r
i=1 |α̃i|, 1 ≤ r ≤ k}.

3.3. The critical set of a SSYT in Tab(ν, α). We now reduce our study

to compositions α with parts ≥ 2. Given T ∈ Tab(ν, α), recall that D(T̂ ) ⊆
S(α). The goal is to identify in the SSYT T the entries of T̂ that are elements

of S(α) \ D(T̂ ). More precisely, the numbers j ∈ {2, . . . , `(α)} in the filling
of T such that in the word wT̂ = w1 · · ·w`(α) (Subsection 2.5) either it occurs
(1) w∑j−1

k=1 αk
= w1+

∑j−1
k=1 αk

; or (2) w∑j−1
k=1 αk

> w1+
∑j−1
k=1 αk

. See Example 3.8 (b),

(i).
The serious rejection for T ∈ Tab(ν, α) to be a companion tableau of a

LR ribbon in LR(Rα, ν) occurs when one has repeated letters in a column
of length 2 of ϕRα(T ). This means that we are collecting in the filling of T
the numbers j ∈ {2, . . . , `(α)} verifying (1). This numbers define a subset
of {2, . . . , `(α)} called the critical set C(T ) of T . The set C(T ) of critical
numbers of T verifies

C(T ) =

= {j ∈ {2, . . . , `(α)} :

j−1∑
k=1

αk and1 +

j−1∑
k=1

αkare entries in a same row of T̂}

= {j ∈ {2, . . . , `(α)} : wT̂ = w1 · · ·w`(α) and w∑j−1
k=1 αk

= w1+
∑j−1
k=1 αk
}

⊆ {j ∈ {2, . . . , `(α)} :

j−1∑
k=1

αk ∈ S(α) \ D(T̂ )}.

From Proposition 3.10 and Corollary 3.11, we conclude that C(T ) detects

the elements j in the alphabet {2, . . . , `(α)} for which
∑j−1

k=1 αk ∈ S(α) are not

in the descent set of T̂ and give rise in ϕRα(T ) to a filling of a column of length
2 with two repeated letters. This column of length two is obtained in the
overlapping of the rows j−1 and j of Rα and is filled with a same letter i < j.
Henceforth, because T is a sequence of partitions 0 = λ0 ⊆ λ1 ⊆ · · · ⊆ λ`(α),
the right most box of the horizontal strip λj−1/λj−2 is glued with the left
most box of λj/λj−1, and one has

Proposition 3.12. Let T ∈ Tab(ν, α) and j ∈ {2, . . . , `(α)}. The number
j ∈ C(T ) or j is a critical number of T , if for some i ∈ {1, . . . , j − 1},
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χij−1, χ
i
j 6= 0, and χkj−1 = χhj = 0 for all k ≤ i− 1 and h ≥ i+ 1. In this case,

we also say that the integer j generates the critical row i of T .

The numbers in S(α) \ D(T̂ ) giving rise to the violation (2) by inverting
the increasing order in the filling of a column of length two in ϕRα(T ) are
negligible critical numbers, because they may be removed anytime without
creating new ones. In the SSYT T we collect the numbers j ∈ {2, . . . , `(α)}
verifying condition (2). In fact, if, in a such column of ϕRα(T ), resulting from

the overlapping of rows, say, j − 1 and j of Rα, one has

b x · · · y
w · · · z a ,

with x ≥ b > a ≥ z, we may easily correct this Yamanouchi filling, without
creating new violations in the new Yamanouchi filling, by just reordering the

entries of that column,

a x · · · y
w · · · z b , with y ≥ · · · ≥ x > a < b >

z ≥ · · · ≥ w, to obtain an LR ribbon. This tells that j − 1 appears in T
only in row b and possibly below, and j only appears in row a and above.
(The horizontal strip λj−1/λj−2 is strictly below the horizontal strip λj/λj−1.)
Henceforth, we should replace in row a of T the left most entry j with j− 1,
and replace in row b of T the rightmost entry j − 1 with j. One then says j
is a negligible critical number of T . See Example 3.8, (b), (ii).

Canonical fillings of SSYTs do not have negligible critical numbers and the
critical numbers have an easier formulation. Note that the multiplicity of
letter j ≥ i in row i of T ∈ Tab(ν, α) satisfies χij ≤ αj.

Proposition 3.13. Let T ∈ Tab(ν, α) with canonical filling and j + 1 ∈
{2, . . . , `(α)}. Then j+ 1 is a critical number of T if and only if χij = αj and

χij+1 = αj+1 for some i ∈ {1, . . . , j}.

Proof : Recall `(ν) ≤ `(α). If T has canonical filling and χij, χ
i
j+1 6= 0 with

χhj+1 = 0 for all h ≥ i + 1, then below row i the entries are empty or bigger
than j + 1. Therefore there is no need to put j + 1’s in rows above i because
positions of row i have been used to put the letter j, that is, one also has
χhj+1 = 0 for all h < i. Hence χij+1 = αj+1. Similarly χhj = 0 for all h > i
because j + 1 has to be filled first and there are no j + 1 below row i. Hence
χij = αj. �

We then may conclude

Proposition 3.14. Let T ∈ Tab(ν, α) without negligible critical numbers.
Then T 6∈ LRν,Rα

if and only if T has a critical number j + 1 ∈ {2, . . . , `(α)}
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such that rows j and j + 1 of Rα overlap. In this case, the column of length
two obtained in the overlapping of rows < αj > and < αj+1 > of Rα is filled
with a same letter i < j + 1.

3.4. Effectiveness of critical numbers. The ribbon Rα, with rows of
length at least two, is now assumed to be connected or monotone up to
a permutation and rotation of the connected components of Rα. Since the
ribbon can be monotone and disconnected, the overlapping partition p is used
to detect the effectiveness of the critical numbers of a companion tableau in
LRν,Rp

α
.

Definition 3.15. Let T ∈ Tab(ν, α) and let p be an overlapping partition
for α. A critical number j of T is said to be p-effective if rows j − 1 and j of
Rp
α overlap. Otherwise, the critical number j is said to be p-ineffective.

This is a reformulation of Corollary 3.11 for ribbons uniquely determined
by α and p.

Theorem 3.16. Let T ∈ Tab(ν, α) and p an overlapping partition for α.
Then,

(a) T ∈ LRν,Rp
α

only if #D(T̂ ) ≥ p1,
(b) if T has no negligible critical numbers and C(T ) 6= ∅, T ∈ LRν,Rp

α
if and

only if every critical number of T is p-ineffective.

Proof : (a) The number of columns of length two of Rp
α is p1. Since T has

no negligible critical numbers, to avoid columns of length two filled with the
same letter, we need that the descent set of T̂ has at least p1 elements.

(b) It is the translation of Proposition 3.14 according to the Definition 3.15.
�

4. Characterization of monotone ribbon LR coefficients
positivity by means of linear inequalities

Throughout this section we consider α a partition with parts of length at
least 2, and overlapping partition p. Theorem 3.16 says that cνRpα > 0 if and
only if, whenever there exists T ∈ Tab(ν, α) without negligible critical num-
bers and C(T ) 6= ∅, then every critical number of T is p-ineffective. Theorem
1.5 gives a set of linear inequalities on the triple of partitions (α, p, ν) as nec-
essary and sufficient conditions for the positivity of cνRpα. We split the proof
of the only if and if parts of Theorem 1.5 into two subsections respectively.
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4.1. Proof of the only if part of Theorem 1.5. If cνRpα = #LRν,Rp
α
> 0

then there exists T ∈ LRν,Rp
α
⊆ Tab(ν, α) and α � ν. Let p = (p1, . . . , p`(α)−1, 0)

where {p1, . . . , p`(α)−1} is a multiset of {`(α) − k, . . . , 1} such that p`(α̃i) =
p`(α̃i)+1 and α = α̃1 · · · α̃k with Rα̃i, 1 ≤ i ≤ k, the connected components of

Rα. Therefore T ∈ Tab(ν, α) with D(T̂ ) = {
∑s

j=1 αj : s ∈ S} ⊆ S(α) for
some subset S = {s1 < · · · < s|S|} ⊆ {1, . . . , `(α)− 1} satisfying

[{1, . . . , `(α)− 1} \ {`(α̃1), . . . , `(α̃1α̃2 · · · α̃k−1)}] ⊆
⊆ S = {s1 < · · · < s|S|} ⊆ {1, . . . , `(α)− 1}. (4.1)

Observe that |{
∑s

j=1 αj : s ∈ {si, . . . , s|S|}}| = |{si, . . . , s|S|}| ≥ psi, for
1 ≤ i ≤ |S| ≤ `(α)− 1. Because α � ν, by Remark 2.2, νi ≤ αi + · · ·+ α`(α),
for i ∈ {1, . . . , `(ν)}. On the other hand, the αi i’s constitute the i-th
horizontal strip νi/νi−1 of T whose rows belong to the first min{i, `(ν)} rows

of T , for i ∈ {1, . . . , `(α)}. Consider the SYT T̂ and i ∈ {1, . . . , `(ν)}. If

α1 + · · · + αi + · · · + αs, i ≤ s ∈ S, is a descent of T̂ in the ith row of T̂ ,
then α1 + · · ·+αs + 1 belongs to a row of T̂ strictly below row i. That is, for
1 ≤ i ≤ q ≤ `(α)− 1, if α1 + · · ·+αi + · · ·+αq is a descent of T̂ , then either

α1 + · · ·+ αq belongs to a row of T̂ strictly above row i, or α1 + · · ·+ αq + 1

belongs to a row of T̂ strictly below row i. Observe that |S∩{i, . . . , `(α)−1}|
is the maximum number of descents of T̂ in row i, and, simultaneously, is at
least equal to the overlapping number pi, the number of columns of length
two among the last `(α)− i+ 1 rows of Rα,

|S ∩ {i, . . . , `(α)− 1}| ≥ pi. (4.2)

Hence νi ≤ αi + · · · + α`(α) − |S ∩ {i, . . . , `(α) − 1}| ≤ αi + · · · + α`(α) − pi,
for i ∈ {1, . . . , `(ν)}. �

4.2. Proof of the if part of Theorem 1.5. Given the triple of parti-
tions, ν, and α, with parts ≥ 2, and overlapping partition p, satisfying the
linear inequalities on the right hand side of (1.6), the goal is now to exhibit
a SSYT T ∈ LRRp

α,ν. In other words, assuming the linear inequalities on
the right hand side of (1.6), we construct a SSYT T ∈ Tab(ν, α) without
negligible critical numbers and p-effective critical numbers. In more detail,
we pick T ∈ Tab(ν, α) with the canonical filling, thus without negligible crit-
ical numbers, and then, if it has p-effective critical numbers, one modifies its
filling according to a certain rotation procedure to remove them so that the
new tableau is in LRRp

α,ν. The application of rotation procedure does not
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create negligible critical numbers. The linear inequalities on the right hand
side of (1.6) guarantee that our rotation procedure is successful.

Remark 4.1. Let α � ν and p an overlapping partition for α.
(a) If `(ν) = `(α), given T ∈ Tab(ν, α), the first entry of each row i of

T is i and T has no critical numbers of any kind. The descent set of T̂ is
S(α) and every T ∈ Tab(ν, α) is a companion tableau for an LR filling of
Rp
α. In this case, the linear inequalities (1.6) are trivially satisfied because

below each row i of T one has at least `(α) − i ≥ pi entries and thereby
νi ≤ αi + · · ·+ α`(α) − `(α) + i ≤ αi + · · ·+ α`(α) − pi. Also cνRpα = Kν,α.

(b) If `(ν) = 1 then ν = (|α|), p = 0, and |Tab(ν, α)| = 1. The descent set

of the sole T̂ is S(α) = ∅, and linear inequalities (1.6) are trivially satisfied
with p = 0. One has cνRpα = Kν,α = 1.

We shall consider ν with at least two rows and less than `(α) rows, 2 ≤
`(ν) < `(α).

We start with the case `(ν) = `(α)− 1.

Lemma 4.2. Let ν ∈ [α, (|α| − p1, p1)] with `(ν) = `(α)− 1, such that

νi ≤
∑
j≥i

αj − pi, for 1 ≤ i < `(α).

Then, cνRpα > 0.

Proof : Let s := `(α). Let T ∈ Tab(ν, α), with the canonical filling, and
note that since `(ν) = s − 1, then the first column of T has all letters of
[s] \ {j}, for some 2 ≤ j ≤ s, and necessarily row j − 1 contains αj letters
j. That is, the first entry of row i of T is i, for i = 1, . . . , j − 1, and is i+ 1
for i = j, . . . , s − 1. Thus, χkk 6= 0, 1 ≤ k ≤ j − 1, χj−1

j = αj, χ
k
k+1 6= 0,

j ≤ k ≤ s− 1, and χkj = 0, k ≥ j. The only row of T which can potentially

be critical is row j − 1, since by Proposition 3.13, χj−1
j−1 6= 0 and χj−1

j = αj.
That is, the rows j − 1 and j of ϕRα(T ) look like

< αj−1 > x · · · x j − 1 · · · j − 1
< αj > j − 1 · · · j − 1

(4.3)

or

< αj−1 > j − 1 · · · j − 1
< αj > j − 1 · · · j − 1

(4.4)
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where the word x · · ·x = (j − 2)r, r ≥ 0, may be empty. If j is not a critical
number, or if it is a p-ineffective critical number (4.3) then, by Proposition
3.14, ϕRα(T ) is a skew SSYT.

Assume now that j is p-effective critical number of T (4.4). In particular,

this means that χj−1
j−1 = αj−1. Notice that if j = s, then

νj−1 = νs−1 = αs−1 + αs ≤ αs−1 + αs − ps−1,

which implies ps−1 = 0. That is, rows j − 1 and j of Rp
α do not overlap,

which contradicts the fact that j = s is p-effective critical. So, we must have
2 ≤ j < s, and, in particular, row j of T has at least one integer j+ 1. Table
1 depicts rows j − 1 and j of T , where ∗ denotes χj−1

j+1 > 0 boxes with the

letter j + 1, or the empty cell if χj−1
j+1 = 0,

row j − 1 j − 1 j − 1 · · · j − 1 · · · j − 1 j · · · j j ∗
row j j + 1 j + 1 · · · j + 1 · · ·

Table 1. Rows j − 1 and j of T

Perform the procedure Rotation described in Table 2 with ` = j− 1, a = j
and b = j + 1 on the tableau T .

Procedure: Rotation
Data: Tableau T ; Integers a and `;
Begin

Let `′ > ` be the smallest integer such that row `′ of T has an
integer b greater or equal to the rightmost letter in row `;
Rotate by one turn in anticlockwise order all letters greater or equal to
a in row `, and all letters b of row `′ of T ;

Stop

Table 2. Procedure: Rotation

That is, rotate the highlight letters j and j+ 1 of T (Table 1) in anticlock-
wise order to obtain the rows shown in Table 3, and denote by T ′ the tableau
obtained from T by this operation.

row j − 1 j − 1 j − 1 · · · j − 1 · · · j − 1 j · · · j j + 1 ∗
row j j j + 1 · · · j + 1 · · ·

Table 3. Rows j − 1 and j of T ′
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We recall that we are assuming α a partition and thus αj−1 ≥ αj ≥ αj+1.
The new tableau T ′ is still semistandard and the integer j is no longer critical,
since χjj > 0. Notice, however, that if χjj+1 = 1 in T , then in T ′ the integer

j + 1 is critical. Therefore, if χjj+1 > 1 in T , or χjj+1 = 1 in T and j + 1 is

p-ineffective critical, then ϕRpα(T
′) is a skew SSYT. So, assume χjj+1 = 1, j

p-effective critical in T , and in addition rows j and j+ 1 of Rp
α overlap (j+ 1

is p-effective in T ′). If j + 1 = s, (Table 4) then νs−1 = 1 and ps−2 = 2,

row s− 2 s− 2 · · · s− 2 s− 1 · · · s− 1 s · · · s
row s− 1 s− 1

Table 4. Rows s− 2 and s− 1 of T ′

and νs−2 = αs−2 +αs−1 +(αs−1) ≤ αs−2 +αs−1 +αs−ps−2, that is, ps−2 ≤ 1.
A contradiction, then the rows s−1 and s of Rp

α cannot overlap, and j+1 = s
is not p-effective critical in T ′.

So we must have j + 1 < s, and there must be integers other than j + 1
in row j of T ′, since otherwise the rows of T ′ below row j would have only
one box, which in turn would imply 2 ≤ αj+2 = 1, a contradiction. So there
are letters j + 2 in row j and the number of letters j + 2 below row j − 1
is αj+2 ≥ 2 (Table 5). Apply the procedure Rotation with a = j + 1 and
` = j − 1 to T ′,

row j − 1 j − 1 j − 1 · · · j − 1 · · · j − 1 j · · · j j + 1 · · · j + 1
row j j j + 2 · · · j + 2 · · ·

Table 5. Rows j − 1 and j of T ′

and let T ′′ be the resulting tableau (Table 6),

row j − 1 j − 1 j − 1 · · · j − 1 · · · j − 1 j · · · j j + 1 · · · j + 2
row j j j + 1 · · · j + 2 · · ·

Table 6. Rows j − 1 and j of T ′′

This new tableau is semistandard and j + 1 is no longer a critical number,
since there is now a letter j + 1 in row j. Also, since αj+2 ≥ 2, there must
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be integers j + 2 below row j − 1. Thus, T ′′ does not have critical numbers
and then ϕRpα(T

′′) is a skew SSYT. �

Remark 4.3. Notice that when applying the procedures, described in the
proof of the result above, to a tableau T with only one critical number j in
row j − 1, we only modify rows j − 1 and j of T . Moreover, in row j, only
the integers j + 1, and possible j + 2, are acted upon. The rows above row
j − 1, as well as the letters in row j − 1 to the left of the letters j, are not
considered for the application of the procedure.

Example 4.4. Let ν = (8, 1) and α = (3, 3, 3), and consider the tableau

T =

1 1 1 2 2 2 3 3
3 ∈ Tab(ν, α).

The tableau T has only one critical number: the integer 2, that is, the descent
of T̂ is {α1 + α2}. If Rα = Rα1

⊕ R(α2,α3), equivalently, p = (1, 1, 0), then
ϕRα(T ) is SSYT and the integer 2 is not p-effective critical, and so

ϕRα(T ) =

1 1 1
1 1 1

1 1 2

is a skew SSYT. Note also, ν1 = 8 ≤
∑3

i=1 αi− 1, ν2 = 1 ≤ α2 +α3− 1, ν3 ≤
α3 − 0.

If p = (1, 0, 0) then Rα = R(α1,α2) ⊕R(α3), 2 is a p-effective critical number
and ϕRα(T ) is not SSYT. Perform the procedure Rotation on T with a = 2
and ` = 1 to get

T =

1 1 1 2 2 2 3 3
3 →

1 1 1 2 2 3 3 3
2 = T ′.

The tableau T ′ has no effective critical numbers for the overlapping partition
p = (1, 0, 0), the descent set of T̂ ′ is {α1}, and therefore

ϕRpα(T
′) =

1 1 1
1 1 2

1 1 1

is a skew SSYT. There is no connected LR ribbon of shape Rα and content
ν: if p = (2, 1, 0), ν1 = 8 > |α| − 2 = 9− 2.
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Example 4.5. Let ν = (9, 3) and α = (4, 3, 3, 2), and consider the tableau

T =

1 1 1 1 2 2 2 3 3
3 4 4 ∈ Tab(ν, α).

The letter 2 is the only critical number of T , and is effective when we consider
the overlapping partition p = (3, 2, 1, 0). So, we apply the procedure Rotation
on T with a = 2 and ` = 1:

T =

1 1 1 1 2 2 2 3 3
3 4 4 →

1 1 1 1 2 2 3 3 3
2 4 4 = T ′.

In T ′, the number 2 is no longer critical. However, a new critical number was
created: the number 3. So we apply Rotation on T ′ with a = 3 and ` = 1 to
get the tableau

T ′′ =

1 1 1 1 2 2 3 3 4
2 3 4 ,

which has no critical numbers. It follows that

ϕRα(T
′′) =

1 1 1 1
1 1 2

1 1 3
1 4

is a skew SSYT. Note ν1 = 9 ≤ |α|−3 = 12−3, ν2 = 3 ≤ 8−2, ν3 = 0 ≤ 5−1.

Lemma 4.6. Let ν ∈ [α, (|α|−p1, p1)] with `(ν) = `(α)−k, 1 ≤ k ≤ `(α)−2,
and satisfying

νi ≤
∑
j≥i

αj − pi, for 1 ≤ i ≤ `(ν).

If T is the SSYT with canonical filling in Tab(ν, α) and has C(T ) = {j1, j2, . . . ,
jk} with ji+1 = ji + 1, for i = 1, . . . , k − 1, then, cνRpα > 0.

Proof : Let T be the canonical filling in Tab(ν, α) with C(T ) = {j1, j2, . . . , jk}
such that ji+1 = ji+1 for i = 1, . . . , k−1. Then, the first column of T has all
letters of [s]\{j1, j2, . . . , jk}, and row j1− 1 has αi letters ji, for i = 1, . . . , k.
We are assuming that j1 is critical but jk + 1 is not, row j1− 1 also has αj1−1

letters j1−1 and 0 ≤ χj1−1
jk+1 < αjk+1 letters jk+1, thus, row j1−1 of T satisfy

νj1−1 = αj1−1 +αj1 +· · ·+αjk +
(
αjk+1 − χj1jk+1

)
≤ αj1−1 +αj1 +· · ·+αs−pj1−1,
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that is,

pj1−1 ≤ αjk+2 + · · ·+ αs + χj1jk+1 (4.5)

where 0 < χj1jk+1. The number of p-effective critical numbers of T , which are
at most k, must be less than or equal to pj1−1. Thus, by (4.5), there are
at least pj1−1 integers greater than or equal to jk + 1 below row j1 − 1 of T
and we can perform procedure Rotation 1 on T with C(T ) = {j1, . . . , jk} and
` = j1 − 1.

Procedure: Rotation 1

Data: Tableau T ; Set C(T ) = {j1 < . . . < jk}; Integer `;
Begin

For i = 1 to k do
If ji is an p-effective critical point of T , perform procedure
Rotation (Table 2) with a = ji and ` = `;
End If

End For
Stop

Table 7. Procedure: Rotation 1

Let T ′ be the tableau resulting from the application of Procedure Rotation
1 (Table 7) on T . Notice that the assumption of α a partition and the
canonical filling of T asserts that T ′ is semistandard. Moreover, the integers
j1, . . . , jk are not critical numbers of T since there are letters j1, . . . , jk below
row j1−1. However, the operations performed on T to produce T ′ may create
new critical numbers, all of which are in row j1− 1. This only happens when
all letters of an integer, say r > jk, are sent to row j1 − 1. Note that r must
be one of the first k letters below row j1 − 1 which are greater or equal to
the rightmost letter of row j1− 1. Let r1, . . . , rk′ be the new critical numbers
created in T ′. If they are p-effective, then by (4.5), we must have

k + k′ ≤ pj1−1.

This means that below row j1−1 of T ′ there exist at least k′ integers greater
or equal to the rightmost letter of row j1− 1, and we can perform procedure
Rotation 1 on T ′ with C(T ) = {r1, . . . , rk′} and ` = j1 − 1, obtaining a new
tableau T ′′, where r1, . . . , rk′ are not critical . Again, new critical numbers
q1, . . . , qk′′, with rk′ < q1, . . . , qk′′ may occur, in which case we repeat the
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process. Note that since the number of p-effective critical numbers cannot
exceed pj1−1, this process must terminate.

Therefore, the tableau T̃ obtained after this procedure is semistandard and
has no critical numbers. We can conclude that ϕRα(T̃ ) is semistandard. �

Remark 4.7. Notice that Lemma 4.2 is a special case of Lemma 4.6. Also,
notice that the tableau T̃ obtained after the process described in the result
above only differs from T between the rows j1−1, the ones having the critical
numbers, and some row below it, say j, from the leftmost integer of j until
the last integer in row j that has been rotated to row j1 − 1.

Example 4.8. Let ν = (9, 2, 2, 2), α = (3, 2, 2, 2, 2, 2, 2), and consider the
overlapping vector p = (6, 5, 4, 3, 2, 1, 0) and the tableau

T =

1 1 1 2 2 3 3 4 4
5 5
6 6
7 7 ∈ Tab(ν, α).

The letters 2, 3 and 4 are consecutive p-effective critical numbers of T . Apply
procedure Rotation 1 with C(T ) = {2, 3, 4} and ` = 1:

T →

1 1 1 2 3 3 4 4 5
2 5
6 6
7 7 →

1 1 1 2 3 4 4 5 5
2 3
6 6
7 7

→

1 1 1 2 3 4 5 5 6
2 3
4 6
7 7 = T ′.

Now, the letter 5 is the only critical number of the resulting tableau T ′.
So, we apply Rotation 1 again on T ′ with C(T ) = {5} and ` = 1:

T ′ =

1 1 1 2 3 4 5 5 6
2 3
4 6
7 7 →

1 1 1 2 3 4 5 6 6
2 3
4 5
7 7 = T ′′.
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Now, the letter 6 is the only critical number of the resulting tableau T ′′. So,
we apply Rotation 1 again on T ′ with C(T ) = {6} and ` = 1:

T ′′ =

1 1 1 2 3 4 5 6 6
2 3
4 5
7 7 →

1 1 1 2 3 4 5 6 7
2 3
4 5
6 7 = T̃ .

The tableau T̃ has no critical numbers and thus ϕRα(T̃ ) is a skew SSYT.

We now can prove the general case.

Theorem 4.9. Let ν ∈ [α, (|α| − p1, p1)] where `(ν) = `(α) − k, 1 ≤ k ≤
`(α)− 2, and satisfying

νi ≤
∑
j≥i

αj − pi, for 1 ≤ i ≤ `(α).

Then, cνRpα > 0.

Proof : Let T ∈ Tab(ν, α) with the canonical filling, and C(T ) = {j1, . . . , jk}.
Write

C(T ) = A1 ∪ A2 ∪ · · · ∪ Ar

the set partition of C(T ) such that in each set Ai all critical numbers are
consecutive, and if a ∈ Ai and b ∈ Ai+q, for some q > 0, then a < b and
b− a ≥ 2.

Notice that in this case, the αa letters a must be all in some row `, and the
αb letters b must be all in some row `′ of T , with ` < `′.

Apply the procedure described in Lemma 4.6 to the set of consecutive
critical numbers in A1. This procedure may use some integers from A2 ∪
· · · ∪ Ar in its Rotation routines. If this is the case, then in the resulting
tableau T ′, some of the critical numbers in A2 ∪ · · · ∪ Ar may no longer be
critical numbers, since some of them may have been brought, by rotation,
to a higher row of the tableau. Nevertheless, no new critical numbers are
created by this process. So, in T ′, the critical numbers can be partitioned as

A′2 ∪ · · · ∪ A′r,

where A′i ⊆ Ai for all i = 2, . . . , r.
Repeating the process, until no more critical points remain, we obtain a

tableau T̃ such that ϕRα(T̃ ) is a skew SSYT. �
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Example 4.10. Let ν = (13, 13, 2), α = (4, 37) and p = (8, 7, 6, 5, 4, 3, 2, 1, 0).
The tableau

T =

1 1 1 1 2 2 2 3 3 3 4 4 4
5 5 5 6 6 6 7 7 7 8 8 8 9
9 9 ∈ Tab(ν, α)

has the critical points 2, 3, 4, 6, 7, 8, which can be partitioned as

A1 = {2, 3, 4} ∪ A2 = {6, 7, 8},

according to the proof of the theorem above. We start by removing the
critical numbers in A1:

T →

1 1 1 1 2 2 3 3 3 4 4 4 5
2 5 5 6 6 6 7 7 7 8 8 8 9
9 9 →

1 1 1 1 2 2 3 3 4 4 4 5 5
2 3 5 6 6 6 7 7 7 8 8 8 9
9 9

→

1 1 1 1 2 2 3 3 4 4 5 5 5
2 3 4 6 6 6 7 7 7 8 8 8 9
9 9 →

→

1 1 1 1 2 2 3 3 4 4 5 5 6
2 3 4 5 6 6 7 7 7 8 8 8 9
9 9 = T ′.

After the application of the procedure described in Lemma 4.6 to the crit-
ical numbers in A1, we get the tableau T ′, whose only critical olga number
is

{8} = A′2 ⊂ A2.

So, we apply the procedure described in Lemma 4.6 again to the critical
number in A′2:

T ′ →

1 1 1 1 2 2 3 3 4 4 5 5 6
2 3 4 5 6 6 7 7 7 8 8 9 9
8 9 = T̃ .
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The resulting tableau T̃ has no critical numbers and thus, the skew tableau

ϕRα(T̃ ) =

1 1 1 1
1 1 2

1 1 2
1 1 2

1 1 2
1 2 2

2 2 2
2 2 3

2 2 3

is a skew SSYT.

5. Classification of monotone ribbons with full Schur
support

Theorem 1.5, characterizing the positivity of monotone ribbon LR coef-
ficients, cνRpα > 0, by means of linear inequalities, may be rephrased in the
language of the Schur support of Rp

α. Let ν ∈ [α, (|α| − p1, p1)], α a partition
with parts ≥ 2. Then

ν ∈ [Rp
α] if and only if νi ≤

`(α)∑
q=i

αq − pi, 1 ≤ i ≤ `(α). (5.1)

By Remark 2.2, if α � ν one has νi ≤
`(α)∑
q=i

αq, for 1 ≤ i ≤ `(α). Hence, if

ν ∈ [α, (|α|−p1, p1)] then ν1 ≤
∑`(α)

q=1 αq−p1, and because one has pi = 0, for
`(p) < i ≤ `(α), the inequalities (5.1) are always satisfied for `(p) < i ≤ `(α).
Note that, when `(p) ≥ 2, pi+1−1 ≥ 0, i ∈ {1, . . . , `(p)−1}. Recall Definition

1.3 and %i =

`(α)∑
q=i+1

αq−pi+1+1 > 0, where %i−1 is the total number of columns

in the last `(α)− i rows of Rp
α, for 1 ≤ i ≤ `(p)− 1.

Remark 5.1. Because the parts of α are ≥ 2, and pi = pi+1 or pi = pi+1 + 1,
|α| − p1 > %1 > · · · > %`(p)−1.

Thus, the negation of (5.1) characterizes the partitions in the interval
[α, (|α| − p1, p1)] which are not in the support of Rp

α.
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Corollary 5.2. Let ν ∈ [α, (|α| − p1, p1)] and α a partition with parts ≥ 2.
Then, if `(p) = 0, 1, [Rp

α] = [α, (|α| − p1, p1)], and, if `(p) ≥ 2, the following
are equivalent

(a) ν /∈ [Rp
α] if and only if there exists i ∈ {1, . . . , `(p)− 1} such that

νi+1 ≥
∑
q≥i+1

αq − pi+1 + 1⇔ νi+1 ≥ %i.

(b) ν /∈ [Rp
α] if and only if, for some i ∈ {1, . . . , `(p)− 1}, νi+1 exceeds the

number of columns in the last `(α)− i rows of Rp
α.

(c) [ACM17, Lemma 4.8] ν /∈ [Rp
α] if and only if, there exists i ∈ {1, . . . , `(p)−

1} such that after placing αj j’s, in row j of Rp
α, for j = 1, . . . , i, there is no

space to place νi+1 i+ 1’s in the remain `(α)− i rows of Rp
α without avoiding

the violation of the column standard condition of the filling.
(d) ν /∈ [Rp

α], if, for every T ∈ Tab(ν, α), there exists i ≥ 1 such that

|D(T̂ ) ∩ {
∑j

q≥1 αq : i+ 1 ≤ j ≤ `(α)}| < pi+1.

Example 5.3. Consider the partition α = (7, 6, 6, 2, 2, 2, 2) with the over-
lapping partition p = (6, 5, 4, 3, 2, 1, 0). The partition ν = (8, 7, 6, 6) is
in the Schur interval [α, (27 − 6, 6)] of Rp

α, but not in its support since
ν4 = 6 ≥ %3 = α4 + α5 + α6 + α7 − p4 + 1 = 2 + 2 + 2 + 2 − 3 + 1 = 6.
Therefore, [Rp

α] $ [α, (27− 6, 6)].

Theorem 1.6 characterizes the monotone ribbonsRp
α with full Schur support

in terms of their partition skew shape α and the overlapping partition p.
In Definition 1.3 a sequence of `(p) − 1 witness vectors g̃i = {g̃ij}ij=1 =

{[%i − αj]+}ij=1 with its slack pi+1− 1, 1 ≤ i ≤ `(p)− 1, is introduced to test
the fullness of the Schur support of Rp

α. Theorem 1.6 says that if, for some
1 ≤ i ≤ `(p)− 1, the size of the witness vector g̃i fits the slack pi+1− 1, that

is
∑i

j=1 g̃
i
j ≤ pi+1 − 1, then Rp

α has not full Schur support. In this case the

vector g̃i witnesses that the Schur support Rp
α is not full in the sense that it

can be used to exhibit a partition in the Schur interval that is not in [Rp
α].

More precisely, (α1 + g̃i1, . . . , αi + g̃ii, %i, pi+1− 1− |g̃i|)+, with %i− 1 the total
number of columns in the last `(α)− i rows of Rp

α, is a partition of |α| in the
Schur interval of Rp

α but not in the support of Rp
α.

5.1. Proof of Theorem 1.6. The “only if” part. Let ν ∈ [α, (|α| − p1, p1)]

such that ν /∈ [Rp
α]. Then, on one hand, since α � ν,

∑k
q=1(νq − αq) ≥ 0,

k = 1, . . . , `(α), and on the other hand, since ν /∈ [Rp
α], by Corollary 5.2,
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`(α) ≥ 3, `(p) ≥ 2, and there exists 1 ≤ i ≤ `(α)− 2 with pi+1 ≥ 1 such that

νi+1 ≥ %i =
∑
q≥i+1

αq − pi+1 + 1.

We want to show that the i-witness vector g̃i = (g̃i1, . . . , g̃
i
i) of Rp

α fits its slack

pi+1 − 1. It follows that 0 ≤
∑i

q=1(νq − αq) ≤ pi+1 − 1, otherwise, we would
have

i+1∑
q=1

νq =
i∑

q=1

νq + νi+1 >
i∑

q=1

αq + pi+1 − 1 +

`(α)∑
q=i+1

αq − pi+1 + 1 =

`(α)∑
q=1

αq,

contradicting the equality |α| = |ν|.
Let U := {j ∈ {2, . . . , i} : νj − αj < 0} (indeed ν1 ≥ α1) and u := maxU .

Put u := 0 if U = ∅.
Claim: There exist µj ≥ αj, j = 1, . . . , u, such that

µ1 ≥ · · · ≥ µu−1 ≥ αu−1 ≥ µu = αu > νu ≥ νu+1 ≥ · · · ≥ νi ≥ νi+1, and
(5.2)

u∑
j=1

(µj − αj) =
u∑
j=1

(νj − αj) ≥ 0. (5.3)

In these conditions, defining gj := µj − αj ≥ 0, j = 1, . . . , u, and gj :=

νj − αj ≥ 0, j = u+ 1, . . . , i, one has
∑i

j=1 gj =
∑i

j=1(νj − αj) ≤ pi+1 − 1,

αj + gj = µj ≥ αu > νu ≥ νi+1 ≥
∑
q≥i+1

αq − pi+1 + 1 = %i, j = 1, . . . , u,

and

αj + gj = νj ≥ νi ≥ νi+1 ≥
∑
q≥i+1

αq − pi+1 + 1 = %i, j = u+ 1, . . . , i,

so that gj ≥ %i − αj for j = 1, . . . , i. It follows that the witness vector
g̃i = (g̃i1, . . . , g̃

i
i), with g̃ij = %i − αj for j = 1, . . . , i, fits its slack:

|g̃i| =
i∑

j=1

g̃ij ≤
i∑

j=1

gj ≤ pi+1 − 1.

Proof of the Claim: We prove the claim by double induction on |U | ≥ 0
and i ≥ 2.
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For |U | = 0 there is nothing to prove whatever is i ≥ 2. Let |U | ≥ 1. For
i = 2, one has ν1−α1 ≥ 0 and u = 2 with ν2 < α2. Since (ν1−α1)+(ν2−α2) ≥
0 and ν2 = α2 − ε2, for some ε2 > 0, we may write

(ν1 − α1) + (ν2 − α2) = [(ν1 − ε2)− α1] + (α2 − α2) = (ν1 − ε2)− α1 ≥ 0.

Thus µ1 := ν1 − ε2 ≥ α1 ≥ µ2 := α2 > ν2 ≥ ν3.
Let i = m + 1 ≥ 3, and u ∈ {2, . . . ,m + 1} where νu = αu − εu, for some

εu > 0, and νv − αv ≥ 0, u < v ≤ m+ 1. We distinguish two situations:
(a) u = 2: ν1 > α1, ν2 = α2− ε, for some ε > 0, and νj ≥ αj, for 3 ≤ j ≤ i.

We have α � ν and we may write

(ν1 − α1) + (ν2 − α2) = (µ1 − α1) + (α2 − α2) = (µ1 − α1) + (µ2 − α2) ≥ 0,

where µ1 := ν1 − ε ≥ α1, µ2 := α2. Also µ1 ≥ α1 ≥ µ2 = α2 > ν2 ≥ ν3 ≥
· · · ≥ νi ≥ µi+1.

(b) u > 2: ν = αu − εu for some εu > 0 and νj ≥ αj, u < j ≤ i. One has
α � ν, henceforth

u∑
j=1

(νj − αj) =

[(
u−1∑
j=1

(νj − αj)

)
− εu

]
+ (αu − αu) ≥ 0.

Thus µu := αu > νu ≥ νu+1 ≥ · · · ≥ νi ≥ νi+1 and
∑u−1

j=1(νj − αj) ≥ εu > 0.
Since 2 ≤ u − 1 ≤ i − 1 ≤ m, by induction, there exist ν ′1 ≥ · · · ≥ ν ′u−1

with ν ′j ≥ αj, j = 1, . . . , u− 1, such that

u−1∑
j=1

(νj − αj) =
u−1∑
j=1

(ν ′j − αj) ≥ εu.

Indeed, one has ν ′j = αj + εj, with εj ≥ 0, j = 1, . . . , u − 1, such that∑u−1
j=1 εj ≥ εu. Define recursively the non negative integers

δj := min(εj, εu −
∑

j+1≤q≤u−1

δq), for j = u− 1, . . . , 1,

and put µj := ν ′j− δj = αj + (εj− δj) ≥ 0, for j = u−1, . . . , 1. Therefore,
there exists 1 ≤ u0 < u such that 0 < δu0 ≤ εu0 and

µj =

 αj u0 < j < u
αu0 + (εu0 − δu0)
ν ′j 1 ≤ j < u0.
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Hence,

µ1 ≥ · · · ≥ µu0+1 ≥ ν ′u0 > µ0 ≥ αu0 ≥ µu0+1 =

= αu0+1 ≥ · · · ≥ µu−1 = αu−1 ≥ µu = αu,

as required.

The “if” part. Let %i =
∑`(α)

q=i+1 αq − pi+1 + 1 > 0, 1 ≤ i ≤ `(p) − 1.

Suppose now that there is an i-witness vector g̃i = (g̃i1, . . . , g̃
i
i) of Rp

α for
some 1 ≤ i ≤ `(p) − 1, with g̃ij := [%i − αj]+ , j = 1, . . . , i, such that

|g̃i| ≤ pi+1 − 1. Let ν = (ν1, . . . , νi+1, νi+2) be the partition of |α| formed by
the rearrangement of the composition

(α1 + g̃i1, . . . , αi + g̃ii, %i, pi+1 − 1− |g̃i|), (5.4)

where α1 + g̃i1, . . . , αi + g̃ii ≥ νi+1 = %i ≥ νi+2 = pi+1 − 1− |g̃i|.
We will show that ν is a partition in the Schur interval of the ribbon Rp

α

that is not in its support. Indeed, the inequality |g̃i| ≤ pi+1 − 1 shows that

all entries in (5.4) are non negative, and
i+2∑
q=1

νq =

`(α)∑
q=1

αq = |α|. Thus, ν is

well defined and is a partition of |α|.
Recall that %i − 1 =

∑
q≥i+1

αq − pi+1 is the total number of columns of

Rp
α \
(
∪iq=1 < αq >

)
and that pi+1 is the number of columns of length two in

this same ribbon. Therefore, we have %i > pi+1− 1− |g̃i|. Moreover, for each
1 ≤ j ≤ i, we have

αj + g̃ij =

{
%i, if %i > αj

αj, if %i ≤ αj
. (5.5)

It follows that αj + g̃ij ≥ %i. This means that the last two entries of ν are

νi+1 = %i and νi+2 = pi+1 − 1 − |g̃i|. In particular, it follows from Corollary
5.2, (b), that ν is not in the Schur support of Rp

α.
It remains to prove that ν is a partition in the Schur interval [α, (|α| −

p1, p1)]. We start by showing that α � ν. From (5.5), we find that for each
1 ≤ k ≤ i,

k∑
j=1

νj =
k∑
j=1

(αj + g̃ij) ≥
k∑
j=1

αj
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and since %i ≥ αi+1,
∑i+1

j=1 νj =
∑i

j=1(αj + g̃ij)+%i ≥
∑i

j=1 αj +%i ≥
∑i+1

j=1 αj.
Finally, since ν is a partition of |α|, we get α � ν. To prove that we also have
ν � (|α| − p1, p1), notice that by (5.5) and Remark 5.1, ν1 is either equal to
%1 or to α1, and %1 ≤ |α| − p1. Therefore, we have ν1 ≤ |α| − p1. Clearly,
ν1 + ν2 ≤ |α|, from which it follows that ν � (|α| − p1, p1). �

Remark 5.4. Let α be a partition with parts ≥ 2 and overlapping partition

p with `(p) ≥ 2. Recall Definition 1.3, %i = 1 +

`(α)∑
q=i+1

αq − pi+1 > 0, and

g̃i = {g̃ij}ij=1 = {[%i − αj]+}ij=1, for 1 ≤ i ≤ `(p) − 1. Observe that the
following are equivalent:

(a) for some 1 ≤ i ≤ `(p) − 1, the size of the i-witness vector g̃i fits its
slack, that is,

|g̃i| =
i∑

j=1

[%i − αj]+ ≤ pi+1 − 1. (5.6)

(b) for some 1 ≤ i ≤ `(p) − 1, there exist integers g1, . . . , gi ≥ 0 with∑i
j=1 gj ≤ pi+1 − 1, such that

αj + gj ≥ 1 +

`(α)∑
q=i+1

αq − pi+1 ⇔ gj ≥ %i − αj, j = 1, . . . , i. (5.7)

Indeed, (5.7) says that, for 1 ≤ i ≤ `(p) − 1, other ”witness vectors”
g = {gj}ij=1 can be found depending on how big is the slack pi+1− 1. Simul-

taneously (5.7) tells that the selected witness g̃i in Definition 1.3 is entrywise
the smallest,

g̃ij ≤ gj, j = 1, . . . , i,⇒ |g̃i| ≥ |g|.
If our selected witness g̃i does not fit (is over the size of) its slack, no other
(any other) choice for the witness vector will fit (oversize) it.

In the conditions of (b), it can be shown that (α1 +g1, . . . , αi+gi, %i)
+ with∑i

j=1 gj = pi+1 − 1 (g has the possible biggest size) is a partition of |α| in
the Schur interval of Rp

α but not in the support of Rp
α.

Example 5.5. (a) Consider the same example as before, α = (7, 6, 6, 2, 2, 2, 2)
and the ribbon Rp

α with p1 = 6. Applying Theorem 1.6 with i = 3, one has
pi+1 = 3, %3 = 6 and the 3-witness vector g̃3 = (g̃3

1, g̃
3
2, g̃

3
3) = (0, 0, 0), satisfy

|g̃3| ≤ pi+1 +1 = 4. Therefore, the support [Rp
α] is not the full Schur interval.
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The partition

(7− g̃3
1, 6− g̃3

2, 6− g̃3
3, %3, p4 − 1− |g̃3|) = (7, 6, 6, 6, 2)

is in the Schur interval [α, (27− 6, 6)] but not in the support [Rp
α].

(b) Furthermore, considering g1 + g2 + g3 = 2 = p4 − 1, with gi ≥ 0,
i = 1, 2, 3, the partitions ν1 = (6 + 2, 7, 6, 2 + 2 + 2 + 2−2), ν2 = (6 + 1, 7, 6 +
1, 2 + 2 + 2 + 2− 2) and ν3 = (7 + 2, 6, 6, 2 + 2 + 2 + 2− 2) are in the interval
[α, (27− 6, 6)] but not in the support of Rp

α.

5.2. Proof of Remark 1.8 and Corollary 1.9. . Theorem 1.7 is logically
equivalent to Theorem 1.6 and says that if every i-witness g̃i vector of Rp

α,
for i = 1, . . . , `(p)−1, is oversized, with respect to its slack pi+1−1, then Rp

α

has full Schur support. In particular, Rp
α has full support only if αi < %i for

every 1 ≤ i ≤ `(p) − 1. In fact, if, for some k ∈ {1, . . . , `(p) − 1}, αk ≥ %k,

then α1 ≥ · · · ≥ αk ≥ %k and |g̃k| =
∑k

j=1 [%k − αj]+ = 0 ≤ pk+1 − 1. This
implies that (α1, . . . , αk, %k, pk+1− 1) ∈ [α, (|α| − p1, p1)] is not in [Rp

α] which
is absurd.

(a) When `(p) = 2, one has p = (2, 1, 0`(α)−2), and [Rp
α] = [α, (|α| − 2, 2)] if

and only if α1 < %1 ⇔ α1 <
∑`(α)

q=2 αq. In fact, if `(p) = 2, (1.9) means

[%1 − α1]+ ≥ 1⇔ %1 − α1 > 0⇔ %1 > α1 ⇔ α1 < 1 +

`(α)∑
q=2

αq − 1 =

`(α)∑
q=2

αq.

(b) When `(p) = 3, one has p = (3, 2, 1, 0`(α)−3), and [Rp
α] = [α, (|α| − 3, 3)] if

and only if α1 <
∑`(α)

q=2 αq − 2 and α2 <
∑`(α)

q=3 αq. In fact, if `(p) = 3, (1.10)
means

%1 − α1 ≥ 2⇔ %1 > α1 + 1⇔ 1 +

`(α)∑
q=2

αq − 2 > α1 + 1⇔
`(α)∑
q=2

αq − 2 > α1,

[%2 − α1]+ + [%2 − α2]+ ≥ 1⇔ %2 − α2 ≥ 1⇔ %2 > α2 ⇔ α2 < 1 +

`(α)∑
q=3

αq − 1

=

`(α)∑
q=3

αq.

�
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Example 5.6. Let α = (4, 3, 2, 2) with p = (3, 2, 1, 0). We use the charac-
terization given by the Theorem 1.7 (b) to prove that Rp

α has full support
[α, (8, 3)]. Since `(α) = 4 and `(p) = 3, we have two inequalities to check:

α2 + α3 + α4 − 2 > α1 ⇔ 7− 2 > 4, α2 < α3 + α4 ⇔ 3 < 4.

6. Connected ribbons with full equivalence class and full
Schur support

Building on [Mc08], M. Gaetz, W. Hardt and S. Sridhar have introduced
in [GaHaSr17] the family of connected ribbons with full equivalence class.

Definition 6.1. [GaHaSr17, Definition 7] Let α be a partition with parts
≥ 2 and `(α) ≥ 3. The connected ribbon Rα is said to have full equivalence
class if [Rα] = [Rβ], for any rearrangement β of the entries of α.

Definition 6.2. [GaHaSr17] Three integers x ≤ y ≤ z are said to satisfy the
strict triangle inequality if z < x + y. In this case, the multiset {x, y, z} is
said to satisfy the strict triangle inequality.

The set of connected ribbons with full equivalence class have partitions
as representatives. For monotone connected ribbons, the inequality (1.11),
in Theorem 1.10, [GaHaSr17, Theorem II.1], giving a necessary condition
for full equivalence class, is equivalent to inequality (1.8), in Theorem 1.7,
characterizing the full Schur support.
Proof of Lemma 1.11 Let j ∈ {1, . . . , `(α) − 2} and Nj := max{k :∑
1≤i≤j
αi<k

(k−αi) ≤ `(α)− j− 2}. From the definition of Nj, one has
∑

1≤i≤j
αi<Nj

(Nj −

αi) ≤ `(α)− j − 2. Then Nj < %j ⇔
∑

1≤i≤j
αi<%j

(%j − αi) ≥ `(α)− j − 1. �

Proof of Theorem 1.12. Because Rα is connected, p = (`(α)−1, . . . , 2, 1, 0)

and, in Definition 1.3, %j =
∑`(α)

q=j+1 αq−(`(α)−j−2), for j ∈ {1, . . . , `(α)−2}.
Suppose that Rα does not have full Schur support. Then Theorem 1.7 says
that for some t ∈ {1, . . . , `(α)− 2},∑

1≤i≤t
[%t − αi]+ =

∑
1≤i≤t
αi<%t

(%t − αi) ≤ `(α)− t− 2. (6.1)

Inequality (6.1) implies in the definition of Nt, (1.11), that Nt ≥ %t with t ∈
{1, . . . , `(α) − 2}. Henceforth, by Theorem 1.10, [GaHaSr17, Theorem 1.2],
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one concludes that α does not have full equivalence class. When `(α) = 3, by
Theorem 1.6, Rα has full support [α, (|α| − 2, 2)] if and only if α1 < α2 + α3

(strict triangle inequality). Theorem 3.4, in [GaHaSrTr17], also shows that
Rα has full equivalence class if and only if α1 < α2 + α3. When `(α) = 4,
by Theorem 1.6 (b), Rα has full support [α, (|α| − 3, 3)] if and only if (1.10)
are satisfied. Theorem 3.6, in [GaHaSrTr17], also shows that Rα has full
equivalence class if and only if (1.10) are satisfied. �

Next theorem gives a sufficient condition for a monotone connected ribbon
to have full equivalence class [GaHaSr17, Corollary1.4] which in turn, thanks
to Theorem 1.12, also gives a sufficient condition for monotone connected
ribbons to have full Schur support.

Theorem 6.3. Let β = (β1, . . . , β`(β)) be a composition with parts ≥ 2 and
`(β) ≥ 3. If all 3-multisets contained in {β1, . . . , β`(β)} satisfy the strict
triangle inequality then the connected ribbon Rβ has

(a) [GaHaSr17, Corollary 1.4] full equivalence class; and
(b) full Schur support [β+, (|β| − `(β) + 1, `(β)− 1)].

The strict triangle inequality condition given by the previous theorem is
sufficient for a connected ribbon to have full support, but it is not necessary.
For instance, not all 3-subsets of the partition α = (4, 3, 2, 2) satisfy the strict
triangular inequality (4 = 2 + 2), but as we have seen in Example 5.6, the
connected ribbon Rp

α has full support. Nevertheless, for partitions α with
length 3 the connected ribbon Rp

α has full support (full support) if and only
if α satisfy the strict triangular inequality (1.9).

Next statement classifies arbitrary compositions with length 3 with respect
to the full support where we may verify that for non monotone compositions
the strict triangular inequality is not a necessary condition. This means that
the full Schur support classification for non monotone compositions and for
partitions is not the same.

Corollary 6.4. Let β be a composition of length 3 with each part ≥ 2. Then,
the connected ribbon Rβ has full support except when β = (β+

1 , β2, β3) or β =
(β2, β3, β

+
1 ) with β+

1 ≥ β2 +β3, in which cases, the partition ν = (β+
1 , β2 +β3)

is in the Schur interval but not in the support of Rβ.

Proof : By the previous theorem, we know that if β satisfies the strict triangle
inequality, β+

1 < β2 +β3, then Rβ has full support. There remains three cases
to analyse: β = (β+

1 , β2, β3), or β = (β2, β3, β
+
1 ), or β = (β2, β

+
1 , β3), with

β+
1 ≥ β2 +β3. Since the support of Rβ is invariant under 180 degrees rotation
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of the ribbon Rβ, the first two cases can be reduced to the first one. Suppose
that β = (β+

1 , β2, β3) satisfies β1 ≥ β2 + β3 and β2 ≥ β3, and recall that the
overlapping partition is p = (2, 1, 0). Applying Theorem 1.6 with i = 1 one
has %1 = β2 + β3 and g̃1

1 = 0 ≤ p2 − 1 = 0, and henceforth, the support of
Rp
β is not the entire Schur interval, since the partition ν = (β1, β2 + β3) is in

the Schur interval but not in the support of Rβ. The same partition ν proves
the result when β3 ≥ β2. Note that an LR filling of R(β+

1 ,β2,β3) with content
ν would oblige to fill the first row with β1 1’s and the last two rows with
β2 + β3 2’s. Since the two last rows of Rβ overlap such a filling violates the
column semistandard condition.

Finally, in the case of the connected ribbon R(β2,β
+
1 ,β3) satisfying β+

1 ≥
β2 + β3, it is easy to show that LRRβ ,ν 6= ∅ for any partition in the Schur
interval [β+, (|β| − 2, 2)]. Indeed if `(ν) = 3, any T ∈ Tab(ν, β) is such that

D(T̂ ) = S(β) = {β2, β
+
1 + β2}. If `(ν) = 2, consider the canonical filling

T ∈ Tab(ν, β), ν = (ν1, ν2). Then the second row of T has 3’s and because
β+

1 ≥ β2 + β3, ν2 < β+
1 + β3 (otherwise ν2 > ν1 = β2), the first row of T

has β2 1’s and at least one two. In case, ν2 = β3 ≥ 2, the 2nd row of T
has β3 3’s and the β+

1 ≥ 2, 2’s are all in the first row of T , in which case
we swap the rightmost 2 in the first row with the leftmost 3 in the second
row to get a new tableau in Tab(ν, β). The descent set of this new tableau
is S(β) = {β2, β1 + β2}. �

Remark 6.5. If the composition β = (β2, β
+
1 , β3) satisfies β+

1 ≥ β2 + β3 the
connected ribbon Rβ has full support while Rβ+ does not have full support
because β+

1 ≥ β2 + β3.

Corollary 6.6. [McWi12, Theorem 1.5.] Let β be an arbitrary composition
with parts ≥ 1. Connected ribbons Rβ whose column and row lengths differ
at most one have full support. They also have full equivalence class except
when β = (2`(β)−1, 1), `(β) ≥ 3.

Proof : Let β = (β1, . . . , β`(β)) and Rβ a connected ribbon in the conditions
of the statement. Observe that the transpose of Rβ is still in the conditions
of the statement. If Rβ or its transpose consists only of one or two rows is
trivial. Suppose that Rβ has at least three rows. If βi ≥ 2 for all 1 ≤ i ≤ `(β),
then |βi − βj| ≤ 1, for all 1 ≤ i, j ≤ `(β), and any three parts βi ≤ βj ≤ βk
of β satisfy the strict triangle inequality βk < βi + βj. By Theorem 6.3,
(b), Rβ has full support and full equivalence class. If β1 = β`(β) = 1 then
βi = 2, 1 < i < `(β), and transposing Rβ we fall in one of the previous cases:
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β = (2`(β)) with `(β) ≥ 2, and again Rβ has full support and full equivalence
class. If β1 = 1 < β`(β) or β1 > β`(β) = 1, by 180 degrees-rotation, we may

assume the last inequality and we have β = (2`(β)−1, 1) with `(β) ≥ 3. Put
s := `(β) − 1 and let I := [(2s), (s, s)] be the Schur interval of R(2s), s ≥ 2.
By the previous cases, the support of R(2s) is the full interval I.

The Schur interval of R(2s,1) is [(2s, 1), (s + 1, s)] and it is self conjugate.
Its partitions are obtained using one extra box in the construction of the
elements of I. There are three possible positions to put the extra box in one
element of I and obtain ν ∈ [(2s, 1), (s+ 1, s)]: (a) far right of the first row;
(b) below the last row; or (c) far right of the last row.

Because Rβ = R(2s,1) = (Rβ)′ and cνRβ = cν
′

Rβ
, by transposition of ν, we may

reduce (a) to (b). Hence if T ∈ LRR(2s),µ then the SSYT T�, obtained by
adding one box filled with s+ 1 below the last row of T , is in LRR(2s,1),ν with

ν = (µ, 1). Note that D(T̂�) = S(2s, 1) = S(2s) ∪ {2s}. It remains to prove
that ν = (µ1, . . . , µ`(µ)−1, µ`(µ) + 1) obtained in (c) is in [R(2s,1)]. If the last
row of T has at most one s then just add one box filled with s+ 1 at the end
of the this row to obtain T�. If the last row of T has two s’s also add one
box filled with s + 1 at the end of this row. At least one entry in the row
above is not in the last row and choose that in the rightmost position: it is
the far right entry:

(i) s − 1, T =
· · ·
· · · a b (s− 1)
· · · s s (s+ 1)

→ T� =
· · ·
· · · a b s
· · · s− 1 s (s+ 1)

, a <

s− 1, b ≤ s− 1

(ii) a < s−1, T =
· · ·
· · · d c a
· · · s s (s+ 1)

→ T� =
· · ·
· · · · · · d c s
· · · a · · · s (s+ 1)

, c ≤

a < s− 1, d < a, a enters in the last row of T bumping to the right the left

most strictly bigger entry; otherwise, T =
· · ·
· · · d c a x
· · · x s s (s+ 1)

→ T� =

· · ·
· · · d c x s
· · · a · · · x s (s+ 1)

, d < a < x ≤ s − 1, c ≤ a, a enters in the last row

of T bumping to the right the left most strictly bigger entry. In any case and
D(T̂�) = S(2s, 1).
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Indeed, β = (2`(β)−1, 1) and γ = (2, 1, 2`(β)−2), `(β) ≥ 3, do not have the
same Schur interval. The Schur interval of the latter is [(2s, 1); (3, 2s−2, 12)]
with s = `(β)− 1 and henceforth β = (2`(β)−1, 1), `(β) ≥ 3 does not have full
equivalence class. �

7. Towards to a coincidence between full Schur sup-
port monotone connected ribbons and full equiva-
lence classes

In this section we consider connected ribbons with parts ≥ 2 arranged
in any order. The necessary condition, given by Theorem 1.5, for the LR
coefficient cνRα to be positive, with α a partition, is generalized to a connected
ribbon Rαπ where απ, π ∈ Σ`(α), is a π-permutation of the entries of α.
Thanks to the 180◦-rotation symmetry of LR coefficients, cνRα = cν(Rα)◦, it is

sufficient to consider partitions α of length ≥ 3. That is, we already know
that cνR(α1,α2)

= cνR(α2,α1)
> 0 ⇔ νi ≤

∑2
q=i αq − pi, 1 ≤ i ≤ 2. Recall the

definition of overlapping partition of a connected ribbon with row lengths
in arbitrary order, Definition 3.1, and that the overlapping partition pπ =
(pπ1 , p

π
2 , . . . , p

π
`(α), 0) of the connected ribbon Rαπ satisfies (3.1), pπ ⊆ (`(α)−

1, . . . , 1, 0), that is, pπ1 = `(α)− 1, and pπi ≤ `(α)− i, 2 ≤ i ≤ `(α).

Theorem 7.1. Let α be a partition with parts ≥ 2, and Rαπ a connected
ribbon with overlapping partition pπ. Let ν ∈ [α, (|α| − `(α) + 1, `(α)− 1)].
Then

ν ∈ [Rαπ ](c
ν
Rαπ

> 0)⇒ νi ≤
`(α)∑
q=i

αq − pπi , 1 ≤ i ≤ `(pπ). (7.1)

Proof : We prove the contrapositive assertion: if there exists i ∈ {1, . . . , `(α)−
2} such that νi+1 ≥

∑`(α)
q≥i+1 αq − pπi+1 + 1 then cνRαπ = 0. (Indeed ν1 ≤∑`(α)

q≥1 αq − pπ1 + 1 and ν`(α) ≤ α`(α).)
Let απ = (β1, . . . , β`(α)) and let i be the smallest element in {1, . . . , `(α)−2}

such that νi+1 ≥
∑`(α)

q≥i+1 αq − pπi+1 + 1. Since |ν| = |α| and α � ν, one has

i∑
q=1

βq ≤
i∑

q=1

αq ≤
i∑

q=1

νq = |α| −
`(α)∑
q≥i+1

νq ≤
i∑

q=1

αq + pπi+1 − 1. (7.2)

If we place ν1 1’s, ν2 2’s, . . . , νi i’s in Rβ to obtain an LR filling then at
least the first i rows of Rβ are completely filled because one can not place
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in them numbers ≥ i + 1. Henceforth, in the best case one has
∑i

q=1 βq =∑i
q=1 αq =

∑i
q=1 νq, so that it remains `(α)−i rows of Rβ to place νi+1 i+1’s.

Because Rβ is connected the number of columns of length two among them is
`(α)−i−1 ≥ pπi+1. (In fact, in this case, one has the equality `(α)−i−1 = pπi+1.
Because one has the equality of the multisets {βi, . . . , β`(α)} = {αi, . . . , α`(α)}
and by definition pπi+1 is the number of columns of length two among the
rows αi, . . . , α`(α) of the ribbon Rβ which in this the same as among the rows
of R(βi,...,β`(α)).) It means that in the best case the number of available boxes
to fill with νi+1, i+ 1’s, is in fact

`(α)∑
q≥i+1

βq − (`(α)− i− 1) = |β| −
i∑

q=1

βq − (`(α)− i− 1) =

= |α| −
i∑

q=1

αq − (`(α)− i− 1)

=

`(α)∑
q≥i+1

αq − (`(α)− i− 1) ≤
`(α)∑
q≥i+1

αq − pπi+1

<
i∑

q=1

αq + pπi+1 − 1 ≤ νi+1,

which is not enough. Therefore cνRαπ = 0. �

Remark 7.2. (1) Under the assumption that row lengths are ≥ 2, Rαπ and
Rα have the same the Schur interval, [α, (|α| − `(α) + 1, `(α) − 1)], for all
π ∈ Σ`(α).

(2) Assuming in Theorem 7.1 that inequalities (7.1) are also sufficient for
ν ∈ [Rαπ ], we have the following result. If ν ∈ [Rα] with α a partition, and
π ∈ Σ`(α) then

νi ≤
`(α)∑
q=i

αq − (`(α)− i) ≤
`(α)∑
q=i

αq − pπi , 1 ≤ i ≤ `(ν)⇒ ν ∈ [Rαπ ].

Therefore, [Rα] ⊆ [Rαπ ], for any π ∈
∑

`(α). If Rα has full Schur support,

[Rαπ ] = [Rα], for any π ∈
∑

`(α), and Rα has full equivalence class. Thereby,
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Rα does not have full equivalence class if and only if [Rα] $ [Rαπ ], for some
π ∈

∑
`(α).

In other words, the connected ribbon Rα with α a partition with parts ≥ 2
has full support only if α has full equivalence class. This implies that the
Gaetz-Hardt-Sridhar conjecture [GaHaSr17, Conjecture II.4] claiming that
the necessary condition on full equivalence classes (1.11) is also sufficient, is
true.

Conjecture. Let α be a partition with parts ≥ 2 and Rα a connected ribbon.
Then the following are equivalent

(a) Rα has full Schur support, that is, [Rα] = [α, (|α| − `(α) + 1, `(α)− 1];
(b) α has full equivalence class;
(c) For all j ∈ {1, . . . , `(α)− 2},

Nj := max{k :
∑

1≤i≤j
αi<k

(k−αi) ≤ `(α)−j−2} < %j ⇔
∑

1≤i≤j
αi<%j

(%j−αi) ≥ `(α)−j−1.
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