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NON SELF-ADJOINT OPERATORS WITH REAL SPECTRA

AND EXTENSIONS OF QUANTUM MECHANICS

N. BEBIANO AND J. DA PROVIDÊNCIA

Abstract: In this article, we review the quantum mechanical setting associated
to a non self-adjoint Hamiltonian with a real spectrum. Spectral properties of the
Hamiltonian of a Swanson-like model are investigated. The eigenfunctions associ-
ated to the real simple eigenvalues are shown to form complete systems but not a
(Riesz) basis, which gives rise to difficulties in the rigorous mathematical formu-
lation of quantum mechanics. A new inner product, appropriate for the physical
interpretation of the model, has been consistently introduced. The dynamics of the
system is described. Some specificities of the theory of non self-adjoint operators
with implications in quantum mechanics are discussed.

1. Introduction
In non-relativistic quantum mechanics, the state of a particle is described,

at the instant t, by a function Ψt(x), where x denotes the particle coordinate.
This function is called the wave function. Its time evolution is described by
the time dependent Schrödinger equation,

i
dΨt(x)

dt
= HΨt(x),

where H is the Hamiltonian operator of the system. In most relevant cases
H acts on an infinite dimensional separable Hilbert space H, endowed with
the inner product 〈·, ·〉 and corresponding norm ‖ · ‖. Throughout, D(·) will
denote the domain of the operator under consideration. The fundamental
axiom of conventional formulations of quantum mechanics is that H is Her-
mitian, or synonimously, self-adjoint. That is, for H∗ the adjoint operator,

〈Hf, g〉 := 〈f,H∗g〉, f ∈ D(H), g ∈ D(H∗),

we have H = H∗ and D(H) = D(H∗). Also the observables of the system are
Hermitian, which ensures that the involved eigenvalues are real and the cor-
responding eigenfunctions can be taken orthonormal in such a way that they
form a basis of the Hilbert space. As a consequence, meaningful properties
on the dynamics of the system follow.
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A formal solution of the time dependent Schrödinger equation, which rules
the system dynamics, is given by

Ψt(x) = e−iHtΨ0(x),

where Ψ0(x) is the wave function in the initial state t = 0. In conventional
quantum mechanics, ∫ x2

x1

ψ(x)ψ(x)dx

is the probability that the result of the physical measurement of the position,
performed in the state ψ(x), lies in the interval [x1, x2]. A simple consequence
of the hermiticity of H is the invariance of the norm of the wave function
with time, that is, ‖Ψt‖2 = ‖Ψ0‖2, as exp(−iHt) is unitary. This property is
physically important, because it is related to the conservation of the number
of particles of the system, or of the probability of the position measurement.
If the energy of a particle is measured in the state described by the wave
function Ψ(x), the expectation value of the measurement, in a statistical
sense, is given by the Rayleigh quotient

E :=
〈HΨ,Ψ〉
〈Ψ,Ψ〉

,

which is real if H is Hermitian.
During the second half of last century, energy states of atoms, molecules

and atomic nuclei have been usually described as eigenfunctions of self-ad-
joint Schrödinger operators. The publication in 1998 by Bender and Boettcher
of the seminal paper on non-Hermitian Hamiltonians with PT-symmetry [8],
where P and T are, respectively, the parity (or space reflexion) and the time
reversal operators:

PΨ(x) := Ψ(−x), TΨ(x) := Ψ(x),

is a landmark. The development of PT-symmetric quantum mechanics was
initiated, and a growing literature on PT-models found applications in dif-
ferent domains of physics.

Certain relativistic extensions of quantum mechanics lead naturally to non-
Hermitian Hamiltonian operators, H 6= H∗. In this case, the Rayleigh quo-
tient 〈HΨ,Ψ〉/〈Ψ,Ψ〉 does not provide the energy expectation value because
in general it is not real, and the norm 〈exp(−iHt)Ψ0, exp(−iHt)Ψ0〉 may
become time dependent, which is undesirable in the physical context. It
became fundamental to investigate formulations of Quantum Mechanics for
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non-Hermitian Hamiltonian operators, mathematically consistent and physi-
cally meaningful. This objective has been the aim of intense research activity
in the last two decades. We refer to [6] and references therein. New results
opened new directions both in theoretical and experimental fronts, in classi-
cal and quantum domains. Non-Hermitian Hamiltonians having real spectra
exhibit a pathological behavior. In the next section we illustrate the diffi-
culties originated by these operators in the development of mathematically
rigorous quantum theories.

1.1. Quasi-Hermitian QM. The problem of how to construct a consistent
non-Hermitian quantum theory has been investigated, mainly inspired by
the knowledge that PT symmetric Hamiltonians possess real spectra and
allow for a unitary time evolution with a redefined inner product in the
Hilbert space where the operator lives. A necessary condition for developing
such a theory is obviously the reality of the spectrum of the Hamiltonian,
σ(H), but it is far from being sufficient. In this context, there have been
attempts to develop the so called quasi-Hermitian quantum mechanics, where
the Hamiltonian H is a quasi-selfadjoint operator, that is, which satisfies the
quasi-selfadjointness operator relation

H∗Θ = ΘH, (1)

with Θ = T ∗T a positive, bounded and boundedly invertible operator, called
a metric. An operator H with the above property is actually Hermitian for
the new inner product

� φ, ψ �:= 〈Θφ, ψ〉 = 〈Tφ, Tψ〉.

That is,

� Hφ,ψ �:= 〈ΘHφ,ψ〉 = 〈H∗Θφ, ψ〉 = 〈Θφ,Hψ〉 =� φ,Hψ � .

The concept of quasi-selfadjointness, which goes back to Dieudonné [12], is
of remarkable interest in the set up of non-Hermitian quantum mechanics. A
modified inner product in the underlying Hilbert space, relatively to which
H becomes self-adjoint via the similarity transformation THT−1,

H̃ = THT−1, (2)

where H̃ is Hermitian, has been searched. If T is bounded and boundedly
invertible, then the spectra of THT−1 and H coincide and the eigenfunctions
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share basis properties. Then, some fundamental issues of self-adjoint oper-
ators remain valid, such as spectral stability with respect to perturbations,
unitary evolution, etc. It is not very common to find in the literature non self-
adjoint models for which such a metric is constructed, neither the existence
of a metric operator is guaranteed. Problems arise if T or T−1are unbounded,
such as it may happen that the eigenvalues of H are not preserved by the
similarity transformation THT−1, as argued in [16].

In the finite dimensional setting, all the involved operators are bounded.
In particular, if T−1 exists it is automatically bounded, and the concepts
of quasi-Hermiticity and similarity to a self-adjoint operator work without
difficulty, because we are dealing essentially with finite matrices. The adjoint
of H is simply the transconjugate. If the Hamiltonian is Hermitian, the time
evolution deduced from the Hamiltonian is unitary, and so it preserves the
total probability of the system given by

∫
|Ψt(x)|2dx [6].

The rest of this note is organized as follows. In Section 2, we consider a
simple Swanson-like model [20], and review the general quantum mechanical
setting associated to a non self-adjoint Hamiltonian with a real spectrum.
In Subsection 2.3 the matrix representation of the operator is investigated.
In Section 3, spectral properties of the Hamiltonian are investigated. The
eigenfunctions associated to the real simple eigenvalues are shown to form
complete systems but not a Riesz basis. In Section 4, the dynamics of the
system is described and a new inner product, which is appropriate for the
physical interpretation, is consistently introduced. In Section 5, some speci-
ficities of non self-adjoint operators with implications in quantum mechanics
are discussed and useful mathematical background in this context is pointed
out.

2. A generalized harmonic oscillator
We will be concerned with a model on the Hilbert space H = L2(R) of

square integrable functions in one real variable, endowed with the standard
inner product

〈Φα,Φβ〉 =

∫ +∞

−∞
Φα(x)Φβ(x)dx, Φα,Φβ ∈ L2(R).
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The system we wish to study is a very simple model of the Swanson type
[20], characterized by the following Hamiltonian operator on L2(R)

H := −1

4

d2

dx2
+ x2 − γ

(
1

2
+ x

d

dx

)
, γ ∈ R\{0}, |γ| ≤ 1, (3)

Observe that, on L2(R),

H∗ = −1

4

d2

dx2
+ x2 + γ

(
1

2
+ x

d

dx

)
,

so that H 6= H∗, for γ 6= 0. For γ = 0, it is obvious that H = H∗.
Most relevant operators in Quantum Mechanics are unbounded. Unbound-

edness of operators in the infinite dimensional setting unavoidably restrict
their domains of definition to nontrivial subspaces of the Hilbert space. The
real parameter γ must be carefully chosen so that the spectral theory of the
operator can be developed in a rigourous mathematical framework. The real
parameter γ, which measures the degree on non-Hermiticity of the Hamil-
tonian, is assumed to be non-zero to avoid the well-known Hermitian case.
We will consider H as a perturbation of the famous harmonic oscillator Hho:

Hho = −1

4

d2

dx2
+ x2,

which coincides with <(H) = (H +H∗)/2. For our purposes, we impose the
condition of smallness of γ, |γ| < 1, in order to ensure that the non-Hermitian
term V = −γ

(
1
2 + x d

dx

)
does not completely change the behavior of Hho.

The domain D of H is

D := {Ψ(x) ∈ W 1,2(R) : x2Ψ(x) ∈ L2(R)}.
Here, W 1,2(R) denotes the usual Sobolev space of functions on L2(R) whose
weak first and second derivatives belong to L2(R). Observe that the domain

contains the set S̃ of functions f(x) such that exp (γx2)f(x) ∈ L2(R),

S̃ := {Ψ(x) ∈ D : eγx
2

Ψ(x) ∈ L2(R)},
which is dense in L2(R), since it contains the set of all C∞ functions with
compact support. Thus, H is densely defined in this domain, which ensures
the existence and uniqueness of its adjoint H∗. As <(H) is closed, and V
is relatively bounded with respect to <(H), with the relative bound smaller
than 1, then H is closed ([14, Theorem 3.3]). The closedness of H is a crucial
starting point for the investigation of its spectrum, because the spectrum is
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only meaningfully defined for closed operators. We will show that H has a
purely discrete real spectrum if |γ| is sufficiently small.

2.1.A basis of L2(R). We also consider the auxiliary operatorH0 : D(H0) ⊂
L2(R)→ L2(R),

H0 := −1

4

d2

dx2
+ (1 + γ2)x2, (4)

with D(H0) = D.
Notice that the following operator identity formally holds,

H0 = eγx
2

He−γx
2

, (5)

in the sense that the operators in the left and in the right hand sides act in
the same manner on any wave function Φ ∈ D(H0),

H0Φ(x) = eγx
2

He−γx
2

Φ(x).

The word “formal” refers to the fact that exp(γx2) is unbounded. We may
also write the operator equality in (5) as,

H = e−γx
2

H0e
γx2,

where it is implicitly assumed that the operators in both sides of the operator
equality act on wave-functions Ψ(x) ∈ S̃ ⊂ D. However, while H0 goes from
S(R) to S(R), with S(R) the set of the C∞ functions which decrease to zero,
together with their derivatives, faster than any inverse power of x, H goes
from S̃ to S̃.

The spectrum and eigenvectors of H0 are easily obtained with the help of
the annihilation bosonic operator

a := (1 + γ2)1/4x+
1

2

1

(1 + γ2)1/4

d

dx
,

and its adjoint, the creation bosonic operator,

a∗ := (1 + γ2)1/4x− 1

2

1

(1 + γ2)1/4

d

dx
,

which satisfy the commutation relation

[a, a∗] = aa∗ − a∗a = 1,

where as usual, 1 denotes the identity operator. This means that

(aa∗ − a∗a)φ(x) = φ(x)
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for all φ(x) ∈ D, which is stable under the action of a and a∗ (that is,
a∗D ⊂ D and aD ⊂ D).

The factorization of H0 in terms of the bosonic operators is straightfor-
wardly obtained,

H0 =
√

1 + γ2 a∗a+
1

2

√
1 + γ2 1.

The wave function

Φ0(x) = e−x
2/
√

1+γ2 ∈ L2(R),

satisfies aΦ0 = 0 and describes the so called groundstate of H0, as it is an
eigenfunction of H0 associated with the lowest eigenvalue,

E0 =
1

2

√
1 + γ2.

The wave function

Φn(x) = a∗ nΦ0(x), n ≥ 0,

is an eigenfunction of H0 and describes the so called nth bosonic state. The
associated eigenvalue is

En =

(
n+

1

2

)√
1 + γ2, n = 0, 1, 2, 3, . . . .

The wave functions Φn(x) are orthogonal

〈Φn,Φm〉 = n!δnm〈Φ0,Φ0〉, m, n ≥ 0,

for δmn the Kronecker symbol (= 1 for m = n and 0 otherwise), and constitute
a basis for L2(R),

FΦ := {Φn = a∗nΦ0 : n ≥ 0}, (6)

as for any Φ ∈ H, there exists a set of complex coefficients such that Φ can
be uniquely expressed as

Φ =
∑
k

ckΦk.
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2.2. Eigenvalues and Eigenfunctions of H. Next, we consider the func-
tions

Ψn(x) = e−γx
2

Φn(x),

which belong to S̃ ⊂ D, since we clearly have exp(γx2)Ψn(x) ∈ L2(R). If

γ > −

√√
5− 1

2
,

then, Ψn(x) ∈ L2(R), because

e−γx
2

Φ0(x) = e−γx
2

e−x
2/
√

1+γ2

belongs to L2(R) if (γ + 1/
√

1 + γ2) > 0. Moreover, eγx
2

Φn(x) also belongs

to L2(R), because it is the product of a polynomial in x by eγx
2

Φ0(x),
Observing that

HΨn(x) = He−γx
2

Φn(x) = e−γx
2

eγx
2

He−γx
2

Φn(x) = e−γx
2

H0Φn(x),

we obtain

HΨn(x) =

(
n+

1

2

) √
1 + γ2Ψn(x).

That is, Ψn(x), for n = 0, 1, 2, . . . , are eigenfunctions ofH and (n+1/2)
√

1 + γ2

are the associated eigenvalues. If the similarity relation (2) holds for a
bounded and boundedly invertible T , the eigenvalues of H are the same
of H∗. As in this case T = exp(γx2) is unbounded, this is not guaranteed.
In the next section, this will be confirmed.

2.3. Matrix representation of H. Let us also consider the bosonic oper-
ators

b := x+
1

2

d

dx
, b∗ := x− 1

2

d

dx
,

which satisfy the commutation relation

[b, b∗] = 1.

Analogous considerations to those concerning a and a∗, in Subsection 2.1,
are in order. In terms of the bosonic operators, H becomes

H = b∗b+
γ

2
(b∗2 − b2) +

1

2
.
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We notice that the parity operator P commutes with H, and the eigenspaces
of P are invariant subspaces of H.

With respect to the basis constituted by the eigenfunctions of the number
operator N := b∗b,

Fφ = {φn =
b∗n√
n!
φ0 : bφ0 = 0, n ≥ 0},

the operator b is represented by the upper shifted matrix

B =


0
√

1 0 0 . . .

0 0
√

2 0 . . .

0 0 0
√

3 . . .
...

...
...

... . . .

 ,
and the operator b∗ is represented by the transpose of B, BT . These matrices
satisfy the commutation relation,

[B,BT ] = I,

where I denotes the identity matrix. In the same basis, the operator b∗b is
represented by the matrix A0 = diag(0, 1, 2, 3, . . .). The matrix BT is a raising
matrix because, if Φ is an eigenvector of A0 associated with the eigenvalue
Λ,

A0Φ = ΛΦ,

then BTΦ is an eigenvector of A0 associated with the upwardly shifted eigen-
value Λ + 1,

A0B
TΦ = (Λ + 1)BTΦ,

and similarly B is a lowering matrix, as

A0BΦ = (Λ− 1)BΦ,

if BΦ 6= 0.
In the same basis, the operator b∗2 is represented by the matrix A+,

A+ =



0 0 0 . . .
0 0 0 . . .√

1× 2 0 0 . . .
0

√
2× 3 0 . . .

0 0
√

3× 4 . . .
...

...
... . . .
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and the operator b2 is represented by the matrix A− = A+
T . Notice that

[A0, A+] = 2A+, [A0, A−] = −2A−.

Thus, H is represented by the pentadiagonal matrix

BTB +
γ

2
((BT )2 −B2) +

I

2
= A0 +

γ

2
(A+ − A−) +

I

2

=



1/2 0 −γ
2

√
1× 2 0 . . .

0 3/2 0 −γ
2

√
2× 3 . . .

γ
2

√
1× 2 0 5/2 0 . . .
0 γ

2

√
2× 3 0 7/2 . . .

0 0 γ
2

√
3× 4 0 . . .

0 0 0 γ
2

√
4× 5 . . .

...
...

...
... . . .


,

which may be written as
1/2 −γ

2

√
1× 2 0 . . .

γ
2

√
1× 2 5/2 −γ

2

√
3× 4 . . .

0 γ
2

√
3× 4 9/2 . . .

...
...

... . . .

⊕


3/2 −γ
2

√
2× 3 0 . . .

γ
2

√
2× 3 7/2 −γ

2

√
4× 5 . . .

0 γ
2

√
4× 5 11/2 . . .

...
...

... . . .

 .
The eigenfunctions of N , φ0(x), φ2(x), φ4(x), · · · are even functions, while
φ1(x), φ3(x), φ5(x), · · · are odd functions. The eigenspaces of P are invari-
ant subspaces of H. Thus, H is represented by real tridiagonal matrices
called pseudo-Jacobi matrices in the bases of these subspaces, that is, Jacobi
matrices pre multiplied by J = diag(1,−1, 1,−1, . . .).

Next, in order to determine raising and lowering matrices for (A0 + (A+−
A−)/2 + I/2), we look for linear combinations of BT and B satisfying[(

BTB +
γ

2
((BT )2 −B2) +

I

2

)
, (xBT + yB)

]
= λ(xBT + yB).

By some computations, we find that λ = ±
√

1 + γ2 and we obtain, for
lowering and raising matrices, respectively,

D =
1

2

(
(1 + γ2)1/4 +

1 + γ

(1 + γ2)1/4

)
B +

1

2

(
(1 + γ2)1/4 − 1− γ

(1 + γ2)1/4

)
BT ,

D‡ =
1

2

(
1 + γ21/4 − 1 + γ

(1 + γ2)1/4

)
B +

1

2

(
(1 + γ2)1/4 +

1− γ
(1 + γ2)1/4

)
BT .
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These matrices satisfy the following commutation relations,

[D,D‡] = I.[(
A0 +

γ

2
(A+ − A−) +

I

2

)
, D‡

]
=
√

1 + γ2D‡,

[(
A0 +

γ

2
(A+ − A−) +

I

2

)
, D

]
= −

√
1 + γ2D.

This means that, if Υ is an eigenvector of (A0 + γ/2(A+ − A−) + I/2) asso-
ciated with the eigenvalue Λ, then D‡Υ and DΥ are eigenvectors associated,
respectively, with the eigenvalues Λ +

√
1 + γ2 and Λ−

√
1 + γ2. Moreover,

A0 +
γ

2
(A+ − A−) +

I

2
=
√

1 + γ2 D‡D +
1

2

√
1 + γ2 I.

Thus

σ

(
A0 +

γ

2
(A+ − A−) +

I

2

)
=

(
n+

1

2

)√
1 + γ2, n ≥ 0.

An eigenvector Υ0 of
(
A0 + γ

2(A+ − A−) + I/2
)

associated with the lowest

eigenvalue
√

1 + γ2 is such that

DΥ0 = 0.

We find

Υ0 =

[
1, 0,

√
1

2
η, 0,

√
1× 3

2× 4
η2, 0,

√
1× 3× 5

2× 4× 6
η3, 0, . . .

]T
,

where

η =
1− γ −

√
1 + γ2

1 + γ +
√

1 + γ2
.

An eigenvector of (A0 + γ/2(A+ − A−) + I/2) associated with the eigenvalue

(n+ 1/2)
√

1 + γ2 is given by

Υn = D‡
n
Υ0.
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3. Spectrum of H
The spectrum of an operator on a finite dimensional Hilbert space is ex-

hausted by the eigenvalues, but, in the infinite dimensional setting, there are
additional parts of the spectrum of H to be considered.

The resolvent set of H, denoted by ρ(H), is constituted by all the complex
numbers λ for which (H − λ)−1 exists as a bounded operator on H. The
spectrum of H is the complement of the resolvent set

σ(H) = C\ρ(H).

The set of all eigenvalues of H is the point spectrum, denoted by σp(H), and
is formed by the complex numbers λ for which H − λ : D(H) → H is not
injective. The continuous spectrum is constituted by those λ such that H−λ
is injective and its range is dense. The residual spectrum consists of those λ
for which H − λ is injective and its range is not dense. The spectrum σ(H)
is the union of these three disjoint spectra.

The spectrum of selfadjoint operators is non empty, real, and the residual
spectrum is empty, while the spectrum of non self-adjoint operators can be
empty or coincide with the whole complex plane (see, e.g., refs. [21, 22]). As
already mentioned, the spectrum of an operator is meaningfully defined only
for closed operators, that is, those for which the set

{〈Hψ,ψ〉 : ψ ∈ D}
is a linear closed subspace of H ×H. In Subsection 3.2, we show that H is
closed and that σ(H) reduces to the point spectrum. For this purpose we
next introduce the central auxiliary concept of numerical range.

3.1. Numerical range. The numerical range of H is denoted and defined
as

W (H) := {〈Hψ,ψ〉 : ψ ∈ D(H), ‖ψ‖ = 1}.
In general W (H) is neither open nor closed, even when H is a closed operator.
For H bounded the following spectral inclusion holds:

σ(H) ⊂ W (H).

Theorem 3.1. The boundary of the numerical range of H is given by

y2 = γ2

(
x− 1

2

)2

, x ≥ 1

2
. (7)
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Figure 1. Numerical range of H, γ = 1/2.

Proof : By the Toeplitz-Hausdorff Theorem, the numerical range of H is con-
vex. So, let us consider the supporting line of W (H) perpendicular to the
direction θ. The distance of this line to the origin is the lowest eigenvalue of

<(e−iθH) = b∗b cos θ − iγ
2

(b∗2 − b2) sin θ +
cos θ

2
,

provided this operator is bounded from below, which occurs for −π/2 ≤ θ <
π/2. The eigenvalues of <(e−iθH) are readily determined by the EMM [10],
and they are found to be

En(θ) =
1

2
cos θ + n

√
cos2 θ − γ2 sin2 θ, n ≥ 0,

with E0(θ) < E1(θ) < E2(θ) < . . . , provided θ is such that cos2 θ−γ2 sin2 θ ≥
0. Let us consider, for a fixed n, the line perpendicular to the direction θ at
a distance En(θ) from the origin. Its equation is given by

x cos θ + y sin θ = En(θ). (8)

The envelope of these lines is the n-th boundary generating curve and is
obtained eliminating θ between (8) and

−x sin θ + y cos θ =
dEn(θ)

dθ
.
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Easy computations show that it is given by(
x− 1

2

)2

− y2

γ2
= n2.

The boundary generating curves, n = 0, 1, 2, 3, . . ., form a family of nested
hyperbola branches, in which the outward one degenerates into the asymp-
totes.

The boundary of W (H) corresponds to n = 0 and is given by (7).

3.2. Accretivity of H. An operator is said to be accretive if its numerical
range is a subset of the sector with vertex at the origin and semi-angle 0 ≤
ω < π/2,

S0,ω = {z ∈ C : 0 ≤ | arg z| ≤ ω}.

An operator H is m-accretive if its numerical range is contained in the closed
right half-plane and the so called resolvent bound holds:

∀λ ∈ C, <(λ) < 0, ‖(H − λ)−1‖ ≤ 1/|<(λ)|.

Theorem 3.2. The operator H is m-accretive.

Proof : Obviously, the operator H is accretive because W (H) ⊂ S0,π/2. We
show that for any z ∈ C, with <(z) < 0, the resolvent bound holds. We have

dist(z,W (H)) ≤ |〈Hψ,ψ〉 − z| = |〈(H − z)ψ, ψ〉| ≤ ‖(H − z)ψ‖.

As dist(z,W (H)) ≥ |<(z)|, having in mind Theorem 3.1, the result follows.

The closed operator H on H has a compact resolvent if ρ(H) 6= Ø and the
inverse operator, (H − λ)−1, for some λ ∈ ρ(H), is compact. Notice that
<(H) is an m-accretive operator, since <(H) is Hermitian and W (<(H)) lies
in the positive real axis.

Moreover, <(H) is a closed operator, has a compact resolvent and since
the perturbation operator V is relatively bounded with respect to <(H) with
relative bound smaller than 1, then H = <(H)+λV has a compact resolvent
[15, Theorem 5.4.1]. Now, by [15, Theorem IX, 2.3], if H has a compact
resolvent, then σ(H) = σp(H).
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3.3. Pseudospectrum. The set of the eigenfunctions of a self-adjoint op-
erator with purely discrete real spectrum can be orthonormalized so that it
forms an orthonormal basis. Eigenfunctions of a non-Hermitian operator H
are typically non orthogonal. The eigenfunctions of H, that has a purely dis-
crete real spectrum, form a Riesz basis if H is quasi-Hermitian (see (1)) with
bounded and boundedly invertible metric Θ. Riesz basicity is not preserved
by an unbounded operator.

(a) Pseudospectral lines (b) Zoom of the relevant portion

Figure 2. Pseudospectral lines of the 100×100 principal subma-
trix of the matrix representation of the operator H. The dashed
lines represent the numerical range boundary and the dots are
the eigenvalues.

Our objective is to show that the eigenfunctions Ψn do not form a Riesz
basis, and so any metric Θ in (1) is necessarily singular, that is, no bounded
metric with bounded inverse exists.

For this purpose, we consider the ε-pseudospectrum of H, ε > 0, denoted
and defined as follows

σε(H) := {z ∈ C : ‖(H − z)−1‖ > ε−1}
with the convention ‖(H − z)−1‖ =∞ for z ∈ σ(H). The ε-pseudospectrum
always contains an ε-neighborhood of the spectrum. If the operator is self-
adjoint, equality holds and H is said to have a trivial pseudospectrum. A non
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self-adjoint operator has a typically much larger pseudospectrum, although
contained in an ε-neighborhood of the numerical range. This means that
very small perturbations may drastically change the spectrum.

Numerical computations carried out with Matlab suggest that the pseudo
spectrum of H is far from being trivial. By adapting the proof of Theorem
7 in [16] it can be shown that there are complex pseudo-eigenvalues con-
tained in the numerical range. A non trivial pseudospectrum implies the non
existence of a bounded metric [21]. In Fig. 2, the pseudospectrum of the
100 × 100 principal submatrix of the matrix representation of the operator
H, for γ = 1/2, is shown, as computed with MATHLAB pseudospectra GUI,
Tom Wright, Oxford University Computing Laboratory. The portion of the
pseudospectrum bounded by a parallel to the imaginary axis and containing
all real eigenvalues, remains (practically) unchanged as n increases.

3.4. Completeness of eigenfunctions. We will show that the eigenfunc-
tions of H form a complete set in L2(R). Completeness of the system {Ψn}
means that its span is dense in L2(R). A basis is complete, but the converse
may not be true.

The m-accretivity of H implies that −iH is dissipative, i.e.,

=〈HΨ,Ψ〉 ≤ 0, ∀Ψ ∈ D(H).

As a consequence, the imaginary part of (−iH − ε)−1, for ε < 0, is non-
negative,

1

2i
((−iH − ε)−1 − (iH∗ − ε)−1) ≥ 0.

Since the resolvent is trace class [17, p. 201], applying [14, Theorem VII,8.1],
the completeness of {Ψn} follows.

3.5. G-quasi bases. Let Ψ̃n(x) be the eigenfunction of H∗ sharing with
Ψn(x) the same eigenvalue of H. The set

FΨ̃ = {Ψ̃k(x) : k ≥ 0}

is complete but not necessarily a basis. The completeness follows exchanging
H with H∗. It is known [21] that eigenfunctions of an operator H with purely
discrete real spectrum form a Riesz basis if and only if H is quasi-Hermitian
with bounded and boundedly invertible metric.
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The eigenfunctions Ψn(x), Ψ̃m(x), m, n = 0, 1, 2, 3, . . . , constitute biorthog-
onal systems, as

〈Ψm, Ψ̃n〉 = δmn.

Let
G := span{Ψn(x)} ∩ span{Ψ̃n(x)}.

The following resolution of the identity holds, for any f, g ∈ G.

〈f, g〉 =
∑
m,n

〈f, Ψ̃n〉〈Ψn, g〉
〈Ψn, Ψ̃n〉

=
∑
m,n

〈f,Ψn〉〈Ψ̃n, g〉
〈Ψ̃n,Ψn〉

.

Since FΨ is complete, span{Ψn(x)} is dense. Analogously, since FΨ̃ is

complete, span{Ψ̃n(x)} is dense. If G is dense, the wave functions Ψn and

Ψ̃n are G-quasi basis, in Bagarello sense, as it can be easily verified [4, 5].
For our purposes it is enough to consider

〈f, g〉 =
∑
m,n

〈f, Ψ̃n〉〈Ψn, g〉
〈Ψn, Ψ̃n〉

,

for f ∈ span{Ψn(x)}, g ∈ span{Ψ̃n(x)}, a situation which Bagarello also
envisages.

4. The dynamics of the system
For the physical interpretation of the model, we consider the following

subset of H:

Dphys =

{
ψ(x) ∈ H : ψ(x) =

∞∑
k=0

ck Ψk(x), ck ∈ C

}
.

It is assumed that this set contains all the physically relevant wave functions
of the physical system. This assumption is convenient because it allows the
easy solution of the time dependent Schrödinger equation

i
dψ(x)

dt
= Hψt(x).

Indeed, if ψ0(x) =
∑∞

n=0 cnΨn(x), then ψt(x) =
∑∞

n=0 cne
−EntΨn(x). Even if

FΨ is not a basis of H, it is sufficient to expand physically meaningful wave
functions.

The inner product 〈·, ·〉 is not adequate for expressing the conservation
of the particle number and for the computation of the expectation value
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of energy measurements, as it may yield complex values. For functions
Ψα(x),Ψβ(x) ∈ S̃, we consider the physical inner product defined by

� Ψα,Ψβ �= 〈eγx2Ψα, e
γx2Ψβ〉 =

∫ +∞

−∞
e2γx2Ψα(x)Ψβ(x)dx.

Following Mostazadeh [19], we say that the physical Hilbert space is the space
of the functions Ψ(x) ∈ Dphys endowed with the inner product � ·, · �.

The Hamiltonian H is symmetric with respect to the inner product �
·, · �, for wave functions Ψ(x) ∈ Dphys, because

� HΨ,Ψ�=

∫ +∞

−∞
e2γx2(HΨ(x))Ψ(x)dx

=

∫ +∞

−∞
eγx

2

(HΨ(x))eγx2Ψ(x)dx

=� Ψ, HΨ� .

Since � HΨ,Ψ�=� Ψ, HΨ� for wave functions Ψ(x) ∈ Dphys, it is clear
that the Rayleigh quotients of H are real for the inner product � ·, · �,

� HΨ,Ψ�
� Ψ,Ψ�

∈ R

and that a time-invariant norm is obtained

� e−iHtΨ, e−iHtΨ�=� Ψ,Ψ� .

Let us consider now the operators

d := e−γx
2

aeγx
2

= (1 + γ2)1/4x+
1

2

1

(1 + γ2)1/4

(
d

dx
+ 2γx

)
,

d‡ := e−γx
2

a∗eγx
2

= (1 + γ2)1/4x− 1

2

1

(1 + γ2)1/4

(
d

dx
+ 2γx

)
,

which are pseudo-bosonic in Bagarello sense. That is, the set S(R) is stable
under the action of the operators d, d‡, d∗, d‡

∗
, and the vacua of the operators

d and d‡
∗
,

exp

(
− x2

4(
√

1 + γ2 + γ)

)
, exp

(
− x2

4(
√

1 + γ2 − γ)

)
,
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respectively, are in it. These operators are called pseudo-bosonic, and not
bosonic, because d‡ 6= d∗, with respect to the inner product 〈·, ·〉. The fac-
torization of H in terms of the pseudo-bosonic operators is straightforward:

H =
√

1 + γ2 d‡d+
1

2

√
1 + γ2 1.

With respect to the inner product � ·, · �, d‡ is the adjoint of d.
The physical inner product is appropriate to characterize the transition

probability amplitude from the state Ψα to the state Ψβ,

AΨα→Ψβ
=

� Ψα,Ψβ �√
� Ψα,Ψα �� Ψβ,Ψβ �

. (9)

Remark 4.1. In the definition of Dphys, it is possible, and advantageous,
to replace the restriction ψ ∈ H = L2(R) by � ψ, ψ �< ∞. Endowed
with the inner product � ·, · �, Dphys becomes a Hilbert space in which
H is Hermitian and the set of eigenfunctions {Ψn} a basis. In this Hilbert
space, H0 is no longer Hermitian and its eigenfunctions are no longer a basis.
Indeed, for the inner product � ·, · �, the adjoint of H0 is given by

H‡0 = −1

4

d2

dx2
+ x2 − γ

(
1

2
+ x

d

dx

)
.

Similarly, the bosonic raising operator d‡ is the adjoint of the bosonic lowering
operator d.

5. Final remarks
Viewing the operator H as the Hamiltonian of a physical model, problems

arise from non hermiticity. The original inner product, defined in the Hilbert
space H where H lives, is not adequate for the physical interpretation of
the model. A new inner product, which is appropriate for that purpose, has
been introduced. Although H is non-Hermitian with respect to the initial
inner product 〈·, ·〉, it becomes symmetric with respect to the physical inner
product � ·, · �= 〈Θ·, ·〉.

The concept of pseudospectrum is of great relevance for the investigation of
non-Hermitian operators in the context of QM, as well as the one of numerical
range. Non-Hermitian operators have typically non-trivial pseudospectra. If
the quasi-Hermiticity relation holds with a positive bounded and boundedly
invertible metric, then the pseudospectrum of H is trivial. A non-trivial
pseudospectrum determines the non-existence of such a metric. Moreover, it
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implies the non existence of a Riesz basis and of an orthonormal basis, which
are very useful for a rigorous mathematical foundation of QM.

A new inner product, which is adequate for the physical interpretation, has
been consistently introduced.

The case of Hamiltonians possessing complex eigenvalues is of an entirely
different nature. It arises in connection with models of dissipative or absorp-
tive processes.
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