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Abstract: We prove that the tunnel number of a satellite chain link with a number
of components higher than or equal to twice the bridge number of the companion is
as small as possible among links with the same number of components. We prove
this result to be sharp for satellite chain links over a 2-bridge knot. We also observe
that the links in the main result satisfy the genus versus rank conjecture.
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1. Introduction
An unknotting tunnel system for a link L in S3 is a collection of prop-

erly embedded disjoint arcs {t1, . . . , tn} in the exterior of L, such that the
exterior of L ∪ t1 ∪ · · · ∪ tn is a handlebody. The minimal cardinality of an
unknotting tunnel system of L is the tunnel number of L, denoted t(L). The
boundary surface of this handlebody defines an Heegaard decomposition of
E(L). We recall that a Heegaard decomposition of a compact 3-manifold M
is a decomposition of M into two compression bodies H1 and H2 along a
surface F . The genus of F is referred to as the genus of the Heegaard de-
composition. If one of the compression bodies of a Heegaard decomposition
of genus g is a handlebody, we can naturally present the fundamental group
π1(M) with g generators: the core of the handlebody defines g generators,
and the compressing disks of the compression body give a set of relators.
In this case, the rank r(M) of π1(M), referred to as the rank of M , which
is the minimal number of elements needed to generate π1(M), is at most g.
Within this context, we define the Heegaard genus of M , denoted by g(M),
as the minimal genus over all Heegaard decompositions splitting M into one
handlebody and a compression body. Hence, as observed before, we have
r(M) ≤ g(M), and if M is a exterior of some link L in S3, E(L), we also
have t(L) = g(E(L)) − 1. Note that when M is closed or has connected
boundary, any Heegaard splitting of M consists of at least one handlebody;
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so, in this case, the Heegaard genus of M is the minimal genus among all
Heegaard decompositions of M . However, if the boundary of M has more
than one component, as a link exterior can have, then a Heegaard decompo-
sition of M might not decompose M into a handlebody and a compression
body; so, in this case the Heegaard genus of M , as defined above, might not
be the minimal genus among all Heegaard decompositions of M .
Under this setting, Waldhausen [10] asked whether r(M) can be realized
geometrically as the genus of a Heegaard decomposition splitting M into
one handlebody and a compression body, that is if r(M) = g(M), for
every compact 3-manifold M . This question became to be known as the
Rank versus Genus Conjecture. In [2], Boileau–Zieschang provided the first
counter-examples by showing that there are Seifert manifolds where the rank
is strictly smaller than the Heegaard genus. Later, Schultens and Weidman
[9] generalized these counter-examples to graph manifolds. Very recently,
Li [7] proved that the conjecture also doesn’t hold true for hyperbolic 3-
manifolds. As far as we know, the conjecture remains open for link exteriors
in S3. The first author [4] proved this conjecture to be true for augmented
links. In this paper, we show that this is also the case for “most” of chain
links, which we proceed to define.

An satellite n-chain link is a link L defined by a sequence of n ≥ 2 un-
knotted linked components where each component bounds a disk such that
each disk D of these intersects the other disks at exactly two arcs, each of
which with only one end point in ∂D. Note that if two such disks D and
D′ intersect at an arc, then this arc has one end point in ∂D and the other
end point in ∂D′. The regular neighborhood of the union of these disks is a
regular neighborhood of a knot or link K. We also refer to L as an n-chain
link over K. When K is the unknot, L is known in the literature simply as
an n-chain link [8, 1, 6]. When K is a non-trivial knot, L is a satellite link
with companion K and pattern an n-chain link (over the unknot).

The n-chain links over the unknot have been subject of recent attention
for the study of hyperbolic structures. For instance, Neumann and Reid [8]
showed that, for n ≥ 5, the complement of an n-chain link over the unknot
admits a hyperbolic structure. Agol [1] conjectures that, for n ≤ 10, an n-
chain over the unknot is the smallest volume hyperbolic 3-manifold with n
cusps. In [6] Kaiser, Purcell and Rollins proved that, for n ≥ 60, an n-chain
over the unknot cannot be the smallest volume hyperbolic 3-manifold with
n cusps.
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Figure 1. Left: a chain link over the unknot; Right: a chain
link over the trefoil.

In this paper we study unknotting tunnel systems of satellite chain links L,
and observe on the relation between Heegaard genus and rank of their exte-
riors. We know that if the companion of L is the unknot then the Heegaard
genus of E(L) is n (and equal to its rank). In the following theorem we prove
that this is also the case for satellite chain links with non-trivial companion
as long as the number of components of the link is sufficiently large.

Theorem 1. Let L be a n-chain link over a b-bridge knot K.
If n ≥ 2b, then the tunnel number of L is n− 1.

An immediate consequence of this theorem is that the rank versus genus
conjecture holds true for chain links with sufficiently high number of com-
ponents: Let L be an n-chain link over a b-bridge knot K. If n ≥ 2b, then
r(E(L)) = g(E(L)). In fact, from Theorem 1, we have g(E(L)) = n, and
from the “half lives, half dies” theorem ([5], Lemma 3.5) applied to E(L),
we have r

(
E(L)

)
≥ n. Then n = |L| ≤ r

(
E(L)

)
≤ g

(
E(L)

)
= n, and

r
(
E(L)

)
= g

(
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)
= n.

We also prove the following theorem for satellite 3-chain links.

Theorem 2. Let L be a satellite 3-chain link. Then the tunnel number of L
is greater than or equal to 3.

Hence, for chain links over 2-bridge knots, Theorem 1 is sharp. That is, if
L is a n-chain link over a 2-bridge knot K and t(L) = n−1, then n ≥ 4 (two
times the bridge number of K). This is a consequence of satellite 2-chain
links not having tunnel number one, as proved in [3] by Eudave-Muñoz and
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Uchida (or by following an argument as in Lemma 3), and of Theorem 2.
The authors wouldn’t be surprised Theorem 1 to be sharp for any number
of bridges of K.

This paper is organized into two sections, one for the proof of each theorem
mentioned above. Throughout the paper we assume all manifolds to be in
general position.

Acknowledgments
The first author was partially supported by CNPq grants 446307/

2014-9 and 306322/2015-3. The second and third authors were partially
supported by the Centre for Mathematics of the University of Coimbra
– UID/MAT/00324/2013, funded by the Portuguese Government through
FCT/MEC and co-funded by the European Regional Development Fund
through the Partnership Agreement PT2020.

Dedicatory
While this paper was under preparation Darlan Girão was diagnosed with

cancer. After a prolounged corageous and dignifying battle with his condi-
tion, Darlan died before we could finish this work together. Darlan has been
a very good friend and colleague, who we will miss. This paper is dedicated
to his memory.

2. Proof of Theorem 1
Let A the collection of arcs of intersection between the disks bounded by

the components of L, as in the definition of satellite chain link. Let R be a
regular neighborhood of the union of these disks, such that R is also a regular
neighborhood of K. Consider also a b-bridge sphere for K, denoted by S,
intersecting R in a collection of meridional disks. Denote by B and B′ the
balls bounded by S in S3.

Since n ≥ 2b, we can perform an ambient isotopy so that each component
of B∩R contains exactly one arc of A, and each component of B′∩R contains
at least one arc of A. In the exterior of L, we start by adding n− b tunnels
to N(L), denoted t1, . . . , tn−b, corresponding to regular neighborhoods of the
arcs of A in B′ ∩R. (See Figure 2.)

After an ambient isotopy of N(L∪ t1∪· · ·∪ tn−b), we obtain in B′ a regular
neighborhood N(Γ) of a graph Γ obtained from the b components of K ∩B′,
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Figure 2. An illustration of B and B′, with n− b tunnels in B′.

denoted c1∪ · · · ∪ cb, by adding n− 2b arcs parallel to K. Note that after the
isotopy, S intersects N(L ∪ t1 ∪ · · · ∪ tn−b) in 2b disks. (See Figure 3.)

Figure 3. The graph Γ in B and B′.

As (B′; c1, . . . , cb) is a trivial tangle, we add b−1 tunnels, denoted tn−b+1, . . . , tn−1,
to N(Γ) in its exterior in B′, such that N(Γ∪ tn−b+1 ∪ · · · ∪ tn−1) can be iso-
toped to become the whole B′ with n − 2b trivial 1-handles. (See Figure
4.)

Figure 4. The graph Γ ∪ tn−b+1 ∪ . . . ∪ tn−1 in B′.

Hence, the resulting space of the exterior of L ∪ t1 ∪ · · · ∪ tn−1 is ambient
isotopic to the exterior in B of the union of B ∩ L with some trivial arcs in
B − L. This means that the exterior of L ∪ t1 ∪ · · · ∪ tn−1 is a handlebody
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if and only if the exterior of B ∩ L in B is a handlebody. The components
of B ∩ R cobound, each with an arc in S, mutually disjoint disks. That is,
B ∩R is a collection of trivial 1-handles added to B′. The components of L
in each cylinder of B ∩ R define a trivial tangle in the respective cylinder.
And together with these cylinders being trivial 1-handles added to B′, we
have that the exterior of B′ ∪ L is a handlebody. That is, the exterior of
B ∩ L in B is a handlebody. Therefore, the tunnel number of L is at most
n−1 and, as L has n components, it is also at least n−1. Hence, the tunnel
number of L is n− 1.

3. Unknotting tunnel systems of satellite 3-chain links
Let L be a satellite 3-chain link over a non-trivial knot K. We will show

that t(L) ≥ 3.

Lemma 3. Let L be a 3-chain link over a non-trivial knot K. If the tunnel
number of L is 2, then there is a minimal unknotting tunnel system such that
one of the arcs is in one of the disks bounded by the components of L.

Proof : Denote the components of L by Li, for i = 1, 2, 3, and, respectively,
by Di the disks they bound, as in the definition of satellite chain link. We
denote also by Li a regular neighborhood of the components of L. The regular
neighborhood R of D = D1 ∪D2 ∪D3 is a solid torus, with K its core, and
we denote its boundary by T .

Let τ = τ1 ∪ τ2 ∪ τ3 be a system of disjoint arcs τi from the same point in
the exterior of R to Li, such that the exterior H of L ∪ τ is a handlebody.
Denote a regular neighborhood of L∪τ by G. Note that such a system exists,
since the tunnel number of L is 2.

We denote also by τ = τ1∪ τ2∪ τ3 a regular neighborhood of the these arcs.
As regular neighborhoods, the boundary of τ is a sphere meeting each Li at
a single disk (in τi). (See Figure 5).

We will show that there is some τ for which at least two τi are disjoint
from T . From the definition of T , this implies that one of the arcs from
the unknotting tunnel system can be isotoped into some disk Dj, as in the
statement of the lemma.

Hence, suppose that two τi intersect T , for any τ . Consider τ such that
the number of intersections with T , |τ ∩ T |, is minimal. Note that τ ∩ T is
non-empty, as there is no incompressible torus in a handlebody.
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Figure 5. A tunnel system of L (the dots represent the inter-
sections of τ and T ).

For the chosen τ , consider a complete system of meridian disks E = E1 ∪
E2∪E3 of H, and assume that the number of intersections of E with T , |E∩T |,
is minimal among all choices of E . Note that E ∩ T is non-empty, as there
is no incompressible torus, or punctured torus, in a 3-ball. Furthermore, no
component of E ∩ T is a closed curve. Otherwise, considering an innermost
one in E , we obtain a compressing disk for T or its boundary also bounds a
disk in T and we can reduce |E ∩ T |, contradicting its minimality.

As at least two τi intersect T , the components of G − T are balls (inter-
secting T in two or three disks) and solid tori (intersecting T in one or two
disks). (See Figure 6.) Note that the second and fourth types cannot coexist.

Figure 6. The components of G− T .

Let δ be an outermost arc of E ∩ T in E . The ends of δ are in the (disk)
components of G ∩ T . Let ∆ be the corresponding outermost disk in E , σ
the arc ∂∆− δ and Q the component of G− T that contains σ.

Case 1. Q is a ball.
Suppose that the ends of δ are in different disks of G ∩ T , say α and β.
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Then, we can stabilize the Heegaard decomposition by adding a tunnel over
δ, and as α aned β are now primitive with respect to ∆, we can destabilize
the resulting Heegaard decomposition by cutting along α or β. The resulting
tunnel system can also be described from three arcs from a point connecting
to the components of L. Hence, we obtain a τ with smaller |τ ∩ T |, contra-
dicting its minimality.
Suppose that the ends of δ are in the same disk α of G ∩ T . If Q has three
disks of intersection with T , then σ bounds a disk O in ∂Q with ∂α. In case
O is disjoint from T , using this disk, and E ∩ T not having closed curves, we
can reduce |E ∩T |, contradicting its minimality. In case O intersects T , then
σ co-bounds a disk Σ in Q, intersecting T only in its boundary. Hence, if ∂Σ
bounds a disk in T we can reduce |E ∩T |, contradicting its minimality, other-
wise Σ is a compressing disk for T , which contradicts T being incompressible.

Case 2. Q is a solid torus.
Suppose that the ends of δ are in different disks of G ∩ T . Then, we are in
the situation similar to the first part of case 1.
Suppose now that the ends of δ are in the same disk α of G ∩ T . Without
loss of generality, suppose that Q contains the regular neighborhood of L1.
As L1 is unknotted there is a ball in the solid torus bounded by T containing
L1. Let S be its boundary and, after a small isotopy if needed, suppose that
S intersects Q at a disk. Then, considering ∆∩ S, with an innermost curve,
outermost arc argument, we have that ∆ intersects S at a single arc δ′ with
both ends in σ, cutting a disk ∆′ from ∆. The arc δ′ co-bounds a disk O
in S with S ∩ Q. Hence, considering ∆′ and O, we have that σ co-bounds
a disk with α in the exterior of Q. As we are working in S3, either σ is
parallel to α in the boundary of Q, and using an argument as in Case 1 we
can reduce |E ∩ T | contradicting its minimality, or σ intersects a meridian of
Q geometrically once. Therefore, L1 is parallel to σ ∪ α, and to T . As the
other components of L are trivial in the torus bounded by T , this means that
L1 is unlinked from each of them, which is a contradiction with the definition
of chain link.

Suppose now that {t, t′} is an unknotting tunnel system for L, with t′ over
the arc of intersection of D1 and D2. Let R be a regular neighborhood of
L1 ∪ t′ ∪ L2, which we consider as a genus two handlebody. For convenience
in the argument, we interchange, through an isotopy, the intersection of L1

with t′ with the intersection of L2 with t′, as represented in Figure 7, and
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keep denoting the resulting circles by L1 and L2.

Figure 7. A new tunnel system of L.

Let B be a ball intersecting t′ at a single arc with the pattern of K ′, where
K ′ is a prime component of K, and disjoint from L1, L2 and L3. Let S
be the boundary of B. We consider t, connecting R and L3, such that the
intersection with S has minimal number of components, denoted |S ∩ t|.
Lemma 4. The arc t, as above, is disjoint from S.

Proof : Let G be a regular neighborhood of R∪ t∪L3. As {t, t′} is an unknot-
ting tunnel system for L, we have that the exterior of G is an handlebody,
which we denote by H. Let E = E1 ∪ E2 ∪ E3 be a complete system of
meridian disks of H, with minimal number of intersections with S, denoted
|E ∩ S|. Following a similar argument as in Lemma 3 we have that there are
no closed curves in E ∩ S, all components are arcs.

The components of G − S are balls (intersecting S in two or three disks)
and solid tori (intersecting S in one or two disks). Let δ be an outermost arc
of E ∩S in E , ∆ a outermost disk δ co-bounds in E with an arc σ of ∂E , and
Q the component of G− S that contains σ. As in Lemma 3 we separate the
argument into two cases.

Case 1. Q is a ball.
Suppose that δ has ends in different components of G ∩ S. If the ends of δ
correspond to the intersection of S with t′, then the arc B ∩ t′ is unknotted,
contradicting K ′ being non-trivial. If δ has at most one end corresponding
to the intersection of S with t′ then, by an isotopy of S along δ through ∆,
we reduce |G ∩ S|, contradicting its minimality.
Suppose that δ has ends in the same component α of G ∩ S. If σ co-bounds
a disk in ∂Q with α disjoint from T , using this disk for an isotopy of E , and
eliminating any originated closed curves, we reduce |E ∩ S|, contradicting
its minimality. Note that this is always the case when Q intersects T at
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two components. If Q intersects T at three disks, then two correspond to
the intersection of S with t′, and we assume that σ separate the other two
components of Q ∩ T . If α corresponds to a intersection of S with t′ then σ
co-bounds a disk O in Q disjoint from t′ together with α. The disk O∪∆ is a
properly embedded disk in B that cuts a ball B′ from B disjoint from B ∩ t′.
By cutting B′ from B, we obtain a ball, say also denoted B, intersecting t′ at
an arc with the same pattern of K ′, and intersecting t in fewer components,
contradicting the minimality of |G∩S|. If α corresponds to a intersection of
S with t then σ co-bounds with alpha a disk O in Q intersecting t′ at a single
point. Hence, the disk O ∪ ∆ in B cuts the string B ∩ t′ at a single point.
Using O ∪∆ we decompose the 1-string tangle (B,B ∩ t′) into two 1-string
tangles. As K ′ is prime, one of the tangles is trivial and the other has a string
with the pattern of K ′. If we consider the ball of the latter, denoted also by
B, and consider its boundary, we obtain a contradiction with the minimality
of |G ∩ S|.

Case 2. Q is a solid torus.
Suppose that δ has ends in different components of G − S. Then, following
a similar argument as in Case 1 of Lemma 3, we obtain an tunnel t in {t, t′}
with smaller |S ∩ t|, contradicting its minimality.
Suppose now that the ends of δ are in the same disk α of G ∩ S. We an
argument as in Case 2 of Lemma 3. If Q contains L1, or L2, then we show
that L1, or L2, is unlinked from L3, a contradiction. If Q contains L3m then
we show that L3 is unlinked from L1 and L2, a contradiction.

Proof of Theorem 2: Suppose that the tunnel number of L is at most two.
From Lemmas 3 and 4, we have that L has an unknotting tunnel disjoint
from the satellite torus. This torus is then essential in a handlebody, de-
fined by the exterior of L together with the unknotting tunnel system, which
is a contradiction as there are no embedded closed surfaces essential in a
handlebody. Hence, the tunnel number of L is at least 3.
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