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Abstract: Let A be a 2-category with suitable opcomma objects and pushouts.
We give a direct proof that, provided that the codensity monad of a morphism
p exists and is preserved by a suitable morphism, the factorization given by the
lax descent object of the higher cokernel of p is up to isomorphism the same as
the semantic factorization of p, either one existing if the other does. The result
can be seen as a counterpart account to the celebrated Bénabou-Roubaud theorem.
This leads in particular to a monadicity theorem, since it characterizes monadicity
via descent. It should be noted that all the conditions on the codensity monad
of p trivially hold whenever p has a left adjoint and, hence, in this case, we find
monadicity to be a 2-dimensional exact condition on p, namely, to be a 2-effective
monomorphism of the 2-category A.
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Introduction
Descent theory, originally developed by Grothendieck [18], has been gen-

eralized from a solution of the problem of understanding the image of the
functors Modpfq in which Mod : Ring Ñ Cat is the usual pseudofunctor be-
tween the category of rings and the 2-category of categories that associates
each ring R with the category ModpRq of right R-modules [19, 29].

It is often more descriptive to portray descent theory as a higher dimen-
sional counterpart of sheaf theory [27]. In this context, the analogy can be
roughly stated as follows: the descent condition and the descent data are
respectively 2-dimensional counterparts of the sheaf condition and the gluing
condition.
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The most fundamental constructions in descent theory are the lax descent
category and its variations [28, 56, 41]. Namely, given a truncated pseudo-
cosimplicial category

A : ∆3 Ñ Cat

Ap1q
//

//
Ap2qoo

//
//
//
Ap3q

we construct its lax descent category [42] or descent category [39, 43]. An
object of the lax descent category/descent category is an object x of the
category Ap1q endowed with a descent data which is a morphism/invertible
morphism Apd1qpxq Ñ Apd0qpxq satisfying the usual cocycle/associativity
and identity conditions. Morphisms are morphisms of Ap1q that respect the
descent data.

Another perspective, which highlights descent theory’s main role in Galois
theory [22, 23, 24, 25], is that, given a bifibred category, the lax descent
category of the truncated pseudocosimplicial category induced by an internal
category generalizes the notion of the category of internal actions [28]. If the
bifibration is the basic one, we actually get the notion of internal actions.
The simplest example is the category of actions (functors) of a small category
in Set: a small category a is just an internal category in Set and the category
of actions (functors) a Ñ Set coincides with the lax descent category of the
composition of the (image by op : Catco

Ñ Cat of the) internal category a,
oppaq : ∆3 Ñ Setop, with the pseudofunctor Set{´ : Setop

Ñ Cat that comes
from the basic fibration.

Given a pseudofunctor F : Cop Ñ Cat that comes from a bifibred category
with pullbacks and a morphism q : w Ñ w1 of C, Bénabou and Roubaud [5]
showed that the lax descent category of the truncated pseudocosimplicial
object

Fpwq
//

//
Fpw ˆq wqoo

//
//
//
Fpw ˆq w ˆq wq

given by the composition of F with the internal groupoid induced by q,
in which w ˆq w denotes the pullback of q along itself and the functors
of the diagram are induced by the usual canonical morphisms (projections
and diagonal), is equivalent to the Eilenberg-Moore category of the monad
induced by the adjunction Fpqq! % Fpqq, provided that the bifibred category
satisfies the so called Beck-Chevalley condition [41, 43]. In particular, in this
case, q is of effective F -descent (which means that Fpqq gives the lax descent
category of the above) if and only if Fpqq is monadic.
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Since monad theory [21, 16, 32, 3] already was a established subfield of cat-
egory theory, the Bénabou-Roubaud theorem gave an insightful connection
between the theories, motivating what is nowadays often called monadic ap-
proach to descent [7, 43] by giving a characterization of descent via monadic-
ity in several cases of interest [23, 27, 48, 36, 8, 10, 11, 12, 13].

The main contribution of the present article can be seen as a counterpart
account to the Bénabou-Roubaud theorem. We give the semantic factoriza-
tion via descent, hence giving, in particular, a characterization of monadicity
via descent. Although the Bénabou-Roubaud theorem is originally a result
on the setting of the 2-category Cat, our contribution takes place in the more
general context of 2-dimensional category theory [34, 31], or in the so called
formal category theory [17, 51], as briefly explained below.

In his pioneering work on bicategories, Bénabou [4] observed that the fun-
damental notion of monad, formerly called standard construction or triple,
coincides with the notion of a lax functor 1Ñ Cat and can be pursued in any
bicategory, giving convincing examples to the generalization of the notion.

Taking Bénabou’s point in consideration [57], Street [52, 51] gave a formal
account and generalization of the former established theory of monads by
developing the theory within the general setting of 2-categories. The formal
theory of monads [51] is a celebrated example of how 2-dimensional cate-
gory theory can give insight to 1-dimensional category theory, since, besides
generalizing several notions, it conceptually enriches the formerly established
theory of monads [3, 15]. Street [51] starts showing that, when it exists, the
Eilenberg-Moore construction of a monad in a 2-category A is given by a
right 2-reflection of the monad along a 2-functor between the 2-category A
and the 2-category of monads in A. From this point, making good use of the
four dualities of a 2-category, he develops the formal account of aspects of
monad theory, including distributive laws [2], comonads, Kleisli construction,
and a generalization of the semantics-structure adjunction [38, 15].

The theory of 2-dimensional limits [53, 54, 30, 40], or weighted limits in
2-categories, also provides a great account of formal category theory, since
it shows that several constructions previously introduced in 1-dimensional
category theory are actually examples of weighted limits and, hence, are
universally defined and can be pursued in the general context of a 2-category.

Examples of the constructions that are particular weighted limits are: the
lax descent category and variations, the Eilenberg-Moore category [16] and
the comma category [35]. Duality also plays important role in this context:
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it usually illuminates or expands the original concepts of 1-dimensional cat-
egory theory. For instance:

– The dual of the notion of descent object gives the notion of codes-
cent object, which is important, for instance, in 2-dimensional monad
theory [33, 39, 42];

– The dual notion of the Eilenberg-Moore object in Cat gives the Kleisli
category [32] of a monad, while the codual gives the category of the
coalgebras of a comonad.

Despite receiving less attention in the literature than the notion of comma
object, the dual notion, called opcomma object, was already considered in [53]
and it is fundamental to the present work. More precisely, given a morphism
p : eÑ b of a 2-category A, if A has suitable opcomma objects and pushouts,
on one hand, we can consider the higher cokernel

Hp : ∆Str Ñ A

b
δ0
pÒp

//

δ1
pÒp

//
b Òp boo

//
//
//
b Òp b Òp b

of p, defined in 2.3, whose dual was firstly defined for Cat in [56]. By the
universal property of the lax descent object, we get a factorization

e

&&

p
// b

lax-Desc pHpq

88

of p, provided that A has the lax descent object of Hp. If the comparison
morphism eÑ lax-Desc pHpq is an equivalence, we say that p is a 2-effective
monomorphism. This concept is actually self-codual, meaning that its codual
notion coincides with the original one.

On the other hand, if such a morphism p has a codensity monad t [38, 15,
51], which means that the right Kan extension of p along itself exists in A,
we have the semantic factorization [15, 51]

e
p

//

��

b

bt

@@
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provided that A has the Eilenberg-Moore object bt of t. In this case, if the
comparison e Ñ bt is an equivalence, we say that p is monadic. The codual
notion is that of comonadicity.

The main theorem of the present article relates both the factorizations
above. More precisely, Theorem 4.12 states the following:
Main Theorem: Assume that the 2-category A has the higher cokernel of
p and ranpp exists and is preserved by the universal morphism δ0

pÒp of the
opcomma object b Òp b.

There is an isomorphism between the Eilenberg-Moore object bt and the lax
descent object lax-Desc pHpq, either one existing if the other does. In this
case, the semantic factorization is isomorphic to the factorization induced by
the higher cokernel and the lax descent object.

In particular, this gives a formal monadicity theorem as a corollary, since
it shows that, assuming that a morphism p of A satisfies the conditions
above on the codensity monad, p is monadic if and only if p is a 2-effective
monomorphism. Moreover, since this result holds for any 2-category, we can
consider the duals of this formal monadicity theorem. Namely, we also get
characterizations of comonadic morphisms, Kleisli and co-Kleisli morphisms.

By the Dubuc-Street formal adjoint-functor theorem [15, 58, 17], if p has
a left adjoint, the codensity monad is the monad induced by the adjunction
and ranpp is absolute. Thus, in this case, assuming the existence of the
higher cokernel, our theorem trivially holds and both the factorizations above
coincide, either one existing if the other does. Therefore, as a corollary of
our main result, we get the following monadicity result:
Monadicity Theorem: Assume that the 2-category A has the higher cokernel
of p : eÑ b.

– The morphism p is monadic if and only if p is a 2-effective monomor-
phism and has a left adjoint morphism

– The morphism p is comonadic if and only if p is a 2-effective monomor-
phism and has a right adjoint morphism.

Recall that, in the particular case of A “ Cat (and other 2-categories,
such as the 2-category of enriched categories), we have Beck’s monadicity
theorem [3, 14, 15]. It states that: a functor is monadic if and only if it
creates absolute coequalizers and it has a left adjoint. Hence, by our main
result, we can conclude that: provided that the functor p has a left adjoint, p
creates absolute coequalizers if and only if it is a 2-effective monomorphism.
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The fact above suggests the following question: are 2-effective monomor-
phisms in Cat characterized by the property of creating absolute coequaliz-
ers? In Remark 5.13 we show that the answer to this question is negative by
the self coduality of the concept of 2-effective monomorphism and non-self
duality of the concept of functor that creates absolute coequalizers.

This work was motivated by three main aims. Firstly, to get a formal
monadicity theorem given by a 2-dimensional exact condition. Secondly, to
better understand the relation between descent and monadicity in a given
2-category and, together with [43], get alternative guiding templates for the
development of higher descent theory and monadicity (see, for instance, [20,
56]). Thirdly, to improve the understanding of aspects on descent theory
related to Janelidze-Galois theory [24].

Although we do not make these connections in this paper, the results on 2-
dimensional category theory of the present work already establish framework
and have applications to the author’s ongoing work on descent theory in the
context of [26, 27, 43].

The main aim of Section 1 is to set up basic terminology related to the
category of the finite nonempty ordinals ∆ and its strict replacement ∆Str.
As observed above, this work is meant to be applicable in the classical con-
text of descent theory and, hence, we should consider lax descent categories
of pseudofunctors ∆ Ñ Cat. In order to do so, we consider suitable replace-
ments ∆Str Ñ Cat.

The main results (Theorem 4.11 and Theorem 4.12) can be seen as theo-
rems on 2-dimensional limits and colimits. For this reason, we recall basics
on 2-dimensional limits [53, 54, 30, 33, 42, 40] in Section 2. We give an ex-
plicit definition of the weights and universal properties of the 2-dimensional
limits related to the definition of higher cokernel. This helps to establish
terminology and framework for the rest of the paper.

We also give an explicit definition of the weight for the lax descent ob-
ject [53, 33, 42] for 2-functors ∆Str Ñ A in 2.4 that agrees with the usual
setting of [27, 28], useful to establish the lax descent factorization induced
by the higher cokernel of a morphism p and to future work on giving further
applications in descent theory within the context of [26, 43].

In Section 3, we recall basic aspects of Eilenberg-Moore objects in a 2-
category A. Given a tractable morphism p in A, it induces a monad and, in
the presence of the Eilenberg-Moore objects, it also induces a factorization,
called herein semantic factorization (see [38, 51] or, more particularly, pages
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74 and 75 of [15]). We are only interested in morphisms p that have codensity
monads, that is to say, the right Kan extension of p along itself. We recall
the basics of this setting, including the definitions of right Kan extensions
and codensity monads in Section 3, most of which can be found in [51, 58].

We do not present more than very basic toy examples of codensity monads.
We refer to [15] for the classical theory on codensity monads, while [37, 1] are
recent considerations that can be particularly useful to understand interesting
examples.

Still in Section 3, Lemma 3.3 states a straightforward connection between
opcomma objects and right Kan extensions. The statement is particularly
useful for establishing an important adjunction (see Propositions 4.1 and 4.2)
and proving the main results. Also important for these proofs, the Dubuc-
Street formal adjoint-functor theorem [15, 58, 17] and a proof of it are recalled
in Theorem 3.10.

The mate correspondence [31, 41, 50] or calculus of mates is a useful frame-
work in 2-dimensional category theory that states an isomorphism between
two special double categories that come from each 2-category A. We refer to
[31, 50] for more structured considerations. The mate correspondence plays
a central role in the proof of Theorem 4.11, but we only need it in very basic
terms as recalled in Remark 3.11, with which we finish Section 3.

In Section 4 we establish an important condition to the main theorem,
which arises from Propositions 4.1 and 4.2: the condition of preservation of
ranpp by the universal morphism δ0

pÒp, characterizing the existence of a left

adjoint to the universal morphism δ0
pÒp. We then illustrate this condition with

examples and counterexamples in Remarks 4.3, 4.4, 4.5 and 4.6. Finally, we
go towards the proof of the main result, constructing another adjunction in
Proposition 4.8, defining particularly useful 2-cells for our proof in Lemma
4.10 and finally proving Theorem 4.11.

The final section is mostly intended to apply our main result in order to
get our monadicity theorem using the concept of 2-effective monomorphism.
We finish the article with a remark on the self-coduality of this concept,
in opposition to the non-self duality of the property of creating absolute
coequalizers. This gives a comparison between the Beck monadicity theorem
and ours, showing in particular that 2-effective monomorphisms in Cat are
not characterized by the property of creating absolute coequalizers.
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1. Two categories delta
Let Cat be the cartesian closed category of categories (see, for instance,

Section 1 of [42, 40]) in some universe. We denote the internal hom by

Catr´,´s : Catop
ˆ Cat Ñ Cat.

A 2-category A herein is the same as a Cat-enriched category. As usual, the
composition of 1-cells (morphisms) are denoted by ˝, ¨ or omitted whenever
it is clear from the context. The vertical composition of 2-cells is denoted by
¨ or omitted when it is clear, while the horizontal composition is denoted by
˚. Recall that, from the vertical and horizontal compositions, we construct
the fundamental operation of pasting [47, 55], introduced in [4, 31].

As mentioned in the introduction, duality is one of the most fundamental
aspects of theories on 2-categories. Unlike 1-dimensional category theory,
2-dimensional category theory has four duals [34, 41]. More precisely, any
2-category A gives rise to four 2-categories: A, Aop, Aco, Acoop which are
respectively related to inverting the directions of nothing, morphisms, 2-cells,
morphisms and 2-cells. Hence every concept/result gives rise to four (not
necessarily different) duals: the concept/result itself, the dual, the codual,
the codual of the dual.

Although it is important to keep in mind the importance of duality, we
usually leave to the interested reader the straightforward exercise of stating
precisely the four duals of most of the dualizable aspects of the present work.

In this section, we fix notation related to the categories of ordinals and
the strict replacement ∆Str. We denote by ∆ the locally discrete 2-category
of finite nonempty ordinals and order preserving functions between them.
Recall that ∆ is generated by the degeneracy and face maps. That is to say,
∆ is generated by the diagram

1
d0 //

d1 //
2s0oo

d0 //

d1 //

d2 //
3

s0

��

s1

__

//////// ¨ ¨ ¨gg\\

zz

with the following relations:

dkdi “ didk´1, if i ă k;

sksi “ sisk`1, if i ď k;

skdi “ disk´1, if i ă k;

skdi “ id, if i “ k or i “ k ` 1;

skdi “ di´1sk, if i ą k ` 1.
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We are particularly interested in the sub-2-category ∆3 of ∆ with the objects
1, 2 and 3 generated by the morphisms below.

1
d0 //

d1 //
2s0oo

d0 //

d1 //

d2 //
3

For simplicity, we use the same notation to the objects and morphisms of ∆
and the image by the usual inclusion ∆ Ñ Cat which is locally bijective on
objects. It should be noted that the image of the faces and degeneracy maps
by ∆ Ñ Cat are given by:

dk :n´ 1 Ñ n

t ÞÑ

"

t` 1, if t ě k

t, otherwise

sk :n` 1 Ñ n

t ÞÑ

"

t, if t ď k

t´ 1, otherwise.

Furthermore, in order to deal with the original setting of descent theory, we
consider the 2-category ∆Str, which is the strict replacement of ∆3.

Definition 1.1. [∆Str] We denote by ∆Str the 2-category freely generated by
the diagram

1

d
0

//

d
1

//
2s

0oo

d
0

//

d
1 //

d
2

//
3

with the invertible 2-cells:

σ01 : d
1
d

0
ñ d

0
d

0,

σ02 : d
2
d

0
ñ d

0
d

1,

σ12 : d
2
d

1
ñ d

1
d

1,

n0 : s
0
d

0
ñ id1,

n1 : s
0
d

1
ñ id1.

Definition 1.2. [e∆Str
] There is a biequivalence e∆Str

: ∆Str « ∆3 which is
bijective on objects, defined by:

1 ÞÑ 1, 2 ÞÑ 2, 3 ÞÑ 3, d
k
ÞÑ dk, s

0
ÞÑ s0, dk

ÞÑ dk, σki ÞÑ iddidk , nk ÞÑ idid1 .

Remark 1.3. It should be noted that, given a 2-category A and a pseudo-
functor B : ∆3 Ñ A, we can replace it by a 2-functor A : ∆Str Ñ A defined
by

Apdkq :“ B ˝ e∆Str
pd

k
q

Apdkq :“ B ˝ e∆Str
pd

k
q

Aps0
q :“ B ˝ e∆Str

ps
0
q

Apσkiq :“ pbdidk´1q
´1
¨ bdkdi

Apnkq :“ bs0dk
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in which, for each pair of morphisms pv, v1q of ∆3, bvv1 is the invertible 2-cell

bvv1 : BpvqBpv1q ñ Bpvv1q
component of the pseudofunctor B (see, for instance, Definition 2.1 of [39]).
Whenever we refer to a pseudofunctor (truncated pseudocosimplicial cate-
gory) ∆3 Ñ Cat in the introduction, we actually consider the replacement
2-functor ∆Str Ñ Cat. See 4.12 and Proposition 4.17 of [43] for proofs and
further observations in this direction and see [46, 6, 33, 39, 42] for the general
coherence theorems and strict replacements.

2. Weighted colimits and the higher cokernel
The main result of this paper relates the factorization given by the lax de-

scent object of the higher cokernel of a morphism with the semantic factor-
ization, in the presence of opcomma objects and pushouts inside a 2-category
A. In other words, it relates the lax descent objects, the Eilenberg-Moore ob-
jects, the opcomma objects and pushouts. These are known to be examples of
2-dimensional limits and colimits. Hence, in this section, before defining the
higher cokernel and the factorization induced by its lax descent object, we
recall the basics of the special weighted (co)limits related to the definitions.

Two dimensional limits are the same as weighted limits in the Cat-enriched
context. Assuming that S is a small 2-category, let W : SÑ Cat,D : SÑ Cat
and D1 : Sop Ñ A be 2-functors. If it exists, we denote the weighted limit
of D with weight W by lim pW ,Dq. Dually, we denote by colim pW ,D1q the
weighted colimit of D1 provided that it exists. Recall that such a weighted
colimit exists if and only if we have a 2-natural isomorphism (in z)

Apcolim pW ,D1q , zq – rSop,Cats pW ,ApD1´, zqq – lim pW ,ApD1´, zqq
in which rSop,Cats denotes the 2-category of 2-functors Sop Ñ Cat, 2-natural
transformations and modifications. By the Yoneda embedding of 2-categories,
if a two dimensional (co)limit exists, it is unique up to isomorphism. It is
also important to keep in mind the fact that existing weighted limits in A are
created by the Yoneda embedding AÑ rAop,Cats, since it preserves weighted
limits and is fully faithful.

Recall that Cat has all weighted colimits and all weighted limits. More
generally, every weighted colimit can be constructed from some special 2-
colimits: tensor coproducts (with 2), coequalizers and (conical) coproducts.
Dually, weighted limits can be constructed from cotensor products, equalizers
and products.
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2.1. Tensorial coproducts. Tensorial products and tensorial coproducts
are weighted limits and colimits with the domain/shape 1. So, in this case,
the weight of a tensorial coproduct is entirely defined by a category a in Cat.
In this case, if b is an object of A, assuming its existence, we usually denote
by a b b the tensorial coproduct, while the dual, the cotensorial product, is
denoted by a&b. Clearly, the tensorial coproduct a b b in Cat is isomorphic
to the product aˆ b.

2.2. Pushouts and coproducts. Two dimensional conical (co)limits are
just weighted limits with a weight constantly equal to the terminal category 1.
Hence two dimensional conical (co)limits are entirely defined by the domain
(or shape) of the diagram.

The existence of a 2-dimensional conical (co)limit of a 2-functor D : SÑ A
defined in a locally discrete 2-category S (i.e. a diagram defined in a category
S) in a 2-category A is stronger than the existence of the 1-dimensional con-
ical (co)limit of the underlying functor of the 2-functor D in the underlying
category of A. However, in the presence of the former, by the Yoneda lemma
for 2-categories, both are isomorphic.

As in the 1-dimensional case, the conical 2-colimits of diagrams shaped by
discrete categories are the coproducts, while the conical 2-colimits of dia-
grams with the domain being the opposite of the category S below gives the
notion of pushout.

2

0

d1
??

1

d0
__

Recall that, if p0 : e Ñ b0, p1 : e Ñ b1 are morphisms of a 2-category
A, assuming its existence, the pushout of p1 along p0 is an object p0 \e p1

satisfying the following: there are 1-cells d0
p0\ep1

: b1 Ñ p0 \e p1 and d1
p0\ep1

:
b0 Ñ p0 \e p1 making the diagram

e
p0

yy
p1

%%
b0

d1
p0\ep1

$$

b1

d0
p0\ep1
zz

p0 \e p1
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commutative and, for every object y and every pair of 2-cells pξ0 : h0 ñ h10 :
b1 Ñ y, ξ1 : h1 ñ h11 : b0 Ñ yq, such that

e
p0

~~
p1

  

e
p0

~~
p1

  
b0

h1

��

“ b1

h10qq

h0



ξ0
ùùñ

“ b0
h11

��h1
--

ξ1
ùùñ

“ b1

h10
��

y y

holds, there is a unique 2-cell ξ : hñ h1 : p0\ep1 Ñ y satisfying the equations

ξ ˚ idd0
p0\ep1

“ ξ0 and ξ ˚ idd1
p0\ep1

“ ξ1.

2.3. Opcomma objects. We consider the 2-category S defined above and
the weight P : S Ñ Cat, defined by P p1q :“ P p0q :“ 1, P p2q :“ 2, and
P pd0q “ d0, P pd1q “ d1. That is to say, the weight

2

1

d1
@@

1

d0
^^

in which d0 and d1 are respectively the inclusion of the codomain and the
inclusion of the domain of the non-trivial morphism of 2 (as defined in Section
1).

Limits weighted by P are the well known comma objects, while the colimits
weighted by P are called opcomma objects. By definition, if p0 : e Ñ b0,
p1 : e Ñ b1 are morphisms of a 2-category A and p0 Ò p1 is the opcomma
object of p1 along p0, then App0 Ò p1,´q is the comma object of App1,´q
along App0,´q. This means that: there are 1-cells δ0

p0Òp1
: b1 Ñ p0 Ò p1 and

δ1
p0Òp1

: b0 Ñ p0 Ò p1 and a 2-cell

e

p0

||

p1

""
b0

δ1
p0Òp1

!!

αp0Òp1
ùùùñ b1

δ0
p0Òp1
}}

p0 Ò p1

satisfying the following:
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(1) For every triple ph0 : b1 Ñ y, h1 : b0 Ñ y, β : h1p0 ñ h0p1q in which
h0, h1 are morphisms and β is a 2-cell of A, there is a unique morphism
h : p0 Ò p1 Ñ y such that the equations h0 “ h ¨ δ0

p0Òp1
, h1 “ h ¨ δ1

p0Òp1

and

e
p0

xx

p1

&&

e
p0

yy

p1

&&
b0

δ1
p0Òp1

%%

αp0Òp1
ùùùñ b1

δ0
p0Òp1

yy

“ b0

h1

��

β
ùùùùñ b1

h0

��

p0 Ò p1

h
��
y y

hold.
(2) For every pair of 2-cells pξ0 : h0 ñ h10 : b1 Ñ y, ξ1 : h1 ñ h11 : b0 Ñ yq

such that

e

p0

zz

p1

$$

e

p0

zz

p1

$$
b0

h1

##

idh˚α
p0Òp1

ùùùùùùñ b1

h10
qq

h0

��

ξ0
ùùñ

“ b0
h11

��h1
--

ξ1
ùùñ

idh1˚α
p0Òp1

ùùùùùùñ b1

h10

{{
y y

holds, there is a unique 2-cell ξ : h ñ h1 : p0 Ò p1 Ñ y such that
ξ ˚ idδ0

p0Òp1
“ ξ0 and ξ ˚ idδ1

p0Òp1
“ ξ1.

Remark 2.1. Since Cat has all weighted colimits and limits, it has opcomma
objects. More generally, assuming the existence of tensorial coproducts and
pushouts, one can always construct opcomma objects out of them.

Assuming that the tensorial coproduct 2b e exists in A, we have the uni-
versal 2-cell d1 b e ñ d0 b e : e Ñ 2 b e given by the image of the identity
2b eÑ 2b e by the isomorphism

Ap2b e, 2b eq – Cat r2,Ape, 2b eqs .
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If it exists, the conical colimit of the diagram below is the opcomma object
p0 Ò p1 of p1 : eÑ b1 along p0 : eÑ b0.

e
p1

��
d1be

""

e
p0

��
d0be
||

b1 2b e b0

2.4. Lax descent objects. We consider the 2-category ∆Str of Definition
1.1 and we define the weight D : ∆Str Ñ Cat by

∆Strp1, 1q ˆ 1

id∆Strp1,1q
ˆd0

//

id∆Strp1,1q
ˆd1

//
∆Strp1, 1q ˆ 2Soo

id∆Strp1,1q
ˆD

0

//

id∆Strp1,1q
ˆD

1 //

id∆Strp1,1q
ˆD

2
//
∆Strp1, 1q ˆ x3y

in which:

– The functor S : ∆Strp1, 1q ˆ 2Ñ ∆Strp1, 1q ˆ 1 is defined by

Spv : v – v1, 0Ñ 1q “
``

n´1
0 ¨ n1

˘

˚ v, id0

˘

“
`

s0d1v – s0d0v1, id0

˘

.

– x3y is the category corresponding to the set
!

pi, kq P t0, 1, 2u2 : i ‰ k
)

with the preorder induced by the first coordinate, that is to say, pi, kq ď
pi1, k1q if i ď i1. In other words, the category x3y is defined by the
preordered set below.

p2, 0q oo
– // p2, 1q

p1, 2q oo
– // p1, 0q

OO

p0, 2q

OO

oo
–

// p0, 1q.

OO

– The functors D
0
, D

1
, D

2
: 2Ñ x3y are defined by

D
0
p0Ñ 1q “ pp1, 0q Ñ p2, 0qq, D

2
p0Ñ 1q “ pp0, 2q Ñ p1, 2qq

and
D

1
p0Ñ 1q “ pp0, 1q Ñ p2, 1qq .
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– The natural transformations Dpσ01q, Dpσ02q and Dpσ12q are defined
by

Dpσijq :“ idid∆Strp1,1q
ˆDpσijq,

in which

Dpσ01q0 :“ pp2, 1q – p2, 0qq, Dpσ02q0 :“ pp1, 2q – p1, 0qq
and

Dpσ12q0 :“ pp0, 2q – p0, 1qq.

– The natural transformation

Dpniq : S ˝
`

id∆Strp1,1q ˆ d
i
˘

ñ id∆Strp1,1qˆ1

is defined by Dpniqpv,0q :“ pni ˚ idv, id0q.

Remark 2.2. [[42]] Since Cat has all weighted limits, it has lax descent
objects. More precisely, if A : ∆Str Ñ Cat is a 2-functor,

limpD,Aq – r∆Str,Cats pD,Aq
is the category in which:

(1) Objects are 2-natural transformations ψ : D ÝÑ A. We have a bijec-
tive correspondence between such 2-natural transformations and pairs
pw,ψq in which w is an object of Ap1q and ψ : Apd1qpwq Ñ Apd0qpwq
is a morphism in Ap2q satisfying the following equations:

Associativity:

Apd0
qpψq ¨ Apσ02qw ¨ Apd2

qpψq “ Apσ01qw ¨ Apd1
qpψq ¨ Apσ12qw;

Identity:
Apn0qw ¨ Aps0qpψq “ Apn1qw.

If ψ : D ÝÑ A is a 2-natural transformation, we get such pair by the
correspondence

ψ ÞÑ pψ1pid1
, 0q, ψ2pid1

, 0Ñ 1qq.

(2) The morphisms are modifications. In other words, a morphism m :
pw,ψq Ñ pw1, ψ1q is determined by a morphism m : w Ñ w1 in Ap1q
such that

Apd0
qpmq ¨ ψ “ ψ1 ¨Apd1

qpmq.

By definition, if B : ∆Str Ñ A is a 2-functor, an object lax-Desc pBq is the lax
descent object limpD,Bq of B if and only if there is a 2-natural isomorphism
(in y)

Apy, lax-Desc pBqq – limpD,Apy,B´qq.
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Equivalently, limpD,Bq is defined by the following universal property: there
are a morphism d

pD,Bq : limpD,Bq Ñ Bp1q and a 2-cell

limpD,Bq

d
pD,Bq

zz
d
pD,Bq

$$

Bp1q

Bpd1q

$$

ΨpD,Bq

ùùùùñ Bp1q

Bpd0q

zz

Bp2q

satisfying the following:

(1) For each pair ph : y Ñ Bp1q, β : Bpd1q ¨ hñ Bpd0q ¨ hq in which h is a
morphism and β is a 2-cell of A such that the equations

y
h //

h

��

β
ùñ

Bp1q

Bpd0q

��

Bpd0q
//

Bpσ01q

ùùùùñ

Bp2q

Bpd0q

��

Bp1q Bpd1q //

Bpd1q

��

Bpσ12q

ùùùùñ

Bp2q Bpd1q // Bp3q

Bpid
3
q

��

Bp2q
Bpd2q

// Bp3q

“

Bp3q

Bpσ02q

ùùùùñ

Bp2q
Bpd0q
oo

β
ùñ

Bp2q

Bp2q

β
ùñ

Bpd2q

OO

Bp1qBpd0qoo

Bpd1q

OO

Bp1q

Bpd1q

OO

y
h

oo

h

OO

h
// Bp1q

Bpd0q

OO

(descent associativity)

y
h //

h

��

Bp1q

Bpd0q

��
Bpn0q

ùùùñ

β
ùñ

Bp1q Bpd1q //

Bpn1q
´1

ùùùùñ

Bp2q
Bps0q

##

Bp1q

“

y

h

��

“ h

��

Bp1q

(descent identity)
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hold, there is a unique morphism hpB,βq : y Ñ limpD,Bq such that

y

hpB,βq��

y

h

��

h

��

limpD,Bq
d
pD,Bq

ww
d
pD,Bq

''
Bp1q

Bpd1q
''

ΨpD,Bq
ùùùùñ Bp1q

Bpd0q
ww

“ Bp1q
Bpd1q

&&

Bp1q
Bpd0q
xx

Bp2q Bp2q

β
ùùùñ

and h “ d
pD,Bq ¨ hpB,βq.

Moreover, the pair pdpD,Bq,ΨpD,Bqq satisfies the descent associativ-
ity and descent identity equations above. In this case, the unique
morphism induced is clearly the identity on limpD,Bq, that is to say,

´

d
pD,Bq

¯pB,ΨpD,Bqq
“ idlimpD,Bq.

(2) Assuming that ph1, β1q and ph0, β0q are pairs satisfying the descent
associativity and descent identity equations, for each 2-cell ξ : h1 ñ

h0 : y Ñ Bp1q satisfying the equation

y

h0

""h0
ss

h1

��

ξ
ùùñ

y

h1

||

h0

��h1
++

ξ
ùùñ

Bp1q
Bpd1q

""

β0
ùùñ Bp1q

Bpd0q

||

“ Bp1q
Bpd1q

""

β1
ùùñ Bp1q

Bpd0q

||

Bp2q Bp2q

there is a unique 2-cell ξpB,β1,β0q : h
pB,β0q

1 ñ h
pB,β1q

0 : Bp1q Ñ limpD,Bq
such that

iddpD,Bq ˚ ξ
pB,β1,β0q “ ξ.
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2.5. The higher cokernel. Let p : eÑ b be a morphism of a 2-category A,
A has the higher cokernel of p if A has the opcomma object

e
p

||
p

""
b

δ1

!!

α
ùùñ b

δ0

}}

b Òp b

of p along itself and the pushout of δ0 along δ1 as below.

b
δ0

ww
δ1

''

b Òp b

B2
&&

b Òp b

B0
xx

b Òp b Òp b

Henceforth, in this section, we assume that A has the higher cokernel of p as
above. We denote by B1 : b Òp bÑ b Òp b Òp b the unique morphism such that
the equations

B
1 δ1

“ B
2 δ1, B1 δ0

“ B
0 δ0

e

p

ww

p

''

e

p

��

p

��

p
��

b

δ1

&&

α
ùùñ b

δ0

xx

“ b

“B0δ1

��

B2δ0

��

b Òp b

B1

��

b

id
B2
˚α

ùùùñ

B2δ1

&&

b

id
B0
˚α

ùùùñ

B0δ0

xx

b Òp b Òp b b Òp b Òp b

(higher cokernel associativity)
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hold, while we denote by s0 : b Òp b Ñ b the unique morphism such that
s0 ¨ δ1 “ s0 ¨ δ0 “ idb and the equation

e
p

||
p
""

e

p

��

p

��

“

b

δ1

!!

α
ùùñ b

δ0

}}

“

b Òp b

s0
��

b b

(higher cokernel identity)

holds. In this case, we have:

Definition 2.3. [Higher cokernel] Consider the 2-functor H1
p : ∆3 Ñ A

defined by H1
ppd

i : 1 Ñ 2q “ δi, H1
ppd

i : 2 Ñ 3q “ Bi and H1
pps

0q “ s0. The
2-functor

Hp :“ H1
p ˝ e∆Str

: ∆Str Ñ A

b
δ0 //

δ1 //
b Òp bs0oo

B0 //

B1 //

B2 //
b Òp b Òp b

is called the higher cokernel of p.

Remark 2.4. The 2-category of categories Cat has the higher cokernel of any
functor. In particular, the higher cokernel of id1 is just the usual inclusion

1
d0 //

d1 //
2s0oo

d0 //

d1 //

d2 //
3 (Hid1

)

of the locally discrete 2-category ∆3 in Cat, which is actually the weight
for lax descent objects of 2-functors B : ∆3 Ñ A, that is to say, 2-functors
A : ∆Str Ñ A that can be written as A “ B ˝ e∆Str

. This is the case of the
diagrams of higher cokernels of morphisms.

By the higher cokernel associativity and the higher cokernel identity equa-
tions of the definition of B1 and s0, the pair pp : e Ñ b,α : δ1 ¨ p ñ δ0 ¨ p :
e Ñ b Òp bq satisfies the descent associativity and descent identity equations
w.r.t. Hp : ∆Str Ñ A. Hence, if A has the lax descent object pdp,Ψpq :“
pdpD,Hpq,ΨpD,Hpqq of Hp, we say that the lax descent factorization induced by
the higher cokernel exists. In this case, by the universal property of the lax
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descent object, there is a unique morphism pH :“ ppHp,αq : e Ñ limpD,Hpq

such that
e p //

pH

%%

b

limpD,Hpq

d
p

::

(lax descent factorization induced by the higher cokernel)
commutes and Ψp˚idpH “ α. Moreover, assuming that the lax descent factor-
ization induced by the higher cokernel exists, we have that, given an object x
of A, the diagram of the factorization induced by the pair pApx, pq,Apx,αqq
and by the universal property of the lax descent category limpD,Apx,Hp´qq,
that is to say, the commutative diagram

Apx, eq Apx,pq //

Apx,pqpApx,Hp´q,Apx,αqq
((

Apx, bq

limpD,Apx,Hp´qq

d
pD,Apx,Hp´qq

66

(factorization of Apx, pq induced by the pair pApx, pq,Apx,αqq and limpD,Apx,Hp´qq)
which is given by

Apx, pqpApx,Hp´q,Apx,αqq : Apx, eq Ñ limpD,Apx,Hp´qq – Apx, limpD,Hpqq

g ÞÑ pp ¨ g,α ˚ idgq

χ : g ñ g1 ÞÑ idp ˚ χ

d
pD,Apx,Hp´qq : limpD,Apx,Hp´qq Ñ Apx, bq

pf, ψq ÞÑ f

ξ ÞÑ ξ

is isomorphic to the factorization Apx, pq “ Apx,dpq ˝ Apx, pHq, since the
Yoneda embedding creates any existing weighted limit and, in particular,
existing lax descent objects in A.

Remark 2.5. It should be noted that, assuming that we can construct
Hp, the factorization of Apx, pq induced by the pair pApx, pq,Apx,αqq and
limpD,Apx,Hp´qq above always exists, since Cat has lax descent objects
(lax descent categories).

Moreover, the definition of the factorization of Apx, pq induced by the
pair pApx, pq,Apx,αqq and limpD,Apx,Hp´qq above does not coincide with
the definition of lax descent factorization induced by the higher cokernel of
Apx, pq. Indeed, opcomma objects (weighted colimits in general) might not
be preserved by the Yoneda embedding.
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For instance, consider the example of Remark 2.4. For any object x of Cat,
clearly the opcomma object of Catrx, id1s along itself is isomorphic to the
opcomma object of id1 along itself, that is to say, 2. Hence, since there is
a category x such that Catrx, 2s is not isomorphic to 2, this shows that the
Yoneda embedding does not preserve the opcomma object id1 Ò id1.

Remark 2.6. [Duality: higher kernel and lax codescent factorization] The
codual notion of that of the higher cokernel gives the same notion of factor-
ization (assuming the existence of the suitable lax descent object): that is to
say, the lax descent factorization induced by the higher cokernel of p.

The dual notion of the higher cokernel, the higher kernel of l : bÑ e, if it
exists, is a 2-functor

Hl : ∆op
Str Ñ A

b Ól b Ól b

B
lÓl
0

//

B
lÓl
1

//

B
lÓl
2

//

b Ól b

δlÓl0
//

δlÓl1
//

bslÓl0
oo

constructed from suitable comma objects and pullbacks. In this case, in the
presence of the lax codescent object [33, 42] of Hl, we get the lax codescent
factorization induced by the higher kernel of l.

e l //

dl
&&

b

colimpD,Hlq

lH

88

(lax codescent factorization induced by the higher kernel)

3. Semantic factorization
Assuming that A has suitable Eilenberg-Moore objects, the semantics-

structure adjunction (see [51]) gives rise to what is called herein the semantic
factorization of a tractable morphism p [15]. In this section, we recall the
semantic factorization of morphisms that have codensity monads. Before
doing so, we recall the definition of the Eilenberg-Moore object of a given
monad.

3.1. Eilenberg-Moore object. Recall that a monad in a 2-category A is a
quadruple

t “ pb, t : bÑ b,m : t2 ñ t, η : idb ñ tq
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in which b is an object, t is a morphism and m, η are 2-cells in A such that
the equations

m ¨ pidt ˚mq “ m ¨ pm ˚ idtq and m ¨ pη ˚ idtq “ idt “ m ¨ pidt ˚ ηq

hold. A monad can be seen as a 2-functor t : mnd Ñ A from the free
monad 2-category mnd to A (see [49, 54, 43]). If it exists, the Eilenberg-
Moore object, also called the object of algebras, is a special weighted limit of
t. More precisely, given a monad t in A, the object bt is the Eilenberg-Moore
object of t if and only if there is a 2-natural isomorphism (in y)

Apy, btq – Apy, bqApy,tq

in which Apy, bqApy,tq is the Eilenberg-Moore category of the monad

pApy, bq,Apy, tq,Apy,mq,Apy, ηqq

in Cat. This means that the Eilenberg-Moore object bt of t “ pb, t,m, ηq is
characterized by the following universal property: there is a pair put : bt Ñ
b, µt : t ¨ ut ñ tq in which u

t is a morphism and µt is a 2-cell in A satisfying
the following:

(1) For each pair ph : y Ñ b, β : t ¨ h ñ hq in which h is a morphism and
β is a 2-cell in A such that the equations

β ¨ pm ˚ idhq “ β ¨ pidt ˚ βq and β ¨ pη ˚ idhq “ idh
(algebra associativity and identity)

hold, there is a unique morphism hpt,βq : y Ñ bt such that µt ˚ idhpt,βq “
β and u

t ¨ hpt,βq “ h.
Moreover, the pair put, µtq satisfies the algebra associativity and

identity equations above. In this case, the unique morphism induced
is clearly the identity on bt.

(2) Assuming that ph0, β0q and ph1, β1q are pairs satisfying the algebra
associativity and identity equations, for each 2-cell ξ : h0 ñ h1 : y Ñ b

such that β1 ¨pidt˚ξq “ ξ ¨β0, there is a unique 2-cell ξpt,β0,β1q : h
pt,β0q

0 ñ

h
pt,β1q

1 : bÑ bt such that idut ˚ ξpt,β0,β1q “ ξ.

Remark 3.1. [Duality: Kleisli objects and co-Eilenberg-Moore objects] The
dual to the notion of Eilenberg-Moore object of a monad is called the Kleisli
object of a monad, while the codual is called the co-Eilenberg-Moore object,
or object of coalgebras, of a comonad. These notions coincide with the usual
notions in Cat, as it is carefully explained in [51].
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3.2. Kan extensions. Let f : z Ñ y and g : z Ñ x be morphisms of a
2-category A. The right Kan extension of f along g is, if it exists, the right
reflection rangf of f along the functor

Apg, yq : Apx, yq Ñ Apz, yq.

This means that the right Kan extension is actually a pair
`

rangf : xÑ y, γrangf : prangfq ¨ g ñ f
˘

of a morphism rangf and a 2-cell γrangf , called the universal 2-cell, such that,
for each morphism h : xÑ y of A,

x

h 22

β
ùùùùñ

rangf

��

x

h 22

β
ùùùùñ

rangf

��

z

γrangf

ùùùñ

goo

f

��

ÞÑ

y y

defines a bijection Apx, yqph, rangfq – Apz, yqph ¨ g, fq.

Remark 3.2. [Duality: right lifting and left Kan extension] The dual notion
to that of a right Kan extension is called right lifting (see [58]), while the
codual notion is called the left Kan extension. Finally, of course, we also
have the codual notion of the right lifting: the left lifting.

Let p0 : e Ñ b0, p1 : e Ñ b1 be morphisms of a 2-category A. Assume that
A has the opcomma object p0 Ò p1 and

αp0Òp1 : δ1
p0Òp1

¨ p0 ñ δ0
p0Òp1

¨ p1

is the universal 2-cell that gives p0 Ò p1 as the opcomma object of p1 along
p0, as in 2.3. In this case, we have:

Lemma 3.3. Given a morphism h : p0 Ò p1 Ñ y, the following statements
are equivalent.

i) The pair ph, idh¨δ0
p0Òp1

q is the right Kan extension of h¨δ0
p0Òp1

along δ0
p0Òp1

.

ii) The pair ph ¨δ1
p0Òp1

, idh ˚α
p0Òp1q is the right Kan extension of h ¨δ0

p0Òp1
¨p1

along p0.

Proof : Assuming i), given a 2-cell

β : h11 ¨ p0 ñ h ¨ δ0
p0Òp1

¨ p1,
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we have, by the universal property of the opcomma object, that there is a
unique morphism h1 : p0 Ò p1 Ñ y such that idh1 ˚ α

p0Òp1 “ β, h1 ¨ δ1
p0Òp1

“ h11
and h1 ¨ δ0

p0Òp1
“ h ¨ δ0

p0Òp1
.

By the universal property of the Kan extension, there is a unique 2-cell
β : h1 ñ h such that β ˚ idδ0

p0Òp1
is the identity h1 ¨ δ0

p0Òp1
“ h ¨ δ0

p0Òp1
. By the

universal property of the opcomma object, this means that β ˚ idδ1
p0Òp1

is the

unique 2-cell such that
`

idh ˚ α
p0Òp1

˘

¨

´

β ˚ idδ1
p0Òp1

¨ p0

¯

“ β.

This proves ii). Reciprocally, assuming ii), by the universal property of the
Kan extension, we have that, given any 2-cell

β0 : h1 ¨ δ0
p0Òp1

ñ h ¨ δ0
p0Òp1

,

there is a unique 2-cell β1 : h1 ¨ δ1
p0Òp1

ñ h ¨ δ1
p0Òp1

such that

e

p0

zz

p1

$$

e

p0

{{

p1

##
b

h11

##

idh1˚α
p0Òp1

ùùùùùùñ b

h0
qq

h10

		

β0
ùùñ

“ b
h1

��h11
--

β1
ùùñ

idh˚α
p0Òp1

ùùùùùùñ b

h0

{{
y y

holds, in which, for each i P t1, 2u, h1i :“ h1 ¨ δip0Òp1
and hi :“ h ¨ δip0Òp1

. This
implies that there is a unique β : h1 ñ h such that β ˚ idδ0

p0Òp1
“ β0.

Definition 3.4. [Codensity monad] A morphism p : e Ñ b of a 2-category
A has the codensity monad if the right Kan extension pranpp, γq of p along
itself exists. Assuming that A has the codensity monad of p and denoting
ranpp by t, we consider:

– the 2-cell m : t2 ñ t such that the equation

b

t2

..

m
ùùùñ

t

��

e

“

γ
ùùùùñ

poo

p

��

b
γ

ùùùñ
t

��

e

γ
ùùñ

poo

p

��

p

��
b

t

��
b b

(codensity multiplication)
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holds;
– the 2-cell η : idb ñ t defined by the equation below.

b

idb

00

η
ùùùñ

t

��

e

“

γ
ùùùñ

poo

p

��

b

idp
ùùùñ

idb

��

epoo

p

��

b b

(codensity unit)

In this case, by the universal property of the right Kan extension of p along
itself, the quadruple t “ pb, t,m, ηq is a monad called the codensity monad
of p.

In the situation above, by the codensity multiplication and the codensity
unit equations of the definitions of m and η, it is clear that the pair pp :
e Ñ b, γ : t ¨ p ñ pq satisfies the algebra associativity and identity equations
w.r.t. the monad t. Hence, assuming that A has the Eilenberg-Moore object
put : bt Ñ b, µtq of the monad t, by the universal property, there is a unique
pt :“ ppt,γq such that

e

pt

��

p // b

bt

u
t

?? (semantic factorization)

commutes and µt ˚ idpt “ γ. In this case, we can consider, for each object
x, the image of the semantic factorization by the representable 2-functor
Apx,´q : AÑ Cat, getting the factorization

Apx, pq “ Apx,utq ˝ Apx, ptq,

which coincides up to isomorphism with the factorization Apx, pq induced by
the pair pApx, pq,Apx, γqq and the universal property of the Eilenberg-Moore
category Apx, bqApx,tq of the monad Apx, tq. That is to say, the commutative
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triangle

Apx, eq

Apx,pqpApx,tq,Apx,γqq

%%

Apx,pq // Apx, bq

Apx, bqApx,tq

u
Apx,tq

99

(factorization of Apx, pq induced by pApx, pq,Apx, γqq and Apx, bqApx,tq)
which is given by

Apx, pqpApx,tq,Apx,γqq : Apx, eq Ñ Apx, bqApx,tq

g ÞÑ pp ¨ g, γ ˚ idgq

χ : g ñ g1 ÞÑ idp ˚ χ

u
Apx,tq : Apx, bqApx,tq Ñ Apx, bq

pf, βq ÞÑ f

ξ ÞÑ ξ

Remark 3.5. It is clear that, if p is a morphism of A that has the coden-
sity monad t, the factorization of Apx, pq induced by pApx, pq,Apx, γqq and
Apx, bqApx,tq exists, even if A does not have the Eilenberg-Moore object of t,
since Cat has Eilenberg-Moore objects (categories of algebras).

Remark 3.6. [Duality: op-codensity monad] The codual notion of the notion
of codensity monad is that of density comonad, which is induced by the left
Kan extension of the morphism along itself, assuming its existence.

The dual notion is herein called op-codensity monad. Notice that, if it
exists, the op-codensity monad of a morphism is induced by the right lifting
of the morphism through itself. Finally, of course, we have also the codual
notion of the op-codensity monad, called herein the op-density comonad.

Therefore, we also have factorizations: assuming the existence of the Kleisli
object of the op-codensity monad of a morphism, we get the op-semantic
factorization. Codually, we have the co-semantic factorization of a mor-
phism that has the density comonad, provided that the 2-category has its
co-Eilenberg-Moore object.
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3.3. Right adjoint morphism. Recall that an adjunction inside a 2-
category A is a quadruple

pl : bÑ e, p : eÑ b, ε : lpñ ide, η : idb ñ plq

in which l, p are 1-cells and ε, η are 2-cells of A satisfying the triangle iden-
tities. This means that

b
η
ùùñ

l // e

p

��

b
η
ùùñ

e
p

oo

b
l

// e

ε
ùñ

b

l

@@

ep
oo

ε
ùñ

are the identities idl : l ñ l and idp : p ñ p. In this case, p is right adjoint
to l and we denote the adjunction by pl % p, ε, ηq : bÑ e.

If pl % p, ε, ηq : bÑ e is an adjunction in a 2-category A, p has the codensity
monad and the op-density comonad. More precisely, in this case, the pair
ppl, idp ˚ εq is the right Kan extension of p along itself and plp, η ˚ idpq is the
left lifting of p through itself. Hence, the codensity monad of p coincides
with the monad t “ pb, pl, idp ˚ε˚ idl, ηq induced by the adjunction, while the
op-density comonad coincides with the comonad pe, lp, idl ˚ η ˚ idp, εq induced
by the adjunction. Codually, if pl % p, ε, ηq : b Ñ e is an adjunction, the
density comonad and the op-codensity monad induced by l : b Ñ e are the
same of those induced by the adjunction.

Assuming the existence of the Eilenberg-Moore object of the monad (co-
density monad t) induced by the adjunction pl % p, ε, ηq, the semantic fac-
torization is the usual factorization of the right adjoint morphism through
the object of algebras. Dually and codually, assuming the existence of the
suitable weighted limits and colimits, we get all the four usual factorizations
of l and p. For instance, the op-semantic factorization of l : b Ñ e gives the
factorization

b
lppl,idp˚ε˚idl,ηq

%%

l // e

bppl,idp˚ε˚idl,ηq

lt

99

induced by the universal property of the Kleisli object bt of the monad
pb, pl, idp ˚ ε ˚ idl, ηq, while the co-semantic factorization and the coop-semantic
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factorization give the usual factorizations w.r.t. the object of coalgebras and
the co-Kleisli object of the comonad pe, lp, idl ˚ η ˚ idp, εq.

Definition 3.7. [Preservation of a Kan extension] Let
`

rangf, γ
rangf

˘

be the
right Kan extension of f : z Ñ y along g in a 2-category A. A morphism
δ : y Ñ y1 preserves the right Kan extension rangf if

`

δ ¨ rangf, idδ ˚ γ
rangf

˘

gives the right Kan extension of the morphism δ ¨ f along g. Furthermore,
the right Kan extension

`

rangf, γ
rangf

˘

is absolute if it is preserved by any
morphism with domain in y.

Remark 3.8. [Duality: respecting liftings] The dual notion of that of preser-
vation of a Kan extension is that of respecting a lifting. If a pair

`

rliftgf,γ
rliftgf

˘

is the right lifting of f through g, a morphism δ : y1 Ñ y respects the right
lifting of f through g if

`

prliftgfq ¨ δ,γ
rliftgf ˚ idδ

˘

is the right lifting of f ¨ δ
through g.

Remark 3.9. In some contexts, such in the case of 2-categories endowed
with Yoneda structures [58], we have a stronger notion of Kan extensions:
pointwise Kan extensions [15, 58]. Although this concept plays a fundamen-
tal role in the theory of Kan extensions, we do not use this notion in our
main theorem. However, we mention them in our examples and, herein, a
pointwise Kan extension in Cat is just a Kan extension that is preserved by
any representable functor. See [45, 15] for basic aspects of pointwise Kan
extensions in Cat and their constructions via conical (co)limits.

If pl % p, ε, ηq : b Ñ e is an adjunction in a 2-category A, p preserves any
right Kan extension with codomain in b. Furthermore:

Theorem 3.10 (Dubuc-Street [15, 58, 17]). If p : eÑ b is a morphism in a
2-category A, the following statements are equivalent.

i) The pair pl, εq is the right Kan extension of ide along p and it is
preserved by p.

ii) The pair pl, εq is the right Kan extension of ide along p and it is
absolute.

iii) The morphism p has a left adjoint l, with the counit ε : lpñ ide.

In particular, if p : eÑ b has a left adjoint, then it has the codensity monad
and the right Kan extension of p along p is absolute.

Proof : Given an adjunction pl % p, ε, ηq : b Ñ e, we have that App,´q %
Apl,´q. From this fact, by the definition of right Kan extension, we get that
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the right Kan extension of any f : eÑ y along p is given by pf ¨ l, idf ˚ εq. In
particular, we get that pl, εq is the right Kan extension of ide along p and it
is absolute. This proves that iii) implies ii). In order to complete the proof,
since ii) obviously implies i), it is enough to prove i) implies iii).

Assuming that pl, εq is the right Kan extension of ide along p and it is
preserved by p, we have that ranpp exists and is given by ppl, idp ˚ εq. Hence
it has the codensity monad and, by the definition of the unit η of the co-
density monad (see Definition 3.4), we already have that pidp ˚ εq ¨ pη ˚ idpq
is the identity on idp. The other triangle identity follows from the universal
property of the right Kan extension pl, εq of ide along p and the fact that the
2-cell β “ pε ˚ idlq ¨ pidl ˚ ηq is such that ε ¨ pβ ˚ idpq “ ε.

Remark 3.11. [Mate correspondence] Given adjunctions pl1 % p1q :“ pl1 %
p1, ε1, η1q : b1 Ñ e1 and pl0 % p0q :“ pl0 % p0, ε0, η0q : b0 Ñ e0 in a 2-category
A, recall that we have the mate correspondence [31, 41, 40]. More precisely,
given 1-cells hb : b0 Ñ b1 and he : e0 Ñ e1 of A, there is a bijection

Ape0, b1qphb ¨ p0, p1 ¨ heq – Apb0, e1qpl1 ¨ hb, he ¨ l0q

defined by

e0

p0

��

he

��

b0
l0 // e0

p0

��

he

��
b0

hb

��

β
ùùñ e1

p1

��

ÞÑ b0

η0
ùùñ

hb

��

β
ùùñ e1

p1

��

b1 b1
l1

//

ε1
ùùñ

e1

whose inverse is given by β1 ÞÑ pidp1he ˚ ε0q ¨ pidp1
˚ β1 ˚ idp0

q ¨ pη1 ˚ idhbp0
q. The

image of a 2-cell β : hb ¨ p0 ñ p1 ¨ he by the isomorphism Ape0, b1qphb ¨ p0, p1 ¨

heq – Apb0, e1qpl1 ¨hb, he ¨l0q above is called the mate of β under the adjunction
l0 % p0 and l1 % p1.

4. Main theorems
Let A be a 2-category and p : e Ñ b a morphism of A. Throughout this

section, we assume that p has the codensity monad t “ pb, t,m, ηq and A has
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the higher cokernel Hp : ∆Str Ñ A of p. We use the same notation of 3.4 for
the codensity monad of p, while we use the same notation of 2.5 and 2.3 for
the higher cokernel of p.

Proposition 4.1. The morphism δ0 : b Ñ b Òp b is such that the right Kan
extension of idb along δ0 exists. Moreover, it is given by the pair p`, ididbq in
which ` is the unique morphism such that the equations

` ¨ δ0
“ idb, ` ¨ δ1

“ t, id` ˚ α “ γ

hold.

Proof : Indeed, by the universal property of the opcomma object b Òp b, there
is a unique morphism ` : b Òp bÑ b such that the equations above hold.

By Lemma 3.3, since pt, γq is the right Kan extension of p along itself, we
get that p`, γq is the right Kan extension of ` ¨ δ0 “ idb along δ0.

Proposition 4.2 (Condition). The right Kan extension pt, γq of p along itself
is preserved by δ0 : b Ñ b Òp b if and only if ` is left adjoint to δ0. In this
case, we have an adjunction

p` % δ0, ididb,ηq : b Òp bÑ b.

Proof : Indeed, by Lemma 3.3, pδ0 ¨ `, idδ0q is the right Kan extension of δ0

along δ0 if and only if pδ0 ¨ ranpp, idδ0 ˚ γq is the right Kan extension of δ0 ¨ p
along p.

By Proposition 4.1 and Theorem 3.10, we know that δ0 preserves the right
Kan extension p`, ididbq of idb along δ0 if and only if ` % p.

In this case, the counit is indeed given by the universal 2-cell of ranδ0idb:
that is to say, ididb.

Remark 4.3. [Right adjoint morphism] By the Dubuc-Street Theorem (The-
orem 3.10), if p : eÑ b is a right adjoint morphism of the 2-category A and
A has the higher cokernel of p, then p satisfies the condition of Proposition
4.2, since, in this case, the right Kan extension ranpp exists and is absolute.
More particularly, since Cat has the higher cokernel of any functor, any right
adjoint functor satisfies the condition of Proposition 4.2.

Remark 4.4. [Example of a left adjoint functor that does not satisfy the con-
dition] Even Cat has morphisms that do not satisfy the condition of Propo-
sition 4.2. For instance, the inclusion of the domain d1 : 1 Ñ 2 has the
codensity monad which is actually given by a pointwise right Kan extension:
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more precisely id2 : 2 Ñ 2 with the unique 2-cell (natural transformation)
d1 ñ d1. However, in this case, δ0

d1Òd1 is the inclusion

0

��
ÞÑ

0

��

01oo

��

1 1 11

which does not preserve the terminal object, since 2 has terminal object and
d1 Ò d1 does not. Hence δ0

d1Òd1 does not have a left adjoint. Actually, it even
does not have a codensity monad.

It should be noted that d1 is left adjoint to s0 and, hence, it does satisfy the
codual of the condition of Proposition 4.2. Explicitly, we have that land1d1 is
given by the functor d1s0 with the only natural transformation d1s0d1 ñ d1

and this left Kan extension is absolute.

Remark 4.5. [Example of a functor that does satisfy the condition] By Re-
mark 4.3, any right adjoint morphism satisfies Proposition 4.2. The converse
is false, that is to say, the condition of Proposition 4.2 does not imply the
existence of a left adjoint.

There are simple counterexamples in Cat. In order to construct such an
example, recall that any functor ιe : e Ñ 1 has the codensity monad given
by a pointwise Kan extension. But it does have a left (right) adjoint if and
only if e has initial (terminal) object.

Hence, for instance, if we consider the thin category R corresponding to
the usual preordered set of real numbers, the only functor ιR : R Ñ 1 does
not have any adjoint. However, it is clear that every functor 1Ñ b preserves
the (conical) limit of R Ñ 1 and, hence, any such a functor does preserve
ranιRιR (see [9, 44]). In particular, ιR does satisfy Proposition 4.2.

Remark 4.6. [Counterexample for the dual and the codual] Neither the
condition of Proposition 4.2 nor the codual is satisfied by the only functor
ι1\1 : 1 \ 1 Ñ 1. More precisely, this functor has a codensity monad and
a density monad: both are given by pointwise Kan extensions and they
are of course the identity on 1. Therefore it is clear that a functor 1 Ñ
b preserves ranι1\1

ι1\1 (lanι1\1
ι1\1) if and only if 1 Ñ b preserves binary

products (binary coproducts) which does happen if and only if the image
of 1 Ñ b is a preterminal (preinitial) object (see [9, 44] for instance). The
opcomma category of ι1\1 along itself is the category with two distinct objects
and two parallel arrows between them: hence it does not have any preterminal
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or preinitial objects. This shows that neither ranι1\1
ι1\1 nor lanι1\1

ι1\1 is
preserved by any functor 1Ñ ι1\1 Ò ι1\1.

Remark 4.7. [Explicit definition of the unit η] Assuming that p satifies the
condition of Proposition 4.2 and denoting by α : t ¨ δ1 ñ t ¨ δ0 the unique
2-cell of A such that the equation

b

t

��

t

!!

e
γ
ùùñ

p

��

poo b
γ
ùùñ
t

��

epoo

p

��

p

}}
b

δ1

!!

α
ùùñ b

δ0

��

“ b

δ1

!!

α
ùùñ b

δ0

��

b Òp b b Òp b

holds, we have that the unit η : idbÒpb ñ δ0¨` of the adjunction p` % δ0, ididb,ηq
is such that

η ˚ idδ1 “ α ¨ pidδ1 ˚ ηq .

We prove this equality as follows: firstly, by the universal property of the
opcomma object b Òp b of p along itself, there is a unique 2-cell η1 : idbÒpb ñ
δ0 ¨ ` such that the equations

η1 ˚ idδ0 “ ididδ0
and η1 ˚ idδ1 “ α ¨ pidδ1 ˚ ηq (definition of η1)

are satisfied, since the equation

e

p

zz

p

$$

e

p

}}

p

!!
b

δ1

##

α
ùùùùùùùñ b

δ0

{{

“ b
δ0¨t

��
δ1

00

α¨pidδ1˚ηq
ùùùùùùñ

idδ0˚γ
ùùùñ b

h0

~~

b Òp b b Òp b
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holds. Indeed, by the definition of α, the right side of the equation above is
equal to

b

η
ùùñ

γ
ùùñ
t

��

epoo

p

��

p

}}
b

δ1

!!

α
ùùñ b

δ0

��

b Òp b

which, by the definition of η, is equal to α : δ1 ¨ pñ δ0 ¨ p.
Secondly, by Theorem 3.10 and Proposition 4.1, since we are assuming the

condition of Proposition 4.2, we have that ididb is the counit of the adjunction
` % p. Thus the unit η of ` % p is the unique 2-cell idbÒpb ñ δ0 ¨ ` such that
η ˚ idδ0 “ idδ0.

Finally, since η1 : idbÒpb ñ δ0 ¨ ` is such that η1 ˚ idδ0 “ idδ0, we get that
η “ η1. Therefore η ˚ idδ1 “ α ¨ pidδ1 ˚ ηq and η is defined by the equations of
the definition of η1.

Proposition 4.8. Assume that p : e Ñ b satisfies the condition of Propo-
sition 4.2. There is an adjunction

`

`˚ % B
0 ¨ δ0, ididb, ρ

˘

: b Òp b Òp b Ñ b.
Moreover, the equations

`˚ ¨ B
2
“ t ¨ `, `˚ ¨ B

0
“ `, ρ ˚ idB0 “ idB0 ˚ η

are satisfied. Furthermore, the 2-cell ρ2 given by the pasting

b Òp b

“B2δ0`

��

B0δ1`

��

id
B2
˚η

ùùùñ
id
B0
˚η˚id

δ1`
ùùùùùùñB2

--

B0δ0`δ1`“B0 δ0 t `

qq
b Òp b Òp b

is equal to ρ ˚ idB2.

Proof : Firstly, in fact, by the universal property of the pushout b Òp b Òp b of
δ0 along δ1, we have that:

– there is a unique morphism `˚ : b Òp b Òp bÑ b such that `˚ ¨ B
2 “ t ¨ `

and `˚ ¨ B
0 “ B0 δ0 ¨ `, since ` ¨ δ1 “ t “ t ¨ idb “ t ¨ ` ¨ δ0;
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– there is a unique ρ : idbÒpbÒpb ñ B0δ0 ¨ `˚ such that ρ˚ idB0 “ idB0 ˚η and
ρ ˚ idB2 “ ρ2, because ρ2 ˚ idδ0 is equal to the composition of 2-cells

B2 ¨ δ0 “ B0 ¨ δ1
id
B0˚η˚idδ1 +3 B0 δ0 ¨ ` δ1 “ B0 δ0 ¨ t

since η ˚ idδ0 “ idB2 δ0.

Secondly, ρ˚ idB0δ0 “ ρ˚ idB0 ˚ idδ0 “ idB0 ˚η˚ idδ0, which, since η˚ idδ0 “ idδ0,
is the horizontal composition of identities and, hence, it is an identity. This
proves one of the triangle identities for the adjunction `˚ % B

0δ0.
Finally, by the universal property of the pushout b Òp b Òp b of δ0 along δ1,

the 2-cell id`˚ ˚ ρ is the identity on `˚, since:

– pid`˚ ˚ ρq ˚ idB0 is equal to

id`˚ ˚ ρ ˚ idB0 “ id`˚ ˚ idB0 ˚ η “ id` ˚ η “ id` “ id`˚B0;

– pid`˚ ˚ ρq ˚ idB2 “ id`˚ ˚ ρ2 is, by the definition of `˚ and ρ2, equal to

b Òp b

t¨`

��

idt˚id`˚η

ùùùùùñ
id`˚η˚id

δ1`
ùùùùùùñ

t¨`

**

t¨`

ttb

which is a vertical composition of identities, since id` ˚ η is equal to
the identity by the triangle identity of the adjunction p` % δ0, ididb,ηq.

This completes the proof that p`˚ % B
0δ0, ididb, ρq is an adjunction.

In order to prove Theorem 4.11, we consider the 2-cells defined in Lemma
4.10. Before defining them, it should be noted that:

Lemma 4.9 (`˚ ¨ B
1). Assume that p satisfies the condition of Proposition

4.2. The morphism `˚ ¨ B
1 is the unique morphism such that the equations

`

`˚B
1
˘

¨ δ1
“ t2,

`

`˚B
1
˘

¨ δ0
“ idb and id`˚B1 ˚ α “ pidt ˚ γq ¨ γ

hold.

Proof : In fact, by the definitions of ` (see Proposition 4.1) and `˚ (see Propo-
sition 4.8), the equations
`

`˚B
1
˘

¨ δ0
“ `˚ ¨ B

0δ0
“ ` ¨ δ0

“ idb,
`

`˚B
1
˘

¨ δ1
“ `˚ ¨ B

2δ1
“ t` ¨ δ1

“ t2,

id`˚ ˚ idB0 ˚ α “ id` ˚ α “ γ and id`˚ ˚ idB2 ˚ α “ idt` ˚ α “ idt ˚ γ
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hold. Therefore, by the definition of B1 (see 2.5) and by the universal property
of the opcomma object b Òp b of p along itself, we get the result.

Lemma 4.10 (θ and λ). Assume that p : e Ñ b satisfies the condition of
Proposition 4.2. There are 2-cells

θ : s0
ñ ` : b Òp bÑ b, λ : `˚ ¨ B

1
ñ ` : b Òp bÑ b

such that the equations

θ ˚ idδ1 “ η, θ ˚ idδ0 “ ididb, λ ˚ idδ1 “ m, λ ˚ idδ0 “ ididb

are satisfied.

Proof : In fact, by the universal property of the opcomma object b Òp b of p
along p:

– there is a unique 2-cell θ : s0 ñ ` such that θ ˚ idδ1 “ η and θ ˚ idδ0 “

ididb, since

pid` ˚ αq ¨ pη ˚ idpq “ γ ¨ pη ˚ idpq “ idp “ ids0 ˚ α

by the definitions of `, η and s0;
– there is a unique 2-cell λ : `˚ ¨ B

1 ñ ` such that λ ˚ idδ1 “ m and
λ ˚ idδ0 “ ididb, since

pid` ˚ αq ¨ pm ˚ idpq “ γ ¨ pm ˚ idpq “ γ ¨ pidt ˚ γq “ id`˚¨B1 ˚ α

by the definition of m : t2 ñ t and Lemma 4.9.

Theorem 4.11. Assume that p satisfies the condition of Proposition 4.2.
We have that the diagrams

Apx, eq Apx,pq //

Apx,pqpApx,Hp´q,Apx,αqq
((

Apx, bq Apx, eq
Apx,pqpApx,tq,Apx,γqq

&&

Apx,pq // Apx, bq

limpD,Apx,Hp´qq

d
pD,Apx,Hp´qq

66

Apx, bqApx,tq
uApx,tq

88

are isomorphic (2-naturallly in x), in which the first diagram is the factoriza-
tion of Apx, pq induced by the pair pApx, pq,Apx,αqq and limpD,Apx,Hp´qq,
while the second diagram is the factorization of Apx, pq induced by pApx, pq,Apx, γqq
and Apx, bqApx,tq.
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Proof : Recall that: (1) the first diagram is the factorization of Apx, pq in-
duced by the pair pApx, pq,Apx,αqq and the universal property of the lax
descent category of

Apx,Hp´q : ∆Str Ñ Cat;

and (2) the second diagram is the factorization of Apx, pq induced by the pair
pApx, pq,Apx, γqq and the universal property of the Eilenberg-Moore category
Apx, bqApx,tq of the monad Apx, tq.

Firstly, observe that, since p` % δ0, ididb,ηq : b Òp bÑ b is an adjunction by
Proposition 4.2, for each morphism h : x Ñ b of A (i.e. for each object of
Apx, bq), there is a bijection

Apx, b Òp bqpδ1
¨ h, δ0

¨ hq – Apx, bqp` ¨ δ1
¨ h, ` ¨ δ0

¨ hq “ Apx, bqpt ¨ h, hq

defined by β ÞÑ id` ˚ β, that is to say, the mate correspondence under the
identity adjunction idx % idx and the adjunction p` % δ0, ididb,ηq, see Remark
3.11.

Secondly, given an object h of Apx, bq, we prove below that a 2-cell β :
δ1 ¨ h ñ δ0 ¨ h satisfies the descent associativity and the descent identity
w.r.t. Hp if and only if its corresponding 2-cell id` ˚ β satisfies the algebra
associativity and identity w.r.t. t.

(1) Observe that, given a 2-cell β : δ1 ¨ h ñ δ0 ¨ h, by the definition of θ
and Lemma 4.10, we get that

ids0 ˚ β “ ids0¨δ0¨h ¨ pids0 ˚ βq

“ pididb ˚ idhq ¨ pids0 ˚ βq

“ ppθ ˚ idδ0q ˚ idhq ¨ pids0 ˚ βq

“ pθ ˚ idδ0¨hq ¨ pids0 ˚ βq

“ θ ˚ β

which, by the interchange law, is equal to the left side of the equation

pid` ˚ βq ¨ pθ ˚ idδ1 ˚ idhq “ pid` ˚ βq ¨ pη ˚ idhq

which holds by Lemma 4.10. Thus, of course, pid` ˚ βq ¨ pη ˚ idhq is the
identity on h if and only if ids0 ˚ β “ pid` ˚ βq ¨ pη ˚ idhq is the identity
on h as well. That is to say, β satisfies the descent identity w.r.t. Hp

if and only if id` ˚ β satisfies the algebra identity equation w.r.t. t.
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(2) Recall the adjunction p`˚ % B
0δ0, ididb, ρq of Proposition 4.8. Given a

2-cell β : δ1 ¨ h ñ δ0 ¨ h, consider the 2-cells defined by the pastings
below.

x

h

zz

h

$$

x

h
��

h

zz

h

&&
β1 “ b

δ1

##

B2¨δ1

&&

“

β
ùñ b

δ0

{{

B0¨δ0

xx

“

βc “ b

δ1

##

β
ùñ b

δ0

��
δ1

%%

β
ùñ b

δ0

��

b Òp b

B1

��

b Òp b

B2

��

“ b Òp b

B0

yy

b Òp b Òp b b Òp b Òp b

We have that the mates of βc and β1 under the identity adjunction
idx % idx and the adjunction p`˚ % B

0δ0, ididb, ρq are respectively equal
to id`˚ ˚ βc and id`˚ ˚ β1.

On one hand, since `˚ ¨ B
2 “ t ¨ ` and `˚ ¨ B

0 “ `, the 2-cell id`˚ ˚ βc
is equal to

pid` ˚ βq ¨ pidt ˚ pid` ˚ βqq .

On the other hand, by Lemma 4.10

id`˚ ˚ β1 “ pid`˚B1 ˚ βq

“ pididb ˚ idhq ¨ pid`˚B1 ˚ βq

“ pλ ˚ idδ0 ˚ idhq ¨ pid`˚B1 ˚ βq

which, by the interchange law and Lemma 4.10, is equal to

λ ˚ β “ pid` ˚ βq ¨ pλ ˚ idδ1q “ pid` ˚ βq ¨m.

In order to complete the proof, it should be noted that the 2-cell
β satisfies the descent associativity w.r.t. Hp if and only if βc “ β1

which holds if and only if the mates of βc and β1 under the identity
adjunction idx % idx and the adjunction p`˚ % B

0δ0, ididb, ρq are equal.
From what we proved above, this means that the 2-cell β satisfies the

descent associativity if and only if pid` ˚ βq ¨pidt ˚ pid` ˚ βqq “ pid` ˚ βq ¨
m, which is precisely the algebra associativity equation w.r.t. t for
id` ˚ β.
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This implies that the association ph, βq ÞÑ ph, id`˚βq gives a bijection between
the objects of lim pD,Apx,Hp´qq and Apx, bqApx,tq.

Thirdly, given objects ph1, β1q and ph0, β0q of lim pD,Apx,Hp´qq, by the
mate under the identity adjunction and ` % δ0 correspondence, a 2-cell

ξ : h1 ñ h0 : xÑ b

satisfies the equation

x

β0
ùùñ

h0
##h0oo

h1




ξ
ùñ

x

β1
ùùñ

h1
{{

h0

��
h1 //

ξ
ùñ

b

δ1

!!

b

δ0

}}

b“

δ1

!!

b

δ0

}}

b Òp b b Òp b

if and only if the mate of the left side is equal to the mate of the right side,
which means

x

β0
ùùñ

h0
##h0oo

h1




ξ
ùñ

x

β1
ùùñ

h1
{{

h0

��
h1 //

ξ
ùñ

b

δ1

!!

b

δ0

}}

b“

δ1

!!

b

δ0

}}

b Òp b

`
��

b Òp b

`
��

b b

which is precisely the condition of being a morphism of algebras in A px, lim pD,Hp´qq.
In other words, this proves that ξ gives a morphism between ph1, β1q and
ph0, β0q in lim pD,Apx,Hp´qq if and only if it gives a morphism between
ph1, id` ˚ β1q and ph0, id` ˚ β0q in Apx, bqApx,tq.

Finally, given the facts above, we can conclude that we actually can define

lim pD,Apx,Hp´qq Ñ Apx, bqApx,tq

ph, βq ÞÑ ph, id` ˚ βq

ξ ÞÑ ξ

which is clearly functorial and, hence, it defines an invertible functor (since
it is bijective on objects and fully faithful as proved above). This invertible
functor is 2-natural in x giving an isomorphism between the factorization of
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Apx, pq induced by the pair pApx, pq,Apx,αqq and limpD,Apx,Hp´qq and the
factorization of Apx, pq induced by pApx, pq,Apx, γqq and Apx, bqApx,tq.

Theorem 4.12 (Main Theorem). Assume that ranpp exists and is preserved
by the morphism δ0 : bÑ b Òp b. We have that the semantic factorization of
p is isomorphic to the lax descent factorization induced by the higher cokernel
of p, either one existing if the other does.

Proof : It is clearly a direct consequence of Theorem 4.11.

Recall that , since the result above works for any 2-category, we have dual
results. For instance, we have Theorem 4.13 and Theorem 4.14.

Theorem 4.13 (Codual). Let l : b Ñ e be a morphism of A satisfying the
following conditions:

(1) A has the higher cokernel of l;
(2) the left Kan extension lanll of l along l exists (that is to say, l has the

density comonad);
(3) the left Kan extension lanll is preserved by δ1

lÒl : eÑ l Ò l.

The co-semantic factorization of l is isomorphic to the lax descent factor-
ization induced by the higher cokernel of l, either one existing if the other
does.

Theorem 4.14 (Dual). Let l : b Ñ e be a morphism of A satisfying the
following conditions:

(1) A has the higher kernel of l;
(2) the right lifting of l through l exists (that is to say, l has the op-

codensity monad);

(3) the right lifting of l through l is respected by the arrow δlÓl0 : l Ó l Ñ b.

The op-semantic factorization of l is isomorphic to the lax codescent factor-
ization induced by the higher kernel of l (of Remark 2.6), either one existing
if the other does.

As a consequence of Theorem 4.12 and its duals, by Remark 4.3, we get:

Theorem 4.15 (Adjunction). Let pl % p, ε, ηq : b Ñ e be an adjunction in
A. We have the following:

(1) if A has the higher cokernel of p, then the lax descent factorization
induced by the higher cokernel of p coincides up to isomorphism with
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the usual factorization of p through the Eilenberg-Moore object of the
induced monad, either one existing if the other does;

(2) if A has the higher kernel of l, then the lax codescent factorization
induced by the higher kernel of l (Remark 2.6) coincides up to isomor-
phism with the usual factorization of l through the Kleisli object of the
induced monad, either one existing if the other does;

(3) if A has the higher cokernel of l, then the lax descent factorization
induced by the higher cokernel of l coincides up to isomorphism with
the usual factorization of l through the co-Eilenberg-Moore object of
the induced comonad, either one existing if the other does;

(4) if A has the higher kernel of p, then the lax codescent factorization
induced by the higher kernel of p coincides up to isomorphism with
the usual factorization of p through the co-Kleisli object.

Remark 4.16. [Examples] Clearly, since d1 : 1 Ñ 2 is a left adjoint func-
tor (morphism of Cat), it satisfies the hypothesis of 3 of Theorem 4.15
(see Remark 4.4). Hence the co-semantic factorization (usual factorization
through the category of coalgebras) coincides with the lax descent factoriza-
tion induced by the higher cokernel of d1. These factorizations are given by
d1 “ d1 ˝ id1.

Although the morphism ιR : R Ñ 1 of Cat (see Remark 4.5) does not
satisfy any of the versions of Theorem 4.15, it does satisfy the conditions
of Theorem 4.12. Hence the lax descent factorization induced by the higher
cokernel of ιR coincides with the semantic factorization of ιR. In this case,
both the factorizations are given by ιR “ id1 ˝ ιR.

Finally, the morphism ι1\1 : 1\1Ñ 1 in Cat of Remark 4.6 does not satisfy
the hypotheses of Theorem 4.12. By Remark 4.6, since Cat has Eilenberg-
Moore objects, higher cokernels and lax descent objects, we have the lax
descent factorization induced by the higher cokernel of ι1\1 and its semantic
factorization. However, in this case, they do not coincide. More precisely,
they are respectively given by the commutative triangles below.

1\ 1 ι1\1 //

id1\1
%%

1 1\ 1 ι1\1 //

ι1\1

""

1

1\ 1

ι1\1

<<

1

id1

@@
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5. Monadicity and 2-effective monomorphisms
In this section, we show direct consequences of Theorem 4.12 on monadic-

ity. In order to do so, we start by introducing the concept of 2-effective
monomorphism and monadicity.

Henceforth, whenever a 2-category A has the higher cokernel Hp of a mor-
phism p : e Ñ b, we use the notation of 2.5 and 2.3. If A has the higher
kernel of a morphism l : eÑ b, we use the notation of Remark 2.6.

Recall that a morphism p : e Ñ b of a 2-category A is an equivalence if
there is are a morphism l : bÑ e and invertible 2-cells lpñ ide, idb ñ pl. It
is a basic coherence result the fact that, whenever we have such a data, we
can actually get an adjunction l % p or an adjunction p % l with invertible
unit and invertible counit (see [34]): these adjunctions are called adjoint
equivalences.

Definition 5.1. Let A : ∆Str Ñ A be a 2-functor. We say that the pair
pp : e Ñ b,ψ : Apd1q ¨ p ñ Apd0q ¨ pq, in which p is a morphism and ψ is a
2-cell, is effective w.r.t. limpD,Aq if the following statements hold:

– A has the lax descent object limpD,Aq;
– the pair pp,ψq satisfies the descent identity and the descent associa-

tivity w.r.t. A;
– the induced factorization p “ d

pD,Aq ˝ ppA,ψq is such that ppA,ψq is an
equivalence.

Definition 5.2. [2-effective monomorphism] Let p : eÑ b be a morphism of
a 2-category A. The morphism p is a 2-effective monomorphism of A if the
following statements hold:

– A has the higher cokernel of p;
– A has the lax descent object of the higher cokernel Hp;
– the lax descent factorization induced by the higher cokernel of p, p “
d
p ˝ pH, is such that pH is an equivalence, that is to say, pp,αq is

effective w.r.t. Hp.

Remark 5.3. The terminology above is motivated by the 1-dimensional case.
In a category with suitable pushouts and coequalizers, every morphism p has
a factorization induced by the equalizer of the “cokernel pair”

b //
//
b\e b



42 FERNANDO LUCATELLI NUNES

of p. If the morphism p is itself the equalizer, p is said to be an effective
monomorphism.

By Remark 2.6, assuming its existence, the codual of the lax descent fac-
torization induced by the higher cokernel of a morphism p gives the same
factorization. Hence, we have:

Lemma 5.4 (Self-coduality). Let p be a morphism of a 2-category A. The
morphism p is a 2-effective monomorphism of A if and only if the morphism
corresponding to p is a 2-effective monomorphism in Aco.

Definition 5.5. [Duality: 2-effective epimorphism] Let p : e Ñ b be a mor-
phism of a 2-category A. The morphism p is a 2-effective epimorphism of A
if the morphism corresponding to p is a 2-effective monomorphism in Aop.

Remark 5.6. [Characterization of 2-effective epimorphisms] As a conse-
quence of proof of Proposition 3.1 of [56], the 2-effective epimorphisms in
Cat are precisely the functors that are essentially surjective on objects.

Definition 5.7. [Monadicity, comonadicity, Kleisli morphism] Let p : eÑ b
be a morphism of a 2-category A. We say that p is monadic if the following
statements hold:

– p has a codensity monad t “ pt,m, ηq;
– A has the Eilenberg-Moore object of t;
– the semantic factorization p “ u

t˝pt is such that pt is an equivalence.

Dually, l : b Ñ e is a Kleisli morphism if the corresponding morphism in
Aop is monadic, while l is comonadic if its corresponding morphism in Aco is
monadic.

By Theorem 4.12 and its dual versions, we get the following characteriza-
tions of monadicity, comonadicity and Kleisli morphisms:

Corollary 5.8 (Monadicity theorem). Assume that A has the higher cokernel
of a morphism p : eÑ b.

(1) if ranpp exists and is preserved by δ0, then: p is monadic if and only
if p is a 2-effective monomorphism;

(2) if lanpp exists and is preserved by δ1, then: p is comonadic if and only
if p is a 2-effective monomorphism.

Proof : The first result follows immediately from the definitions and from
Theorem 4.12. The second one is just its codualization (see Lemma 5.4,
Theorem 4.13 and Remark 2.6).
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Corollary 5.9 (Characterization of Kleisli morphisms). Assume that A has
the higher kernel of a morphism l : bÑ e.

(1) assuming that rliftll exists and is respected by δlÓl0 , l is a Kleisli mor-
phism if and only if l is a 2-effective epimorphism;

(2) assuming that lliftpp exists and is respected by δlÓl1 , l is comonadic if
and only if l is a 2-effective epimorphism.

It is a well known fact that, whenever a morphism is monadic in a 2-
category A, it has a left adjoint (see [52, 51]). In our setting, if p is monadic
as in Definition 5.7, the existence of a left adjoint follows from (1) since pt is
an equivalence, it has a left adjoint; (2) ut has always a left adjoint induced
by the underlying morphism of the monad t : b Ñ b, the multiplication
m : t2 ñ t and the universal property of bt; and (3) composition of right
adjoint morphisms is right adjoint [34, 41]. From this fact and Theorem
4.15, we get cleaner versions of our monadicity results:

Corollary 5.10 (Monadicity theorem). Assume that the 2-category A has
the higher cokernel of a morphism p.

(1) The morphism p is monadic if and only p has a left adjoint and p is
a 2-effective monomorphism.

(2) The morphism p is comonadic if and only if p has a right adjoint and
p is a 2-effective monomorphism.

Corollary 5.11 (Characterization of Kleisli morphisms). Assume that the
2-category A has the higher kernel of a morphism l.

(1) The morphism l is a co-Kleisli morphism if and only l has a left adjoint
and l is a 2-effective epimorphism.

(2) The morphism l is Kleisli morphism if and only if l has a right adjoint
and l is a 2-effective epimorphism.

Remark 5.12. [Monadicity vs comonadicity] It should be noted that, unlike
Beck’s monadicity theorem in Cat, the condition to get monadicity from a
right adjoint morphism is coincides with the condition to get comonadicity
from a left adjoint morphism: that is to say, to be a 2-effective monomor-
phism. Of course, as a consequence, we get that, under the conditions of
Corollary 5.10, if the morphism p has a left and a right adjoint morphism,
the following statements are equivalent:

i) p is a 2-effective monomorphism;
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ii) p is monadic;
iii) p is comonadic.

Remark 5.13. [Beck’s monadicity theorem vs formal monadicity theorem]
Beck’s monadicity theorem [3, 14] states that, in Cat, a functor p is monadic
if and only if p has a left adjoint and p creates absolute coequalizers. By our
monadicity theorem, we can conclude that, provided that a functor p : eÑ b
has a left adjoint, p creates absolute coequalizers if and only if p is a 2-effective
monomorphism in Cat.

However, the 2-effective monomorphisms in Cat are not characterized by
the property of creation of absolute coequalizers. For instance, this follows
from the fact that, by Lemma 5.4, the concept of 2-effective monomorphism
is self codual, while the property of creation of absolute coequalizers is not
self dual.

More precisely, one of the fundamental aspects of duality in 1-dimensional
category theory is that the usual 2-functor op given by

op : Catco
Ñ Cat

e ÞÑ eop

p : eÑ b ÞÑ pop : eop
Ñ bop

β ÞÑ βop

is an involution: in particular, invertible. Therefore a functor pop : eop Ñ bop

is a 2-effective monomorphism in Cat if and only if the morphism p : eÑ b is a
2-effective monomorphism in Catco. Moreover, by Lemma 5.4, the morphism
p is a 2-effective monomorphism in Catco if and only if the corresponding
morphism (functor) p is a 2-effective monomorphism in Cat. Hence, by abuse
of notation, p is a 2-effective monomorphism in Cat if and only if pop is a
2-effective monomorphism in Cat.

It is clear that a functor p : eÑ b creates absolute coequalizers if and only
if the corresponding functor of pop : eop Ñ bop creates absolute equalizers.
Since there are functors that create absolute coequalizers but do not create
absolute equalizers, the property of creation of absolute equalizers is not
self dual. It follows, then, that there are functors that do create absolute
coequalizers but are not 2-effective monomorphisms.

For instance, consider the usual forgetful functor between the category
of free groups and the category of sets. This functor reflects isomorphisms
and has equalizers: hence it creates all equalizers. However, since it has a
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left adjoint, it does not create absolute coequalizers and it is not a 2-effective
monomorphism in Cat (otherwise, it would be monadic). Therefore the image
of the morphism corresponding to this functor in Catco by op is a functor that
creates absolute coequalizers but it is not a 2-effective monomorphism in Cat.
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