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Introduction
In [6] (1943), Hewitt introduced the concept of irresolvability: a space X

is resolvable if there are two disjoint A,B ⊆ X such that A = B = X,
it is irresolvable in the opposite case. In the localized form one speaks of
hereditarily irresolvable (briefly, HI) space if there is no non-empty resolvable
Y ⊆ X, in other words if

∀A,B ⊆ X, ∅ 6= A = B ⇒ A ∩B 6= ∅.

Since, as it is easy to see, every scattered space is hereditarily irresolvable,
the question naturally arises what is the relation between the two notions.
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Hewitt himself considered the relation of resolvability with the property
to be dense-in-itself and proved the coincidence for a class of spaces in-
cluding the metric ones, or the locally compact Hausdorff ones. This has
proved to be covered by more extensive results on scatteredness. Thus in
[4] the authors showed that HI is equivalent with scatteredness for a large
class of spaces containing the already mentioned metric and locally compact
Hausdorff ones and many more (namely, Alexandroff spaces, first countable
spaces and spectral spaces), and on the other side presented examples of
non-scattered hereditarily irresolvable spaces.

Point-free topology puts the relations into a new perspective. It is well
known that there are typically more point-free subobjects of a space (sublo-
cales of the associated frame Ω(X)) than classical subspaces. The system
of all sublocales S(Ω(X)) is a co-frame (see 1.4 below), a complete lattice
typically bigger than the Boolean algebra of subspaces (subsets) of X. In
[11] Simmons proved that

every sublocale of X is complemented in S(Ω(X)) iff X is scattered

(more precisely, weakly scattered, but for the spaces we are interested in it
is the same). In this paper we present a characteristics of the subspaces that
are complemented in S(Ω(X)) and as a consequence obtain that

every subspace of X is complemented in S(Ω(X)) iff X is hereditarily
irresolvable.

Thus, using the results of [4] we learn that

• in a large class C of spaces, every sublocale is complemented (that is,
S(Ω(X)) is Boolean) iff every subspace is complemented (and indeed
if every subspace is complemented each sublocale is a subspace),
• in other words, a space X in C has a sublocale that is not a subspace

iff it has a subspace that is not complemented,
• and on the other hand there exist spaces such that each of their sub-

spaces is complemented in S(Ω(X)) while this coframe contains also
non-complemented elements.

The paper is organized as follows. In Preliminaries we introduce some
necessary definitions concerning frames and their sublocales. Section 2 is
devoted to sublocales of (localic representations of) classical spaces, in par-
ticular of the TD ones in which case the representation is precise in a natural
sense. Also, the classical concept of scatteredness and Simmons’ theorem on
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complementarity of sublocales is recalled. In Section 3 we present the main
results: the characteristic of complemented induced sublocales and proving
that a space is hereditary irresolvability in the Hewitt sense if and only if all
the induced sublocales are complemented (as opposed to the complemented-
ness of all sublocales in the scattered case). In the last section we present
(known) examples of spaces that are hereditarily irresolvable but not scat-
tered, and analyze one of them in some detail to elucidate the resulting
phenomena concerning the behavior of sublocales.

1. Preliminaries
1.1. A join (supremum) of a subset A of a poset (X,≤), if it exists, will be
denoted by

∨
A, and we write a ∨ b for

∨
{a, b}; similarly we write

∧
A and

a ∧ b for meets (infima). A complete lattice is a poset (X,≤) in which all
subsets have suprema and infima. It is distributive if a∧(b∨c) = (a∧b)∨(a∧c)
(or, equivalently, a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)).

The smallest element of a poset (the supremum
∨
∅) will be denoted by 0,

and the largest one (the infimum
∧
∅) will be denoted by 1.

A complement of an element a is a b such that a ∨ b = 1 and a ∧ b = 0. In
a distributive lattice there is at most one such b.

1.1.1. Adjoint maps. Monotone maps f : X → Y and g : Y → X between
posets are adjoint, f to the left and g to the right, if

f(x) ≤ y ⇔ x ≤ g(y).

Recall that this is characterized by the pair of inequalities fg(y) ≤ y and
x ≤ gf(x), and that f resp. g preserves all the existing suprema resp. infima.
Furthermore, if X and Y are complete lattices then a monotone map f : X →
Y preserves all suprema iff it is a left adjoint, and a monotone map g : Y → X
preserves all infima iff it is a right adjoint.

1.1.2. Proposition. Let L be a distributive lattice and let a ∈ L be comple-
mented. Then, for any supremum

∨
xi, we have a ∧

∨
xi =

∨
(a ∧ xi), and

for any infimum
∧
xi we have a ∨

∧
xi =

∧
(a ∨ xi).

(See e.g. [7, 9]; but the proof is very easy: If a′ is the complement of a we
easily check that a ∧ x ≤ b iff x ≤ a′ ∨ b. Thus for any complemented a,
(x 7→ a ∧ x) is a left adjoint and (x 7→ a ∨ x) is a right adjoint. Use 1.1.1.)
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1.2. Frames. A frame resp. coframe is a complete lattice L satisfying the
distributivity rule

(
∨
A) ∧ b =

∨
{a ∧ b | a ∈ A} (frm)

resp.

(
∧
A) ∨ b =

∧
{a ∨ b | a ∈ A} (cofrm)

for all A ⊆ L and b ∈ L. A frame homomorphism h : L → M preserves all
joins and all finite meets. The category of frames and frame homomorphisms
is denoted by Frm.

The equality (frm) states, in other words, that for every b ∈ L the mapping
−∧ b = (x 7→ x∧ b) : L→ L preserves all joins (suprema). Hence every −∧ b
has a right Galois adjoint resulting in a Heyting operation → with

a ∧ b ≤ c ⇔ a ≤ b→ c.

Thus, each frame is a Heyting algebra. The operation → and some of its
basic properties (e.g. a → a = 1, a → b = 1 iff a ≤ b, 1 → a = a, and
a→ (b→ c) = (a∧ b)→ c) will be used in the sequel (see also [9, III.3.1.1]).

Similarly, a coframe is a co-Heyting algebra with the operation of difference
ar b satisfying

cr b ≤ a ⇔ c ≤ b ∨ a.
Note that in a frame every element a has a pseudocomplement a∗ (satisfying

x ≤ a∗ iff x ∧ a = 0), namely a∗ = a → 0, and similarly in a coframe we
have the supplements a# = 1 r a, the smallest x such that x ∨ a = 1. Since
in a distributive lattice each complement is both a pseudocomplement and a
supplement, we will use the symbol a∗ also for a complement, if it exists.

1.3. The concrete category Loc. The functor Ω: Top → Frm from the
category of topological spaces and continuous maps into that of frames (Ω(f)
sending an open set U ⊆ Y to f−1[U ] for a continuous map f : X → Y in
Top) is a full embedding on an important and substantial part of Top,
the subcategory of sober spaces. This justifies to regard frames as a natural
generalization of spaces. Since Ω is contravariant, one introduces the category
of locales Loc as the dual of the category of frames. Often one just considers
the formal Frmop but it is of advantage to represent it as a concrete category
with specific maps as morphisms. For this purpose one defines a localic map
f : L → M as the (unique) right Galois adjoint of a frame homomorphism
h = f ∗ : M → L. This can be done since frame homomorphisms preserve
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suprema (but of course not every mapping preserving infima is a localic one;
for more information about Loc see [9, 8]).

1.4. Sublocales. A sublocale of a frame L is a subset S ⊆ L such that

(1) M ⊆ S implies
∧
M ∈ S, and

(2) if a ∈ L and s ∈ S then a→ s ∈ S.

The system

S(L)

of all sublocales of L is a co-frame, with the lattice operations∧
i∈J

Si =
⋂
i∈J

Si and
∨
i∈J

Si = {
∧
A | A ⊆

⋃
i∈J

Si}.

The top element of S(L) is L and the bottom is the sublocale O = {1} (the
empty sublocale).

Note that the sublocales just defined naturally represent subobjects in the
category of locales: S is a sublocale of L iff the embedding map j : S ⊆ L is
an extremal monomorphism in the category Loc.

1.4.1. Points. Recall that an element p 6= 1 in L is prime if a∧b = p implies
that either a = p or b = p (or, equivalently, if a ∧ b ≤ p implies that either
a ≤ p or b ≤ p). It is easy to check that a sublocale S has precisely two
elements iff it is

p̃ = {p, 1} with p prime.

These sublocales will be referred as the points of L (note that this makes the
points of L into a natural one-to-one correspondence with the points of the
spectrum of L — see e.g. [9, II.5.3], where one speaks of meet-irreducibles
instead of primes).

For more about frames and locales the reader may consult, e.g. [8, 9] or [7].

1.5. Scattered and weakly scattered spaces. A space X is said to be
scattered if for every non-empty closed set A there is an isolated point a ∈ A,
that is, there is an a ∈ A and an open U 3 a such that

U ∩ A = {a}.

It is weakly scattered (or corrupted [11]), if for every non-empty closed set
A there is an a ∈ A and an open U 3 a such that

U ∩ A ⊆ {a}.
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2. TD-spaces and induced sublocales
In this section, besides more definitions, we reproduce some facts from else-
where.

2.1. TD-spaces. A TD-space satisfies the axiom

TD: for every x ∈ X there is an open set U 3 x such that U r {x} is still
open

(and hence U r {x} = U r {x}). This axiom, strictly between T0 and T1 was
introduced in [1] for purposes not connected with anything we are discussing
here; but already in [12] it found its use in point-free topology.

From [3] we will need the following two facts.

2.1.1. Lemma. Let X satisfy TD. Then:

(1) every (X r {x}) ∪ {x} is open, and

(2) the primes p = X r {x} are covered, that is, if p =
∧

i∈J Ui then
p = Uk for some k ∈ J (for arbitrary J).

Remark. It should be noted that the elements p such that p =
∧

i∈J xi
implies p = xi for some i ∈ J were referred to in [3] as completely prime.
That term, however, is generally taken to mean that p ≤

∧
i∈J xi implies

p ≤ xi for some i ∈ J . Any completely prime p is clearly a covered prime,
but not conversely: in the topology of a T1-space X, any X r {x}, x ∈ X,
is obviously a covered prime but the complete primes are only the X r {x}
with isolated x ∈ X.

2.2. Subspaces represented as sublocales (induced sublocales). Let
j : Y ⊆ X be an embedding of a subspace Y into a space X. We have the
localic embedding

ιY : Ω(Y )→ Ω(X)

adjoint to the (quotient) frame homomorphism

Ω(j) = (U 7→ U ∩ Y ) : Ω(X)→ Ω(Y ).

Since Ω(j) is onto, ιY is an isomorphic embedding and we have an isomorphic
imprint

SY = ιY [Ω(Y )] of Ω(Y ) in Ω(X).

We speak of the SY as of the sublocale induced by the subspace Y .

One often speaks of an induced sublocale as of a subspace of the frame in
question. It does not seem to create confusion.
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A more explicit description of SY will be in fact also more intuitive.
Denote by pX,x the prime Xr{x} in Ω(X) and recall the notation p̃ = {p, 1}
from 1.4.1. By the formula for joins in S(Ω(X)) (see 1.4: from U =

⋂
{X r

{x} | x /∈ U}) we obviously have

Ω(X) =
∨
x∈X

p̃X,x

(“a spatial frame Ω(X) is the join of its points”). The adjoint localic map
ιY above is given by the formula

ιY (V ) = int((X r Y ) ∪ V )

(since U ∩ Y ⊆ V iff U ⊆ (X r Y ) ∩ V and we use this equivalence for open

U). Hence (denoting by A
Y

the closure of A in Y )

ιY (pY,y) = int((X r Y ) ∪ (Y r {y}Y )) = int(X r {y}Y ) = X r {y} = pX,y,

and since ι, as a right adjoint, preserves meets we see that

ι[Ω(Y )] = ι[{
∧
y∈A

pY,y | A ⊆ Y }] = {ι(
∧
y∈A

pY,y) | A ⊆ Y } =

= {
∧
y∈A

ι(pY,y) | A ⊆ Y } = {
∧
y∈A

pX,y | A ⊆ Y }.

Thus we conclude that

2.2.1. SY =
∨

y∈Y p̃X,y.

2.3. As we have already mentioned, frames (locales) can be viewed as a
natural generalization of (sober) topological spaces. In fact, if we wish to have
also the representation of the structure of the system of subspaces correct,
we should restrict ourselves to TD-spaces. One has the following fact ([2, 9]).

2.3.1. Proposition. Distinct subspaces Y, Z of a space X are represented
by distinct sublocales SY , SZ of Ω(X) if and only if X is a TD-space.

2.3.2. Note. In general, in a space one has more sublocales than subspaces.
This is an agreeable fact of point-free topology, throwing light on some impor-
tant phenomena. The trouble with the non-TD spaces is that the sublocales
are not able to distinguish the classical subspaces, not in the existence of
non-spatial subobjects.

2.4. Convention. Because of 2.3.1 let us agree that we will restrict ourselves,
in the sequel, to TD-spaces. Another advantage for this restriction is the
following fact (see e.g. [11]).
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2.4.1. Proposition. For TD-spaces, the notions of scattered and weakly scat-
tered coincide.

In particular, the Simmons’ Theorem ([11]) can be interpreted as follows.

2.4.2. Theorem. If X is a TD-space then S(Ω(X)) is Boolean, that is, all
the sublocales of Ω(X) are complemented, if and only if X is scattered.

3. Complemented subspaces and Hewitt’s irresolvability
3.1. The system of subspaces of a space is, trivially, a (complete) Boolean
algebra. As an induced sublocale, however, a subspace is typically not com-
plemented (consider, e.g. any dense subspace of the real line). We will now,
first, characterize those subspaces that are.

3.2.1. Lemma. Let Y be a subspace of a TD-space X. Then

T =
∨
{{X r {x}, X} | x /∈ Y }

is the supplement of S = SY .

Proof : Suppose not. Since obviously T ∨ SY = L = Ω(X), and since the

supplement S# exists, we have S# ( T . Hence there is a Xr{z} /∈ S# such

that z /∈ Y . Since S# ∨ S = L, X r {z} = U ∩ V for some U ∈ S# and

V ∈ S. Now X r {z} 6= U and hence

X r {z} = V =
⋂
{X r {x} | x ∈ A}

for some A ⊆ Y . But our space is TD and hence, by 2.1.1(2), X r {z} =

X r {x} for some x ∈ Y , that is, z ∈ Y , a contradiction.

3.2.2. Subsets A,B ⊆ X are said to be equi-dense if A = B.

3.2.3. Theorem. A subspace Y is complemented as a sublocale (that is, SY

is complemented in S(Ω(X)) iff there are no non-empty equi-dense sets A,B
such that A ⊆ Y and B ⊆ X r Y .

Proof : By the Lemma, S is complemented iff S∩T = O. We have S∩T 6= O
iff there are ∅ 6= A ⊆ Y and B ⊆ X r Y such that∧

{X r {x} | x ∈ A} =
∧
{X r {y} | y ∈ B},

that is,
int

⋂
{X r {x} | x ∈ A} = int

⋂
{X r {y} | y ∈ B},
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that is,

X r
⋃
x∈A
{x} = X r A = X rB = X r

⋃
y∈B
{y},

that is, iff A = B.

3.3. As mentioned in the Introduction, Hewitt defined in [6] a space X as
irresolvable if there are no disjoint dense A,B ⊆ X. Localizing this concept
one then obtains the hereditary irresolvability

∀A,B ⊆ X, ∅ 6= A = B ⇒ A ∩B 6= ∅. (HI)

As an immediate consequence of 3.2.3 we get

3.3.1. Theorem. Every subspace of a space X is complemented as a sublocale
(that is, SY is complemented in S(Ω(X)) iff X is hereditarily irresolvable.

3.4. The following is an immediate

Observation. Every scattered space is hereditarily irresolvable.
(Indeed: each isolated element of A is in A.)

The question naturally arises whether this can be reversed, that is, whether
hereditarily irresolvable spaces are necessarily scattered. Already from [6]
one can infer that this holds true e.g. for every metrizable, or every locally
compact Hausdorff space. In [4] the authors proved (a.o.) the equivalence
of HI with another interesting property (Hausdorff-irreducibility) and proved
the desired reverse implication for a much broader class of spaces. We can
recommend [4] as a source of many interesting relevant facts, and of literature
on the subject.

To simplify the terminology let us speak of spaces in which the reverse im-
plication holds as of H-spaces. Thus, X is an H-space if

either it is not hereditarily irresolvable or it is scattered.

(Let us note right away that non-H-spaces exist; an example from the liter-
ature will be analyzed in the last section.)

From 2.4.2, 3.2.3 and 3.3.1 we obtain

3.4.1. Theorem. For an H-space X (in particular, for a metrizable or locally
compact Hausdorff one) the following statements are equivalent.

(1) X is scattered.
(2) Every sublocale of Ω(X) is complemented.
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(3) Every subspace (induced sublocale) of Ω(X) is complemented.

3.4.2. Note. Recall the standard fact ([8, 9]) that

every complemented sublocale of Ω(X) is induced.

(This immediately follows from 1.1.2 and 2.2: If S is complemented then

S =
∨
{{p, 1} | p prime in Ω(X)} ∩ S =

=
∨
{{p, 1} ∩ S | p prime in Ω(X)} =

∨
{{p, 1} | p prime in S}. )

Hence, in an H-space,

- there exists a non-induced sublocale iff
- there exists a non-complemented induced sublocale iff
- there are non-empty disjoint A,B with A = B.

Thus, in the H-context, non-induced sublocales appear only in connection
with the Isbell’s minimal density phenomenon (see e.g. [7] or [9]). For
the non-H-spaces, however, there are non-induced sublocales based on quite
different principles.

4. A note on non-H-spaces
We close with the description of a class of non-H-spaces mentioned in [4,

Example 2.5] (this example is originally due to El’kin [5]).

4.1. Submaximal spaces. In his 1943 paper, Hewitt also introduced sub-
maximal spaces. A topological space X is submaximal if every dense subset
of X is open.

The following is well known and shows that any dense-in-itself submaximal
space (named by Hewitt as an MI space) is a non-H-space.

4.1.1. Proposition. Any submaximal space is hereditarily irresolvable.

Proof : Suppose there is a nonempty resolvable subspace Y of a submaximal
space X. We may assume Y is the disjoint union A t B with A,B dense in
Y . Then X rA = (X rY )∪B is dense in X hence open by submaximality.
This means that A is closed. Then Y ⊆ A = A, that is, B = ∅ and therefore
Y = ∅ (since Y ⊆ B), a contradiction.

4.2. An example. Let us illustrate what happens by the following example.
Consider an infinite set X. By Zorn’s Lemma, each non-trivial filter on

X can be extended to a non-trivial ultrafilter (this is the Boolean Ultrafilter
Theorem — in fact, BUT is a choice principle known to be weaker than
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the axiom of choice). Let F be an ultrafilter extending the filter of cofinite
subsets F0 (the Fréchet filter.) Obviously

τ = F ∪ {∅}

is a topology on X.

4.2.1. Observation. (X, τ) is a dense-in-itself T1-space. In particular, it is
not scattered.

(Indeed, each (X r {x}) is already in F0, and hence open, and obviously no
{x} is open.)

4.2.2. Observation. For the closure in (X, τ) we have

Y =

{
Y if Y = X or Y /∈ F ,
X if Y ∈ F

(thus, Y ⊆ X is dense iff Y ∈ F). Similarly,

intY =

{
∅ if Y = ∅ or Y /∈ F ,
Y if Y ∈ F .

(This immediately follows from the property of an ultrafilter that for any
Y ⊆ X either Y ∈ F or X r Y ∈ F , hence each Y ⊆ X is either open or
closed.)

4.2.3. Observation. (X, τ) is hereditarily irresolvable.

(Indeed, if ∅ 6= A = B and A ∩ B = ∅ then, say, A ∈ F and B /∈ F and
hence A ⊆ A = B = B, a contradiction.)

4.2.4. Now let us look at the concrete phenomena relevant to our satements
about sublocales. By 2.2 we have the sublocale induced by a Y ⊆ X given
by the formula

SY = {int((X r Y ) ∪ (U ∩ Y )) | U ∈ τ}.

Since

(X r Y ) ∪ (U ∩ Y ) ⊇ (U r Y ) ∪ (U ∩ Y ) = U

we have

(X r Y ) ∪ (U ∩ Y ) = (X r Y ) ∪ U
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and by 4.2.2,

SY =

{
{(X r Y ) ∪ U | U ∈ τ} if Y /∈ F

{(X r Y ) ∪ U | U ∈ τ} ∪ {∅} if Y ∈ F .

To see the mechanism of the complementarity of induced sublocales in this
space let us consider Y, Z ⊆ X with Y ∩ Z = ∅; we want to show that
SY ∩ SZ = O. Thus, let there be a W ∈ SY ∩ SZ , that is,

W = (X r Y ) ∪ U = Y ∪ V for some U, V ∈ F .

Then

(Y ∪ V ) ∩ (X r Y ) = ((X r Y ) ∪ U) ∩ (X r Y ) = (X r Y )

and hence Y rY ⊆ Y ∩V , and since also Y ⊆ Y ∩V we have W = Y ∩V = X.

A sublocale S of Ω(X, τ) is dense if ∅ ∈ S (see e.g. [9, III.8]: closed
sublocales of a frame L are the subsets ↑a ⊆ L and hence the closure of
T , the least closed sublocale containing T , is ↑

∧
T and hence T is dense

iff it contains the smallest element of L). The minimum dense sublocale of
L is known to be the subset {a∗ | a ∈ L} of all the pseudocomplements
in L. In our case, since U ∩ V = ∅ only if some of the U, V is ∅, this
set of pseudocomplements is {∅, X} and indeed a sublocale S is dense iff
{∅, X} ⊆ S. Finally, {∅, X} itself is not induced: if it were some of the SY ,
because of the ∅, Y would have to be in F . But then each (X r Y ) ∪ U
with U ∈ F , for instance with any X r {x}, would have to be equal to X
contradicting the fact that Y ∈ F and hence is infinite.

4.2.5. Note. (1) The use of an ultrafilter was essential. Just an extension
of F0 to a more suitable filter would not help. The question naturally arises
whether one can have an example of a non-scattered hereditarily irresolvable
space without using a choice principle.
(2) Theorems 2.4 and 2.11 of [4] indicate exactly when an HI space is scat-
tered. For a space X, let D(X) denote the set of all dense subsets of X. By
[4, 2.4, 2.11], an HI space X is scattered whenever D(Y ) is contained in a
principal ultrafilter for every nonempty closed subspace Y of X; and X is
not scattered if D(X) is not contained in a principal ultrafilter.
(3) The minimal dense sublocale in 4.2.4 is a point in the sense of 1.4.1. It is
a point of the sobrification of X, not of X itself; the sobrification is, however,
not a TD-space (no non-trivial sobrification is — see [9, VI.2.3.2]).
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4.3. More examples. The space in 4.2.1 can be easily modified to provide
examples of non-H-spaces that are not submaximal. In fact, consider disjoint
infinite sets X and Y and let F be a free ultrafilter on X and let G be a free
ultrafilter on Y . Then let Z be the disjoint union of X and Y equipped with
the topology

τ = {A tB | A ∈ F , B ∈ G} ∪ {∅}.
It is easy to check that (Z, τ) is a non-submaximal, dense-in-itself, heredi-
tarily irresolvable T1-space (see [10, Example 2.5] for the details).
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