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Abstract: Given a liability structure, the optimal bank asset structure problem
consists in determining an asset allocation that maximizes profit, subject to re-
strictions on Basel III ratios and credit, liquidity and market risks. Most bank
asset allocation models are very sensitive to inputs, making them difficult to use in
practice, due to rigidities in the balance sheet. Our first contribution is to develop
an optimization method that guarantees the stability of the allocations against the
parameters, based on turnover constraints.

On the other hand, bank allocation models have not been tested using histor-
ical data. We develop such tests, which document the superior performance of
optimization strategies when compared to heuristic rules, resulting in an average
annual out-of-sample outperformance of 9.4% in terms of Return on Equity using
our data set. The tests also confirm that turnover constraints are important in
order to achieve smooth allocations that can be implemented in practice.

Keywords: bank asset structure, optimization, turnover constrains, out-of-sample
performance.

1. Introduction
The optimization of bank balance sheets consists on the choice of the allo-

cations in the different asset classes, and involves different variables, namely
the prospective returns on asset classes, the regulatory framework, the ac-
counting rules (IFRS) and also internal risk estimates.

The literature on bank balance sheet optimization has recently known sig-
nificant advances. Most models, however, are sensitive to the input param-
eters, resulting in high changes in asset allocations. In the case of banks,
this makes these asset allocations very difficult to implement in practice, as
banks cannot grow on most of the asset classes by an arbitrary amount. For
example, if a bank has an allocation of 20% of in mortgages, it is extremely
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difficult, if not impossible, to grow this allocation to 60%, due to supply fac-
tors and the operational effort involved. The first motivation of our research
is to devise a robust framework for bank balance sheet optimization that
yields smoother allocations.

To date, there have been no historical tests of bank balance sheet opti-
mization methodologies, unlike for instance, in the subject of portfolio opti-
mization, where numerous papers have addressed the historical performance
of different optimization methodologies. As many papers have shown in the
case of portfolios (see for instance [5]), optimization methods may guarantee
the best returns ex-ante (or in-sample), but in many cases do not outperform
heuristic strategies ex-post (out-of-sample). Our second goal of the paper is
to devise a testing framework that allows us to evaluate the stability of al-
locations and the out-of-sample performance of different optimization and
heuristic strategies.

Bank balance sheet optimization models have been available since the eight-
ies. We cite a few references. Kusy and Ziemba [12] have created a framework
for calculating optimal balance sheets using the stochastic nature of cash out-
flows. Kosmidou and Zopounidis [11] have devised a simulation-optimization
framework taking into account the interest rate risk in the balance sheet. The
regulatory and accounting framework have evolved considerably since then:
for instance, Basel III has been implemented, and regulators actively mon-
itor capital and liquidity ratios; credit risk measurement has also evolved
considerably since then.

A few papers have recently addressed the optimization of balance sheets.
Halaj [9] has devised a methodology for calculating the optimal asset struc-
ture of a bank in the presence of solvency and liquidity restrictions. The
method is quite broad, in that it includes both interest rate and credit risk,
and also regulatory compliance. However, it turns out to be sensitive to the
input parameters and the model has not yet been tested using historical data
to assess the stability of allocations and the out-of-sample performance of the
model versus other heuristic allocation models.

Schmaltz et al. [24] have also undertaken innovative research on optimal
balance sheets in the presence of regulatory constraints, which demonstrates
the power of optimization techniques in solving concrete financial problems
and their superiority to commonly accepted heuristic techniques. The goal of
this model is different from our research, in that the departing point is a Basel
III non-compliant bank and the methodology determines the least costly way
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to comply with the Basel III ratios, whereas the goal of our research is to
dynamically determine the optimal allocations even assuming compliance
with Basel III.

The authors do not address the differentiation between legacy loans and
new loans, that is present for instance in [4] and [9], which is important to
determine the prospective net interest margins on different asset classes. Let
us give an example: suppose that rates have been falling, legacy loans have an
interest rate of 5%, and new loans have an interest rate of 2%. Measuring the
prospective return at 5% becomes too optimistic, whereas using 2% becomes
very pessimistic. The rate on this asset class will be somewhere in between
2% and 5%, depending on the turnover of the assets.

The model also assumes no lower bounds on the deleveraging of asset
classes, which in practice may not happen or may prove difficult. For ex-
ample, unlimited deleveraging in long-term mortgages may prove difficult,
particulary for many geographies outside the United States, where securitiza-
tion markets are much less active. Also, the model assumes that deleveraging
occurs with a linear penalty, which may be hard to estimate. Let us give an-
other example: suppose a bank wants to decrease its mortgages by 20% in a
year and the turnover on this asset class is of 5%. The first 5% would be rel-
atively easy to implement, in that no new mortgages would be given, with a
zero penalty. It would be hard to estimate the impact of the remaining 15%,
as there would be several possible combinations: one can sell business lines
or subsidiaries, or simply sell a portfolio of credits. However, implementation
costs are difficult to estimate. The haircut on selling credit business lines or
credit portfolios depends largely on the credit risk of those portfolios. The
impact of job cuts is hard to estimate, as it depends on the number of people
in the business lines and their years of service; also, research shows that job
cuts have many indirect costs which are hard to quantify, namely the costs of
litigation and of decreasing quality of services (see for instance [23] or [26]).
This example shows the non-linear nature of the deleveraging and also the
difficulties in calibrating this penalty in practice. The authors circumvent
this difficulty by estimating a shadow price assuming that the bank is Basel
II - optimal. We believe that this methodology is difficult to use in practice,
as many banks have not behaved optimally in the past, resulting in excessive
risk and low profitability in many cases as financial crises have shown.
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Finally, it would be useful to test their model against historical data to
assess the out-of-sample performance of the model. As we have said be-
fore, there is no ex-post guarantee that an optimization framework will yield
superior results when compared to heuristic strategies.

With this literature review in mind, our research provides the following
contributions:

(1) First, we devise an optimal bank asset allocation model, given a lia-
bility structure, using global turnover constraints, which are easy to
calibrate, and have been used in the context of portfolio optimiza-
tion [6]. Turnover constraints prevent large fluctuations in allocations
each year. Consequently, a major change in the balance sheet is only
achieved if market conditions show a steady trend over time. We focus
solely on the asset structure, given that it is easier to change the asset
structure than the liability structure. For example, as documented in
[8], growing the deposit base is often difficult as retail deposits tend to
be sticky. Also, equity capital may be difficult to obtain particularly
at times of increased financial stress.

(2) We use extensive historical data to devise a testing framework of op-
timization and heuristic strategies, addressing both the performance
and the stability of the allocations.

(3) We document the excessive sensitivity of optimization methodologies
without global turnover constraints. The allocations without turnover
constraints can vary in our setting up to 40% in a year, which is in-
feasible in practice. For example, a bank cannot change the allocation
of its consumer credit portfolio from 20% to 60% in a year, unless it
makes an acquisition of a large consumer credit business unit, which
may not be readily available. We demonstrate that turnover method-
ologies yield smoother allocation trajectories, which enable them to
be used in practice.

(4) Finally, we document the superiority of optimization strategies when
compared to classical heuristic strategies, resulting in an average out-
of-sample outperformance of 0.94% in return on assets and of 9.4% in
return on equity.

These contributions yield a model with turnover restrictions, which is suit-
able to be used in practice, since it combines the superior profitability pre-
sented by the optimization models with allocations that can be implemented
by bank management.
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This paper is organized as follows: section 2 describes the model and the
return and risk parameters used as inputs; section 3 conducts an extensive
analysis of out-of-sample results on the performance and stability of the
optimization method with turnover constraints against a series of heuristic
benchmarks that we adapt to the banking context. Section 4 concludes the
manuscript.

2.Model description
In this section, we develop the model for the optimal asset structure. We

assume that the liability structure is fixed, for the reasons explained in the
introduction.

We intend to apply the algorithm regularly over the period under study.
Consequently, the algorithm starts with the portfolio x0, which is the one
currently used in the first year of the study. Next, it finds the optimal asset
structure x∗, which satisfies the Basel III and turnover constraints, given a
prediction of the rates, defaults and risk of each asset. Then, x0 is updated
with x∗ and the model is applied to obtain the optimal solution for the
following year and so on.

2.1. The proposed model. Let A = {A1, A2, A3, A4, A5A6, A7} be the set
of assets described in the following table:

Asset Description
A1 Cash

A2, A3 Mortgage and Personal Loans, respectively
A4, A5 Treasury bonds AFS and HTM, respectively
A6, A7 Corporate bonds AFS and HTM, respectively

This set describes a great part of the activity of many banks, and for
all these aggregates we have historical data as we will see in the following
sections. HTM designates Held-To-Maturity assets, while AFS designates
Available-For-Sale assets. Let AL = {A2, A3, A5, A7} be the subset of as-
sets associated with long holding periods, that is, loans and HTM assets.
Additionally, define Ω = {x ∈ R#A :

∑
i∈A xi = 1, xi ≥ 0} as the set of

admissible portfolios. Our model distinguishes between legacy (x̂i) and new
(x̃i) contracts for each asset. As consequence, we also distinguish between
the interest rate on legacy contracts, r̂i, and the interest rate on new ones,
ri. The amount of legacy contracts is obtained through repayments, so that
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x̂i = (1−αi)x0
i , where αi is the repayment portion on asset i. Finally, legacy

and new contracts fulfill the portfolio, so xi = x̂i + x̃i, ∀i ∈ A.
Since capital and liabilities are given as inputs to the problem, the cal-

culations that depend on them are considered constants. For example, the
numerator in the common equity tier I ratio is a constant in the problem.
Given the set of inputs, we propose the following model:

max
x∈Ω

r(x)

subject to

∑
i∈A λixi

Λ
≥ K1, (1)

N∑
i∈A νixi

≥ K2, (2)∑
i∈A Sixi
M

≥ K4, (3)

C − IRR−
√
V (x)∑

i∈ARWixi
≥ K3, (4)

x̂i = (1− αi)x0
i , ∀i ∈ A (5)

xi = x̂i + x̃i, ∀i ∈ A (6)

xi − x0
i ≤ yi, x0

i − xi ≤ zi, ∀i ∈ A (7)∑
i∈A

(yi + zi) ≤ h (8)

yi ≤ αix
0
i , ∀i ∈ AL (9)

zi ≤ αix
0
i , ∀i ∈ AL (10)

yi, zi ≥ 0, ∀i ∈ A (11)

The intention of this problem is to maximize the return r(x), constrained
to (1)-(4) corresponding, respectively, to the risk and regulatory restrictions
posed by Basel III: the Liquidity Coverage Ratio (LCR), which compares
liquid assets with net cash outflows in 30 days, that is, in the short term;
the Net Stable Funding Ratio (NSFR), which compares the medium-term
liquidity of assets with medium-term financing stability; a liquidity stress
coverage ratio that compares liquid assets with wholesale liabilities, which
determines if the bank is well prepared for liquidity dry ups; and Common
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Equity Tier 1 (CET1) after a solvency shock V (x) and an interest rate shock
IRR, which we explain below. This set of restrictions was taken from [10],
and are important to ensure the sustainability of the balance sheet.

Constraints (5) and (6) allows us to distinguish between legacy and new
assets. The main novelty of the model is the inclusion of turnover constraints,
present in the context of portfolio optimization, but not included so far in
the bank balance sheet optimization literature. The turnover constraints (7)-
(11) allow us to achieve some stability over the years and to use the solutions
in real situations. The local turnover constraints (9)-(10) are applied only to
assets in AL, since the banks can only reinvest, to a great extent, the amount
that comes from repayments. Although the theme of limited reinvestments by
repayments has also been addressed in [9], that research neither considers the
upper bound local turnover constraint (9) nor the global turnover constraint
(8). Consequently, that model allows an arbitrarily large investment in assets
belonging to AL which can not be easily divested in the following years.
Additionally, the global turnover is not restricted, leading to solutions that
show large variations which are hard to accomplish in practice.

2.2.Model parameters estimation. As we already mentioned, we assume
that the liability structure is fixed and corresponds to:

Liabilities
Deposits Money Market Issued Bonds Capital

Allocation 0.5 0.2 0.2 0.1

Λ = 21.5% λ = [100% 0% 0% 100% 100% 50% 50%]
N = 78% ν = [0% 65% 85% 5% 5% 5% 5%]
C = 10% IRR = 1.1%
M = 40% ∆ = [0% 0% 0% 0% 0% 0% 0%]
h = 15% RW=[0% 35% 100% 0% 0% 100% 100%]
K1 = K2 = 110% S = [100% 0% 0% 100% 100% 100% 100%]
K3 = 10% K4 = 100%

Table 1. Fixed input data for the model

Table 1 reports the fixed input data to our model. In this table, IRR
represents the sensitivity of net interest income to a 300 basis point shock
in interest rates. Since all the asset classes are at fixed rates, the liability
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Ai A1 A2 A3 A4 A5 A6 A7

Mi — 30 2 — 10 — 20
αi 1 1/30 1/2 1 1/10 1 1/20

LGDi 0 0.471 0.64 0 0 0.628 0.628
Table 2. Values for the fixed parameters used in the model for
each asset.

structure determines completely this sensitivity. In our test case, a 300 basis
point increase in rates has a negative impact of 1.1% in the balance sheet.

In this model, we set αi = 1/Mi, ∀i ∈ AL, where Mi is the maturity (in
years) and αi = 1 in the remaining cases (see Table 2) meaning that there is
no legacy when i /∈ AL. Additionally, the interest rate on legacy contracts of
asset i, r̂i, is initialized as the average rate of the previous 10 years for the
first year in our study. Subsequently, r̂i is updated with (1 − αi)r̂i + αiri,
∀i ∈ A.

The objective function of our model corresponds to the prospective return
on legacy and new loans and is given by:

r(x) =
∑
i∈AL

(x̂ir̂i + x̃iri − xiLGDiPDi) +
∑
i/∈AL

xiri,

where ri and PDi are the estimated interest rate and the estimated proba-
bility of default on asset i. These value were estimated using the (simple)
moving average method over the previous 10 years (see [20, 22]). The LGDi

parameters (loss given default) are reported in Table 2 and were obtained
from [27, 3] for loans and from [25] for corporate bonds. We assumed that
LGDi = 0, ∀i /∈ AL.

We would like to emphasize that the prospective return ri on AFS bonds
is given by ji, where ji is the yield on AFS bonds at the beginning of the
year under study.

The Common Equity Tier 1 constraint (4) depends on V (x) =
∑

i∈A(σixi)
2

where σi is a risk penalty parameter associated to asset i. We assume that
σ1 = σ5 = 0 since their credit risk is very low. V (x) is a penalty function
for the asset structure that depends on the individual risk penalties for each
asset class.

The penalty risk for loans and corporate bond HTM will be given by the
credit V aR which is given by the difference between the unexpected loss
at 99.9% and the expected loss [7], that is σi = ULi(0.999) − ELi where
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Parameter Value
ρ2 0.15

ρ3 0.03× 1− e−35PD3

1− e−35
+ 0.16×

(
1− 1− e−35PD3

1− e−35

)

ρ7 0.12× 1− e−50PD7

1− e−50
+ 0.24×

(
1− 1− e−50PD5

1− e−50

)
Table 3. Value of parameter ρi, i ∈ {2, 3, 7}.

ULi(0.999) = N

(√
1

1− ρi
×N−1

(
PDi

)
+

√
ρi

1− ρi
×N−1(0.999)

)
×LGDi

and ELi = PDi × LGDi, i ∈ {2, 3, 7}. In these formulas, PDi represents
the average of PDi over the previous 10 years and ρi corresponds to the
correlation between different contracts of the same asset. Table 3 report the
ρi values, i ∈ {2, 3, 7}, taken from [1, 21, 2].

Finally, the risk penalty for AFS bonds will be given by the Market VaR
which is

N−1(0.95)si, i ∈ {4, 6},
where si is a prediction of the standard deviation of the return of asset i from
the previous 10 years.

3. Historical data description
We use historical data used to evaluate the performance of the proposed

model, namely public USA data for interest rates and defaults from 1985 until
2016. Table 4 indicates the data sources, and Table 5 reports a summary
overview of the average return and the average risk penalty on each asset.

4. Computational experiments
In this section, we report an extensive computational study comparing

the proposed model with classical heuristic strategies, and we evaluate the
ex-post performance, using historical data, in section 3.

Since the heuristic approaches may not give a solution that is compliant
under Basel III, we search the nearest solution that verifies these constraints
by solving the following model:
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Asset Interest
structure rate Defaults
Cash [17] —
Mortgage loans [14] [16, 27]
Personal Loans [18] [15, 3]
Treasury bonds AFS [13] —
Treasury bonds HTM [13] —
Corporate bonds AFS [19] [25, Exhibit 23 (page 28) and Exhibit 7 (page 8)]
Corporate bonds HTM [19] [25, Exhibit 23 (page 28) and Exhibit 7 (page 8)]

Table 4. Sources for the rates for each asset.

Asset structure Return (%) Risk penalty (%)
Cash 2.7917 0
Mortgage loans 5.6116 4.2690
Personal Loans 9.5912 7.3581
Treasury bonds AFS 5.8829 8.6807
Treasury bonds HTM 4.4000 0
Corporate bonds AFS 7.8829 7.3946
Corporate bonds HTM 6.8010 1.3915

Table 5. Average return and risk penalty for each asset during
the evaluation period (1985− 2016).

min
x∈Ω

||x− xH ||

subject to (1)− (11),

where xH is a heuristic solution. In this research, we consider norm `1, that
is, ||x−xH || =

∑
i∈A |xi−xHi |, since it allows us to get solutions that modify

fewer components of the original one, making this approach less sensitive to
parameters than other norms, such as the Euclidean norm. However, other
norms could be considered.

4.1. Tested approaches. Altogether, six approaches (three optimized and
three heuristics) were tested in this work. Three of them come from the
optimized model suppressing some turnover constraints to better understand
their effect in the final solution. These strategies are:
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• M1: this approach consists of applying the original model presented
in section 2;
• M2: similar to the previous one but removing upper bound local

turnover constraint (9);
• M3: similar to the previous one but removing also the global turnover

constraint (8);

We compare the optimized approaches against classical heuristic approaches,
which we list below:

• EW (Equal Weighting): all the assets have the same allocation in the
balance sheet;

xEW =
[100

7
%

100

7
%

100

7
%

100

7
%

100

7
%

100

7
%

100

7
%
]
.

• 60/40: this is an adaptation of the 60/40 equity/bond portfolio alloca-

tion [5] to banks. In this work, we use this strategy to define a balance
sheet allocating 60% in assets with high risk and 40% to assets with
lower risk. We consider the cut-off point for risk as 2% and set equal
weightings inside each group. Taking into account the average risk
reported in Table 5, this leads to the following allocation:

x60/40 =
[40

3
%

60

4
%

60

4
%

60

4
%

40

3
%

60

4
%

40

3
%
]
.

• RP (Risk Parity): this strategy makes the allocations in such a way
that all the assets contribute with the same risk to the final solu-
tion. Then, in case σi > 0, ∀i ∈ A, this solution could be defined as

xi = 1/σi∑
j∈A 1/σj

, i ∈ A. However, some assets have no risk or very low

risk, so that we need to adapt the methodology to our bank setting.
Consequently, for a specific year of the simulation, we define the set
of assets AR that have a risk penalty greater than 2% and apply a
risk parity strategy to these assets, and an equal weighting strategy
to the remaining ones. This set has to be updated for each year in the
simulation. To compare the behaviour of this solution with the pre-
vious one, we keep the same allocation proportion between high-risk
and low-risk assets. Thus, this solution is given by

xRPi = 0.6× 1/σi∑
j∈AR

1/σj
, i ∈ AR.
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Initial balance sheet
Assets A B C D E F G

Cash 50% 10% 100
7 % 5% 20% 25% 10%

Mortgage loans 10% 20% 100
7 % 40% 0% 0% 60%

Personal Loans 10% 30% 100
7 % 20% 0% 50% 0%

Treasury bonds AFS 7.5% 15% 100
7 % 25% 40% 0% 10%

Treasury bonds HTM 7.5% 10% 100
7 % 5% 20% 25% 10%

Corporate bonds AFS 7.5% 10% 100
7 % 2.5% 20% 0% 5%

Corporate bonds HTM 7.5% 5% 100
7 % 2.5% 0% 0% 5%

Table 6. Description of the seven initial balance sheets (corre-
sponding to the balance sheet for 1994 in our simulation).

and

xRPi =
0.4

#(A\AR)
, i /∈ AR.

4.2. Initial balance sheet. In order to assess the robustness of the results
on the performance of the optimized and heuristic strategies, we defined seven
different initial balance sheets (see Table 6), which are defined as follows:

A:: allocate 50% of the balance sheet to Cash;
B:: allocate 50% of the balance sheet to Loans ;
C:: distribute the asset allocation evenly;
D:: typical asset structure of a diversified retail bank ;
E:: typical asset structure of an investment bank ;
F:: typical asset structure of a consumer credit bank ;
G:: typical asset structure of a mortgage loan bank.

All of these initial balance sheets are compliant under Basel III.

4.3. Out-of-sample results. Although we have available data from 1985
to 2016, in order to obtain a solution in the ex-ante optimization process, we
need to predict some parameters of our model (PDi, ri, σi), smoothing their
values with the average over the previous 10 years, as discussed in section
2.2. Consequently, our ex-post simulation only runs from 1995 to 2016.
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Initial balance sheet
Strategy A B C D E F G
M1 470.36 526.55 527.74 531.42 416.82 497.37 518.95
M2 487.60 537.43 535.98 560.24 488.55 520.11 549.71
M3 540.90 549.29 545.82 572.83 532.42 534.36 577.24
EW 424.24 456.07 453.99 461.46 349.37 449.42 445.21

60/40 431.15 462.40 459.67 466.38 349.37 449.36 447.88
RP 409.57 454.90 452.75 455.48 351.99 436.09 441.25

Table 7. Accumulated effective return in the last year of the simulation.

The ex-post simulation consists on evaluating the solution obtained in the
ex-ante optimization process with the effective return function:

r̃(x) =
∑
i∈AL

(x̂ir̂i + x̃iri − xiLGDiPDi) +
∑
i/∈AL

xiri,

where ri is the actual value of the interest rate in the beginning of the year
under study and PDi is the default rate observed at the end of that year.
For i /∈ AL, the effective return ri is given by

ri = ji +
dP (j)

dj
∆,

where ji is the yield on AFS bonds in the beginning of the year, P is the bonds
price and ∆ is the increase/decrease in interest rates from the beginning to
the end of the year.

Figure 1 shows the evolution of the accumulated effective return, ra, for
each one of the strategies tested and the initial balance sheets considered. It
is computed as

ra0 = 100 and rat = rat−1(1 + r̃(x(t))), t > 0,
where t is the index of each one of the years under study and x(t) is the
corresponding solution for that year.

The evolution of the allocation for these solutions is presented in Figures
2 - 8 (see the annex section). Table 7 summarizes the accumulated effective
return in the last year of the ex-post simulation and Table 8 compares the
average results of optimized approaches with the heuristic ones.
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Figure 1. Accumulated effective return from 1995 to 2016.
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Initial balance sheet
Strategy A B C D E F G Average

Optimized 7.586 7.946 7.935 8.100 7.383 7.756 8.045 7.822
Heuristic 6.760 7.159 7.135 7.195 5.863 7.021 7.019 6.879
Difference 0.827 0.787 0.800 0.905 1.520 0.735 1.026 0.943

Table 8. Comparison between the average accumulated effec-
tive return on both types of strategy (values in percentage).

These results attested the greater performance of the optimized solutions
over heuristics in the ex-post simulation, reaching an average annual outper-
formance of 0.94% in terms of return on assets and 9.4% in terms of return
on equity, since we consider a capital allocation of 10%.

When the constraints are removed from the model presented in section
2, the performance increases but the stability is penalized. For example,
the strategy M 3, which does not use turnover constraints, shows annual
variations in the allocations above 40%, which does not happen in practice,
as the allocations in the banking sector tend to be rigid for the reasons
explained in the introduction.

The heuristic approaches show similar out-of-sample performances at the
end of the simulation. Finally, as the initial balance sheets are different from
the heuristic solutions, we can observe that the allocations converge to the
to the heuristic solution.

5. Conclusion
The research we have undertaken was motivated by a practical problem in a

banking context. When trying to implement a bank balance sheet optimiza-
tion model, the allocations showed an excessive sensitivity to parameters,
and could not be implemented in practice.

We tackled this problem using turnover constraints, present in the portfolio
optimization literature. Using these types of constraints, we developed an
optimization method, which is simple to implement in practice. In the paper,
we also describe the estimation for the parameters.

Our second contribution was to develop a testing framework for different
bank allocation strategies, based on an extensive historical data set, in order
to evaluate the out-of-sample performance and stability of each strategy.

Our testing framework allowed us to confirm a series of conclusions:
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(1) When we remove global turnover constraints from the optimization
models, this results in excessive variations in the allocations that can-
not be implemented in practice.

(2) Optimization models with turnover constraints show smoother alloca-
tions and therefore can be implemented in an industrial context.

(3) Optimization models show superior out-of-sample performance when
compared to heuristic strategies. Notice that this is not a given, as nu-
merous studies have shown that, in the case of portfolio optimization,
often heuristic strategies outperform portfolio optimization strategies
when considered out-of-sample. Using our dataset, we report an in-
crease in annual ex-post outperformance of 0.94% in terms return on
assets and of 9.4% in terms return on equity.

We hope that this research can contribute to the development of balance
sheet optimization tools that can be used in practice by the banking sector.

References
[1] K. Aas. The basel II IRB approach for credit portfolios: A survey. https://www.nr.no/

files/samba/bff/SAMBA3305.pdf, 2005. Accessed: 2017-11-26.
[2] E. B. Authority. Risk-weighted exposure amounts for retail exposures (article

154). https://www.eba.europa.eu/regulation-and-policy/single-rulebook/

interactive-single-rulebook/-/interactive-single-rulebook/article-id/5006.
Accessed: 2018-03-29.

[3] A. Bandyopadhyay and P. Singh. Estimating recovery rates on banks historical loan loss data.
https://mpra.ub.uni-muenchen.de/9525/1/MPRA/_paper/_9525.pdf. Accessed: 2017-11-
25.
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Figure 2. Evolution of the balance sheet during the simulation
of the tested approaches over the period 1994 - 2016 (initial bal-
ance sheet A).
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Cash Mortgage loans Personal Loans

Treasury bonds AFS Treasury bonds HTM

Corporate bonds AFS Corporate bonds HTM

19
95

20
00

20
05

20
10

20
15

0

0.2

0.4

0.6

Year

A
ll
oc
at
io
n

Approach M1

19
95

20
00

20
05

20
10

20
15

0

0.2

0.4

0.6

Year

A
ll
oc
at
io
n

Approach EW

19
95

20
00

20
05

20
10

20
15

0

0.2

0.4

0.6

Year

A
ll
oc
at
io
n

Approach M2

19
95

20
00

20
05

20
10

20
15

0

0.2

0.4

0.6

Year

A
ll
oc
at
io
n

Approach 60/40

19
95

20
00

20
05

20
10

20
15

0

0.2

0.4

0.6

Year

A
ll
oc
at
io
n

Approach M3

19
95

20
00

20
05

20
10

20
15

0

0.2

0.4

0.6

Year

A
ll
oc
at
io
n

Approach RP

Figure 3. Evolution of the balance sheet during the simulation
of the tested approaches over the period 1994 - 2016 (initial bal-
ance sheet B).
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Figure 4. Evolution of the balance sheet during the simulation
of the tested approaches over the period 1994 - 2016 (initial bal-
ance sheet C).
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Figure 5. Evolution of the balance sheet during the simulation
of the tested approaches over the period 1994 - 2016 (initial bal-
ance sheet D).
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Figure 6. Evolution of the balance sheet during the simulation
of the tested approaches over the period 1994 - 2016 (initial bal-
ance sheet E).
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Figure 7. Evolution of the balance sheet during the simulation
of the tested approaches over the period 1994 - 2016 (initial bal-
ance sheet F).
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Figure 8. Evolution of the balance sheet during the simulation
of the tested approaches over the period 1994 - 2016 (initial bal-
ance sheet G).


