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ON FINITARY FUNCTORS AND FINITELY PRESENTABLE
ALGEBRAS

J. ADÁMEK, S. MILIUS, L. SOUSA AND T. WISSMANN

Abstract: A simple criterion for a functor to be finitary is presented: we call
F finitely bounded if for all objects X every finitely generated subobject of FX
factorizes through the F -image of a finitely generated subobject of X. This is
equivalent to F being finitary for all functors between “reasonable” locally finitely
presentable categories, provided that F preserves monomorphisms. We also discuss
the question when that last assumption can be dropped.

For finitary regular monads T on locally finitely presentable categories we char-
acterize the finitely presentable objects in the category of T-algebras in the style
known from general algebra: they are precisely the algebras presentable by finitely
many generators and finitely many relations.

All this generalizes to locally λ-presentable categories, λ-accessible functors and
λ-presentable algebras. As an application we obtain an easy proof that the Hausdorff
functor on the category of complete metric spaces is ℵ1-accessible.

1. Introduction
In a number of applications of categorical algebra, finitary functors, i.e.,

functors preserving filtered colimits, play an important role. For example, the
classical varieties are precisely the categories of algebras on finitary monads
over Set. How does one recognize that a functor F is finitary? For end-
ofunctors of Set there is a simple necessary and sufficient condition: given
a set X, every finite subset of FX factorizes through the image by F of a
finite subset of X. This condition can be formulated for general functors
F : A → B: given an object X of A, every finitely generated subobject
of FX in B is required to factorize through the image by F of a finitely
generated subobject of X in A. We call such functors finitely bounded. For
functors F : A → B between locally finitely presentable categories which
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preserve monomorphisms we prove

finitary⇔ finitely bounded

whenever finitely generated objects of A are finitely presentable. (The last
condition is, in fact, not only sufficient but also necessary for the above
equivalence.)

What about general functors, not necessarily preserving monomorphisms?
We prove the above equivalence whenever A is a strictly locally finitely pre-
sentable category, see Definition 3.7. Examples of such categories are sets,
vector spaces, group actions of finite groups, and S-sorted sets with S finite.
Conversely, if the above equivalence is true for all functors from A to locally
finitely presentable categories, we prove that a weaker form of strictness holds
for A.

A closely related topic is the finite presentation of algebras for a monad.
If T is a finitary monad on Set, then the category SetT of its algebras is
nothing else than the classical concept of a variety of algebras. An algebra
A is called finitely presentable (in General Algebra) if it can be presented
by a finite set of generators and a finite set of equations. If X is a finite
set of generators, this means that A can be obtained from the free algebra
(TX, µX) as a quotient modulo a finitely generated congruence E. Now E is
a subalgebra of (TX, µX)2 but it is not “finitely generated” as a subalgebra,
but as a congruence. This is explained in Section 4. In case of monads over
Set, the above concept coincides with A being a finitely presentable object
of SetT, see [5, Corollary 3.13]. We generalize this result to all locally finitely
presentable categories with regular factorizations and all finitary monads
preserving regular epimorphisms. We also characterize finitely generated
algebras for finitary monads; here no side condition on the monad is required.

All of the above results can be also formulated for locally λ-presentable
categories, λ-accessible functors, and algebras that are λ-presentable or λ-
generated. We use this to provide a simple proof that the Hausdorff functor
on the category of complete metric spaces is countably accessible.

2. Preliminaries
In this section we present properties on finitely presentable and finitely

generated objects which will be useful in the subsequent sections.
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Recall that an object A in a category A is called finitely presentable if its
hom-functor A(A,−) preserves filtered colimits, and A is called finitely gener-
ated if A(A,−) preserves filtered colimits of monomorphisms – more precisely,
colimits of filtered diagrams D : D → A for which Dh is a monomorphism
in A for every morphism h of D.

Notation 2.1. For a category A we denote by

Afp and Afg

small full subcategories of A representing (up to isomorphism) all finitely
presentable and finitely generated objects, respectively.

Subobjects m : M � A with M finitely generated are called finitely gen-
erated subobjects.

Recall that A is a locally finitely presentable category, shortly lfp category,
if it is cocomplete, Afp is essentially small, and every object is a colimit of a
filtered diagram in Afp.

We now recall [5] a number of standard facts about locally presentable
categories.

Remark 2.2. Let A be an lfp category.

(1) By [5, Proposition 1.61] A has (strong epi, mono)-factorizations of
morphisms.

(2) By [5, Proposition 1.57], every object A of A is the colimit of its
canonical filtered diagram

DA : Afp/A→ A (P
p−→ A) 7→ P,

with colimit injections given by the p’s.
(3) By [5, Theorem 2.26] A is a free completion under filtered colimits

of Afp. That is, for every functor H : Afp → B, where B has filtered
colimits, there is an (essentially unique) extension to a finitary functor
H̄ : A → B. Moreover, this extensions can be formed as follows: for
every object A ∈ A put

H̄A = colimH ·DA.

(4) By [5, Proposition 1.62], a colimit of a filtered diagram of monomor-
phisms has monomorphisms as colimit injections. Moreover, for every
compatible cocone formed by monomorphisms, the unique induced
morphism from the colimit is a monomorphism too.



4 J. ADÁMEK, S. MILIUS, L. SOUSA AND T. WISSMANN

(5) By [5, Proposition 1.69], an object A is finitely generated iff it is
a strong quotient of a finitely presentable object, i.e., there exists a
finitely presentable object A0 and a strong epimorphism e : A0 � A.

(6) It is easy to verify that every split quotient of a finitely presentable
object is finitely presentable again.

Lemma 2.3. Let A be an lfp category. A cocone of monomorphisms ci :
Di � C (i ∈ I) of a diagram D of monomorphisms is a colimit of D iff it
is a union; that is, iff idC is the supremum of the subobjects ci : Di� C.

Proof : The ‘only if’ direction is clear. For the ‘if’ direction suppose that
ci : Di � C have the union C, and let `i : Di → L be the colimit of D.
Then, since ci is a cocone of D, we get a unique morphism m : L → C
with m · `i = ci for every i. By 2.24, all the `i and m are monomorphisms,
hence m is a subobject of C. Moreover, we have that ci ≤ m, for every i.
Consequently, since C is the union of all ci, L must be isomorphic to C via
m, because idC is the largest subobject of C. Thus, the original cocone ci is
a colimit cocone.

Remark 2.4. Colimits of filtered diagrams D : D→ Set are precisely those
cocones ci : Di → C (i ∈ objD) of D that have the following properties:

(1) (ci) is jointly surjective, i.e. , C =
⋃
ci[Di], and

(2) given i and elements x, y ∈ Di merged by ci, then they are also merged
by a connecting morphism Di → Dj of D.

This is easy to see: for every cocone c′i : Di → C ′ of D define f : C → C ′

by choosing for every x ∈ C some y ∈ Di with x = ci(y) and putting
f(x) = c′i(y). By the two properties, this is well defined and is unique with
f · ci = c′i for all i.

Recall that an adjunction whose right adjoint is finitary is called a finitary
adjunction. The following lemma will be useful along the paper:

Lemma 2.5. Let L a R : B → A be a finitary adjunction between the lfp
categories B and A. Then we have:

(1) L preserves both finitely presentable objects and finitely generated ones;
(2) if L is fully faithful, then an object X is finitely presentable in A iff

LX is finitely presentable in B;
(3) if, moreover, L preserves monomorphisms, then X is finitely generated

in A iff LX is finitely generated in B.
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Proof : (1) Let X be a finitely presentable object of A and let D : D→ B

be a filtered diagram. Then we have the following chain of natural
isomorphisms

B(LX, colimD) ∼= A(X,R(colimD))
∼= A(X, colimRD)
∼= colim(A(X,RD(−))
∼= colim(B(LX,D(−)).

This shows that LX is finitely presentable in B. Now if X is finitely
generated in A and D is a directed diagram of monos, then RD is
also a directed diagram of monos (since the right adjoint R preserves
monos). Thus, the same reasoning proves LX to be finitely generated
in B.

(2) Suppose that LX is finitely presentable in B and that D : D → A

is a filtered diagram. Then we have the following chain of natural
isomorphisms:

A(X, colimD) ∼= B(LX,L(colimD))
∼= B(LX, colimLD)
∼= colim(B(LX,LD(−))
∼= colim(A(X,D(−))

Indeed, the first and last step use that L is fully faithful, the second
step that L is finitary and the third one that LX is finitely presentable
in B.

(3) If LX is finitely generated in B and D : D → A a directed diagram
of monomorphisms, then so is LD since L preserves monomorphisms
by assumption. Thus the same reasoning as in (2) shows that X is
finitely generated in A.

Lemma 2.6. Let A be an lfp category and I a set. An object in the power
category AI is finitely presentable iff its components

(1) are finitely presentable in A, and
(2) all but finitely many are initial objects.

Proof : Denote by 0 and 1 the initial and terminal objects, respectively. Note
that for every i ∈ I there are two fully faithful functors Li, Ri : A ↪→ AI
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defined by:(
Li(X)

)
j

=

{
X if i = j

0 if i 6= j
and

(
Ri(X)

)
j

=

{
X if i = j

1 if i 6= j

For every i ∈ I there is also a canonical projection πi : A
I → A, πi

(
(Xj)j∈I

)
=

Xi. We have the following adjunctions:

Li a πi a Ri.

Sufficiency. Let A = (Ai)i∈I satisfy 1 and 2, then Li(Ai) is finitely pre-
sentable in AI by Lemma 2.5 (1). Thus, so is A, since it is the finite co-
product of the Li(Ai), with i ∈ I, Ai not initial. Obviously, Li(Ai) is finiely
presentable.

Necessity. Let A = (Ai)i∈I be finitely presentable in AI . Then for every
i ∈ I, πi(A) is finitely presentable in A by Lemma 2.5 (1), proving item
1. To verify 2, for every finite set J ⊆ I, let AJ have the components
Aj for every j ∈ J and 0 otherwise. These objects AJ form an obvious
directed diagram with a colimit cocone aJ : AJ → A. Since A is finitely
presentable, there exists J0 such that idA factorizes through aJ0

, i.e., aJ0
is

a split epimorphism. Since a split quotient of an initial object is initial, we
conclude that 2 holds.

Lemma 2.7. (Finitely presentable objects collectively reflect filtered colim-
its.) Let A be an lfp category and D : D→ A a filtered diagram with objects
Di (i ∈ I). A cocone ci : Di → C of D is a colimit of D iff for every A ∈ Afp

the cocone

ci · (−) : A(A,Di) −→ A(A,C)

is a colimit of the diagram A(A,D−) in Set.

Explicitly: for every morphism f : A→ C, A ∈ Afp

(1) a factorization through some ci exists, and
(2) given two factorizations f = ci ·qk for k = 1, 2, then q1, q2 : A→ Di are

merged by a connecting morphism of D. This follows from Remark
2.4.

Proof : If (ci) is a colimit, then since A(A,−) preserves filtered colimits, the
cocone of all A(A, ci) = ci · (−) is a colimit in Set.

Conversely, assume that, for every A ∈ Afp, the colimit cocone of the
functor A(A,D−) is

(
A(A, ci)

)
i∈D. For every cocone gi : Di → G it is our
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task to prove that there exists a unique g : C → G with gi = g · ci for all
i. Unicity is clear since (ci) is a colimit cocone. Now

(
A(A, gi)

)
i∈D forms

a cocone of the functor A(A,−) · D. Consequently, there is a unique map
ϕA : A(A,C)→ A(A,G) with ϕA ·A(A, ci) = A(A, gi) for all i ∈ D.

For every morphism h : A1 → A2 between objects of Afp, the square on the
right of the following diagram is commutative:

A(A1, Di)
A(A1,ci)

//

A(A1,gi)

,,

A(A1, C)
ϕA1

// A(A1, G)

A(A2, Di)

A(h,Di)

OO

A(A2,ci)
//

A(A2,gi)

22

A(A2, C)
ϕA2

//

A(h,C)

OO

A(A2, G)

A(h,G)

OO

This follows from the commutativity of the left-hand square and the outward
one, which gives the equality ϕA1

·A(h,C)·A(A2, ci) = A(h,G)·ϕA2
·A(A2, ci),

combined with the fact that
(
A(A2, ci)

)
i∈D, being a colimit cocone, is jointly

epic.
As a consequence, the morphisms

A
ϕA(a)−−−→ C with a : A→ C in Afp/C,

form a cocone for the canonical filtered diagram DC : Afp/C → A, of which
C is the colimit. Indeed, given a commutative triangle

A1

a1   

h
// A2

a2~~

C

with A1 and A2 in Afp, we have

ϕA1
(a1) = ϕA1

(a2h) = ϕA1
·A(h,C)(a2) = A(h,G) · ϕA2

(a2) = ϕA2
(a2) · h.

Thus there is a unique morphism g : C → G making for each a : A → C in
Afp/C the following triangle commute:

A
a

��

ϕA(a)

��

C
g

// G
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The morphism g : C → G satisfies g · ci = gi for all i ∈ D. Indeed, fix i; for
every A ∈ Afp and b : A→ Di, we have gib = A(A, gi)(b) = ϕA ·A(A, ci)(b) =
ϕA(cib) = gcib. And the morphisms b ∈ Afp/Di are jointly epimorphic, thus
gi = g · ci.

Lemma 2.8. (Finitely generated objects of an lfp category collectively reflect
filtered colimits of monomorphisms). Let A be an lfp category and D : D →
A a filtered diagram of monomorphisms with ojects Di (i ∈ I). A cocone
ci : Di → C of D is a colimit iff for every A ∈ Afg the cocone

ci · (−) : A(A,Di) −→ A(A,C) (i ∈ I)

is a colimit of the diagram A(A,D−) in Set.

Proof : If (ci) is a colimit, then since A(A,−) preserves filtered colimits of
monomorphisms, the cocone ci · (−) : A(A,Di)→ A(A,C) is a colimit in Set.

Conversely, if ci · (−) : A(A,Di) → A(A,C) is a colimit of the diagram
A(A,D−) for every A ∈ Afg, then it is so for every A ∈ Afp. Hence by
Lemma 2.7, the cocone (ci) is a colimit.

Corollary 2.9. A functor F : A→ B between lfp categories is finitary iff it
preserves the canonical colimits: FA = colimFDA for every object A of A.

Indeed, in the notation of Lemma 2.7 we are to verify that Fci : FDi → FC
(i ∈ I) is a colimit of FD. For this, taking into account that lemma and
Remark 2.4, we take any B ∈ Bfp and prove that every morphism b : B → FC
factorizes essentially uniquely through Fci for some i ∈ D. Since FC =
colimFDC we have a factorization

FA

Fa
��

B

b0
==

b
// FC

(A ∈ Afp)

By Lemma 2.7 there is some i ∈ D and a0 ∈ A(A,Di) with a = ci · a0 and
hence b = Fci · (Fa0 · b0). The essential uniqueness is clear.

Notation 2.10. Throughout the paper, given a morphism f : X → Y we
denote by Im f the image of f , that is, any choice of the intermediate object
defined by taking the (strong epi, mono)-factorization of f :

f = (X
e
// //Im f //

m
//Y ).



ON FINITARY FUNCTORS AND FINITELY PRESENTABLE ALGEBRAS 9

We will make use of the next lemma in the proof of Proposition 3.3 and
Theorem 4.5.

Lemma 2.11. In an lfp category, images of filtered colimits are directed
unions of images.

More precisely, suppose we have a filtered diagram D : D→ A with objects
Di (i ∈ I) and the colimit cocone (ci : Di → C)i∈I . Given a morphism
f : C → B, take the factorizations of f and all f · ci as follows:

(1)

Di

ci
��

ei
// // Im(f · ci)

��

mi

��

di

yy

C
e
// // Im f //

m
// B
OO

f

(i ∈ I)

Then the subobject m is the union of the subobjects mi.

Proof : We have the commutative diagram (1), where di is the diagonal fill-in.
Since m · di = mi, we see that di is monic. Furthermore, for every morphism
Dg : Di → Dj we get a monomorphism ḡ : Im(f · ci) � Im(f · cj) as a
diagonal fill-in in the diagram below:

Di
ei
// //

Dg
��

Im(f · ci)
%%

di

%%

��

ḡ
��

Dj

ej
// // Im(f · cj) //

dj

// Im f

Since D is a filtered diagram, we see that the objects Im(f ·ci) form a filtered
diagram of monomorphisms; in fact, since di and dj are monic there is at
most one connecting morphism Im(f · ci)→ Im(f · cj).

In order to see thatm is the union of the subobjectsmi’s, let d′i : Im(f ·ci)�
N and n : N � Im f be monomorphisms such that n ·d′i = di for every i ∈ I.

Di
ei
// //

ci
��

Im(f · ci)
��

d′i
��

//
di
// Im f

C
t

// N
99

n

99

Since n is monic, the morphisms d′i · ei clearly form a cocone of D, and this
induces a unique morphism t : C → N such that t·ci = d′i ·ei. Then we obtain
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the equalities n · t · ci = e · ci; hence, n · t = e. Since n is monic, it follows that
it is an isomorphism, i.e., the subobjects idIm f and n are isomorphic. This
shows that m is the desired union.

3. Finitary and Finitely Bounded Functors
In this section we introduce the notion of a finitely bounded functor on a lo-

cally presentable category, and we investigate when finitely bounded functors
are precisely the finitary ones.

Definition 3.1. A functor F : A → B is called finitely bounded provided
that, given an object A of A, every finitely generated subobject of FA in B

factorizes through the F -image of a finitely generated subobject of A in A.
In more detail, given a monomorphism m0 : M0 � FA with M0 ∈ Bfg

there exists a monomorphism m : M � A with M ∈ Afg and a factorization
as follows:

FM

Fm
��

M0

<<

//

m0

// FA

Example 3.2. (1) If B is the category of S-sorted sets, then F is finitely
bounded iff for every object A of A and every element x ∈ FA there
exists a finitely generated subobject m : X � A (i.e., the coproduct
of all sorts of X is finite) such that the image of Fm contains the
given element, i.e. x ∈ Fm[FX].

(2) Let A be a category with (strong epi, mono)-factorizations. An ob-
ject of A is finitely generated iff its hom-functor is finitely bounded.
Indeed, by applying 1 we see that A(A,−) is finitely bounded iff for
every morphism f : A → B there exists a factorization f = m · g,
where m : A′� B is monic and A′ is finitely generated. This implies
that A is finitely generated: for f = idA we see that m is invertible.
Conversely, if A is finitely generated, then we can take the (strong epi,
mono)-factorization of f and use that finitely generated objects are
closed under strong quotients [5].

Proposition 3.3. Let F be a functor between lfp categories preserving monomor-
phisms. Then F is finitely bounded iff it preserves filtered colimits of monomor-
phisms.
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Proof : We are given lfp categories A and B and a functor F : A → B

preserving monomorphisms.

(1) Let F preserve filtered colimits of monomorphisms. Then, for every
object A we express it as a canonical filtered colimit of all p : P → A
in Afp/A (see Remark 2.2I:canColim). By Lemma 2.11 applied to
f = idA we see that A is the colimit of its subobjects Im p where p
ranges over Afp/A. Hence, F preserves this colimit:

FA = colim
p∈Afp/A

F (Im p),

and this is a colimit of monomorphisms since F preserves monomor-
phisms. Given a finitely generated subobject m0 : M0 � FA, we thus
obtain some p in Afp/A such that m0 factorizes through the F -image
of Im(p)� A. Hence F is finitely bounded.

(2) Let F be finitely bounded. Let D : D → A be a filtered diagram of
monomorphisms with a colimit cocone:

ci : Di� C (i ∈ I).

In order to prove that Fci : FDi → FC, i ∈ I, is a colimit cocone,
we show that its image under B(B,−) is a colimit cocone for every
finitely generated object B in B (cf. Lemma 2.8). In other words,
given f : B → FC with B ∈ Bfg then
(a) f factorizes through Fci for some i in I, and
(b) the factorization is unique.

We do not need to take care of (b): since every ci is monic by
Remark 2.2(4), so is every Fci. In order to prove (a), factorize f : B →
FC as a strong epimorphism q : B �M0 followed by a monomorphism
m0 : M0 � FC. Then M0 is finitely generated by Remark 2.2(5).
Thus, there exists a finitely generated subobject m : M � C with
m0 = Fm · u for some u : M0 → FM . Furthermore, since A(M,−)
preserves the colimit of D, m factorizes as m = ci ·m for some i ∈ I.
Thus Fm · u · q is the desired factorization:

f = m0 · q = Fm · u · q = Fci · Fm · u · q.

In the following theorem we work with an lfp category whose finitely gen-
erated objects are finitely presentable. This holds e.g. for the categories of
sets, many-sorted sets, posets, graphs, vector spaces, unary algebras on one
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operation and nominal sets. Further examples are the categories of commu-
tative monoids (this is known as Redei’s theorem [20], see Freyd [11] for a
rather short proof), positive convex algebras (i.e. the Eilenberg-Moore alge-
bras for the (sub-)distribution monad on sets [21]), semimodules for Noether-
ian semirings (see e.g. [9] for a proof). The category of finitary endofunctors
of sets also has this property as we verify in Corollary 3.26.

On the other hand, the categories of groups, lattices or monoids do not have
that property. A particularly simple counter-example is the slice category
N/Set; equivalently, this is the category of algebras with a set of constants
indexed by N. Hence, an object a : N → A is finitely generated iff A has a
finite set of generators, i.e. A \ a[N] is a finite set. It is finitely presentable
iff, moreover, A is presented by finitely many relations, i.e. the kernel of a is
a finite subset of N×N.

Theorem 3.4. Let A be an lfp category in which every finitely generated
object is finitely presentable (Afp = Afg). Then for all functors preserving
monomorphisms from A to lfp categories we have the equivalence

finitary ⇐⇒ finitely bounded.

Proof : Let F : A → B be a finitely bounded functor preserving monomor-
phisms, where B is lfp. We prove that F is finitary. The converse follows
from Proposition 3.3.

According to Corollary 2.9 it suffices to prove that F preserves the colimits
of all canonical filtered diagrams. The proof that FDA has the colimit cocone
given by Fp for all p : P → A in Afp/A uses the fact that this is a filtered
diagram in the lfp category B. By Remark 2.4, it is therefore sufficient to
prove that for every object C ∈ Bfp and every morphism c : C → FA we
have the following two properties:

(1) c factorizes through some of the colimit maps

FP

Fp
��

C

u
==

c
// FA

(P ∈ Afp),
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(2) given another such factorization, c = Fp · v, then u and v are merged
by some connecting morphism; i.e., we have a commutative triangle

P
h

//

p
��

P ′

p′~~

A

(P, P ′ ∈ Afp)

with Fh · u = Fh · v.

Indeed, for every p : P → A in Afp/A, by applying Lemma 2.11 to f = idA,
we see that the monomorphisms mp : Im p � A form a colimit cocone of
a diagram of monomorphisms. Then, by Proposition 3.3, F preserves this
colimit, therefore any c : C → FA factorizes through some Fmp : F (Im p)→
FA. Observe that, since Afg = Afp, we know by Remark 2.2(5) that every
Im p is finitely presentable, hence the morphisms mp are colimit injections
and all ep : P � Im p are connecting morphisms of DA. Consequently, (1) is
clearly satisfied. Moreover, given u, v : C → FP with Fp · u = Fp · v, we
have that Fep · u = Fep · v, since Fmp is monic, thus (2) is satisfied, too.

Remark 3.5. Conversely, if every functor from A to an lfp category fulfils
the equivalence in the above theorem, then Afp = Afg. Indeed, for every
finitely generated object A, since F = A(A,−) preserves monomorphisms,
we can apply Proposition 3.3 and conclude that F is finitary, i.e., A ∈ Afp.

Example 3.6. For Un, the category of algebras with one unary operation, we
present a finitely bounded endofunctor that is not finitary. Since in Un finitely
generated algebras are finitely presentable, this shows that the condition of
preservation of monomorphisms cannot be removed from Theorem 3.4.

Let Cp denote the algebra on p elements whose operation forms a cycle.
Define F : Un→ Un on objects by

FX =

{
C1 +X if Un(Cp, X) = ∅ for some prime p,

C1 else.

Given a homomorphism f : X → Y with FY = C1 + Y , then also FX =
C1 +X; indeed, in case FX = C1 we would have Un(Cp, X) 6= ∅ for all prime
numbers p, and then the same would hold for Y , a contradiction. Thus we
can put Ff = idC1

+ f . Otherwise Ff is the unique homomorphism to C1.
We now prove that F is finitely bounded. Suppose we are given a finitely

generated subalgebra m0 : M0 � FX. If FX = C1 then take M = ∅ and
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m : ∅� X the unique homomorphism. Otherwise we have FX = C1 + X,
and we take the preimages of the coproduct injections to see that m0 = u+m,
where u is the unique homomorphism into the terminal algebra C1 as shown
below:

M ′
��

��

u
// C1
��

��

M0
m0

// C1 +X

M
OO

OO

m
// X
OO

OO

Then we obtain the desired factorization of m0:

C1 +M = FM

idC1
+m=Fm

��

M0 = M ′ +M
u+m

//

u+M
55

C1 +X = FX

However, F is not finitary; indeed, it does not preserve the colimit of the
following chain of inclusions

C2 ↪→ C2 + C3 ↪→ C2 + C3 + C5 ↪→ · · ·
since every object A in this chain is mapped by F to C1 +A while its colimit
X =

∐
i primeCi is mapped to C1.

We now turn to the question for which categories A the equivalence

finitary ⇐⇒ finitely bounded

holds for all functors with domain A.

Definition 3.7. An lfp category A is called strictly or semi-strictly lfp pro-
vided that every morphism b : B → A in Afp/A factorizes through a mor-
phism b′ : B′ → A in Afp/A for which some f : A → B′ exists and, in the
case of strict lfp, f · b is such a factor, i.e. b = b′ · (f · b).

B

b ��

// B′

b′~~

A

f
>>

semi-strictly lfp

B

b ��

f ·b
// B′

b′~~

A

f
>>

strictly lfp



ON FINITARY FUNCTORS AND FINITELY PRESENTABLE ALGEBRAS 15

Remark 3.8. In every strictly lfp category we have Afg = Afp: Indeed,
given A ∈ Afg express it as a strong quotient b : B � A of some B ∈ Afp,
see Remark 2.2(5). Then the equality b = b′ · f · b implies b′ · f = id. Thus,
A is a split quotient of a finitely presentable object B′, hence, A is finitely
presentable by Remark 2.2(6).

Examples 3.9. (1) Set is strictly lfp: given b : B → A with B 6= ∅
factorize it as e : B � Im b followed by a split monomorphism b′ :
Im b→ A. Given a splitting, f · b′ = id, we have b = b′ · f · b. The case
B = ∅ is trivial: for A 6= ∅, b′ may be any map from a singleton set
to A.

(2) Every lfp category with a zero object 0 ∼= 1 is semi-strictly lfp. Given

b : B → A, put b′ = b and f =
(
A

!−→ 1 ∼= 0
!−→ B′

)
. Examples

include the categories of monoids and groups, which are not strictly
lfp because in both cases finitely presentable and finitely generated
objects differ.

We will see other examples (and non-examples) below. The following figure
shows the relationships between the different properties:

strictly
lfp

semi-
strictly

lfp
Afg = Afp

/
R

em
. 3.8

/

/
Example 3.18

/
Rem. 3.92

Note that from the independence of the lower hand properties we know that
neither of them implies ‘strictly lfp’.

Theorem 3.10. Let A be a strictly lfp category, and B an lfp category with
Bfg = Bfp. Then for all functors from A to B we have the equivalence

finitary ⇐⇒ finitely bounded.

Proof : (=⇒) Let F : A → B be finitary. By Remark 3.8 we know that
Afp = Afg. Given a finitely generated subobject m : M � FA, write A
as the directed colimit of all its finitely generated subobjects mi : Ai � A.
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Since F is finitary, it preserves this colimit, and since M is finitely generated,
whence finitely presentable, we obtain some i and some f : M → FAi such
that Fmi · f = m as desired.

(⇐=) Suppose that F : A → B is finitely bounded. We verify the two
properties 1 and 2 in the proof of Theorem 3.4. In order to verify 1, let
c : C → FA be a morphism with C finitely presentable. Then we have
the finitely generated subobject Im c � FA, and this factorizes through
Fm : FM → FA for some finitely generated subobject m : M � A since
F is finitely bounded. Then c factorizes through Fm, too, and we are done
since M is finitely presentable by Remark 3.8.

To verify (2), suppose that we have u, v : C → FB and b : B → A in Afp/A
such that Fb · u = Fb · v. Now choose f : A → B′ with b = b′ · (b · f) (see
Definition 3.7). Put h = f ·b to get b = b′ ·h as required. Since Fb ·u = Fb ·v,
we conclude Fh · u = Ff · Fb · u = Ff · Fb · u = Fh · v.

Corollary 3.11. A functor between strictly lfp categories is finitary iff it is
finitely bounded.

Remark 3.12. Consequently, a set functor F is finitary if and only if it is
finitely bounded. The latter means precisely that every element of FX is
contained in Fm[FM ] for some finite subset m : M ↪→ X.

This result was formulated already in [4], but the proof there is unfortu-
nately incorrect.

Open Problem 3.13. Is the above implication an equivalence? That is,
given an lfp category A such that every finitely bounded functor into lfp
categories is finitary, does this imply that A is strictly lfp?

Theorem 3.14. Let A be an lfp category such that for functors F : A→ Set
we have the equivalence

finitary ⇐⇒ finitely bounded.

Then A is semi-strictly lfp, and finitely generated objects are finitely pre-
sentable (Afg = Afp).

Proof : The second statement easily follows from Example 3.22. Suppose that
A is an lfp category such that the above equivalence holds for all functors from
A to Set. Then the same equivalence holds for all functors F : A → SetS,
for S a set of sorts. To see this, denote by C : SetS → Set the functor
forming the coproduct of all sorts. It is easy to see that C creates filtered
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colimits. Thus, a functor F : A → SetS is finitary iff C · F : A → Set is.
Moreover, F is finitely bounded iff C · F is; indeed, this follows immediately
from Example 3.21.

We proceed to prove the semi-strictness of A. Choose a set S ⊆ Afp of
representatives up to isomorphism. Given a morphism

b : B → A with B ∈ Afp

we present b′ and f as required. Define a functor F : A → SetS on objects
Z of A by

FZ =

{
1+ (A(s, Z))s∈S if A(A,Z) = ∅
1 else,

where 1 denotes the terminal S-sorted set. Given a morphism f : Z → Z ′ we
need to specify Ff in the case where A(A,Z ′) = ∅: this implies A(A,Z) = ∅
and we put

Ff = id1 + (A(s, f))s∈S.

Here A(s, f) : A(s, Z) → A(s, Z ′) is given by u 7→ f · u, as usual. It is easy
to verify that F is a well-defined functor.

(1) Let us prove that F is finitely bounded. The category SetS is lfp
with finitely generated objects (X)s∈S precisely those for which the
set

∐
s∈SXs is finite. Let m0 : M0 � FZ be a finitely generated

subobject. We present a finitely generated subobject m : M � Z
such that m0 factorizes through Fm. This is trivial in the case where
A(A,Z) 6= ∅: choose any finitely generated subobject m : M � Z
(e.g., the image of the unique morphism from the initial object to Z:
cf. Remark 2.2(5)). Then Fm is either id1 or a split epimorphism,
since FZ = 1 and in FM each sort is non-empty. Thus, we have t
with Fm · t = id and m0 factorizes through Fm:

FM

Fm
����

M0

t·m0

99

//

m0

// FZ = 1
OO
t

OO

In the case where A(A,Z) = ∅ we have m0 = m1 +m2 for subobjects

m1 : M1 � 1 and m2 : M2 � (A(s, Z))s∈S.
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For notational convenience, assume (M2)s ⊆ A(s, Z) and (m2)s is the
inclusion map for every s ∈ S. Since M0 is finitely generated, M2 con-
tains only finitely many elements ui : si → Z, i = 1, . . . , n. Factorize
[u1, . . . , un] as a strong epimorphism e followed by a monomorphism
m in A (see Remark 2.2.1):∐n

i=1 si
e
// // M //

m
// Z .

Then A(A,M) = ∅, therefore Fm = id1 + (A(s,m))s∈S. Since every
element ui : si → Z of M2 factorizes through m in A, we have

ui = m · u′i for u′i : si →M with [u′1, . . . , u
′
n] = e.

Then the inclusion map m2 : M2 → (A(s, Z))s∈S has the following
form

m2 =

(
M2

v−→ (A(s,M))s∈S
(A(s,m))s∈S−−−−−−→ (A(s, Z))s∈S

)
.

The desired factorization of m0 = m1 + m2 through Fm = id1 +
(A(s,m))s∈S is as follows:

1+ (A(s,M))s∈S

id+(A(s,m))s∈S
��

M0 = M1 +M2
//

m0=m1+m2

//

m1+v
44

1+ (A(s, Z))s∈S

(2) We thus know that F is finitary, and we will use this to prove that A is
semi-strictly lfp. That is, we find b′ : B′ → A in Afp/A through which b
factorizes and which fulfils A(A,B′) 6= ∅. Recall from Remark 2.2(2)
that A = colimDA. Our morphism b is an object of the diagram
scheme Afp/A of DA. Let D′A be the full subdiagram of DA on all
objects b′ such that b factorizes through b′ in A (that is, such that
a connecting morphism b → b′ exists in Afp/A). Then D′A is also a
filtered diagram and has the same colimit, i.e. A = colimD′A. Since
F preserves this colimit and FA = 1, we get

1 ∼= colimFD′A.

Assuming that A(A,B′) = ∅ for all b′ : B′ → A in D′A, we obtain a
contradiction: the objects of FD′A are 1+ (A(s, B′))s∈S, and since for
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every s ∈ S the functor A(s,−) is finitary, the colimit of all A(s, B′)
is A(s, A). We thus obtain an isomorphism

1 ∼= 1+ (A(s, A))s∈S.

This means A(s, A) = ∅ for all s ∈ S, in particular A(B,A) = ∅, in
contradiction to the existence of the given morphism b : B → A.

Therefore, there exists b′ : B′ → A in D′A, i.e. b′ through which b
factorizes with A(A,B′) 6= ∅, as required.

Examples 3.15. Here we present some strictly lfp categories.

(1) SetS is strictly locally finitely presentable iff S is finite. Indeed, if S is
finite and b : B → A is an S-sorted map with B finitely presentable,
factorize it as e : B � Im b = b[B] followed by an inclusion m :
Im b� A. Choose a finitely presentable S-sorted set M ′ for which a
morphism m′ : M ′ → A is given such that every nonempty sort of A
is also nonempty in M ′. Define f : A → Im b + M ′ by assigning to
every b(x) itself in Im b, and to every element y ∈ A − b[B] of sort s
some element of that sort in M ′. Then b′ = [m, m′] : Im b + M ′ → A
has the required property, i.e., b = b′ · f · b with b′ having a finitely
presentable domain.

Conversely, if S is infinite, then the morphism b from the initial
object to the terminal one does not yield the desired morphisms b′

and f .
(2) The category of vector spaces (over a fixed field) is strictly lfp.

Indeed, given b : B → A with B finite-dimensional, factorize it as
e : B � Im b followed by m : Im b � A. There exists a subspace
m′ : M ′ → A with A = Im b+M ′. The desired triangle is as follows:

B

b=inl·e ''

e=[id,0]·b
// Im b

mww

A = Im b+M ′

[id,0]
77

(3) For every finite group G the category G-Set of actions of G on sets is
strictly lfp. This is a special case of the next result. (This does not
generalize to finitely presentable groups, see Example 3.17(2) below.)

Recall that a groupoid is a category with all morphisms invertible.
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Proposition 3.16. Let G be a finite groupoid. The category of presheaves
on G is strictly lfp.

Proof : (1) Put S = objG. Then the category SetG
op

of presheaves can be
considered as a variety of S-sorted unary algebras. The signature is given
by the set of all morphisms of Gop: every morphism f : X → Y of Gop

corresponds to an operation symbol of arity X → Y (i.e., variables are of
sort X and results of sort Y ). This variety is presented by the equations
corresponding to the composition in Gop: represent g · f = h : X → Y in
Gop by g(fx) = hx for a variable x of sort X. Moreover, for every object X,
add the equation idX(x) = x with x of sort X.

For every algebra A and every element x ∈ A of sort X the subalgebra
which x generates is denoted by Ax. Denote by ∼A the equivalence on the
set of all elements of A defined by x ∼A y iff Ax = Ay. If I(A) is a choice
class of this equivalence, then we obtain a representation of A as the following
coproduct:

A =
∐

x∈I(A)

Ax.

This follows from G being a groupoid: whenever Ax ∩ Ay 6= ∅, then x ∼A y.
Moreover, for every homomorphism h : A → B there exists a function

h0 : I(A) → I(B) such that on each Ax, x ∈ I(A), h restricts to a homo-
morphism h0 : Ax → Bh(x). Indeed, define h0(x) as the representative of ∼B
with Bh(x) = Bh0(x).

(2) Given x ∈ A of sort X, the algebra Ax is a quotient of the representable
algebra G(−, X). Indeed, the Yoneda transformation corresponding to x, an
element of Ax

X of sort X, has surjective components (by the definition of Ax).
Observe that every representable algebra has only finitely many quotients.

This follows from the fact that G(−, X) has finitely many elements, hence,
finitely many equivalence relations exist on the set of all elements.

(3) An algebra A is finitely presentable iff I(A) is finite. This follows imme-
diately from G having only finitely many morphisms.

(4) We are ready to prove that SetG
op

is strictly lfp. Let a morphism

b : B → A, B finitely presentable
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be given. Then Im b is, due to (3), also finitely presentable. Due to (1) we
know that the complement C̄ = A \ Im b is also a subalgebra of A. Let

e : C̄ =
∐

x∈I(C̄)

C̄x → D

be the quotient merging two summands iff their domains are isomorphic
algebras. Then by (2) the number of summands of D =

∐
y∈I(D)D

y is finite,

hence, D is finitely generated. Choose any morphism g : D → C̄ by picking,
for every Dy, one of the occurrences of Dy in C̄. Then e · g = idD.

The desired triangle with B′ = Im b + D (which is finitely presentable) is
as follows:

B

b &&

(id+e)·b
// Im b+D

id+gvv

A = Im b+ C̄

id+e
66

Examples 3.17. Here we present lfp categories A which are not semi-strictly
lfp. Moreover, in each case we present a non-finitary endofunctor that is
finitely bounded.

(1) The category Un. In Example 3.6 we have already presented the
promised endofunctor. For the empty algebra B and A =

∐
pCp,

where p ranges over all prime numbers, there exists no finitely pre-
sentable algebra B′ with Un(A,B′) 6= ∅ 6= Un(B′, A). Thus Un is not
semi-strictly lfp.

(2) The category Z-Set (of actions of the integers on sets). Since this
category is equivalent to that of unary algebras with one invertible
operation, the argument is as in (1).

(3) The category Gra of graphs and their homomorphisms. Let A de-
note the graph consisiting of a single infinite path, and let B be the
empty graph. There exists no finite graph B′ with Gra(A,B′) 6= ∅ 6=
Gra(B′, A). Thus, Gra is not semi-strictly lfp. Analogously to Exam-
ple 3.6 define an endofunctor F on Gra by

FX =

{
1+X if X contains no cycle and no infinite path

1 else

(where 1 is the terminal object), and Ff = id1 + f if the codomain
X of f fulfils FX = 1 + X. This functor is clearly finitely bounded,
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but for A above, it does not preserve the colimit A = colimDA of
Remark 2.2(2).

(4) SetN. If 1 is the terminal object, then SetN(1, B′) = ∅ for all finitely
presentable objects B. We define F on SetN by FX = 1+X if X has
only finitely many non-empty components, and FX = 1 else.

We next present two examples of rather important categories for which we
prove that they are not semi-strictly lfp either.

Example 3.18. Nominal sets are not semi-strictly lfp. Let us first recall
the definition of the category Nom of nominal sets (see e.g. [19]). We fix a
countably infinite set A of atomic names. Let Sf(A) denote the group of all
finite permutations on A (generated by all transpositions). Consider a set X
with an action of this group, denoted by π · x for a finite permutation π and
x ∈ X. A subset A ⊆ A is called a support of an element x ∈ X provided
that every permutation π ∈ Sf(A) that fixes all elements of A also fixes x:

π(a) = a for all a ∈ A =⇒ π · x = x.

A nominal set is a set with an action of the group Sf(A) where every el-
ement has a finite support. The category Nom is formed by nominal sets
and equivariant maps, i.e., maps preserving the given group action. Being
a Grothendieck topos, Nom is lfp, and, as shown by Petrişan [18, Propo-
sition 2.3.7], the finitely presentable nominal sets are precisely those with
finitely many orbits (where an orbit of x is the set of all π · x).

It is a standard result that every element x of a nominal set has the least
support, denoted by supp(x). In fact, supp : X → Pf(A) is itself an equivari-
ant map, where the nominal structure of Pf(A) is just element-wise. Conse-
quently, any two elements of the same orbit x1 and x2 = π ·x1 have a support
of the same size. In addition, if f : X → Y is an equivariant map, it is clear
that

(2) supp(f(x)) ⊆ supp(x), for every x ∈ X.

Now we present a non-finitary endofunctor of Nom which is finitely bounded.
Consider for every natural number n the nominal set Pn = {Y ⊆ A | |Y | = n}
with the action given by π · Y = {π(v) | v ∈ Y }. Clearly, supp(Y ) = Y for
every Y ∈ Pn. It follows that there is no equivariant map f : Pm → X
whenever m > | supp(x)| > 0 for every x ∈ X, because of property (2).
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Thus for b : ∅ →
∐

0<n<ω Pn = A the existence of morphisms A
f
//X

b′
oo with

X orbit-finite as in Definition 3.7 leads to a contradiction: Indeed suppose
first | supp(x)| > 0 for all x ∈ X, then there is no equivariant map Pm → X
with m = 1+maxx∈X | supp(x)|, and thus no f :

∐
0<n<ω Pn → X. In the case

where supp(x) = ∅ for some x ∈ X, then there is no equivariant map b′ : X →∐
0<n<ω Pn, because ∅ 6= supp(b′(x)) ⊆ supp(x) = ∅ is a contradiction.
Analogously to Example 3.6 we define a functor F on Nom by

FX =

{
1+X if Nom(Pn, X) = ∅ for some n < ω

1 else.

For an equivariant map f : X → Y , if FY = 1+ Y , then also FX = 1+X:
given Nom(Pn, Y ) = ∅ for some n, then also Nom(Pn, X) = ∅ must hold
for the same n. In that case put Ff = id1 + f and else Ff is the unique
equivariant map to FY = 1. A very similar argument as in Example 3.6
shows that F is finitely bounded. However, F is not finitary, as it does not
preserve the colimit

∐
n<ω Pn of the chain P1 ↪→ P1+P2 ↪→ P1+P2+P3 ↪→ · · · .

Example 3.19. We prove next that the category [Set, Set]fin of finitary set
functors (known to be lfp [5, Theorem 1.46]) has finitely generated objects
coincident with the finitely presentable ones, but it fails to be semi-strictly
lfp.

Remark 3.20. Recall that a quotient of an object F of [Set, Set]fin is repre-
sented by a natural transformation ε : F → G with epic components. Equiv-
alently, G is isomorphic to F modulo a congruence ∼. This is a collection
of equivalence relations ∼X on FX (X ∈ Set) such that for every function
f : X → Y given p1 ∼X p2 in FX, it follows that Ff(p1) ∼Y Ff(p2).

We are going to characterize finitely presentable objects of [Set, Set]fin as
the super-finitay functors introduced in [6]:

Definition 3.21. A set functor F is called super-finitary if there exists a
natural number n such that Fn is finite and for every set X, the maps
(Ff)f : n→X are jointly surjective, i.e. they fulfil FX =

⋃
f : n→X Ff [Fn].

Examples 3.22. (1) The functors A× Idn are super-finitary for all finite
sets A and all n ∈ N.
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(2) More generally, let Σ be a finitary signature, i.e., a set of operation
symbols σ of finite arities |σ|. The corresponding polynomial set func-
tor

HΣX =
∐
σ∈Σ

X |σ|

is super-finitary iff the signature has only finitely many symbols. We
call such signatures super-finitary

(3) Every subfunctor F of Set(n,−), n ∈ N, is super-finitary. Indeed,
assuming FX ⊆ Set(n,X) for all X, we are to find, for each p : n→ X
in FX, a member q : n→ n of Fn with p = Ff(q) for some f : n→ X.
That is, with p = f · q. Choose a function g : X → n monic on p[n].
Then there exists f : n → X with p = f · g · p. From p ∈ FX we
deduce Fg(p) ∈ Fn, that is, g · p ∈ Fn. Thus q = g · p is the desired
element: we have p = f · q = Ff(q).

(4) Every quotient ε : F � G of a super-finitary functor F is super-
finitary. Indeed, given p ∈ GX, find p′ ∈ FX with p = εX(p′). There
exists q′ ∈ Fn with p′ = Ff(q′) for some f : n → X. We conclude
that q = εn(q

′) fulfils p = Gf(q) from the naturality of ε.

Lemma 3.23. The following conditions are equivalent for every set functor
F :

(1) F is super-finitary
(2) F is a quotient of the polynomial functor HΣ for a super-finitary sig-

nature Σ, and
(3) F is a quotient of a functor A× Idn (A finite, n ∈ N).

Proof : 3 =⇒ 2 is clear and for 2 =⇒ 1 see the Examples 2 and 4 above.
To prove 1 =⇒ 3, let F be super-finitary and put A = Fn in the above
definition. Apply Yoneda Lemma to Idn ∼= Set(n,−) and use that [Set, Set]fin

is cartesian closed:

Fn
∼=−−→ [Set, Set]fin(Set(n,−), F )

ε : Fn× Set(n,−) −−→ F

The definition of super-finitary shows that εX is surjective for every X.

Proposition 3.24. Super-finitary functors are closed in [Set, Set]fin under
finite products, finite coproducts, subfunctors, and hence under finite limits.
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Proof : (1) Finite products and coproducts are clear: given quotients εi : Ai×
Idni � Fi, i ∈ {1, 2}, then F1×F2 is super-finitary due to the quotient

ε1 × ε2 : (A1 × A2)× Idn1+n2 → F1 × F2.

Suppose n1 ≥ n2, then we can choose a quotient ϕ : A2 × Idn1 �
A2×Idn2. This proves that F1+F2 is super finitary due to the quotient

ε1 + (ε2 · ϕ) : (A1 + A2)× Idn1 ∼= A1 × Idn1 + A2 × Idn1 → F1 + F2.

(2) Let µ : G � F be a subfunctor of a super-finitary functor F with a
quotient ε : A × Idn � F . Form a pullback (object-wise in Set) of ε
and µ:

H

ε̄
����

//
µ̄
//

y
A× Idn

ε̄
����

G //
µ

// F

For each a ∈ A, the preimage Ha of {a} × Idn ∼= Set(n,−) under µ̄ is
super-finitary by Example 3 above. Since A × Idn =

∐
a∈A{a} × Idn

and preimages under µ̄ preserve coproducts, we have H =
∐

a∈AHa

and so G is the quotient of the super-finitary functor H.

Lemma 3.25. Let C be an lfp category with finitely generated objects closed
under kernel pairs and in which strong epimorphisms are regular. Then
finitely presentable and finitely generated objects coincide.

Proof : We apply Remark 2.25: Consider a strong epimorphism c : X � Y
withX finitely presentable. We are to show that Y is finitely presentable. Let
p, q : K ⇒ X be the kernel pair of c, then K is finitely generated. Hence there
is some finitely presentable object K ′ and a strong epimorphism e : K ′ � K:

K ′
e
// // K

p
//

q
// X

c
// // Y

Since the strong epimorphism c is also regular, it is the coequalizer of its
kernel pair (p, q); furthermore e is epic, thus c is the coequalizer of p · e and
q · e. That means that Y is a finite colimit of finitely presentable objects and
thus it is finitely presentable.

Corollary 3.26. [Set, Set]fin is not semi-strictly lfp.
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Proof : We use the subfunctors

P̄ ⊆ P0 ⊆ P
of the power-set functor P given by P0X = PX − {∅} and P̄X = {M ∈
P0X |M finite}. Then P̄ is an object of [Set, Set]fin. The only endomorphism
of P̄ is idP̄ . Indeed for P0 this has been proven in [6, Proposition 5.4]; the
same proof applies to P̄ . For a finitely presentable object B of [Set, Set]fin, no
natural transformation β : B → P̄ is surjective. In fact, given ε : A×Xn � B,
everything in the image of βX · εX has cardinality of at most n by naturality
of β · ε. Furthermore, for such a β, no morphism α : P̄ → B exists – because
then β would be a split epimorphism by idP̄ = β · α.

Corollary 3.27. For a finitary set functor, as an object of [Set, Set]fin, the
following conditions are equivalent:

(1) finitely presentable,
(2) finitely generated, and
(3) super-finitary.

Proof : To verify 2 =⇒ 3, let F be finitely generated. For every finite subset
A ⊆ Fn, n ∈ N, we have a subfunctor Fn,A ⊆ F given by

Fn,AX =
⋃

f : n→X

Ff [A].

Since F is finitary, it is a directed union of all these subfunctors. This implies
F ∼= Fn,A for some n and A, and Fn,A is clearly super-finitary.

For 3 =⇒ 2, combine Lemma 3.23 and Example 3.221.
1⇐⇒ 2 follows by Lemma 3.25.

4. Finitely Presentable Algebras
In the introduction we have recalled the definition of a finitely presentable

algebra from General Algebra and the fact that for a finitary monad T on Set,
this is equivalent to A being a finitely presentable object of SetT. We now
generalize this to finitary regular monads [16], i.e., those preserving regular
epimorphisms, on lfp categories that have regular factorizations.

First, we turn to characterizing finitely generated algebras for arbitrary
finitary monads.

Remark 4.1. Let T be a finitary monad on an lfp category A. Then the
Eilenberg-Moore category AT is also lfp [5, Remark 2.78]. Thus, it has (strong
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epi, mono)-factorizations. The monomorphisms in AT, representing subalge-
bras, are precisely the T-algebra morphisms carried by a monomorphism of
A (since the forgetful functor AT → A creates limits). The strong epimor-
phisms of AT, representing strong quotient algebras, need not coincide with
those carried by strong epimorphisms of A – we do not assume that T pre-
serves strong epimorphisms.

Recall our terminology that a finitely generated subobject of an object A
is a monomorphism m : M � A with M a finitely generated object.

Notation 4.2. Throughout this section given a T-algebra morphism f : X →
Y we denote by Im f its image in AT. That is, we have a strong epimorphism
e : X � Im f and a monomorphism m : Im f � B in AT with f = m · e.

Definition 4.3. An algebra (A, a) for T is said to be generated by a subobject
m : M � A of the base category A if no proper subalgebra of (A, a) contains
m.

The phrase “(A, a) is generated by a finitely generated subobject” may
sound strange, but its meaning is clear: there exists a subobject m : M � A
with M in Afg such that m does not factorize through any proper subalgebra
of (A, a).

Example 4.4. The free algebras on finitely presentable objects are shortly
called ffp algebras below: they are the algebras (TX, µX) with X finitely
presentable.

(1) Every ffp algebra is generated by a finitely generated object: factorize
the unit ηX : X → TX in A as a strong epimorphism e : X �M (thus,
M is finitely generated by Remark 2.2(5)) followed by a monomor-
phism m : M � TX. Using the universal property, it is easy to
see that m generates (TX, µX); indeed, suppose we had a subalgebra
s : (A, a) � (TX, µX) containing m, via n : M � A, say. Then
the unique extension of n · e : X → A to a T-algebra morphism
h : (TX, µX) → (A, a) satisfies s · h = id(TX,µX). Thus, s is an iso-
morphism.

(2) Every ffp algebra is finitely presentable in AT: apply Lemma 2.5 to
the forgetful functor R : AT → A and its left adjoint LX = (TX, µX).

Theorem 4.5. For every finitary monad T on an lfp category A the following
conditions on an algebra (A, a) are equivalent:
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(1) (A, a) is generated by a finitely generated subobject,
(2) (A, a) is a strong quotient algebra of an ffp algebra, and
(3) (A, a) is a finitely generated object of AT.

Proof : (3) =⇒ (2) First observe that the cocone Tf : TX → TA, where
(X, f) ranges over Afp/A, is collectively epimorphic since T preserves the fil-
tered colimit A = colimDA of Remark 2.2(2). For every f : X → A consider
its unique extension to a T-algebra morphism a ·Tf : (TX, µX)→ (A, a) and
form its factorization in AT:

TX

Tf
��

ef
// // Im(a · Tf)

��

mf

��

TA a
// A

Now observe that a : (TA, µA) → (A, a) is a strong epimorphism in AT; in
fact, the laws of Eilenberg-Moore algebras for T imply that a is the coequal-
izer of

(TTA, µTA)
Ta
//

µA

//(TA, µA).

From Remark 2.22 and the finitarity of the functor T we deduce that Tf :
(TX, µX)→ (TA, µA), f ∈ Afp/A, is a filtered colimit in AT. It follows from
Lemma 2.11 that (A, a) is a directed union of its subobjects mf for f in
Afp/A.

Now since (A, a) is finitely generated, idA factorizes through one of the
corresponding colimit injections mf : Im(a · Tf)� A for some f : X → A in
Afp/A. Therefore mf is split epic, whence an isomorphism, and A is a strong
quotient of (TX, µX) via ef , as desired.

(2) =⇒ (1) Let q : (TX, µX)� (A, a) be a strong epimorphism in AT with X
finitely presentable in A. Factorize q · ηX as a strong epimorphism followed
by a monomorphism in A:

X
ηX
//

e
����

TX
q
����

M //

m
// A

Then M is finitely generated in A by Remark 2.2(5). We shall prove that
every subalgebra u : (B, b) � (A, a) containing m (i.e., such that there is
a morphism g : M → B in A with u · g = m) is isomorphic to (A, a). Let
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e] : (TX, µX) → (B, b) be the unique extension of g · e to a T-algebra mor-
phism:

X

e

����

ηX
// TX

q

����

e]

}}

B
u

!!

M //

m
//

g
>>

A

Then we see that u · e] = q because this triangle of T-algebra morphisms
commutes when precomposed by the universal morphism ηX . Since q is
strong epic, so is u, and therefore u is an isomorphism, as desired.

(1) =⇒ (2) Let m : M � A be a finitely generated subobject of A that
generates (A, a). By Remark 2.2(5), there exists a strong epimorphism q :
X �M in A with X finitely presentable. The unique extension e = (m ·q)] :
(TX, µX) → (A, a) to a T-algebra morphism is an extremal epimorphism,
i.e., if e factorizes through a subalgebra u : (B, b) � (A, a), then u is an
isomorphism. To prove this, recall that u is also monic in A. Given e = u · e′
we use the diagonal fill-in property in A:

X
q
// //

ηX
��

M
��

m

����

TX

e′
��

B //

u
// A

Since m generates (A, a), this proves that u is an isomorphism. In a complete
category every extremal epimorphism is strong, thus we have proven (2).

By Remark 2.2 (5) and the fact that ffp algebras are finitely presentable in
AT (see Example 4.4(b)) we have (2) =⇒ (3).

As usual, by a congruence on a T-algebra (A, a) is meant a subalgebra
(K, k)� (A, a)× (A, a) forming a kernel pair `, r : (K, k)⇒ (A, a) of some
T-algebra morphism. Given a coequalizer q : (A, a) � (B, b) of `, r in AT,
then (B, b) is called the quotient algebra of (A, a) modulo (K, k).

Definition 4.6. A congruence `, r : (K, k)⇒ (A, a) is called a finitely gener-
ated congruence if there exists a finitely generated subalgebra m : (K ′, k′)�
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(K, k) in AT such that the quotient of (A, a) modulo (K, k) is also a coequal-
izer of ` ·m and r ·m:

(K ′, k′) //
m
//(K, k)

`
//

r
//(A, a)

q
// //(B, b).

In the next theorem we assume that our base category has regular factor-
izations, i.e., every strong epimorphism is regular.

Theorem 4.7. Let T be a regular, finitary monad on an lfp category A which
has regular factorizations. For every T-algebra (A, a) the following conditions
are equaivalent:

(1) (A, a) is a quotient of an ffp algebra modulo a finitely generated con-
gruence,

(2) (A, a) is a coequalizer of a parallel pair of T-algebra morphisms between
ffp algebras:

(TY, µY )
f
//

g
//(TX, µX)

e
// //(A, a) (X, Y in Afp), and

(3) (A, a) is a finitely presentable object of AT.

Proof : (2) =⇒ (3) Since finitely presentable objects are closed under finite
colimits, this follows from Example 4.4(b).

(3) =⇒ (1) First note that the classes of regular and strong epimorphisms in
AT coincide; indeed, since T preserves regular epimorphisms, the regular fac-
torizations of A lift to AT (see [16, Proposition 4.17]). Then, by Theorem 4.5,
(A, a) is a regular quotient of an ffp algebra via q : (TX, µX)� (A, a), say.

Now take the kernel pair `, r : (K, k)⇒ (TX, µX) of q in AT and note that q
is its coequalizer. Write K in A as the filtered colimit of its canonical filtered
diagram DK : Afp/K → A (see Remark 2.2(2)) and take for any of the colimit
injections y : Y → K the unique extension y] : (TY, µY ) → (K, k) to a T-
algebra morphism. Next form for every y in Afp/K the following coequalizer
in AT:

(TY, µY )
y]
//(K, k)

`
//

r
//(TX, µX)

ey
// //(Ay, ay).

(a) This defines a filtered diagram D : Afp/K → AT taking y to ey. In
fact, for every morphism f : (Y, y)→ (Z, z) in Afp/K we obtain a T-algebra
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morphism af : (Ay, ay)→ (Az, az) using the following diagram in AT (where
we drop the algebra structures):

TY

Tf

��

y]

%%

Ay

af

��

K
`
//

r
// TX

ey 99 99

ez %% %%

TZ
z]

99

Az

Note that af is a regular epimorphism in AT. Furthermore, for every y : Y →
K in Afp/K we also obtain a morphism dy : Ay → A such that dy · ey = q:

TY
y]
// K

`
//

r
// TX

q
����

ey
// // Ay

dy}}

A

These morphisms dy form a cocone on the diagram D; indeed, we have for
every morphism f : (Y, y)→ (Z, z) of Afp/K that

dz · af · ey = dz · ez = q = dy · ey,

and we conclude that dz · af = dy since ey is epic.
(b) We now show that (A, a) = colimD with colimit injections dy : (Ay, ay)→

(A, a). Given any cocone by : (Ay, ay) → (B, b) of D, we prove that it
factorizes uniquely through (dy). We first note that all the morphisms
by · ey are equal because the diagram is filtered and for every morphism
f : (Y, y)→ (Z, z) in Afp/K we have the commutative diagram below:

Ay
by

  

af

��

TX

ey == ==

ez "" ""

B

Az

bz

>>

Let us call the above morphism q′ : TX → B, and observe that for every
y : Y → K in Afp/K we have

q′ · ` · y] = by · ey · ` · y] = by · ey · r · y] = q′ · r · y].
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The cocone of morphisms y] : TY → K is collectively epic since so is the
colimit cocone y : Y → K, and therefore q′ · ` = q′ · r. Thus, there exists a
unique factorization h : A → B of q′ through q = coeq(`, r), i.e., such that
h · q = q′. We now have, for every y : Y → K in Afp/K,

h · dy · ey = h · q = q′ = by · ey,
which implies h · dy = by using that ey is epic.

Uniqueness of h with the latter property follows immediately: if k : A→ B
fulfils k · dy = by for every y in Afp/K, we have

k · q = k · dy · ey = by · ey = q′ = h · q.
(c) Now use that (A, a) is finitely presentable in AT to see that there exists

some w : W → K in Afp/K and a T-algebra morphism s : (A, a)→ (Aw, aw)
such that dw · s = idA. Then s · dw is an endomorphism of the T-algebra
(Aw, aw) satisfying dw ·(s·dw) = dw. Since ew is a coequalizer of a parallel pair
of T-algebra morphisms between ffp algebras, (Aw, aw) is finitely presentable
by Example 4.4(b). Since the colimit injection dw merges s · dw and idAw

,
there exists a morphism f : (W,w)→ (Y, y) in Afp/K with af merging them
too, i.e., such that af · (s · dw) = af . This implies that dy : (Ay, ay)→ (A, a)
is an isomorphism with inverse af · s. Indeed, we have

dy · (af · s) = dw · s = idA,

and for (af · s) · dy = idAy
we use that af is epic:

(af · s) · dy · af = af · s · dw = af .

Thus, (A, a) ∼= (Ay, ay).
(d) It remains to prove that `, r : (K, k)⇒ (TX, µX) is a finitely generated

congruence. To see this, take the regular factorization of y] : (TY, µY ) →
(K, k) for the above y for which (A, a) ∼= (Ay, ay):

y] =
(

(TY, µY )
e
// // Im(y]) //

m
// (K, k)

)
.

Then ey is also the coequalizer of ` · m and r · m, and Im(y]) is a finitely
generated T-algebra by Theorem 4.5, as desired.

(1) =⇒ (2) We are given a regular epimorphism e : (TX, µX) � (A, a)
with X finitely presentable in A and a pair `′, r′ : (K ′, k′)⇒ (TX, µX) with
(K ′, k′) finitely generated, whose coequalizer is e. By Theorem 4.5, there
exists a regular quotient q : (TY, µY ) � (K ′, k′) with Y finitely presentable
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in A. Since e is a coequalizer of `′, r′, it is also a coequalizer of the pair
`′ · q, r′ · q.

Open Problem 4.8. Are (1)–(3) above equivalent for all finitary monads
(not necessarily regular)?

5. Finitary Monads on Sets
We have seen in Corollary 3.27 that finitely presentable objects of [Set, Set]fin

are precisely the finitely generated ones. In contrast, we show that in the cat-
egory Mndf(Set) of finitary monads on Set the classes of finitely presentable
and finitely generated objects do not coincide.

Remark 5.1. We apply Lack’s result that the category of finitary monads on
an lfp category A is monadic over the category Sig(A) of signatures (which
we recall in Example 5.2), see Corollary 3 of [15]. By using the same proof
one can see that the category of finitary endofunctors is also monadic over
Sig(A).

Example 5.2. As an application of Theorem 4.5, we generalize the above fact
that [Set, Set]fin has as finitely generated objects precisely the super-finitary
functors, see Corollary 3.27, to all lfp categories A. Denote by

[A,A]fin

the category of all finitary endofunctors of A. An example is the polynomial
functor HΣ for every signature Σ in the sense of Kelly and Power [13]. This
means a collection of objects Σn of A indexed by n ∈ Afp. Let |Afp| be the
discrete category of objects of Afp, then the functor category

Sig(A) = A|Afp|

is the category of signatures (whose morphisms from Σ→ Σ′ are collections
of morphisms en : Σn → Σ′n for n ∈ |Afp|). The polynomial functor HΣ is the
coproduct of the endofunctors A(n,−) •Σn, where • denotes copowers of Σn,
shortly:

HΣX =
∐
n∈Afp

A(n,X) • Σn.

We obtain an adjoint situation

[A,A]fin

U

>
//

Sig(A)
Φ
oo
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where the forgetful functor U takes a finitary endofunctor F to the signature

U(F )n = Fn (n ∈ Afp)

and Φ takes a signature Σ to the polynomial endofunctor ΦΣ = HΣ. The
resulting monad T is given by

T (Σ)n =
∐
m∈Afp

A(m,n) • Σm.

As mentioned above, [15, Corollary 3] implies that the forgetful functor U is
monadic. Thus, the category [A,A]fin is equivalent to the Eilenberg-Moore
category of the monad T. By Theorem 4.5, finitely generated objects of
[A,A]fin are precisely the strong quotients of ffp algebras for T. Now by
Lemma 2.6, a signature Σ is finitely presentable in A|Afp| iff for the initial
object 0 of A we have

Σn = 0 for all but finitely many n ∈ Afp

and
Σn is finitely presentable for every n ∈ Afp.

Let us call such signatures super-finitary. We thus obtain the following result.

Proposition 5.3. For an lfp category A, a finitary endofunctor is finitely
generated in [A,A]fin iff it is a strong quotient of a polynomial functor HΣ

with Σ super-finitary.

Example 5.4. Another application of results of Section 4: the category

Mndf(A)

of all finitary monads on an lfp category A. Lack proved in [15] that this
category is also monadic over the category of signatures. More precisely, for
the forgetful functor V : Mndf(A)→ [A,A]fin the composite

UV : Mndf(A)→ Sig(A)

is a monadic functor. Recall from Barr [8] that every finitary endofunctor
H generates a free monoid; let us denote it by H∗. The corresponding free
monad T for UV assigns to every signature Σ the signature derived from the
free monad on Σ (w.r.t. UV ), or, equivalently, from the free monad H∗Σ on
the polynomial endofunctor HΣ. Thus the monad T is given by the following
rule for Σ in Sig(A):

(TΣ)n = H∗Σn for all n ∈ Afp.
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(Example: if A = Set then H∗Σ assigns to every set X the set H∗ΣX of all Σ-
terms with variables in X.) In general, it follows from [?] that the underlying
functor of H∗Σ is the colimit of the following ω-chain in [A,A]fin:

Id
w0−−→ HΣ + Id

HΣw0+id−−−−−−→ HΣ(HΣ + Id) + Id −→ · · ·Wn
wn−→Wn+1 −→ · · ·

Here, W0 = Id and Wn+1 = HΣWn + Id, and w0 is the coproduct injection
and wn+1 = HΣwn + id. The monad H∗Σ is thus the free T-algebra on Σ and
the ffp algebras are precisely H∗Σ for Σ super-finitary.

Definition 5.5. Let Σ be a signature in an lfp category A.

(1) By a Σ-equation is meant a parallel pair

f, f ′ : k −→ H∗Σn with k, n ∈ Afp

of morphisms in A.
(2) A quotient of H∗Σ in Mndf(A) is said to satisfy the equation if its

n-component merges f and f ′.
(3) By a presentation of a monad M in Mndf(A) is meant a signature

Σ and a collection of Σ-equations such that the least quotient of H∗Σ
satisfying all of the given equations has the form c : H∗Σ �M.

If A = Set, this is the classical concept of a presentation of a variety by
equations. Indeed, given a pair f, f ′ : 1→ H∗Σn, which is a pair of Σ-terms in
n variables, satisfaction of the equation f = f ′ in the sense of general algebra
means that precisely cn · f = cn · f ′. And a general pair f, f ′ : k → H∗Σn can
be substituted by k pairs of terms in n variables.

Remark 5.6. (1) Every finitary monad M has a presentation. Indeed,
since this is an algebra for the monad T, it is a coequalizer of a parallel
pair of monad morphisms between free algebras for T:

H∗Γ
`
//

r
//H∗Σ

c
//M

To give a monad morphism ` is equivalent to giving a signature mor-
phism

`n : Γn −→ H∗Σn (n ∈ |Afp|).
Analogously for r 7→ (rn). Thus, to say that c merges ` and r is the
same as to say that it satisfies the equations `n, rn : Γn → H∗Σn for all
n. And the above coequalizer c is the least such quotient.
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(2) Every equation f, f ′ : k → H∗Σn = colimr∈NWrn can be substituted,
for some number r (the “depth” of the terms), by an equation g, g′ : k →
Wrn. This follows from k being finitely presentable.

Theorem 5.7. Let A be an lfp category with regular factorizations. A finitary
monad is, as an object of Mndf(A),

(1) finitely generated iff it has a presentation by Σ-equations with Σ super-
finitary, and

(2) finitely presentable iff it has a presentation by finitely many Σ-equations
with Σ super-finitary.

Proof : (1) Let M have a presentation with Σ super-finitary. Then M is a
(regular) quotient of an ffp-algebra H∗Σ for T, thus, it is finitely generated by
Theorem 4.5.

Conversely, if M is finitely generated, it is a (strong) quotient c : H∗Σ �M
for Σ super-finitary. It is sufficient to show that c is a regular epimorphism
in Mndf(A), then the argument that M has a presentation using Σ is as in
Remark 5.6.

Since A has regular factorizations, so does Sig(A) = A|Afp|. And the monad
T on Sig(A) given by

(TΣ)n = H∗Σn (n ∈ Afp)

is regular. Indeed, for every regular epimorphism e : Σ � Γ in Sig(A) we
have regular epimorphisms en : Σn � Γn in A (n ∈ Afp), and the components
of Te are the morphisms

(Te)m =
∐

n∈|Afp|

A(n,m) • en (m ∈ Afp).

Since coproducts of regular epimorphisms in A are regular epimorphisms, we
conclude that each (Te)m is regularly epic in A. Thus, Te is regularly epic
in Sig(A).

Consequently, the category of T-algebras has regular factorizations. Since
c is a strong epimorphism, it is regular.

(2) We can apply Theorem 4.7: an algebra M for T is finitely presentable
iff it is a coequalizer in Mndf(A) as follows:

H∗Γ
`
//

r
//H∗Σ

c
//M
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for some super-finitary signatures Γ and Σ. By the preceding remark, we
can substitute ` and r by a collection of equations Γn ⇒ H∗Σn, and since Γ
is super-finitary, this collection is finite. Therefore, every finitely presentable
object of Mndf(A) has a super-finitary presentation.

Conversely, let M be presented by a super-finitary signature Σ and equa-
tions

fi, f
′
i : ki −→ H∗Σni (i = 1, . . . , r).

Let Γ be the super-finitary signature with

Γk =
∐
i∈I
ki=k

ki.

Then we have signature morphisms

f, f ′ : Γ −→ T (Σ)

derived from the given pairs in an obvious way. For the corresponding monad
morphisms

f̄ , f̄ ′ : H∗Γ −→ H∗Σ
we see that the coequalizer of this pair is the smallest quotient c : H∗Σ � M
with cni · fi = cni · f ′i for all i = 1, . . . , n. This follows immediately from the
fact that c is a regular epimorphism in Mndf(A). Indeed, since A has regular
factorizations, so does Sig(A), a power of A. Since, moreover, T is a regular
monad, the category Mndf(A) of its algebras has regular factorizations, thus,
every strong epimorphism is regular.

Corollary 5.8. A finitary monad on Set is a finitely presentable object of
Mndf(Set) iff the corresponding variety of algebras has a presentation (in the
classical sense) by finitely many operations and finitely many equations.

Most of “everyday” varieties (groups, lattices, boolean algebras, etc.) yield
finitely presentable monads. Vector spaces over a field K yield a finitely
presentable monad iff K is finite – equivalently, that monad is finitely gener-
ated. However, there are finitely generated monads in Mndf(Set) that fail to
be finitely presentable. We prove that the classes of finitely presentable and
finitely generated objects differ in Mndf(Set) by relating monads to monoids
via an adjunction.

Remark 5.9. Recall that every set functor has a unique strength. This
follows from the result by Kock [14] that a strength of an endofunctor on
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a closed monoidal category bijectively corresponds to a way of making that
functor enriched (see also Moggi [17, Proposition 3.4]). For every monad
(T, η, µ) on Set we have a canonical strength, i.e. a family of morphisms

sX,Y : TX × Y → T (X × Y )

natural in X and Y and such that the following axioms hold

TX × 1 T (X × 1)

TX

s1,X

∼= ∼=

TX × Y × Z T (X × Y )× Z

T (X × Y × Z)
sX,Y×Z

sX,Y×Z

sX×Y,Z

TX × Y T (X × Y )

X × Y

sX,Y

ηX×Y
ηX×Y

TTX × Y T (TX × Y ) TT (X × Y )

TX × Y T (X × Y )

µX×Y

sTX,Y TsX,Y

µX×Y
sX,Y

In fact, for a given monad T on Set one defines the canonical strength by the
commutativity of the following diagrams

TX × Y
sX,Y

// T (X × Y )

TX × 1 ∼= TX ∼= T (X × 1)
TX×y

OO

T (X×y)

OO

for every y : 1→ Y .

Notation 5.10. (1) We have a functor R : Mndf(Set) → Mon sending a
monad (T, η, µ) with strength s to the monoid T1 with unit η1 : 1→
T1 and the following multiplication:

m : T1× T1
s1,T1−−→ T (1× T1)

∼=−→ TT1
µ1−→ T1.

(2) We define a functor L : Mon→ Mndf(Set) as follows. For every monoid
(M, ∗, 1M) we have the free M -set monad LM with the following ob-
ject assignment, unit and multiplication:

LM(X) = M ×X, ηX : x 7→ (1M , x), µX : (n, (m,x)) 7→ (n ∗m,x).

This extends to a functor L : Mon→ Mndf(Set).
For example, the finite powerset monad Pf induces the monoid

({0, 1},∧, 1) of boolean values with conjunction as multiplication.
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Proposition 5.11. We have an adjoint situation L a R with the following
unit ν and counit ε:

νM : M
∼=−−→M × 1 = RLM

εT : LRT = T1× (−)
s1,−−−→ T (1× (−))

T∼=−−−→ T,

where s is the strength of T .

Proof : It is not hard to see that νM is a monoid morphism, because the
monoid structure in M × 1 = RLM boils down to the monoid structure of
M . Furthermore, νM is clearly natural in M .

For every monad T , εT is a natural transformation T1× (−)→ T because
of the naturality of the strength s. The axioms for the strength imply that
s1,− : T1 × (−) → T (1 × (−)) is a monad morphism by straightforward
diagram chasing. To see ν and ε establish an adjunction, it remains to check
the triangle identities:

• The identity εLM ·LνM = idLM is just the associativity of the product:

LM LRLM LM

M × (−) (M × 1)× (−) M × (1× (−)) M × (−)

LνM εLM

νM×(−) ∼= M×∼=

The composite is obviously just the identity on M × (−).
• The identity RεT · νRT = idRT follows directly from the first axiom of

strength:

RT RLRT RT

T1 T1× 1 T (1× 1) T1

νRT RεT

Tν1

νT1 s1,1 ∼=

Corollary 5.12. In the category of finitary monads on Set the classes of
finitely presentable and finitely generated objects do not coincide.

Proof : Note that from the fact that the unit of the adjunction L a R is an
isomorphism we see that L is fully faithful. Thus, we may regard Mon as
a full coreflective subcategory of Mndf(Set). Furthermore, the right-adjoint
R preserves filtered colimits; this follows from the fact that filtered colimits
in Mndf(Set) are created by the forgetful functor into [Set, Set]fin where they
are formed objectwise. In addition, L preserves monomorphisms; in fact, for
an injective monoid morphism m : M � M ′ the monad morphism Lm :
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LM → LM ′ is monic since all its components m× idX : M ×X → M ′ ×X
are clearly injective. By Lemma 2.5, we therefore have that a monoid M is
finitely presentable (resp. finitely generated) if and only if the monad LM is
finitely presentable (resp. finitely generated).

Now it is well-known that in the category Mon of monoids finitely pre-
sentable and finitely generated objects do not coincide; see Campbell et
al. [10, Example 4.5] for an example of a finitely generated monoid which
is not finitely presentable.

6. λ-Accessible Functors and λ-Presentable Algebras
Almost everything we have proved above generalizes to locally λ-presentable

categories for every infinite regular cardinal λ. Recall that an object A of
a category A is λ-presentable (λ-generated) if its hom-functor A(A,−) pre-
serves λ-filtered colimits (of monomorphisms). A category A is locally λ-
presentable if it is cocomplete and has a set of λ-presentable objects whose
closure under λ-filtered colimits is all of A. Functors preserving λ-filtered
colimits are called λ-accessible.

All of Remark 2.2 holds for λ in lieu of ℵ0, with the same references in [5].
If λ = ℵ1 we speak about locally countably presentable categories, countably

presentable objects, etc.

Examples 6.1. (1) Complete metric spaces. We denote by

CMS

the category of complete metric spaces of diameter ≤ 1 and non-
expanding functions, i.e. functions f : X → Y such that for all
x, y ∈ X we have dY (f(x), f(y)) ≤ dX(x, y). This category is lo-
cally countably presentable. The classes of countably presentable and
countably generated objects coincide and these are precisely the com-
pact spaces.

Indeed, every compact (= separable) complete metric space is count-
ably presentable, see [2, Corollaries 2.9]. And every countably gen-
erated space A in CMS is separable: consider the countably filtered
diagram of all spaces X̄ ⊆ A where X ranges over countable subsets
of A and X̄ is the closure in A. Since A is the colimit of this diagram,
idA factorizes through one of the embeddings X̄ ↪→ A, i.e., A = X̄ is
separable.



ON FINITARY FUNCTORS AND FINITELY PRESENTABLE ALGEBRAS 41

(2) Complete partial orders. Denote by

ωCPO

the category of ω-cpos, i.e., of posets with joins of ω-chains and mono-
tone functions preserving joins of ω-chains. This is also a locally
countably presentable category. An ω-cpo is countable presentable
(equivalently, countably generated) iff it has a countable subset which
is dense w.r.t. joins of ω-chains.

Following our convention in Section 3 we speak about a λ-generated sub-
object m : M � A of A if M is a λ-generated object of A. This leads
to a generalization of the notion of finitely bounded functors to λ-bounded
ones. The latter terminology stems from Kawahara and Mori [12], where
endofunctors on sets were considered. Our terminology is slightly different
in that λ-generated subobjects in Set have cardinality less than λ, whereas
subsets of cardinality less than or equal to λ were considered in loc. cit.

Definition 6.2. A functor F : A → B is called λ-bounded provided that
given an object A of A, every λ-generated subobject m0 : M0 � FA in B

factorizes through the F -image of a λ-generated subobject m : M � A in
A:

FM

Fm
��

M0

<<

//

m0

// FA

Theorem 6.3. Let A be a locally λ-presentable category in which every λ-
generated object is λ-presentable. Then for all functors from A to locally
λ-presentable categories preserving monomorphisms we have the equivalence

λ-accessible ⇐⇒ λ-bounded.

The proof is completely analogous to that of Theorem 3.4.

Example 6.4. The Hausdorff endofunctor H on CMS was proved to be ac-
cessible (for some λ) by van Breugel et al. [22]. Later it was shown to be even
finitary [2]. However, these proofs are a bit involved. Using Theorem 6.3 we
provide an easy argument why the Hausdorff functor is countably accessible.
(Which, since CMS is not lfp but is locally countable presentable, seems to
be the “natural” property.)
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Recall that for a given metric space (X, d) the distance of a point x ∈ X
to a subset M ⊆ X is defined by d(x,M) = infy∈M d(x, y). The Hausdorff
distance of subsets M,N ⊆ X is defined as the maximum of supx∈M d(x,N)
and supy∈N d(y,M). The Hausdorff functor assigns to every complete metric
space X the space HX of all non-empty compact subsets of X equipped with
the Hausdorff metric. It is defined on non-expanding maps by taking the
direct images. We now easily see that H is countably accessible:

(1) H preserves monomorphisms. Indeed, given f : X � Y monic, then
f [M ] 6= f [N ] for every pair M,N of distinct elements of HX, thus
Hf is monic, too.

(2) H is countably bounded. In order to see this, let m0 : M0 ↪→ HX
be a subspace with M0 compact, and choose a countable dense subset
S ⊆ M0. For every element s ∈ S the set m0(s) ⊆ X is compact,
hence, separable; choose a countable dense set Ts ⊆ m0(s). For the
countable set T =

⋃
s∈S Ts form the closure in X and denote it by

m : M ↪→ X. Then M is countably generated, and M0 ⊆ Hm[HM ];
indeed, for every x ∈ M0 we have m0(x) ⊆ M because M is closed,
and this holds whenever x ∈ S (due to m0(x) = Tx).

Definition 6.5. A locally λ-presentable category A is called strictly or semi-
strictly locally λ-presentable provided that every morphism b : B → A in
Aλ/A factorizes through a morphism b′ : B′ → A in Aλ/A for which some
f : A→ B′ exists and, in the case of strict locally λ-presentable, f · b is such
a factor, i.e. b = b′ · (f · b).

B

b ��

// B′

b′~~

A

f
>>

semi-strictly locally λ-presentable

B

b ��

f ·b
// B′

b′~~

A

f
>>

strictly locally λ-presentable

Examples 6.6. (1) SetS is strictly locally λ-presentable iff cardS < λ.
This is analogous to Example 3.15(1).

(2) The category SetG
op

of presheaves on a groupoid G of α elements is
strictly locally λ-presentable whenever λ > 2α. The proof is analogous
to that of Proposition 3.16. For the set S of objects of G we work
with the corresponding S-sorted unary algebras. Every representable
algebra has at most α elements, hence, at most 2α equivalence relations
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on the set of its elements. Therefore, representable algebras have less
than λ quotients. Thus, the algebra D in part (4) of that proof is
λ-generated. The rest of the proof is unchanged.

(3) The category of groups is not strictly locally λ-presentable for any
infinite cardinal λ.

Indeed, let A be a simple group of cardinality at least λλ. (Recall
that for every set X of cardinality ≥ 5 the group of even permutations
on X is simple.) Since groups form an lfp category, there exists a non-
zero homomorphism b : B → A with B finitely presentable. Given a
commutative diagram

B
f ·b

//

b ��

B′

b′~~

A

for some f : A→ B′

we will prove that B′ is not λ-presentable. Indeed, since b is non-zero,
we see that so is f : A → B′. Since A is simple, f is monic, hence
cardB′ ≥ λλ. However, every λ-presentable group has cardinality at
most λ.

(4) The category Nom of nominal sets is strictly locally countably pre-
sentable. In order to prove this we first verify that countably pre-
sentable objects are precisely the countable nominal sets. Let X be
a countably presentable nominal set. Then every countable choice
of orbits of X yields a countable subobject of X in Nom. Thus X
is a countably directed union of countable subobjects. Since X is
countably presentable, it follows that X is isomorphic to one of these
subobjects. Thus, X is countable.

Conversely, every countable nominal set is countably presentable
since countably filtered colimits of nominal sets are formed on the
level of sets (i.e. these colimits are preserved and reflected by the
forgetful functor Nom→ Set).

Now let b : B → A be a morphism in Nom with B countable. Clearly,
we have A = Im(b)+C for some subobject C of A. Indeed, every nom-
inal set is a coproduct of its orbits, and equivariance of b implies that
is must be a coproduct of some of the orbits of A. Furthermore, let
m : C1 � C be a subobject obtained by choosing one orbit from each
isomorphism class of orbits of C. We obtain a surjective equivariant
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map e : C � C1 by choosing, for every orbit in C \C1, a concrete iso-
morphism to an orbit of C1 and for every x ∈ C1 ⊆ C, e(x) = x. Then
we have e ·m = idC1

, i.e. m is a split monomorphism of Nom. In the
appendix we prove that there are (up to isomorphism) only countably
many single-orbit nominal sets. Hence, C1 is countable, and thus so
is B′ = Im(b) + C1. Moreover, the morphisms b′ = id + m : B′ → A
and f : id+ e : A→ B′ clearly satisfy the desired property b = b′ · f · b.

Theorem 6.7. Let A be a locally λ-presentable category.

(1) If A is strictly locally λ-presentable, then for all functors from A to
locally λ-presentable categories we have

λ-accessible ⇐⇒ λ-bounded.

(2) Conversely, if this equivalence holds for all functors to locally λ-pre-
sentable categories, then A is semi-strictly locally λ-presentable.

The proof is completely analogous to those of Theorems 3.10 and 3.14.

Remark 6.8. For λ-accessible monads on locally λ-presentable categories
all the results of Section 4 have an appropriate statement and completely
analogous proofs. We leave the explicit formulation to the reader.

Remark 6.9. Assume that we work in a set theory distinguishing between
sets and classes (e.g. Zermelo-Fraenkel theory) or distinguishing universes,
so that by a “a class” we take a member of the next higher universe of that
of all small sets. Then we form a super-large category

Class

of classes and class functions. It plays a central role in the paper of Aczel
and Mendler [1] on terminal coalgebras. An endofunctor F of Class in that
paper is called set-based if for every class X and every element x ∈ FX there
exists a subset i : Y � X such that x lies in Fi[FX]. This corresponds to
∞-bounded where ∞ stands for “being large”. The corresponding concept
of ∞-accessibility is evident:

Definition 6.10. A diagram D : D → Class, with D not necessarily small,
is called ∞-filtered if every smalll subcategory of D has a cocone in D. An
endofunctor of Class is ∞-accessible if it preserves colimits of ∞-filtered di-
agrams.

Proposition 6.11. An endofunctor of Class is set-based iff it is∞-accessible.
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Proof : (1) For every morphism b : B → A in Class with B small factorizes
in Set/A through a morphism b′ : B′ → A in Set/A where the factorization
f fulfils b = b′ · (f · b). (Shortly: Class is strictly locally ∞-presentable.) The
proof is the same as that of Example 3.9(2).

(2) The rest is completely analogous to part (1) of the proof of Theorem
3.10

Remark 6.12. Assuming, moreover, that all proper classes are mutually
bijective, it follows that every endofunctor on Class is ∞-accessible, see [3].
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[4] Jǐŕı Adámek and Hans-Eberhard Porst, On tree coalgebras and coalgebra presentations, The-

oret. Comput. Sci. 311 (2004), 257–283.
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Appendix A.Details on Single-Orbit Nominal Sets
In this appendix we prove that in the category Nom of nominal sets there

are (up to isomorphism) only countably many nominal sets having only one
orbit. To this end we consider the nominal sets A#n of injective maps from
n = {0, 1, . . . , n− 1} to A. The group action on A#n is component-wise, in
other words, it is given by postcomposition: for t : n � A and π ∈ Sf(A)
(i.e. a bijective map π : A → A) the group action is the composed map
π · t : n� A. Thus, for every t : n� A of A#n, supp(t) = {t(i) | i < n}.

Lemma A.1. Up to isomorphism, there are only countably many single-orbit
sets.

Proof : Every single-orbit nominal set Q whose elements have supports of
cardinality n is a quotient of the (single-orbit) nominal set A#n (see [19, Ex-
ercise 5.1]). Indeed, if Q = {π ·x | π ∈ Sf(A)} with supp(x) = {a0, . . . , an−1},
let t : n� A be the element of A#n with t(i) = ai and define q : A#n � Q
as follows: for every u ∈ A#n it is clear that there is some π ∈ Sf(A) with
u = π · t; put q(u) = π ·x. This way, q is well-defined (since supp(x) = {t(i) |
i < n}) and equivariant.

The quotients of A#n are given by equivariant equivalence relations on
A#n. We prove that, for every n ∈ N, we have a bijective correspondence
between the set of all quotients with | supp([t]∼)| = n for all t ∈ A#n and the
set of all subgroups of Sf(n).

(1) Given an equivariant equivalence ∼ on A#n put

S = {σ ∈ Sf(n) | ∀(t : n� A) : t · σ ∼ t}.

Note that since ∼ is equivariant (and composition of maps is associa-
tive), ∀ can equivalently be replaced by ∃:

S = {σ ∈ Sf(n) | ∃(t : n� A) : t · σ ∼ t}.

It is easy to verify that S is a subgroup of Sf(n). Moreover, we have
that, for every t, u ∈ A#n,

(3) t ∼ u ⇐⇒ u = t · σ for some σ ∈ S.

Indeed, “⇐=” is obvious. For “=⇒” suppose that t ∼ u. Since
| supp([t]∼)| = n, we have that supp(t) = supp([t]∼) = supp([u]∼) =
supp(u); thus, there is some σ ∈ Sf(n) such that u = t · σ. Conse-
quently, t ∼ t · σ, showing that σ ∈ S.
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(2) For every subgroup S of Sf(n), it is clear that the relation ∼ de-
fined by (3) is an equivariant equivalence. We show that, moreover,
| supp([t]∼)| = n for every t ∈ A#n. We have | supp([t]∼)| ≤ n be-
cause the canonical quotient map [−]∼ is equivariant. In order to see
that | supp([t]∼)| is not smaller than n, assume a ∈ supp(t)\ supp([t]∼)
and take any element b 6∈ supp(t). Then (a b) · [t]∼ = [t]∼, i.e. there
is some σ ∈ Sf(n) with (a b) · t · σ = t, which is a contradiction to
b 6∈ supp(t) = supp(t · σ) = {t(i) | i < n}.

(3) It remains to show that, given two subgroups S and S ′ which de-
termine the same equivariant equivalence relations ∼ via (3), then
S = S ′. Indeed, given σ ∈ S, we have t = (t · σ) · σ−1 and therefore
t · σ ∼ t for every t ∈ A#n. By (3) applied to S ′, this implies that
t = t · σ · σ′ for some σ′ ∈ S ′. Since t is monic, we obtain σ · σ′ = idn,
i.e., σ = (σ′)−1 ∈ S ′. This proves S ⊆ S ′, and the reverse inclusion
holds by symmetry.
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