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Abstract: Recently the Riemann–Hilbert problem with jumps supported on ap-
propriate curves in the complex plane has been presented for matrix biorthogonal
polynomials, in particular non–Abelian Hermite matrix biorthogonal polynomials
in the real line, understood as those whose matrix of weights is a solution of a
Sylvester type Pearson equation with matrix entire function coefficients. We will
explore this discussion, present some achievements and consider some new examples
of weights for matrix biorthogonal polynomials.
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1. Introduction
Back in 1949, in the seminal papers [36, 37], Krein discussed matrix ex-

tensions of real orthogonal polynomials. Afterwards, this matrix extension
of the standard orthogonality was studied only sporadically until the last
decade of the XX century, see [2], [33] and [1]. In[1], for a kind of discrete
Sturm–Liouville operators, the authors solved the corresponding scattering
problem and found a matrix version of Favard’s theorem, polynomials that
satisfy the three term relation

xPk(x) = AkPk+1(x) +BkPk(x) +A∗
k−1Pk−1(x), k = 0, 1, . . . ,

are orthogonal with respect to a positive definite matrix of measures.
Along the last decade, a number of basic results on the theory of scalar

orthogonal polynomials, such as Favard’s theorem [15, 16, 27, 30], quadrature
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formulae [17, 21, 29] and asymptotic properties (Markov’s theorem [17], ratio
[18, 19] weak [20] and zero asymptotics [28]), have been extended to the
matrix scenario. The search of families of matrix orthogonal polynomials
that satisfy second order differential equations with coefficients independent
of n, can be found in [23, 24, 25, 26, 22]. This can be considered as a
matrix extension of the classical orthogonal polynomial sequences of Hermite,
Laguerre and Jacobi.
Fokas, Its and Kitaev, when discussing 2D quantum gravity, discovered

that certain Riemann–Hilbert problem was solved in terms of orthogonal
polynomials in the real line (OPRL), [31]. Namely, it was found that the
solution of a 2 × 2 Riemann–Hilbert problem can be expressed in terms of
orthogonal polynomials in the real line and its Cauchy transforms. Later
on, Deift and Zhou combined these ideas with a non–linear steepest descent
analysis in a series of papers [10, 11, 13, 14] which was the seed for a large
activity in the field. Relevant results to be mentioned here are the study
of strong asymptotic with applications in random matrix theory, [10, 12],
the analysis of determinantal point processes [7, 8, 38, 39], applications to
orthogonal Laurent polynomials [40, 41] and Painlevé equations [9, 35].
The Riemann–Hilbert problem characterization is a powerful tool that al-

lows one to prove algebraic and analytic properties of orthogonal polynomials.
The Riemann–Hilbert problem for this matrix situation and the appearance
of non–Abelian discrete versions of Painlevé I (mdPI) were explored in [4],
and the appearance of singularity confinement was shown in [5]. The analysis
was extended further [6] for the matrix Szegő type orthogonal polynomials in
the unit circle and corresponding non–Abelian versions discrete Painlevé II
equations. For an alternative discussion of the use of Riemann–Hilbert prob-
lem for MOPRL see [34], were the authors focus on the algebraic aspects of
the problem, obtaining difference and differential relations satisfied by the
corresponding orthogonal polynomials.
In [3] we have studied a Hermite–type biorthogonal matrix polynomial

system from a Riemann–Hilbert problem. In this case the matrix measure
extends to an entire function on the complex plane. We have considered
three types of matrix weights,W , obtained from the solution of a generalized
Pearson differential or Sylvester differential equation, i.e.

W ′ = hL(z)W (z) +W (z)hR(z),

where hL and hR are polynomials of the first, second or third degrees.
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In that paper we shew that for these weights the matrix solutions of the
Riemann–Hilbert problem

Y L
n =

[
P L
n QL

n

−Cn−1P
L
n−1 −Cn−1Q

L
n−1

]
, Y R

n =

[
PR
n −Cn−1Q

R
n−1

−Cn−1P
R
n−1 QR

n

]
,

satisfies(
Y L
n exp

( ∫ z

0

C′
L(t)C−1

L (t) dt
))′

= ML
n

(
Y L
n exp

( ∫ z

0

C′
L(t)C−1

L (t) dt
))

,

(
exp

( ∫ z

0

C′
R(t)C−1

R (t) dt
)
Y R
n

)′
=

(
exp

( ∫ z

0

C′
R(t)C−1

R (t) dt
)
Y R
n

)
MR

n ,

with C′
L(t)C−1

L (t) =

[
hL 0N
0N −hR

]
, C−1

R (t)C′
R(t) =

[
hR 0N
0N −hL

]
, whereML

n and MR
n

are defined by

(T L
n )

′ = ML
n+1T

L
n − T L

nM
L
n , (T R

n )
′ = T R

nM
R
n+1 −MR

n T
R
n ,

and {T L
n}, {T R

n } are sequences of transfer matrices, i.e.

Y L
n+1 = T L

nY
L
n , Y R

n+1 = Y R
n T

R
n , (1)

with

T L
n (z) =

[
zIN − βL

n C−1
n

−Cn 0N

]
, T R

n (z) =

[
zIN − βR

n −Cn

C−1
n 0N

]
. (2)

In this work we extend the Riemann–Hilbert characterization for a more
general class of measures, a matrix extension of the classical scalar Laguerre
measures, and we find that for this class of measures appears a power loga-
rithmic type singularities at the end point of the support of the measure.

2. Riemann–Hilbert problem for Matrix Biorthogonal
Polynomials

2.1. Matrix biorthogonal polynomials. Let

W =



W (1,1) · · · W (1,N)

...
. . .

...
W (N,1) · · · W (N,N)


 ∈ C

N×N

be a N ×N matrix of weights with support on a smooth oriented non self–
intersecting curve γ in the complex plane C, i.e. W (j,k) is, for each j, k ∈
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{1, . . . , N}, a complex weight with support on γ. We define the moment of
order n associated with W as

Wn =
1

2π i

∫
γ

znW (z) d z, n ∈ N := {0, 1, 2, . . .}.

We say thatW is regular if det
[
Wj+k

]
j,k=0,...,n

�= 0, n ∈ N. In this way, we de-

fine a sequence of matrix monic polynomials,
{
P L
n (z)

}
n∈N, left orthogonal and

right orthogonal,
{
PR
n (z)

}
n∈N with respect to a regular matrix measure W ,

by the conditions,

1

2π i

∫
γ

P L
n (z)W (z)zk d z = δn,kC

−1
n , (3)

1

2π i

∫
γ

zkW (z)PR
n (z) d z = δn,kC

−1
n , (4)

for k = 0, 1, . . . , n and n ∈ N, where Cn is an nonsingular matrix.
Notice that neither the matrix of weights is requested to be Hermitian nor

the curve γ to be the real line, i.e., we are dealing, in principle with nonstan-
dard orthogonality and, consequently, with biorthogonal matrix polynomials
instead of orthogonal matrix polynomials.
The matrix of weights induce a sesquilinear form in the set of matrix poly-

nomials CN×N [z] given by

〈P,Q〉W :=
1

2π i

∫
γ

P (z)W (z)Q(z) d z. (5)

Moreover, we say that
{
P L
n (z)

}
n∈N and

{
PR
n (z)

}
n∈N are biorthogonal with

respect to a matrix weight functions W if〈
P L
n , P

R
m

〉
W

= δn,mC
−1
n , n,m ∈ N. (6)

As the polynomials are chosen to be monic, we can write

P L
n (z) = INz

n + p1L,nz
n−1 + p2L,nz

n−2 + · · · + pnL,n,

PR
n (z) = INz

n + p1R,nz
n−1 + p2R,nz

n−2 + · · ·+ pnR,n,

with matrix coefficients pkL,n, p
k
R,n ∈ CN×N , k = 0, . . . , n and n ∈ N (imposing

that p0L,n = p0R,n = I, n ∈ N). Here I ∈ CN×N denotes the identity matrix.
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We define the sequence of second kind matrix functions by

QL
n(z) :=

1

2π i

∫
γ

P L
n (z

′)
z′ − z

W (z′) d z′, (7)

QR
n(z) :=

1

2π i

∫
γ

W (z′)
PR
n (z

′)
z′ − z

d z′, (8)

for n ∈ N. From the orthogonality conditions (3) and (4) we have, for all
n ∈ N, the following asymptotic expansion near infinity for the sequence of
functions of the second kind

QL
n(z) = −C−1

n

(
INz

−n−1 + q1L,nz
−n−2 + · · · ), (9)

QR
n(z) = −(

INz
−n−1 + q1R,nz

−n−2 + · · · )C−1
n . (10)

Assuming that the measures W (j,k), j, k ∈ {1, . . . , N} are Hölder continuous
we obtain, by the Plemelj’s formula applied to (7) and (8), the following
fundamental jump identities(

QL
n(z)

)
+
− (

Qn(z)
L
)
− = P L

n (z)W (z), (11)(
QR

n(z)
)
+
− (

QR
n(z)

)
− = W (z)PR

n (z), (12)

z ∈ γ, where,
(
f(z)

)
± = lim

ε→0±
f(z + iε); here ± indicates the the posi-

tive/negative region according to the orientation of the curve γ.

2.2. Reductions: from biorthogonality to orthogonality. We consider
two possible reductions for the matrix of weights, the symmetric reduction
and the Hermitian reduction.

i) A matrix of weightsW (z) with support on γ is said to be symmetric if

(W (z))� = W (z), z ∈ γ.

ii) A matrix of weightsW (x) with support on R is said to be Hermitian if

(W (x))† = W (x), x ∈ R.

These two reductions leads to orthogonal polynomials, as the two biorthog-
onal families are identified; i.e., for the symmetric case

PR
n (z) =

(
P L
n (z)

)�
, QR

n(z) =
(
QL

n(z)
)�

, z ∈ C,

and for the Hermitian case, with γ = R,

PR
n (z) =

(
P L
n (z̄)

)†
, QR

n(z) =
(
QL

n(z̄)
)†
, z ∈ C.
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In both cases biorthogonality collapses into orthogonality, that for the sym-
metric case reads as

1

2π i

∫
γ

Pn(z)W (z)
(
Pm(z)

)�
d z = δn,mC

−1
n , n,m ∈ N,

while for the Hermitian case can be written as follows

1

2π i

∫
R

Pn(x)W (x)
(
Pm(x)

)†
d x = δn,mC

−1
n , n,m ∈ N,

where Pn = P L
n .

2.3. The Riemann–Hilbert problem. Let us consider the particular case
when the N ×N matrix of weights with support on a smooth oriented non
self–intersecting curve γ has entrywise power logarithmic type algebraic sin-
gularities at the boundary of the support of the measure, that is the en-
tries W j,k of the matrix measure W can be described as

W j,k(z) =
∑
m∈Ij,k

hm(z)(z − c)αm logpm(z)

where Ij,k denotes a finite set of indexes, αm > −1, pm ∈ N and hm(x) is
Hölder continuous, bounded and non–vanishing on γ.
The biorthogonality can be characterized in terms of a left and right

Riemann–Hilbert formulation,

Theorem 1.

i) The matrix function

Y L
n (z) :=

[
P L
n (z) QL

n(z)

−Cn−1P
L
n−1(z) −Cn−1Q

L
n−1(z)

]
,

is, for each n ∈ N, the unique solution of the Riemann–Hilbert prob-
lem; which consists in the determination of a 2N×2N complex matrix
function such that:
(RHL1): Y L

n (z) is holomorphic in C \ γ;
(RHL2): has the following asymptotic behaviour near infinity,

Y L
n (z) =

(
IN +

∞∑
j=1

(z−j)Y j,L
n

) [INzn 0N
0N INz

−n

]
;
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(RHL3): satisfies the jump condition

(
Y L
n (z)

)
+
=

(
Y L
n (z)

)
−

[
IN W (z)
0N IN

]
, z ∈ γ.

(RHL4): Y L
n (z) =

[
O(1) O(sL1(z))

O(1) O(sL2(z))

]
, as z → c,

where c denotes any of the end points of the curve γ if they exists,

lim
z→c

(z − c)sLj (z) = 0N , j = 1, 2,

and the O conditions are understood entrywise.
ii) The matrix function

Y R
n (z) :=

[
PR
n (z) −PR

n−1(z)Cn−1

QR
n(z) −QR

n−1(z)Cn−1

]
,

is, for each n ∈ N, the unique solution of the Riemann–Hilbert prob-
lem; which consists in the determination of a 2N×2N complex matrix
function such that:
(RHR1): Y R

n (z) is holomorphic in C \ γ;
(RHR2): has the following asymptotic behaviour near infinity,

Y R
n (z) =

[
INz

n 0N
0N INz

−n

] (
IN +

∞∑
j=1

(z−j)Y j,R
n

)
;

(RHR3): satisfies the jump condition

(
Y R
n (z)

)
+
=

[
IN 0N

W (z) IN

] (
Y R
n (z)

)
−, z ∈ γ.

(RHR4): Y R
n (z) =

[
O(1) O(1)

O(sR1 (z)) O(sR2 (z))

]
, as z → c,

where c denotes any of the end points of the curve γ if they exists,

lim
z→c

(z − c)sRj (z) = 0N , j = 1, 2,

and the O conditions are understood entrywise.
iii) The determinant of Y L

n (z) and Y L
n (z) are equal to 1, for every z ∈ C.

Proof : Using the standard calculations from the scalar case it follows that the
matrices Y L

n and Y R
n satisfy (RHL1)− (RHL3) and (RHR1)− (RHR3), re-

spectively.
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The entries W j,k of the matrix measure W can be described as

W j,k(z) =
∑
m∈Ij,k

hm(z)(z − c)αm logpm(z),

where Ij,k denotes a finite set of indexes, αm > −1, pm ∈ N and hm(x) is
Hölder continuous, bounded and non–vanishing on γ. At the boundary values
of the curve γ if they exist and are denoted by c, for z → c. It holds [32] that
in a neighbourhood of the point c, the Cauchy transform of the function

φm(z) =
1

2πi

∫
γ

p(z′)hm(z
′)(z′ − c)αm logpm(z′)

z′ − z
dz′,

where p(z′) denotes any polynomial in z′, verifies

lim
z→c

(z − c)φm(z) = 0,

and the condition (RHL4), is fulfilled for the matrix Y L
n and respectively the

condition (RHR4), is fulfilled for the matrix Y R
n . Now let us consider

G(z) = Y L
n (z)

[
0N IN
−IN 0N

]
Y R
n (z)

[
0N −IN
IN 0N

]
.

It can easily be proved that G has no jump on the curve γ. In a neighborhood
of the point c

G(z) =

[
O(sL1(z)) + O(sR2 (z)) O(sL1(z)) + O(sR1 (z))
O(sL2(z)) + O(sR2 (z)) O(sL2(z)) + O(sR1 (z))

]
,

so lim
z→c

(z − c)G(z) = 0, and at the point c the singularity is removable. Now

using the behaviour for z → ∞,

G(z) =

[
INz

n 0N
0N INz

−n

] [
0N IN
−IN 0N

] [
INz

n 0N
0N INz

−n

] [
0N −IN
IN 0N

]
=

[
IN 0N
0N IN

]
,

and using Liouville’s Theorem it holds that G(z) = I, the identity matrix.
From this follows the unicity of the solution of each of the Riemann–Hilbert
problems stated in this theorem.
Again using the standard arguments as in the scalar case we can conclude

that detY L
n (z) and det Y R

n (z) are both equal to 1.

We recover a representation for the inverse matrix
(
Y L
n

)−1
given by the

following result
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Corollary 1. It holds that

(
Y L
n

)−1
(z) =

[
0N IN
−IN 0N

]
Y R
n (z)

[
0N −IN
IN 0N

]
. (13)

Corollary 2. In the conditions of theorem 1 we have that for all n ∈ N,

QL
n(z)P

R
n−1(z)− P L

n (z)Q
R
n−1(z) = C−1

n−1, (14)

P L
n−1(z)Q

R
n(z)−QL

n−1(z)P
R
n (z) = C−1

n−1, (15)

QL
n(z)P

R
n (z)− P L

n (z)Q
R
n(z) = 0. (16)

Proof : As we have already proven the matrix[−QR
n−1(z)Cn−1 −QR

n(z)

PR
n−1(z)Cn−1 PR

n (z)

]
,

is the inverse of Y L
n (z), i.e.

Y L
n (z)

[−QR
n−1(z)Cn−1 −QR

n(z)

PR
n−1(z)Cn−1 PR

n (z)

]
= I;

and multiplying the two matrices we get the result.

2.4. Three term recurrence relation. Following the standard arguments
from the Riemann–Hilbert formulation we can prove

Y L
n+1(z) = T L

n (z)Y
L
n (z), n ∈ N,

where T L
n is given in (2). For the right orthogonality, we similarly obtain

from (1) that

Y R
n+1(z) = Y R

n (z)T
R
n (z), n ∈ N,

where T R
n is given in (2). Hence, we conclude that the sequence of monic

polynomials
{
P L
n (z)

}
n∈N satisfies the three term recurrence relations

zP L
n (z) = P L

n+1(z) + βL
nP

L
n (z) + γL

nP
L
n−1(z), n ∈ N, (17)

with recursion coefficients βL
n := p1L,n − p1L,n+1, γ

L
n := C−1

n Cn−1, with initial

conditions, P L
−1 = 0N and P L

0 = IN . We can also assert that

zPR
n (z) = PR

n+1(z) + PR
n (z)β

R
n + PR

n−1(z)γ
R
n , n ∈ N, (18)

where βR
n := Cnβ

L
nC

−1
n , γR

n := Cnγ
L
nC

−1
n = Cn−1C

−1
n .



10 BRANQUINHO, FOULQUIÉ AND MAÑAS

3.Matrix weights supported on a curve γ on the com-
plex plane that connects the point 0 to the point ∞:
Laguerre weights
Motivated by different attempts that appear in the literature we try to

consider some classes of weights with the aim to use the Riemann–Hilbert
formulation. In this matrix case it is not so obvious which are the conditions
we should to impose in order to guarantee the integrability of the matrix
measure that we want to consider.

3.1. Matrix weights supported on a curve γ with one finite end
point: W (z) = zAH(z).
We begin considering the weight W (z) = zAH(z) supported on a curve γ on
the complex plane that connects the point 0 to the point ∞, where

i) The function zA is defined as zA = eA log z, where γ is the branch cut
of the logarithmic function, and we define por t ∈ γ, the tA := (zA)+,
where (zA)+ is the non–tangential limit as z → t, from the left side of
the oriented curve γ.

ii) The constant matrix A is such that the minimum of the real part of
its eigenvalues is greater than −1.

iii) The factor H(t) is the restriction to the curve γ of H(z), a matrix of
entire functions, z ∈ C such that H(z) is invertible for all z ∈ C.

iv) The left logarithmic derivative h(z) :=
(
H(z)

)−1(
H(z)

)′
is an entire

function.

It is necessary, in order to consider the Riemann–Hilbert problem related
to the weight function W (z), to clarify the behaviour of this weight func-
tion W (z) on a neighborhood of the point z = 0.
If we consider the Jordan decomposition of the matrix A, it holds that

there exists an invertible matrix P such that A = PJP−1, where J = D+N ,
D is the diagonal matrix formed whose entries are the eigenvalues of the
matrix A, and N is a nilpotent matrix that commutes with the matrix D.
This commutation enables us to obtain

zA = zPJP−1

= PzJP−1 = PzDzNP−1,

where zN is a polynomial in the variable log z. The matrix zD is a diagonal
matrix whose entries are of the form zαj+iβj , where αj + iβj is a eigenvalue
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of the matrix A. Let us consider as an example the matrix

A =


−

1
2 1 0
0 −1

2 0
0 0 1


 .

In this case

zA =


z

− 1
2 0 0

0 z−
1
2 0

0 0 z




1 log z 0
0 1 0
0 0 1


 .

We can see that when the matrix A is not diagonlizable, the matrix zA, has
entries of the form z−

1
2 log z, hence we are in presence of a power logarithmic

type singularity at 0.
To assure the integrability of this kind of measure it is enough to ask that

α > −1, where is the minimum of the real part of the eigenvalues of the
matrix A. So in this case the weight fulfills the hypothesis of theorem 1.
It is also valuable to comment about the factor H(z) of the measure W (z).

In order also to have integrability of this matrix weight function we should
be careful: If for example we consider H(z) = eBz, then it is clear that, by
a similar reasoning, we should impose that the real part of the eigenvalues

of the matrix B are negative; if we consider h(z) :=
(
H(z)

)−1(
H(z)

)′
to be

a matrix polynomial h(z) = B0 +B1z + · · ·+ Bmz
m, it should be enough in

order to guarantee integrability of the measure, to impose that the real part
of the eigenvalues of the matrix Bm are negative.

3.2. Matrix weights supported on a curve γ with one finite end
point: W (z) = zαH(z)G(z)zB.
In [23] different examples appears of Laguerre matrix weights for the matrix
orthogonal polynomials on the real line. This motivates us to consider the
matrix weightW (z) = zαH(z)G(z)zB supported on a curve γ on the complex
plane that connects the point 0 to the point ∞. With similar considerations
as in the case treated before. Nevertheless when we try to apply the general
methods from the Riemann–Hilbert formulation we find a lot of difficulties,
derived from the non–commutativity of the matrix product and we should
impose important restrictions.
This kind of matrix weights can be treated in a more general context. Let

us consider that instead of a given matrix of weights we are provided with
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two matrices, say hL(z) and hR(z), of entire functions such that the following
two matrix Pearson equations are satisfied

z
dW L

d z
= hL(z)W L(z), z

dW R

d z
= W R(z)hR(z); (19)

and given solutions to them we construct the corresponding matrix of weights
W = W LW R. Moreover, this matrix of weights is also characterized by a
Pearson equation.

Theorem 2 (Pearson Sylvester differential equation). Given two matrices of
entire functions hL(z) and hR(z), any solution of the Sylvester type matrix
differential equation, which we call Pearson equation for the weight,

z
dW

d z
= hL(z)W (z) +W (z)hR(z) (20)

is of the form W = W LW R where the factor matrices W L and W R are solu-
tions of (19), respectively.

Proof : Given solutionsW L andW R of (19), respectively, it follows intermedi-
ately, just using the Leibniz law for derivatives, thatW = W LW R fulfills (20).
Moreover, given a solution W of (20) we pick a solution W L of the first equa-
tion in (19), then it is easy to see that (W L)−1W satisfies the second equation
in (19).
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discrete Painlevé equations, Nonlinearity 27 (2014) 2321-2335,
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[35] A. R. Its, A. B. J. Kuijlaars, and J. Östensson, Asymptotics for a special solution of the thirty
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