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CONVEX SOBOLEV INEQUALITIES
RELATED TO UNBALANCED OPTIMAL TRANSPORT
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Abstract: We study the behaviour of various Lyapunov functionals (relative en-
tropies) along the solutions of a family of nonlinear drift-diffusion-reaction equa-
tions coming from statistical mechanics and population dynamics. These equa-
tions can be viewed as gradient flows over the space of Radon measures equipped
with the Hellinger-Kantorovich distance. The driving functionals of the gradient
flows are not assumed to be geodesically convex or semi-convex. We prove new
isoperimetric-type functional inequalities, allowing us to control the relative en-
tropies by their productions, which yields the exponential decay of the relative
entropies.
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.Introduction
The unbalanced optimal transport [, , , , , ] interpolates

between the classical Monge-Kantorovich transport [, ] and the opti-
mal information transport []. It equips the space of finite Radon mea-
sures with a formal Riemannian structure so that certain classes of reaction-
diffusion equations and systems can be interpreted as gradient flows. This
paper continues our investigation [, , , , ] of such gradient
flows and associated functional inequalities, see also [, , ] for re-
lated studies.

The class of PDEs that we consider in this paper is

∂tρ = −div(ρ∇f ) + f ρ, (x, t) ∈Ω× (0,∞), (.)

ρ
∂f

∂ν
= 0, (x, t) ∈ ∂Ω× (0,∞), (.)

ρ = ρ0 ≥ 0, (x, t) ∈Ω× 0. (.)

Here f = f (x,ρ(x, t)) is a nonlinear function of x and ρ which is required to
have a certain structure specified below in (.), and Ω ⊂ R

d is an open
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connected bounded domain admitting the relative isoperimetric inequal-
ity, cf. [],

P (A;Ω) ≥ CΩmin(|A|
d−1
d , |Ω \A|

d−1
d ). (.)

All our results remain valid if Ω is a periodic box T
d; in this case (.) is

omitted.
The drift-diffusion-reaction equation (.) appears in statistical mechan-

ics []. It also describes nonlinear fitness-driven models of population
dynamics, cf. [, , , , ], where it is assumed that the disper-
sal strategy is determined by a local intrinsic characteristic of organisms
called fitness. We refer to Section  and to [] for more detailed discus-
sions.

Let g : (0,∞) → R and ψ : [0,∞) → R be fixed C1-smooth functions,
which satisfy the following assumptions:

g(1) = 0; g ′(s) > 0 (s > 0), (.)
ψ(1) = 0, ψ(s) > 0 (s , 1), (.)

ψ ∈ C2(0,+∞), ψ′′(s) > 0 (s > 0, s , 1), (.)
lim
s→∞

ψ′(x) =∞, (.)

|g(s)|+ s|g ′(s)| ≤ h(s) a. a. s > 0; h ∈ L1
loc[0,∞), (.)

sg(s) ∈ C([0,+∞)). (.)

Let ρ∞ : Ω→R be a fixed smooth strictly positive function satisfying∫
Ω

ρ∞dx = 1. (.)

Define

f = f (x,ρ(x)) := −g
(
ρ(x)
ρ∞(x)

)
. (.)

Thus, the functions g and ρ∞ determine the problem (.)–(.), and the
function ψ is merely needed to define a Lyapunov functional for this prob-
lem,

0 ≤ Eψ(ρ) :=
∫
Ω

ψ

(
ρ

ρ∞

)
ρ∞dx, (.)
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which will be referred to as the relative entropy. Obviously, Eψ(ρ) = 0 if
and only if ρ ≡ ρ∞. Formally calculating ∂tEψ(ρt) along a solution of (.)–
(.) we obtain

∂tEψ(ρt) = −DEψ(ρt),

where the entropy production DEψ is defined by

DEψ(ρ) :=
∫
Ω

g ′
(
ρ

ρ∞

)
ψ′′

(
ρ

ρ∞

) ∣∣∣∣∣∣∇
(
ρ

ρ∞

)∣∣∣∣∣∣
2

ρdx+
∫
Ω

g

(
ρ

ρ∞

)
ψ′

(
ρ

ρ∞

)
ρdx

Setting

r =
ρ

ρ∞
,

we can write

Eψ(ρ) =
∫
Ω

ψ(r)dρ∞ (.)

DEψ(ρ) =
∫
Ω

rg(r)ψ′(r)dρ∞ +
∫
Ω

rg ′(r)ψ′′(r)|∇r |2dρ∞ (.)

Note that problem (.)–(.) can be viewed as a formal gradient flow
(with respect to the unbalanced Hellinger-Kantorovich Riemannian struc-
ture) of the driving functional DEψg (ρ), where

ψg(s) :=
∫ s

1
g(ξ)dξ, (.)

see Section  for the details. We are interested in the exponential decay of
the Lyapunov functional (.) along the trajectories of this gradient flow.
This is related to the entropy-entropy production inequalities of the form

Eψ(ρ) .DEψ(ρ). (.)

They can be viewed as unbalanced generalizations of the convex Sobolev
inequalities [, , ], see Section .

The main results of the paper are convex Sobolev inequalities akin to
(.), see Theorems . and ., and existence and asymptotics of weak
solutions to (.)–(.), see Theorem ..
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.Background and discussion
Assume for a while that Ω is a torus or is convex, although this is not

required for our main results. The gradient of a scalar functional E on
the space of finite Radon measures over Ω with respect to the Hellinger-
Kantorovich Riemannian structure (also known as the Wasserstein-Fisher-
Rao one) was calculated in [, ]:

gradHK E(ρ) = −div
(
ρ∇δE
δρ

)
+u

δE
δρ
.

The first term on the right-hand side is the Otto-Wasserstein gradient
gradW E(ρ), cf. [, ], and the second one is the Hellinger-Fisher-Rao

gradient gradH E(ρ), cf. []. It is easy to compute that
DEψg (ρ)

δρ = −f (x,ρ),
hence (.)–(.) may be interpreted as a gradient flow:

∂tρ = −gradHKDEψg (ρ), ρ(0) = ρ0. (.)

The production of the relative entropy Eψ(ρ) along the Otto-Wasserstein
gradient flow

∂tρ = −gradW DEψg (ρ) (.)
is

DEWψ (ρ) :=
∫
Ω

rg ′(r)ψ′′(r)|∇r |2dρ∞.

Similarly, the production of the same entropy along the Hellinger gradient
flow

∂tρ = −gradHDEψg (ρ) (.)
is

DEHψ (ρ) :=
∫
Ω

rg(r)ψ′(r)dρ∞.

In the case of non-convex Ω we can abuse the terminology and still refer
to (.)–(.) as to a gradient flow.

It is clear that
DEWψ (ρ) +DEHψ (ρ) =DEψ(ρ).

Generally speaking, neither the Otto-Wasserstein nor the Fisher-Rao en-
tropy production are able to control the relative entropy, so (.) is a
result of an interplay between the reaction, diffusion and drift. A simple
counterexample to

Eψ(ρ) .DEHψ (ρ) (.)
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is ρ∞1A with A being a proper subset of Ω. Indeed, DEHψ (ρ∞1A) = 0 due to
(.), (.) and (.). It is easy to construct a smooth example by mollify-
ing this one. A trivial counterexample to

Eψ(ρ) .DEWψ (ρ) (.)

is kρ∞ where k , 1 is a non-negative constant.

Remark .. Note that the two counterexamples intersect at ρ ≡ 0, which
violates our target inequality (.). However, we will observe, cf. The-
orems . and ., that it suffices keep the total mass

∫
Ω
ρ bounded away

from 0 to secure (.).

In view of (.), in order to obtain more interesting and instructive
examples we should restrict ourselves to probability densities ρ. The se-
quence

ρn = ρ∞
n

n− 1
1( 1

n ,1)

of probability densities on Ω = (0,1) is a counterexample to (.). Indeed,
the left-hand side of (.) is of order n−1 and the right-hand side is . n−2.

Inequality (.) for
∫
Ω
ρ = 1 deserves a more detailed discussion.

Let us start with considering g(s) = logs. In this case, as first observed in
the seminal paper [], the gradient flow (.) is the linear Fokker-Planck
equation, and the celebrated Bakry-Émery approach allows one to prove
(.) for Ω = R

d [, , ]. However, it is crucial to have concavity of 1
ψ′′(s) ,

which we never assume in this work. These instances of (.) are referred
to as convex Sobolev inequalities, which inspired the title of our paper. The
particular case

ψ(s) =

 1
p(p−1) (sp − ps+ p − 1) , if 1 < p ≤ 2

s logs − s+ 1, if p = 1
(.)

implies the log-Sobolev inequality for p = 1, the Poincaré inequality for
p = 2 and Beckner’s inequalities [] for 1 < p < 2. Namely, (.) may be
rewritten as∫

Ω

rp dρ∞ −
(∫

Ω

r dρ∞

)p
.

∫
Ω

rp−2|∇r |2dρ∞, 1 < p ≤ 2. (.)
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In contrast, our assumptions on ψ admit any p > 2 in (.), which yields
the following “Beckner-Hellinger inequality”:

∫
Ω

rp dρ∞ −
(∫

Ω

r dρ∞

)p
.

∫
Ω

rp−2|∇r |2dρ∞

+
∫
Ω

r log

 r∫
Ω
r dρ∞

rp−1 −
(∫

Ω

r dρ∞

)p−1dρ∞, p > 2. (.)

Consider now the case g(s) = sα−1−1
α−1 , α > 0, α , 1. Assume for simplicity

that |Ω| = 1 and ρ∞ ≡ 1. Then (.) is the porous medium equation, cf.
[]. The alleged inequality (.) for the relative entropy (.), p ∈ (1,∞),
reads ∫

Ω

rp −
(∫

Ω

r

)p
.

(∫
Ω

r

)1−α∫
Ω

rp+α−3|∇r |2. (.)

Setting q := 2p
p+α−1 , l := p+α−1

2 , u := r l, we rewrite (.) in the form

∫
Ω

uq −
(∫

Ω

u1/l

)lq
.

(∫
Ω

u1/l

)l(q−2)∫
Ω

|∇u|2. (.)

The inequality ∫
Ω

uq −
(∫

Ω

u1/l

)lq
.

(∫
Ω

|∇u|2
)q/2

. (.)

similar to (.) appears in [], see also [, ]. It holds for 0 < q < 2,
lq > 1, that is, for α > 1, p > 1. Assume for a moment that the the relative
entropy, i.e., the left-hand side of (.), is a priori bounded. Since ql ≥
1, the mass

∫
Ω
u1/l is a priori bounded. Consequently, (.) is weaker

than (.) since the exponent q/2 is less than 1, and it is plausible that
(.) cannot be true. Inequality (.) for q = 2 is equivalent to Beckner’s
inequality (.). As explained in [], inequality (.) is wrong for q > 2.
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In this connection, our results yield the following variant of (.):∫
Ω

uq −
(∫

Ω

u1/l

)lq
.

(∫
Ω

u1/l

)l(q−2)∫
Ω

|∇u|2

+
(∫

Ω

u1/l

)l(q−2)∫
Ω

u1/l

u
(α−1)/l −

(∫
Ω
u1/l

)α−1

α − 1


u(p−1)/l −

(∫
Ω

u1/l

)p−1
(.)

for any q > 0, q , 2, 1 < lq < 1 + 2l, that is, any α > 0, α , 1, p > 1.
The counterparts of the alleged inequalities (.) and (.) for p = 1 are∫

Ω

r log

 r∫
Ω
r

 . (∫
Ω

r

)1−α∫
Ω

rα−2|∇r |2, (.)

∫
Ω

uq log

 uq∫
Ω
uq

 . (∫
Ω

uq
) q−2

q
∫
Ω

|∇u|2. (.)

Here q = 2
α . This resembles the inequality∫

Ω

uq log

 uq∫
Ω
uq

 . (∫
Ω

|∇u|2
)q/2

, q < 2, (.)

which was established in [, ]. Since q/2 < 1, (.) is weaker than
(.), so it seems that (.) cannot be true. Our results imply the follow-
ing variant of (.):∫

Ω

uq log

 uq∫
Ω
uq

 . (∫
Ω

uq
) q−2

q
∫
Ω

|∇u|2

+
(∫

Ω

uq
) q−2

q
∫
Ω

uq log

 uq∫
Ω
uq


u

2−q −
(∫

Ω
uq

)2
q−1

2− q

 , q > 0, q , 2. (.)

Remark .. Inequalities (.), (.), (.) are obtained assuming
∫
Ω
r dρ∞ =

1 (so that (.) is automatically satisfied), but hold without this normal-
ization due to their homogeneity.
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Many authors studied (.) or related inequalities in the particular case
ψ = ψg , that is, when the driving entropy is compared to its production,
cf., e.g., [, , , , ]. In this connection, the strict geodesic convex-
ity of the driving entropy normally plays the pivotal role. In [] (see
also []) we studied (.) for ψ = ψg without assuming neither Otto-
Wasserstein nor Hellinger-Kantorovich geodesic convexity (we also never
assume any similar condition in the present paper). The inequalities ob-
tained there can be further refined [] be means of studying gradient
flows in the spherical Hellinger-Kantorovich space [, ], which is be-
yond the scope of the present paper (though it may seem strange, even
non-negativity of the entropy production is uncertain for the spherical
Hellinger-Kantorovich flows in the case ψ , ψg). The proofs in the present
paper are more direct and simple than in [] due to the “quasihomoge-
neous structure” (.).

Our last example concerns g(s) = 1
2 log 2s2

1+s2 , which corresponds to the arc-
tangential heat equation []. The relative entropy Eψg generated by this g is
geodesically convex neither in the Otto-Wasserstein nor in the Hellinger-
Kantorovich sense, cf. []. Take ψ(s) = s logs − s + 1. Then we infer the
following inequality resembling the log-Sobolev one:∫

Ω

(r logr − r + 1)dρ∞

.

∫
Ω

1
r(1 + r2)

|∇r |2dρ∞ +
∫
Ω

r logr
(
log

2r2

1 + r2

)
dρ∞ (.)

provided
∫
Ω
r dρ∞ is bounded away from 0.

Nonlinear Fokker-Planck equations akin to (.) model behaviour of var-
ious stochastic systems, see [, , , ]. The related drift-diffusion-
reaction equation (.) was suggested in []. On the other hand, equation
(.) belongs to the class of nonlinear models (cf. [, , , , , ,
]) for the spatial dynamics of populations which are tending to achieve
the ideal free distribution [, ] (the distribution which happens if every-
body is free to choose its location) in a heterogeneous environment. The
dispersal strategy is determined by a local intrinsic characteristic of or-
ganisms called fitness. The fitness manifests itself as a growth rate, and
simultaneously affects the dispersal as the species move along its gradient
towards the most favorable environment. In (.), ρ(x, t) is the density of
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organisms, and f (x,ρ) is the fitness. The equilibrium ρ ≡ ρ∞ when the
fitness is constantly zero corresponds to the ideal free distribution. The
works [, , , , , , , ] perform mathematical analysis of some
of such fitness-driven models. Our Theorem . indicates that the popu-
lations converge to the ideal free distribution with an exponential rate.

.Main results
We start by introducing the weak solutions to (.)–(.), following the

lines of [, ].
Define

G(s) =
∫ s

0
ξg ′(ξ)dξ (s ≥ 0),

where the integral exists by (.). Observe that

G′(s) = sg ′(s) > 0, (s > 0); G(0) = 0,

so that G is a nonnegative continuous increasing function on [0,∞).
Set

Φ(x,u) = ρ∞(x)G
(

u
ρ∞(x)

)
, u ≥ 0.

As in [], we can write (.) in the form

∂tρ = ∆Φ −div(Φx + ρfx) + ρf , (.)

where Φ stands for Φ(x,ρ(x, t)).

Definition .. Let ρ0 ∈ L∞(Ω); QT := Ω × (0,T ). A function ρ ∈ L∞(QT )
is called a weak solution of (.)–(.) on [0,T ] if for r = ρ/ρ∞ we have
G(r(·)) ∈ L2(0,T ;H1(Ω)) and∫ T

0

∫
Ω

(ρ∂tϕ + (−∇Φ +Φx + ρfx) · ∇ϕ + f ρϕ)dxdt

=
∫
Ω

ρ0(x)ϕ(x,0)dx (.)

for any function ϕ ∈ C1(Ω × [0,T ]) such that ϕ(x,T ) = 0. A function ρ ∈
L∞loc([0,∞);L∞(Ω)) is called a weak solution of (.)–(.) on [0,∞) if for
any T > 0 it is a weak solution on [0,T ].
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Remark .. For ρ ∈ L∞(QT ) we automatically have G(r) ∈ L∞(QT ), so the
condition G(r(·)) ∈ L2(0,T ;H1(Ω)) is equivalent to rg ′(r)∇r ∈ L2(QT ). Here
r = ρ/ρ∞.

Formally, the integrand rg ′(r)ψ′′(r)|∇r |2 vanishes if r = 0. Otherwise it
can be written as

rg ′(r)ψ′′(r)|∇r |2 =
1
r

ψ′′(r)
g ′(r)

|rg ′(r)∇r |2 =
1
r

ψ′′(r)
g ′(r)

|∇G(r)|2.

This motivates the following extension of the entropy production suitable
for weak solutions.

Definition .. If ρ ∈ L∞(Ω) and G(r) ∈H1(Ω), then the entropy production
is defined by

DEψ(ρ) =
∫
Ω

rg(r)ψ′(r)dρ∞ +
∫

[r>0]
rg ′(r)ψ′′(r)|∇r |2dρ∞

≡
∫
Ω

rg(r)ψ′(r)dρ∞ +
∫

[r>0]

1
r

ψ′′(r)
g ′(r)

|∇G(r)|2dρ∞. (.)

Remark .. Observe that although the integrand with the gradient in (.)
is a nonnegative measurable function on Ω, the integral, and hence the
entropy production, may be infinite.

The following entropy-entropy production inequality applicable to weak
solutions is based on an isoperimetric-type inequality established in Sec-
tion .

Theorem . (Entropy-entropy production inequality). Suppose that g andψ
satisfy (.)–(.). Let U ⊂ L∞+ (Ω) be a set of functions such that for any
ρ ∈U and r = ρ/ρ∞, we have G(r) ∈H1(Ω) and

inf
ρ∈U
‖ρ‖L1(Ω) > 0, (.)

sup{Eψ(ρ) : ρ ∈U } <∞. (.)

Then there exists CU such that

Eψ(ρ) ≤ CUDEψ(ρ) (ρ ∈U ). (.)

Proof : The idea is to use the isoperimetric-type inequality provided by
Theorem . (see Section ). Since we are dealing with a less regular set-
ting at the moment, we argue by approximation.
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Take ρ ∈ U and as usual, put r = ρ/ρ∞. Arguing as in [, proof of
Theorem .], we see that there exists a sequence of functions Gn ∈ C(Ω)∩
C∞(Ω) taking values in (0, a), where a < G(∞), such that

Gn→ G(r(·)) in H1 and a. e. in Ω.

Set rn(x) = G−1(Gn(x)) and ρn(x) = rn(x)ρ∞(x), so that Gn(x) = G(rn(x)).
Clearly, rn and ρn are positive and reasonably smooth, the sequences {rn}
and {ρn} are bounded in L∞(QT ) (specifically, the former is bounded by
G−1(a)), and by the continuity of G−1 we have

rn→ r, ρn→ ρ a. e. in Ω.

In particular, this implies that ρn converges to ρ in L1(Ω). Further, by the
Lebesgue Dominated Convergence we have

Eψ(ρn)→Eψ(ρ). (.)

Thus, if we denote the infimum in (.) by dU and the supremum in (.)
by EU , there is no loss of generality in assuming that ‖ρn‖L1(Ω) ≥ dU /2 and
Eψ(ρn) ≤ 2EU . It follows from Theorem . that there exist C and σ both
depending on dU and EU (but not on the approximation nor on ρ itself)
such that

Eψ(ρn)

≤ C
(∫

Ω

rng(rn)ψ
′(rn)dρ∞ +

∫
[r≥σ ]

rng
′(rn)ψ

′′(rn)|∇rn|2dρ∞
)
. (.)

By the Lebesgue Dominated Convergence we have∫
Ω

rng(rn)ψ
′(rn)dρ∞→

∫
Ω

rg(r)ψ′(r)dρ∞. (.)

Further, we have∫
[rn≥σ ]

rng
′(rn)ψ

′′(rn)|∇rn|2dρ∞ =
∫
Ω

1[rn≥σ ]
ψ′′(rn)
rng ′(rn)

|∇Gn|2dρ∞.

On one hand, ∇Gn→∇G in L2(Ω). On the other hand, the functions

hn = 1[rn≥σ ]
ψ′′(rn)
rng ′(rn)
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are uniformly bounded in L∞(Ω), and since we obviously have

limsup
n→∞

1[rn≥σ ] ≤ 1[r≥σ ] a. e. in Ω,

we also have

limsup
n→∞

hn(x) ≤ 1[r≥σ ]
ψ′′(r)
rg ′(r)

a. e. in Ω.

Using Reverse Fatou’s Lemma for products (Lemma A. in the Appendix),
we obtain

limsup
n→∞

∫
[rn≥σ ]

rng
′(rn)ψ

′′(rn)|∇rn|2dρ∞ = limsup
n→∞

∫
Ω

hn|∇Gn|2dρ∞

≤
∫
Ω

1[r≥σ ]
ψ′′(r)
rg ′(r)

|∇G|2dρ∞

≤
∫

[r>0]
rg ′(r)ψ′′(r)|∇r |2dρ∞.

Combining this with (.) and (.), we see that we can pass to the limit
in (.) and obtain (.) with CU = C.

Theorem . (Existence and asymptotics of weak solutions). Assume (.)–
(.). Then for any ρ0 ∈ L∞+ (Ω) there exists a nonnegative weak solution
ρ ∈ L∞(Ω×(0,∞)) of problem (.)–(.) which enjoys the following properties:

() ρ satisfies the entropy dissipation inequality in the sense of measures:
for any smooth nonnegative compactly supported function χ : (0,T )→
R we have

−
∫ T

0
χ′(t)Eψ(ρ)dt ≤

∫ T

0
χ(t)DEψ(ρ)dt; (.)

() the initial entropy satisfies

ess sup
t>0

Eψ(ρ(t)) ≤ Eψ(ρ0); (.)

() ρ satisfies the lower L1-bound

‖ρ(t)‖L1(Ω) ≥ ‖min(ρ0,ρ∞)‖L1(Ω) a. a. t > 0; (.)

() ρ exponentially converges to ρ∞ in the sense of entropy:

Eψ(ρ(t)) ≤ Eψ(ρ0)e−γψt a. a. t > 0, (.)



UNBALANCED SOBOLEV INEQUALITIES 

where γψ > 0 can be chosen uniformly over initial data satisfying

‖min(ρ0,ρ∞)‖L1(Ω) ≥ c, Eψ(ρ0) ≤ C (.)

with some c,C > 0;
() for any p ∈ [2,+∞),

‖ρ(t)− ρ∞‖Lp(Ω)

≤ e−γpt
(
1 +

sup ρ∞
inf ρ∞

)
‖ρ0 − ρ∞‖Lp(Ω) a. a. t > 0, (.)

where γp > 0 can be chosen uniformly over initial data satisfying

‖min(ρ0,ρ∞)‖L1(Ω) ≥ c, ‖ρ0‖pLp(Ω) ≤ C. (.)

Proof : For the proof of existence, the approximating procedure used in []
is still applicable in the current setting. As a matter of fact, the existence
result in [] requires that |f (x,ξ)| is either large or does not depend on x
when ξ is near 0 or near +∞. A similar requirement was imposed for
large ξ. However, these assumptions are only needed in order to ensure
that any u ∈ L∞+ (Ω) can be bounded from above by a function uc : Ω→ R

satisfying f (x,uc(x)) ≡ cst and that u can be bounded from below by an-
other such function provided that u is uniformly bounded away from 0.
This is still the case in the current setting. Indeed, assume for simplicity
that u is continuous on Ω. Set c = maxΩ g(u/ρ∞) and put uc = ρ∞g

−1(c),
then clearly f (x,uc(x)) = −g(uc(x)/ρ∞) = −c; moreover, it follows from the
monotonicity of g that u ≤ uc, as required. The existence of a lower bound
is proved in a similar way, cf. [, Remark .].

Inequality (.) is proved in the same way as the analogous inequality
in [].

We prove that the solution constructed as in [] satisfies (.). To
this end it suffices to check that this inequality is preserved under the
passage to the limit. Specifically, assume that smooth enough approximate
solutions {ρn} are uniformly bounded in L∞(QT ) and converge to ρ a. e.
in QT , while

Gn := G(rn)→ G(r) weakly in L2(Ω).
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By the Lebesgue Dominated Convergence we have

Eψ(ρn)→Eψ(ρ), (.)∫
Ω

rng(rn)ψ
′(rn)dρ∞→

∫
Ω

rg(r)ψ′(r)dρ∞. (.)

Arguing as in [, proof of Theorem .] and, in particular, taking into
account that ∇G = 0 a. e. on the set {(x, t) ∈QT : r = 0} and ∇Gn = 0 a. e. on
the set {(x, t) ∈QT : rn = 0}, we conclude that for any δ > 0 we have"
{(x,t)∈QT : r>0}

χ(t)ψ′′(r)
max(r,δ)g ′(r)

|∇G|2dρ∞dt

≤ liminf
n→∞

"
{(x,t)∈QT : rn>0}

χ(t)ψ′′(rn)
max(rn,δ)g ′(rn)

|∇Gn|2dρ∞dt

≤ liminf
n→∞

"
{(x,t)∈QT : rn>0}

χ(t)ψ′′(rn)
rng ′(rn)

|∇Gn|2dρ∞dt,

so sending δ→∞ and applying Beppo Levy’s theorem, we obtain"
{(x,t)∈QT : r>0}

χ(t)ψ′′(r)
rg ′(r)

|∇G|2dρ∞dt

≤ liminf
n→∞

"
{(x,t)∈QT : rn>0}

χ(t)ψ′′(rn)
rng ′(rn)

|∇Gn|2dρ∞dt

or, equivalently,"
{(x,t)∈QT : r>0}

χ(t)rg ′(r)ψ′′(r)|∇r |2dρ∞dt

≤ liminf
n→∞

"
{(x,t)∈QT : rn>0}

χ(t)rng
′
n(r)ψ

′′(rn)|∇rn|2dρ∞dt.

Combining this with (.) and (.), we obtain (.).
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We now prove the exponential convergence of the solution to the steady
state. Let ρ be a weak solution of (.)–(.) with the initial data satisfy-
ing (.). Let U ⊂ L∞+ be the set of functions such that for any u ∈ U , we
have G(u/ρ∞) ∈ H1(Ω) and ‖u‖L1(Ω) ≥ c, Eψ(u) ≤ C with the same c and C
as in (.). By Theorem . we have the entropy-entropy production in-
equality (.) for U . It follows from the bounds (.) and (.) that
ρ(t) ∈ U for a. a. t > 0. Combining the entropy dissipation and entropy-
entropy production inequalities, we get

∂tEψ(ρ(t)) ≤ −C−1
U Eψ(ρ(t))

in the sense of measures. Set γψ = C−1
U and φ(t) = Eψ(ρ(t))eγψt. It is easy to

check that that ∂tφ(t) ≤ 0 in the sense of measures, whence φ a. e. coin-
cides with a nonincreasing function. Moreover,

ess sup
t>0

φ(t) = ess lim sup
t→0

φ(t) = ess lim sup
t→0

Eψ(ρ(t))eγψt ≤ Eψ(ρ0)

by virtue of (.), so φ(t) ≤ Eψ(ρ0) for a. a. t > 0, which implies (.).
We will now use (.) with ψ(s) = |s − 1|p, which is a C2-function for

p ≥ 2, and satisfies the assumptions (.)–(.). We immediately get

‖ρ(t)− ρ∞‖Lp(Ω) ≤ (sup ρ∞)(p−1)/p[Eψ(ρ(t))]1/p

≤ (sup ρ∞)(p−1)/p[Eψ(ρ0)]1/pe−γψt/p

≤
(
sup ρ∞
inf ρ∞

)(p−1)/p

‖ρ0 − ρ∞‖Lp(Ω)e
−γpt

≤
(
1 +

sup ρ∞
inf ρ∞

)
‖ρ0 − ρ∞‖Lp(Ω)e

−γpt, (.)

where γp = γψ/p. Uniform boundedness of ‖ρ0‖pLp implies a bound on
Eψ(ρ0).

.Inequality
In this section we prove a refined version of our unbalanced convex

Sobolev inequality in the smooth case.
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Theorem .. Assume (.)–(.). Let U ∈ C∞+ (Ω) be such that

inf
{
‖ρ‖L1(Ω) : ρ ∈U

}
> 0,

sup{Eψ(ρ) : ρ ∈U } <∞.

Then there exist constants (independent of ρ) C > 0, 0 < α < β <∞, such that

Eψ(ρ) ≤ C
(∫

Ω

rg(r)ψ′(r)dρ∞

+
∫

[α<r<β]
rg ′(r)ψ′′(r)|∇r |2dρ∞

)
(ρ ∈U ). (.)

The proof of Theorem . is based on the next two lemmas.

Lemma .. Fix 0 < α < β < 1. Then

∣∣∣[α < r < β]
∣∣∣∫

[α<r<β]
rg ′(r)ψ′′(r)|∇r |2dρ∞

≥ Cαβmin
(∣∣∣[r ≤ α]

∣∣∣2(d−1)/d
,
∣∣∣[r ≥ β]

∣∣∣2(d−1)/d
)

(.)

Proof : If the minimum on the right-hand side vanishes, there is nothing
to prove. Otherwise the set [α < r < β] has nonzero measure. In what
follows, we use some facts from geometric measure theory, which can be
found in []. The relative perimeter of a Lebesgue measurable set A of
locally finite perimeter with respect to Ω is P (A;Ω) = |µA|(Ω), where µA :=
∇1A is the Gauss-Green measure associated with A. The support of µA is
contained in the topological boundary of A.

We have:∫
[α<r<β]

rg ′(r)ψ′′(r)|∇r |2dρ∞

≥ inf
Ω
ρ∞ min

s∈[α,β]
(sg ′(s)ψ′′(s))

∫
[α<r<β]

|∇r |2dx

≥
infΩρ∞mins∈[α,β](sg ′(s)ψ′′(s))∣∣∣[α < r < β]

∣∣∣
(∫

[α<r<β]
|∇r |dx

)2

(.)
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The last integral is the variation of r over [α < r < β], which can be
computed using the coarea formula:∫

[α<r<β]
|∇r |dx =

∫ ∞

−∞
P ([r < t]; [α < r < β])dt

=
∫ β

α
P ([r < t]; [α < r < β])dt

=
∫ β

α
P ([r < t];Ω)dt, (.)

where we first use the observation that the support of the Gauss–Green
measure associated with [r < t] is disjoint with [α < r < β] whenever t ≤ α
or t ≥ β, and then we notice that if α < t < β, then the part of the support of
the Gauss–Green measure of [r < t] lying in Ω is contained in [α < r < β].

Invoking the relative isoperimetric inequality (.), we estimate

P ([r < t];Ω) ≥ CΩmin
(∣∣∣[r < t]∣∣∣(d−1)/d

,
∣∣∣Ω \ [r < t]

∣∣∣(d−1)/d
)

and since for t ∈ (α,β) we have

[r ≤ α] ⊂ [r < t] ⊂ [r < β] = Ω \ [r ≥ β]

we see that

P ([r < t];Ω) ≥ CΩmin
(∣∣∣[r ≤ α]

∣∣∣(d−1)/d
,
∣∣∣[r ≥ β]

∣∣∣(d−1)/d
)

Combining this estimate with (.) and (.), we obtain (.).

Lemma .. Given ε > 0, there exists Cε > 0 such that

ψ(s) ≤ Cεsg(s)ψ′(s) (s ≥ ε). (.)

Proof : Applying L’Hôpital’s rule for liminf, and remembering that g is an
increasing function, we obtain

liminf
s→∞

sg(s)ψ′(s)
ψ(s)

≥ liminf
s→∞

(
g(s) + sg ′(s) +

sg(s)ψ′′(s)
ψ′(s)

)
≥ lim
s→∞

g(s) > 0, (.)
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liminf
s→1

sg(s)ψ′(s)
ψ(s)

= liminf
s→1

g(s)ψ′(s)
ψ(s)

≥ liminf
s→1

(
g ′(s) +

g(s)ψ′′(s)
ψ′(s)

)
≥ g ′(1) > 0. (.)

In (.) and (.) we have used the fact that for s , 1, the signs of g(s)
and ψ′(s) coincide, while ψ′′(s) > 0. Obviously, (.) and (.) imply (.).

Proof of Theorem .: We claim that there exists β > 0 such that

δ := inf
ρ∈U

∣∣∣[r ≥ β]
∣∣∣ > 0 (.)

Indeed, it follows from (.) (L’Hôpital’s rule) that

lim
s→∞

ψ(s)
s

=∞.

As the entropy Eψ is bounded on U , by de la Vallée Poussin’s theorem the
set U is uniformly integrable. Put

m =
1

2|Ω|
inf
ρ∈U
‖ρ‖L1(Ω);

for any ρ ∈U we have

2|Ω|m ≤ ‖ρ‖L1(Ω) =
∫

[ρ<m]
ρdx+

∫
[ρ≥m]

ρdx ≤ |Ω|m+ωU
(∣∣∣[ρ ≥m]

∣∣∣) ,
where ωU is the modulus of integrability of U . Hence

ωU
(∣∣∣[ρ ≥m]

∣∣∣) ≥ |Ω|m,
which clearly implies a lower bound on

∣∣∣[ρ ≥m]
∣∣∣ and a fortiori on

∣∣∣[r ≥ β]
∣∣∣

with β = m
supρ∞

.
Clearly, there is no loss in generality in assuming β < 1 in (.).
In what follows we fix α and β such that 0 < α < β < 1 and β satis-

fies (.). Denote

σ :=
∣∣∣[r ≤ α]

∣∣∣,
τ :=

∣∣∣[α < r < β]
∣∣∣
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and also

DαβEψ(ρ) :=
∫
Ω

rg(r)ψ′(r)dρ∞ +
∫

[α<r<β]
rg ′(r)ψ′′(r)|∇r |2dρ∞.

Assume for now that σ > 0. Using Lemma ., we have

DαβEψ(ρ) ≥
∫

[α<r<β]
rg(r)ψ′(r)dρ∞ +

∫
[α<r<β]

rg ′(r)ψ′′(r)|∇r |dρ∞

≥
(

min
s∈[α,β]

sg(s)ψ′(s)
)
τ +Cαβ

1
τ

min
(
σ 2(d−1)/d ,

∣∣∣[r ≥ β]
∣∣∣2(d−1)/d

)
.

Taking into account (.), we can write

DαβEψ(ρ) ≥ c
2

(
τ +

min(σ 2(d−1)/d ,δ2(d−1)/d)
τ

)
with c independent of ρ. Estimating

τ +
min(σ 2(d−1)/d ,δ2(d−1)/d)

τ
≥ 2min(σ (d−1)/d ,δ(d−1)/d),

we obtain
DαβEψ(ρ) ≥ cmin(σ (d−1)/d ,δ(d−1)/d). (.)

If σ = 0, this estimate trivially holds with any c. Since σ is a priori bounded
from above by |Ω|, (.) implies that

σ ≤ Cmin
(
σ

|Ω|1/d
,
δ(d−1)/dσ
|Ω|

)
≤ Cmin(σ (d−1)/d ,δ(d−1)/d) ≤ CDαβEψ(ρ). (.)

Evoking Lemma ., we obtain

Eψ(ρ) =
∫

[r>α]
ψ(r)dρ∞ +

∫
[r≤α]

ψ(r)dρ∞

≤ Cα
∫

[r>α]
rψ′(r)g(r)dρ∞ +ψ(0)

∫
[r≤α]

dρ∞

≤ CαDαβEψ(ρ) +C0

∣∣∣[r ≤ α]
∣∣∣

≤ CDαβEψ(ρ) +Cσ.

Using (.) to estimate σ by DαβEψ, we obtain (.)
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Appendix A. Reverse Fatou’s Lemma for products
Lemma A.. Let (S,Σ,µ) be a measure space. Suppose that {fn} is bounded
in L∞(S,µ) and {gn} converges to a nonnegative limit g in L1(S,µ). Then

limsup
n→∞

∫
S
fngndµ ≤

∫
S

(
limsup
n→∞

fn

)
g dµ. (A.)

Proof : As we have |fng | ≤ (supn ‖fn‖)g, we can use Reverse Fatou’s Lemma
obtaining

limsup
n→∞

∫
S
fng dµ ≤

∫
S

(
limsup
n→∞

fng

)
dµ

=
∫
S

(
limsup
n→∞

fn

)
g dµ. (A.)

Further, it is clear that

lim
n→∞

∫
S
fn(gn − g)dµ = 0. (A.)

Using (A.) and (A.) we obtain

limsup
n→∞

∫
S
fngn = limsup

n→∞

(∫
S
fng dµ+

∫
S
fn(gn − g)dµ

)
= limsup

n→∞

∫
S
fng dµ+ lim

n→∞

∫
S
fn(gn − g)dµ

≤
∫
S

(
limsup
n→∞

fn

)
g dµ,

as claimed.
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