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AsstrACT: We study the behaviour of various Lyapunov functionals (relative en-
tropies) along the solutions of a family of nonlinear drift-diffusion-reaction equa-
tions coming from statistical mechanics and population dynamics. These equa-
tions can be viewed as gradient flows over the space of Radon measures equipped
with the Hellinger-Kantorovich distance. The driving functionals of the gradient
flows are not assumed to be geodesically convex or semi-convex. We prove new
isoperimetric-type functional inequalities, allowing us to control the relative en-
tropies by their productions, which yields the exponential decay of the relative
entropies.
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1.Introduction

The unbalanced optimal transport [36, 30, 13, 35, 14, 43] interpolates
between the classical Monge-Kantorovich transport [45, 46] and the opti-
mal information transport [41]. It equips the space of finite Radon mea-
sures with a formal Riemannian structure so that certain classes of reaction-
diffusion equations and systems can be interpreted as gradient flows. This
paper continues our investigation [30, 29, 31, 33, 32] of such gradient
flows and associated functional inequalities, see also [12, 24, 23] for re-
lated studies.

The class of PDEs that we consider in this paper is

d;p =—div(pVf)+ fp, (x,t) € QA x(0,00), (1.1)
p% =0, (x,t) € dQ x (0, 00), (1.2)
p=p">0, (x,t) € QA x0. (1.3)

Here f = f(x,p(x,t)) is a nonlinear function of x and p which is required to
have a certain structure specified below in (1.12), and Q C IR? is an open
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2 S. KONDRATYEV AND D. VOROTNIKOV

connected bounded domain admitting the relative isoperimetric inequal-
ity, cf. [40],

P(A;Q) > Comin(JA|'T,|Q\ A]'T). (1.4)

All our results remain valid if Q is a periodic box T%; in this case (1.2) is
omitted.

The drift-diffusion-reaction equation (1.1) appears in statistical mechan-
ics [19]. It also describes nonlinear fitness-driven models of population
dynamics, cf. [38, 15, 16, 25, 33], where it is assumed that the disper-
sal strategy is determined by a local intrinsic characteristic of organisms
called fitness. We refer to Section 2 and to [33] for more detailed discus-
sions.

Let g¢: (0,00) > R and ¥: [0,00) — R be fixed C!'-smooth functions,
which satisfy the following assumptions:

g()=0;  g'(s)>0(s>0) (1.5)
P)=0,  Y(5)>0(s=1), (1.6)

P € C*0,+00), p”(s)>0(s>0, s= 1), (1.7)
lim §/(x) = oo, (1.8)

lg(s)| +slg’(s)| < h(s) a.a.s>0; heL [0,00), (1.9)
sg(s) € C([0,+o0)). (1.10)

Let p.,: QO — R be a fixed smooth strictly positive function satisfying

f Poodx =1. (1.11)
0

Define

p(x)
= (x, X )::— ( ) 1.12)
f=fp)==¢{50 (
Thus, the functions g and p,, determine the problem (1.1)-(1.3), and the
function ¢ is merely needed to define a Lyapunov functional for this prob-
lem,

Ongp(P)::f gb(pp )poodx (1.13)
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which will be referred to as the relative entropy. Obviously, £,(p) = 0 if
and only if p = p,. Formally calculating d,&,(p;) along a solution of (1.1)-
(1.3) we obtain

atgv,b(pt) = _ng,b(()t):
where the entropy production D&, is defined by

G W o o S R PR

2

Setting
o
Poo
we can write
Eylp) = Q‘P(r)dpoo (1.14)
D&(p) = J;) rg(r)Y’(r)dps + L rg’ (r) " (r)|Vr|*dpe (1.15)

Note that problem (1.1)—(1.3) can be viewed as a formal gradient flow
(with respect to the unbalanced Hellinger-Kantorovich Riemannian struc-
ture) of the driving functional D&, (p), where

0y (s) :=£ ¢()de, (1.16)

see Section 2 for the details. We are interested in the exponential decay of
the Lyapunov functional (1.14) along the trajectories of this gradient flow.
This is related to the entropy-entropy production inequalities of the form

£4(p) < DE,(p) (1.17)

They can be viewed as unbalanced generalizations of the convex Sobolev
inequalities [2, 3, 27], see Section 2.

The main results of the paper are convex Sobolev inequalities akin to
(1.17), see Theorems 3.5 and 4.1, and existence and asymptotics of weak
solutions to (1.1)—(1.3), see Theorem 3.6.
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2.Background and discussion

Assume for a while that () is a torus or is convex, although this is not
required for our main results. The gradient of a scalar functional £ on
the space of finite Radon measures over Q with respect to the Hellinger-
Kantorovich Riemannian structure (also known as the Wasserstein-Fisher-
Rao one) was calculated in [30, 35]:

. o€ o€

grad, £(p) = —dlv(pvg) + u$
The first term on the right-hand side is the Otto-Wasserstein gradient
grad,, £(p), cf. [42, 45], and the second one is the Hellinger-Fisher-Rao

gradient grad, £(p), cf. [28]. It is easy to compute that Dggé(p) =—f(x,p),

hence (1.1)—(1.3) may be interpreted as a gradient flow:
dip = —grad DEy (p), p(0) = 0°. (2.1)
The production of the relative entropy £,(p) along the Otto-Wasserstein
gradient flow
dip = —grad,, D&, (p) (2.2)
is

DSIZV(p) = Lrg’(r)t,b"(r)IVerpoo.

Similarly, the production of the same entropy along the Hellinger gradient
flow

dip = —grad, DEy, (p) (2.3)
1S
Dgf(p) = L rg(r)Y’(r)dpe.

In the case of non-convex () we can abuse the terminology and still refer
to (1.1)—(1.3) as to a gradient flow.

It is clear that

D&, (p) + DEY (p) = DE(p).

Generally speaking, neither the Otto-Wasserstein nor the Fisher-Rao en-
tropy production are able to control the relative entropy, so (1.17) is a
result of an interplay between the reaction, diffusion and drift. A simple
counterexample to

E4(p) SDEY(p) (2.4)
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is po, 14 with A being a proper subset of (). Indeed, Dé'f;(poolA) =0 due to
(1.5), (1.9) and (1.10). It is easy to construct a smooth example by mollify-
ing this one. A trivial counterexample to

E4(p) S DEY (p) (2.5)
is kp., where k # 1 is a non-negative constant.

Remark 2.1. Note that the two counterexamples intersect at p = 0, which
violates our target inequality (1.17). However, we will observe, cf. The-
orems 3.5 and 4.1, that it suffices keep the total mass fQ p bounded away
from 0 to secure (1.17).

In view of (1.11), in order to obtain more interesting and instructive
examples we should restrict ourselves to probability densities p. The se-
quence

n

Pn = P 1(%,1)

n-1
of probability densities on () = (0, 1) is a counterexample to (2.4). Indeed,
the left-hand side of (2.4) is of order n~! and the right-hand side is < n™2.

Inequality (2.5) for fQ p =1 deserves a more detailed discussion.

Let us start with considering g(s) = logs. In this case, as first observed in
the seminal paper [26], the gradient flow (2.2) is the linear Fokker-Planck
equation, and the celebrated Bakry-Emery approach allows one to prove
(2.5) for Q = R? [2, 3, 27]. However, it is crucial to have concavity of ﬁ,
which we never assume in this work. These instances of (2.5) are referred
to as convex Sobolev inequalities, which inspired the title of our paper. The
particular case

w(s):{mwj—ps+p—l), if1<p<?2 (2.6)

slogs—s+1, ifp=1

implies the log-Sobolev inequality for p = 1, the Poincaré inequality for
p = 2 and Beckner’s inequalities [4] for 1 < p < 2. Namely, (2.5) may be
rewritten as

p
J rPdp — (J rdpoo) < f rp_2|Vr|2dpoo, l<p<2 (2.7)
Q Q Q
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In contrast, our assumptions on ¥ admit any p > 2 in (2.6), which yields
the following “Beckner-Hellinger inequality”:

p
J- rpdpm—(j rdpoo) sj rP2Vr|*d e
Q Q Q
r p-1
+f rlog( )(rpl—(f rdpoo) )dpw p>2. (2.8)
o) fﬂrdpoo Q

Consider now the case g(s) = g, a >0, a#1. Assume for simplicity

a—

that || =1 and p,, = 1. Then (2.2) is the porous medium equation, cf.
[42]. The alleged inequality (2.5) for the relative entropy (2.6), p € (1, ),

reads
P l-a
J rp—(f r) < (f r) J P3|V, (2.9)
0 0 0 0
Setting g := pi%, | := p+§_1, u :=r', we rewrite (2.9) in the form
lq 1(q-2)
J uq—(—[ ul/l) 5(—[ uw) f IVul®. (2.10)

0 0 0 0

The inequality

oo sl

similar to (2.10) appears in [11], see also [10, 18]. It holds for 0 < g < 2,
lg > 1, that is, for @ > 1, p > 1. Assume for a moment that the the relative
entropy, i.e., the left-hand side of (2.11), is a priori bounded. Since gl >
1, the mass fQul/l is a priori bounded. Consequently, (2.11) is weaker
than (2.10) since the exponent g/2 is less than 1, and it is plausible that
(2.10) cannot be true. Inequality (2.11) for g = 2 is equivalent to Beckner’s
inequality (2.7). As explained in [18], inequality (2.11) is wrong for g > 2.
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In this connection, our results yield the following variant of (2.10):

Iq (q-2)
J u— J ul/l) ~(J 1/1) J |Vu|2
Q Q
-1
1(g-2) 1/1 -1
+( i ul/l) ! f nYy ul® (JQ ) u(p—l)/l_(f ul/l)p
Jo Q a—1 Q

(2.12)

foranyg>0,q#2,1<lg<1+2l,thatis,anya>0,a=1,p>1.
The counterparts of the alleged inequalities (2.9) and (2.10) for p =1 are

frlog( = ) (J )Lm (2.13)
Luqlog(J,u;) (J )qwauV (2.14)

Q

Here g = ~. This resembles the inequality

q/2
J uqlog(JQ u‘i) (J-Q|Vu|2) , <2, (2.15)

which was established in [10, 18]. Since g/2 < 1, (2.15) is weaker than
(2.14), so it seems that (2.14) cannot be true. Our results imply the follow-
ing variant of (2.14):

foon{ < )

9-2 2-q _ q q-
a q u u
+(J uq) u"log( U (IQ ) , g>0,g%2. (2.16)
Q JQ Jouq 2—(]

Remark 2.2. Inequalities (2.8), (2.12), (2.16) are obtained assuming JQ rdp, =
1 (so that (3.4) is automatically satisfied), but hold without this normal-
ization due to their homogeneity.
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Many authors studied (2.5) or related inequalities in the particular case
P = 1, that is, when the driving entropy is compared to its production,
cf., e.g., [42, 45, 46, 1, 9]. In this connection, the strict geodesic convex-
ity of the driving entropy normally plays the pivotal role. In [33] (see
also [30]) we studied (1.17) for = ¢, without assuming neither Otto-
Wasserstein nor Hellinger-Kantorovich geodesic convexity (we also never
assume any similar condition in the present paper). The inequalities ob-
tained there can be further refined [32] be means of studying gradient
flows in the spherical Hellinger-Kantorovich space [34, 7], which is be-
yond the scope of the present paper (though it may seem strange, even
non-negativity of the entropy production is uncertain for the spherical
Hellinger-Kantorovich flows in the case ¢ # 1), ). The proofs in the present
paper are more direct and simple than in [33] due to the “quasihomoge-
neous structure” (1.12).

Our last example concerns g(s) = 1 log 12;22, which corresponds to the arc-
tangential heat equation [6]. The relative entropy &, generated by this g is
geodesically convex neither in the Otto-Wasserstein nor in the Hellinger-
Kantorovich sense, cf. [32]. Take i(s) = slogs—s+ 1. Then we infer the
following inequality resembling the log-Sobolev one:

J (rlogr—r+1)dp,
Q

1 5 2r?
< JQ leﬂ dpe, + L rlogr(log o 7’Z)dpw (2.17)

provided fQ rdp. is bounded away from 0.

Nonlinear Fokker-Planck equations akin to (2.2) model behaviour of var-
ious stochastic systems, see [20, 44, 27, 5]. The related drift-diffusion-
reaction equation (1.1) was suggested in [19]. On the other hand, equation
(1.1) belongs to the class of nonlinear models (cf. [16, 25, 47, 33, 32, 38,
15]) for the spatial dynamics of populations which are tending to achieve
the ideal free distribution [22, 21] (the distribution which happens if every-
body is free to choose its location) in a heterogeneous environment. The
dispersal strategy is determined by a local intrinsic characteristic of or-
ganisms called fitness. The fitness manifests itself as a growth rate, and
simultaneously affects the dispersal as the species move along its gradient
towards the most favorable environment. In (1.1), p(x, ¢) is the density of
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organisms, and f(x,p) is the fitness. The equilibrium p = p,, when the
fitness is constantly zero corresponds to the ideal free distribution. The
works [17, 8, 37, 47, 30, 29, 31, 33] perform mathematical analysis of some
of such fitness-driven models. Our Theorem 3.6 indicates that the popu-
lations converge to the ideal free distribution with an exponential rate.

3.Main results
We start by introducing the weak solutions to (1.1)—(1.3), following the

lines of [33, 32].
J £g'(& (s>0),

Define
where the integral exists by (1.9). Observe that
G'(s)=s¢'(s)>0, (s>0); G(0) =0,

so that G is a nonnegative continuous increasing function on [0, co).
Set

CD(x,u):poo(x)G( ! ), u>0.

Poo(X)
As in [33], we can write (1.1) in the form
dip = AD —div(D, +pf,) +pf, (3.1)

where @ stands for O(x, p(x, t)).

Definition 3.1. Let p° € L*(Q); Q7 := Q x (0, T). A function p € L*(Qr)
is called a weak solution of (1.1)—(1.3) on [0, T] if for r = p/p,, we have
G(r(-)) € L*(0,T; H'(Q)) and

T
[ [ 00+ -0 sa08) Vo fopiana
0 Q

J 0)dx (3.2)

for any function ¢ € C'(Q x [0, T]) such that @(x,T) = 0. A function p €
L2 .([0,00); L®(Q))) is called a weak solution of (1.1)-(1.3) on [0,c0) if for
any T > 0 it is a weak solution on [0, T'].
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Remark 3.2. For p € L*(Qr) we automatically have G(r) € L*(Qr), so the
condition G(r(-)) € L*(0, T; H'(Q)) is equivalent to rg’(r)Vr € L*(Qr). Here
7= p/Poo-

Formally, the integrand rg¢’(r)y”(r)|Vr|* vanishes if r = 0. Otherwise it
can be written as

197(r), »_ 197() 2
rg'(r)” (r)|Vr|* = — lrg'(r)Vr|” = ——=IVG(r)|".
This motivates the following extension of the entropy production suitable
for weak solutions.

Definition 3.3. If p € L(Q) and G(r) € H'(Q), then the entropy production
is defined by

DEylp) = [ retippu+ [ g v

[r>0]
_ ’ 1 ED”(r) 2
= | renwndpas fw vede. (53)

Remark 3.4. Observe that although the integrand with the gradient in (3.3)
is a nonnegative measurable function on (), the integral, and hence the
entropy production, may be infinite.

The following entropy-entropy production inequality applicable to weak
solutions is based on an isoperimetric-type inequality established in Sec-
tion 4.

Theorem 3.5 (Entropy-entropy production inequality). Suppose that g and i
satisfy (1.5)—(1.10). Let U C L(Q)) be a set of functions such that for any
p € U and r = p/ps, we have G(r) € H(Q) and

‘i)Iel[g”P”Ll(Q) >0, (3-4)
sup{&y(p): p € U} < oo. (3-5)

Then there exists Cy; such that
Ey(p) < CyDEy(p) (peU). (3-6)

Proof: The idea is to use the isoperimetric-type inequality provided by
Theorem 4.1 (see Section 4). Since we are dealing with a less regular set-
ting at the moment, we argue by approximation.
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Take p € U and as usual, put r = p/p.,. Arguing as in [33, proof of

Theorem 1.7], we see that there exists a sequence of functions G, € C(QQ)N
C>(Q)) taking values in (0,a), where a < G(0), such that

G, — G(r(+)) in H' and a. e. in Q.

Set r,(x) = G1(G,(x)) and p,(x) = 7,(X)pe(X), so that G,(x) = G(r,(x)).
Clearly, r, and p,, are positive and reasonably smooth, the sequences {r,}
and {p,} are bounded in L®(Qr) (specifically, the former is bounded by
G~ !(a)), and by the continuity of G™! we have

r,—1 p,—pa. e in.

In particular, this implies that p, converges to p in L'(Q). Further, by the
Lebesgue Dominated Convergence we have
Ep(pu) = Ey(p)- (3-7)

Thus, if we denote the infimum in (3.4) by dy; and the supremum in (3.5)
by Ey, there is no loss of generality in assuming that ||p,|[;1q) > dy/2 and
Ey(pn) < 2Ey. It follows from Theorem 4.1 that there exist C and o both
depending on dy; and Ey; (but not on the approximation nor on p itself)
such that

gt,b(pn)

<C (L g ot [ ngt)w IV dpn) 68)

[r>0]

By the Lebesgue Dominated Convergence we have

f gm0 (1) dpes — f re(NY/(r) dpe (3.0)
Q Q

Further, we have

/ Y llb/,(rn) 2
.8 (r,) Tn |Vrn|2d o0 :f L >0 ; |VGn| dPoo
.[[rnZU] 8 v ( ) b Q > ]Tng (74) 0
On one hand, VG,, — VG in L*(Q). On the other hand, the functions

b1, Y0

=g ()
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are uniformly bounded in L*(Q), and since we obviously have

limsup 1y, 551 < 110 a.e.in Q),

n—-00

we also have

limsuph,(x) < 1y, Pr(r) a.e.in Q).

>0 *lrg(r)
Using Reverse Fatou’s Lemma for products (Lemma A.1 in the Appendix),
we obtain

limsup j rng’(rn)1,b"(rn)|Vrn|2 dp., = limsup J- h,|VG,|? dpos
[rn>0] Q

n—o0 n—o0
p"(r)

< | 1002 wGPdp,
L g P

< J rg’(r)t,b”(r)er2 AP
[r>0]

Combining this with (3.7) and (3.9), we see that we can pass to the limit
in (3.8) and obtain (3.6) with C;; = C. |

Theorem 3.6 (Existence and asymptotics of weak solutions). Assume (1.5)—
(1.10). Then for any p° € LY(Q) there exists a nonnegative weak solution
p € L*(Q2x(0,00)) of problem (1.1)—(1.3) which enjoys the following properties:
(1) p satisfies the entropy dissipation inequality in the sense of measures:
for any smooth nonnegative compactly supported function x: (0,T) —

R we have
T T
_J X’(t)&l,(p)dt < f x(t)DEy(p)dt; (3.10)
0 0
(2) the initial entropy satisfies
ess SOUP5¢(P(t)) <E(p"); (3.11)
>

(3) p satisfies the lower L'-bound

lellrr ) = || min(p®, Pl a a.t>0; (3.12)

(4) p exponentially converges to p,, in the sense of entropy:

Ep(p(t)) < €¢(p0)e_7¢t a.a.t>0, (3.13)
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where yy, > 0 can be chosen uniformly over initial data satisfying

Imin(p®, peo)lliy 2 ¢, Ey(p”) < C (3.14)

with some ¢, C > 0;
(5) for any p € [2,+0),

lp(t) = Poollr ()

SUP Poo
inf p

< e_VPt (1 + ) ”pO - Poo“LP(Q) a.a.t>0, (315)

(0¢]

where y, > 0 can be chosen uniformly over initial data satisfying

Imin(p®, peo)llz@y 2 ¢ llp°lfp0) < C. (3.16)

Proof: For the proof of existence, the approximating procedure used in [33]
is still applicable in the current setting. As a matter of fact, the existence
result in [33] requires that |f(x, )| is either large or does not depend on x
when & is near 0 or near +co. A similar requirement was imposed for
large £&. However, these assumptions are only needed in order to ensure
that any u € L?(€)) can be bounded from above by a function u.: Q — R
satisfying f(x,u.(x)) = cst and that u can be bounded from below by an-
other such function provided that u is uniformly bounded away from 0.
This is still the case in the current setting. Indeed, assume for simplicity
that u is continuous on Q. Set ¢ = maxg g(1/p.,) and put u. = p.g'(c),
then clearly f(x, u.(x)) = —g(u.(x)/ps) = —c; moreover, it follows from the
monotonicity of g that u < u,, as required. The existence of a lower bound
is proved in a similar way, cf. [33, Remark 3.4].

Inequality (3.11) is proved in the same way as the analogous inequality
in [33].

We prove that the solution constructed as in [33] satisfies (3.10). To
this end it suffices to check that this inequality is preserved under the
passage to the limit. Specifically, assume that smooth enough approximate
solutions {p,} are uniformly bounded in L*(Qr) and converge to p a. e.
in Qr, while

G, :=G(r,) — G(r) weakly in L*(Q)).
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By the Lebesgue Dominated Convergence we have

Ep(Pn) = Eylp) (3-17)

f g(r) ' (ry) dpe —>J rg(ryP(r)dpe. (3.18)

Arguing as in [33, proof of Theorem 3.9] and, in particular, taking into
account that VG =0 a. e. on the set {(x,t) € Qr: r =0} and VG, =0 a. e. on
the set {(x,t) € Qr: r, = 0}, we conclude that for any 6 > 0 we have

J‘J max(r )( )IVGIdeOOdt

{(x,t)eQr: r>0}
< liminf J] (r2) IVG,,|? dp.dt
n—00 max ( )

{(x,t)eQr: 1,,>0}

<liminf J]- |VGn|2dpoodt

n—00

{(x,t)eQr: r,,>0}

so sending 0 — oo and applying Beppo Levy’s theorem, we obtain

ﬂ YOV 560 4p,, di

rg'(r)
{(x,t)eQr: r>0}
<liminf H |VG Pdp.dt
n—00
{(x,t)eQr: 1,,>0}

or, equivalently,

H x(1)rg (N (Vi dp dt

{(x,t)eQr: r>0}

<liminf JJ V1@ (r) W (r,)|V1,* dpo, dt.

n—00

{(x,)eQr: r,>0}

Combining this with (3.17) and (3.18), we obtain (3.10).
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We now prove the exponential convergence of the solution to the steady
state. Let p be a weak solution of (1.1)-(1.3) with the initial data satisty-
ing (3.14). Let U C LY be the set of functions such that for any u € U, we
have G(u/p,,) € H'(Q) and [|ullp1q) > ¢, Ey(u) < C with the same c and C
as in (3.14). By Theorem 3.5 we have the entropy-entropy production in-
equality (3.6) for U. It follows from the bounds (3.11) and (3.12) that
p(t) € U for a. a. t > 0. Combining the entropy dissipation and entropy-
entropy production inequalities, we get

9:Ey(p(1) < =Cy'Ey(p(t))

in the sense of measures. Set y, = Cy' and ¢(t) = Ew(p(t))ewt. It is easy to
check that that d,¢(t) < 0 in the sense of measures, whence ¢ a. e. coin-
cides with a nonincreasing function. Moreover,

ess sup ¢(t) = ess lim sup ¢(t) = ess lim sup €¢(p(t))67¢t < &l,(po)

>0 t—0 t—0

by virtue of (3.11), so ¢(t) < Elp(po) for a. a. t > 0, which implies (3.13).
We will now use (3.13) with ¥(s) = |s — 1|P, which is a C?-function for
p > 2, and satisfies the assumptions (1.6)—(1.8). We immediately get

lo(t) = Poollircy) < (sup o) *P[E, (p(1))]"?
< (sup poo)(P—l)/P [5¢(p0)]1/pe_7¢t/p

(p-1)/p
SUp P 0 —ypt
< — e ’r
< ( nf 0 ) llp poo”LP(Q)

SUP Poo _
< (1 + m)llpo ~ Poollrri)e 7!, (3.19)
where y, = y,/p. Uniform boundedness of ||p0||fp implies a bound on
51;;((30)- [
4.Inequality

In this section we prove a refined version of our unbalanced convex
Sobolev inequality in the smooth case.
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Theorem 4.1. Assume (1.5)—(1.10). Let U € C°(Q)) be such that
inf{||p||L1(Q): pe U} >0,
sup{&y(p): p € U} < o0

Then there exist constants (independent of p) C >0, 0 < a < f§ < oo, such that

Eyp) < C( L rg(r’(r)dpe

+f g (N (VP dps| (peU). (4.1)
[a<r<B]

The proof of Theorem 4.1 is based on the next two lemmas.

Lemma 4.2. Fix 0 <a < <1. Then

la<r<p] |f[ SOOI,

>Caﬁm1n(|[r<a]| Ad-rd |

/3]| 2(d- l/d) 4 2)
Proof: If the minimum on the right-hand side vanishes, there is nothing
to prove. Otherwise the set [@ < r < ] has nonzero measure. In what
follows, we use some facts from geometric measure theory, which can be
found in [39]. The relative perimeter of a Lebesgue measurable set A of
locally finite perimeter with respect to () is P(A; Q) = |u4|(Q2), where u, :=
V1, is the Gauss-Green measure associated with A. The support of p, is
contained in the topological boundary of A.
We have:

f g (1 (NVrP dp..
[a<r<p]

> 1nfpoo min (sg’(s )gb”(s))f |Vr|>dx
s€la,p] [a<r<f]

infq poominse[a,ﬁ](sg'(s)kb”(s))( d )2
§ [a <r<p] j[a<r<ﬁ] i) )
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The last integral is the variation of r over [a < r < ], which can be
computed using the coarea formula:

J |Vr|dx = FmP([r<t];[a<r<ﬁ])dt
[a<r<f] J -0
rP
= | P([r<t]la<r<pl)dt
\Jrc\zﬁ
= | P([r<t};Q)dt, (4.4)

Ja

where we first use the observation that the support of the Gauss—Green
measure associated with [r < t] is disjoint with [a@ <7 < ] whenever t < «
or t > B, and then we notice that if @ <t < 5, then the part of the support of
the Gauss—Green measure of [r < t] lying in () is contained in [a <7 < f].
Invoking the relative isoperimetric inequality (1.4), we estimate

P([r<t];Q) > Cq min(|[r < t]|(d—1)/d,

Q\[r< t]|(d_1)/d)

and since for t € (a, f) we have
[r<alc[r<t]c[r<p]=Q\[r>p]

we see that
d-1)/d

P([T<t];Q)ZCQmin(|[r§a]|( ,|[r2/3]|(d—1)/d)

Combining this estimate with (4.3) and (4.4), we obtain (4.2). |
Lemma 4.3. Given € > 0, there exists C, > 0 such that

B(s) < Cosgls)p(s) (s> e) (4.5)
Proof: Applying L'Hopital’s rule for liminf, and remembering that g is an

increasing function, we obtain

liggf% > li{gglf g(s)+sg’(s)+ %
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. SgE)Y(s) L. . g(s)Y(s)
111;11 11nf —4) B = l1rsrl) 11nf —4) B
> ligrl)ilnf(g’(s) + %) >¢'(1)>0. (4.7)

In (4.6) and (4.7) we have used the fact that for s # 1, the signs of g(s)

and 1’(s) coincide, while ¢”(s) > 0. Obviously, (4.6) and (4.7) imply (4.5).
u

Proof of Theorem 4.1: We claim that there exists > 0 such that
&:=inf|[r> p]| >0 (4-8)

peU

Indeed, it follows from (1.8) (L'Hopital’s rule) that
lim —I’D(S)

S—00 S

As the entropy &, is bounded on U, by de la Vallée Poussin’s theorem the
set U is uniformly integrable. Put

L inf ol
= in ;
2|Q|peU PliLt@)

m

for any p € U we have

2001m < lplliioy = f
[p<m]

),

pdx+J; ]pdxs |Q|m+a)U(|[p > m]
p=m

where wy; is the modulus of integrability of U. Hence
wy(|lpzml|)=1Qlm,

which clearly implies a lower bound on |[p > m]| and a fortiori on |[r > /)’]l
with g = sugpm'

Clearly, there is no loss in generality in assuming <1 in (4.8).

In what follows we fix a and § such that 0 < @ < <1 and f satis-

fies (4.8). Denote

a::|[rSa]

’

T::|[a<r<[5]|
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and also

Daséylpi= | renp'hdont | g v
Q [a<r<f]
Assume for now that o > 0. Using Lemma 4.2, we have

Dap€y(p) 2 f rg(r)'(r)dpe + J rg'(r)g"(n)Vrldpg

[a<r<p] [a<r<p]

[7’ > ﬂ]|2(d_l)/d),

1
> mi , L Cot s ( 2d-1y/d
(Srerﬁ’rﬁl]sg(s)gb (S))T ap - Min|0

Taking into account (4.8), we can write

c min(az(d_l)/d, 52(d—1)/d)
Dap€y(p) 2 5 (T +

T

with ¢ independent of p. Estimating

in(o2d-1)d s2(d-1)/d
min(o , :
T+ ( ) > 2min(o"
T

A-1)/d s(d-1)/d)

’

we obtain
d—l)/d, 5(d—1)/d). (49)
If 0 = 0, this estimate trivially holds with any c. Since ¢ is a priori bounded

from above by |Q|, (4.9) implies that

o §ld-1vd
Qi Q] )

DsEy(p) > cmin(o!

o< Cmin(
< Cmin(g~1Vd, §ld-1/dy < CD,pEy(p)- (4.10)
Evoking Lemma 4.3, we obtain

Ey(p) = (r)dpo. + ]sb(r)dpoo

[r>a] [r<a

<C, f[] i (Ng(r) dpw + ¢<o>f dpe

[r<a]
< CoDapEylp) + Col[r < oc]l
Using (4.10) to estimate o by D,4&,, we obtain (4.1) |
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Appendix A. Reverse Fatou’s Lemma for products

Lemma A.1. Let (S,X, u) be a measure space. Suppose that {f,} is bounded
in L™(S, u) and {g,} converges to a nonnegative limit g in L'(S, u). Then

limsupjfngndysj-(limsupfn)gdy. (A.1)
S S

n—0o0 n—0o0

Proof: As we have |f,g| < (sup, ||f,|])g, we can use Reverse Fatou’s Lemma
obtaining

limsupf fugdp < J (limsupfng) du
S S

= J (limsupfn)gdy. (A.2)
S n—00
Further, it is clear that
lim fn( —-g)du=0. (A.3)

n—0o0

Using (A.2) and (A.3) we obtain

limsup j £.gn = limsup (f fgdu+ f fig—2) dﬂ)
n—00 n—o0 S S

- limsupf fagdp+ lim J- fu(gn —
S n—o0 S

n—00

< J (limsupfn)gdy,
S n—00

as claimed. u

Acknowledgments. This research was partially supported by the Portu-
guese Government through FCT/MCTES and by ERDF through PT2020
(projects UID/MAT/00324/2019, PTDC/MAT-PUR/28686/2017 and
TUBITAK/o0o005/2014).

Conflict of interest statement. We have no conflict of interest to declare.



UNBALANCED SOBOLEV INEQUALITIES 21

References

[1] L. Ambrosio, N. Gigli, and G. Savaré. Gradient Flows: in Metric Spaces and in the Space of
Probability Measures. Basel: Birkhduser Basel, 2008.

[2] A. Arnold, P. Markowich, G. Toscani, and A. Unterreiter. On convex Sobolev inequalities
and the rate of convergence to equilibrium for Fokker-Planck type equations. Comm. Partial
Differential Equations, 26(1-2):43-100, 2001.

[3] D. Bakry and M. Emery. Diffusions hypercontractives. In Séminaire de Probabilités XIX
1983/84, pages 177—-206. Springer, 1985.

[4] W.Beckner. A generalized Poincaré inequality for Gaussian measures. Proc. Amer. Math. Soc.,
105(2):397-400, 1989.

[5] T. Bodineau, J. Lebowitz, C. Mouhot, and C. Villani. Lyapunov functionals for boundary-
driven nonlinear drift-diffusion equations. Nonlinearity, 27(9):2111-2132, 2014.

[6] Y. Brenier. Geometric origin and some properties of the arctangential heat equation. Tunis.
J. Math., 1(4):561-584, 2019.

[7] Y. Brenier and D. Vorotnikov. On optimal transport of matrix-valued measures. ArXiv e-
prints, Aug. 2018.

[8] R. S. Cantrell, C. Cosner, Y. Lou, and C. Xie. Random dispersal versus fitness-dependent
dispersal. J. Differential Equations, 254(7):2905-2941, 2013.

[9] J. Carrillo, A. Jiingel, P. Markowich, G. Toscani, and A. Unterreiter. Entropy dissipation
methods for degenerate parabolic problems and generalized Sobolev inequalities. Monat-
shefte fiir Mathematik, 133(1):1-82, 2001.

[10] J. A. Carrillo, J. Dolbeault, I. Gentil, and A. Jiingel. Entropy-energy inequalities and im-
proved convergence rates for nonlinear parabolic equations. Discrete Contin. Dyn. Syst. Ser.
B, 6(5):1027-1050, 2006.

[11] C. Chainais-Hillairet, A. Jingel, and S. Schuchnigg. Entropy-dissipative discretization of
nonlinear diffusion equations and discrete Beckner inequalities. ESAIM Math. Model. Numer.
Anal., 50(1):135-162, 2016.

[12] L. Chizat and S. Di Marino. A tumor growth model of hele-shaw type as a gradient flow.
arXiv preprint arXiv:1712.06124, 2017.

[13] L. Chizat, G. Peyré, B. Schmitzer, and F.-X. Vialard. An interpolating distance between op-
timal transport and Fisher-Rao metrics. Foundations of Computational Mathematics, 18(1):1—
44, 2018.

[14] L. Chizat, G. Peyré, B. Schmitzer, and F.-X. Vialard. Unbalanced optimal transport: Dynamic
and Kantorovich formulations. Journal of Functional Analysis, 274(11):3090-3123, 2018.

[15] C. Cosner. A dynamic model for the ideal-free distribution as a partial differential equation.
Theoretical Population Biology, 67(2):101-108, 2005.

[16] C. Cosner. Beyond diffusion: conditional dispersal in ecological models. In J. Mallet-Paret et
al., editor, Infinite Dimensional Dynamical Systems, pages 305-317. Springer, 2013.

[17] C. Cosner and M. Winkler. Well-posedness and qualitative properties of a dynamical model
for the ideal free distribution. Journal of mathematical biology, 69(6-7):1343-1382, 2014.

[18] J. Dolbeault, I. Gentil, A. Guillin, and E.-Y. Wang. L9-functional inequalities and weighted
porous media equations. Potential Anal., 28(1):35-59, 2008.

[19] T.D.Frank. Asymptotic properties of nonlinear diffusion, nonlinear drift-diffusion, and non-
linear reaction-diffusion equations. Ann. Phys., 13(7-8):461-469, 2004.

[20] T. D. Frank. Nonlinear Fokker-Planck equations. Springer Series in Synergetics. Springer-
Verlag, Berlin, 2005. Fundamentals and applications.

[21] S. D. Fretwell. Populations in a seasonal environment. Princeton University Press, 1972.



22 S. KONDRATYEV AND D. VOROTNIKOV

[22] S. D. Fretwell and H. L. Lucas. On territorial behavior and other factors influencing habitat
distribution in birds I. Theoretical development. Acta Biotheoretica, 19(1):16—36, 1969.

[23] T. Gallouét, M. Laborde, and L. Monsaingeon. An unbalanced optimal transport splitting
scheme for general advection-reaction-diffusion problems. arXiv:1704.04541, 2017.

[24] T. O. Gallouét and L. Monsaingeon. A JKO splitting scheme for Kantorovich-Fisher-Rao gra-
dient flows. SIAM ]. Math. Anal., 49(2):1100-1130, 2017.

[25] I. T. Heilmann, U. H. Thygesen, and M. P. Serensen. Spatio-temporal pattern formation in
predator-prey systems with fitness taxis. Ecological Complexity, 34:44—57, 2018.

[26] R. Jordan, D. Kinderlehrer, and F. Otto. The variational formulation of the Fokker—Planck
equation. SIAM journal on mathematical analysis, 29(1):1-17, 1998.

[27] A.Jiingel. Entropy methods for diffusive partial differential equations. SpringerBriefs in Mathe-
matics. Springer, [Cham], 2016.

[28] B. Khesin, J. Lenells, G. Misiot ek, and S. C. Preston. Geometry of diffeomorphism groups,
complete integrability and geometric statistics. Geom. Funct. Anal., 23(1):334-366, 2013.

[29] S. Kondratyev, L. Monsaingeon, and D. Vorotnikov. A fitness-driven cross-diffusion system
from population dynamics as a gradient flow. J. Differential Equations, 261(5):2784—2808,
2016.

[30] S.Kondratyev, L. Monsaingeon, and D. Vorotnikov. A new optimal transport distance on the
space of finite Radon measures. Adv. Differential Equations, 21(11-12):1117-1164, 2016.

[31] S. Kondratyev, L. Monsaingeon, and D. Vorotnikov. A new multicomponent Poincaré-
Beckner inequality. J. Funct. Anal., 272(8):3281-3310, 2017.

[32] S. Kondratyev and D. Vorotnikov. Spherical Hellinger-Kantorovich gradient flows. SIAM J.
Math. Anal. To appear.

[33] S. Kondratyev and D. Vorotnikov. Nonlinear Fokker-Planck equations with reaction as gra-
dient flows of the free energy. arXiv preprint arXiv:1706.08957, 2017.

[34] V. Laschos and A. Mielke. Geometric properties of cones with applications on the hellinger-
kantorovich space, and a new distance on the space of probability measures. Journal of Func-
tional Analysis, 2019.

[35] M. Liero, A. Mielke, and G. Savaré. Optimal transport in competition with reaction: the
Hellinger-Kantorovich distance and geodesic curves. SIAM ]J. Math. Anal., 48(4):2869—2911,
2016.

[36] M. Liero, A. Mielke, and G. Savaré. Optimal entropy-transport problems and a new
Hellinger-Kantorovich distance between positive measures. Inventiones mathematicae,
211(3):969-1117, 2018.

[37] Y. Lou, Y. Tao, and M. Winkler. Approaching the ideal free distribution in two-species com-
petition models with fitness-dependent dispersal. SIAM J. Math. Anal., 46(2):1228-1262,
2014.

[38] A.D. MacCall. Dynamic geography of marine fish populations. Washington Sea Grant Program
Seattle, 1990.

[39] F. Maggi. Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geo-
metric Measure Theory. Cambridge Studies in Advanced Mathematics. Cambridge University
Press, 2012.

[40] V. G. Maz’ja. Sobolev spaces. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin,
1985. Translated from the Russian by T. O. Shaposhnikova.

[41] K. Modin. Generalized Hunter-Saxton equations, optimal information transport, and factor-
ization of diffeomorphisms. J. Geom. Anal., 25(2):1306-1334, 2015.

[42] F. Otto. The geometry of dissipative evolution equations: the porous medium equation.
Comm. Partial Differential Equations, 26(1-2):101-174, 2001.



UNBALANCED SOBOLEV INEQUALITIES 23

| E Rezakhanlou. Optimal transport problem and contact structures. preprint, 2015.

| C. Tsallis. Introduction to nonextensive statistical mechanics. Springer, 2009.

| C. Villani. Topics in optimal transportation. American Mathematical Soc., 2003.

| C. Villani. Optimal transport: old and new. Springer Science & Business Media, 2008.
]

the fitness gradient system in evolutionary games between two populations. J. Differential
Equations, 262(7):4021-4051, 2017.

StaNISLAV KONDRATYEV
CMUC, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COIMBRA,
3001-501 COIMBRA, PORTUGAL

E-mail address: kondratyev@mat.uc.pt

Dmitry VorROTNIKOV
CMUC, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COIMBRA,
3001-501 COIMBRA, PORTUGAL

E-mail address: mitvorot@mat.uc.pt



	1. Introduction
	2. Background and discussion
	3. Main results
	4. Inequality
	Appendix A. Reverse Fatou's Lemma for products
	Acknowledgments.
	Conflict of interest statement

	References

