Pré-Publicações do Departamento de Matemática Universidade de Coimbra Preprint Number 19–13

CONVEX SOBOLEV INEQUALITIES RELATED TO UNBALANCED OPTIMAL TRANSPORT

STANISLAV KONDRATYEV AND DMITRY VOROTNIKOV

ABSTRACT: We study the behaviour of various Lyapunov functionals (relative entropies) along the solutions of a family of nonlinear drift-diffusion-reaction equations coming from statistical mechanics and population dynamics. These equations can be viewed as gradient flows over the space of Radon measures equipped with the Hellinger-Kantorovich distance. The driving functionals of the gradient flows are not assumed to be geodesically convex or semi-convex. We prove new isoperimetric-type functional inequalities, allowing us to control the relative entropies by their productions, which yields the exponential decay of the relative entropies.

KEYWORDS: functional inequalities, optimal transport, reaction-diffusion, fitnessdriven dispersal, entropy, exponential decay.

Math. Subject Classification (2010): 26D10, 35K57, 35B40, 49Q20, 58B20.

1.Introduction

The unbalanced optimal transport [36, 30, 13, 35, 14, 43] interpolates between the classical Monge-Kantorovich transport [45, 46] and the optimal information transport [41]. It equips the space of finite Radon measures with a formal Riemannian structure so that certain classes of reactiondiffusion equations and systems can be interpreted as gradient flows. This paper continues our investigation [30, 29, 31, 33, 32] of such gradient flows and associated functional inequalities, see also [12, 24, 23] for related studies.

The class of PDEs that we consider in this paper is

$$\partial_t \rho = -\operatorname{div}(\rho \nabla f) + f \rho, \qquad (x,t) \in \Omega \times (0,\infty), \qquad (1.1)$$

$$\rho \frac{\partial f}{\partial \nu} = 0, \qquad (x,t) \in \partial \Omega \times (0,\infty), \qquad (1.2)$$

$$\rho = \rho^0 \ge 0, \qquad (x,t) \in \Omega \times 0. \tag{1.3}$$

Here $f = f(x, \rho(x, t))$ is a nonlinear function of x and ρ which is required to have a certain structure specified below in (1.12), and $\Omega \subset \mathbb{R}^d$ is an open

Received April 8, 2019.

connected bounded domain admitting the relative isoperimetric inequality, cf. [40],

$$P(A;\Omega) \ge C_{\Omega} \min(|A|^{\frac{d-1}{d}}, |\Omega \setminus A|^{\frac{d-1}{d}}).$$
(1.4)

All our results remain valid if Ω is a periodic box \mathbb{T}^d ; in this case (1.2) is omitted.

The drift-diffusion-reaction equation (1.1) appears in statistical mechanics [19]. It also describes nonlinear fitness-driven models of population dynamics, cf. [38, 15, 16, 25, 33], where it is assumed that the dispersal strategy is determined by a local intrinsic characteristic of organisms called fitness. We refer to Section 2 and to [33] for more detailed discussions.

Let $g: (0,\infty) \to \mathbb{R}$ and $\psi: [0,\infty) \to \mathbb{R}$ be fixed C^1 -smooth functions, which satisfy the following assumptions:

$$g(1) = 0;$$
 $g'(s) > 0 \ (s > 0),$ (1.5)

$$\psi(1) = 0, \qquad \psi(s) > 0 \ (s \neq 1),$$
 (1.6)

$$\psi \in C^2(0, +\infty), \ \psi''(s) > 0 \ (s > 0, \ s \neq 1), \tag{1.7}$$

$$\lim_{s \to \infty} \psi'(x) = \infty, \tag{1.8}$$

$$|g(s)| + s|g'(s)| \le h(s)$$
 a. a. $s > 0; h \in L^1_{loc}[0, \infty),$ (1.9)

$$sg(s) \in C([0, +\infty)).$$
 (1.10)

Let $\rho_{\infty} \colon \overline{\Omega} \to \mathbb{R}$ be a fixed smooth strictly positive function satisfying

$$\int_{\Omega} \rho_{\infty} dx = 1. \tag{1.11}$$

Define

$$f = f(x, \rho(x)) := -g\left(\frac{\rho(x)}{\rho_{\infty}(x)}\right). \tag{1.12}$$

Thus, the functions g and ρ_{∞} determine the problem (1.1)–(1.3), and the function ψ is merely needed to define a Lyapunov functional for this problem,

$$0 \le \mathcal{E}_{\psi}(\rho) := \int_{\Omega} \psi\left(\frac{\rho}{\rho_{\infty}}\right) \rho_{\infty} dx, \qquad (1.13)$$

which will be referred to as the relative entropy. Obviously, $\mathcal{E}_{\psi}(\rho) = 0$ if and only if $\rho \equiv \rho_{\infty}$. Formally calculating $\partial_t \mathcal{E}_{\psi}(\rho_t)$ along a solution of (1.1)–(1.3) we obtain

$$\partial_t \mathcal{E}_{\psi}(\rho_t) = -D\mathcal{E}_{\psi}(\rho_t),$$

where the entropy production $D\mathcal{E}_{\psi}$ is defined by

$$D\mathcal{E}_{\psi}(\rho) := \int_{\Omega} g'\left(\frac{\rho}{\rho_{\infty}}\right) \psi''\left(\frac{\rho}{\rho_{\infty}}\right) \left| \nabla\left(\frac{\rho}{\rho_{\infty}}\right) \right|^{2} \rho \, dx + \int_{\Omega} g\left(\frac{\rho}{\rho_{\infty}}\right) \psi'\left(\frac{\rho}{\rho_{\infty}}\right) \rho \, dx$$

Setting

$$r = \frac{\rho}{\rho_{\infty}}$$

we can write

$$\mathcal{E}_{\psi}(\rho) = \int_{\Omega} \psi(r) \, d\rho_{\infty} \tag{1.14}$$

$$D\mathcal{E}_{\psi}(\rho) = \int_{\Omega} rg(r)\psi'(r)d\rho_{\infty} + \int_{\Omega} rg'(r)\psi''(r)|\nabla r|^2 d\rho_{\infty}$$
(1.15)

Note that problem (1.1)–(1.3) can be viewed as a formal gradient flow (with respect to the unbalanced Hellinger-Kantorovich Riemannian structure) of the driving functional $D\mathcal{E}_{\psi_g}(\rho)$, where

$$\psi_g(s) := \int_1^s g(\xi) \, d\xi, \tag{1.16}$$

see Section 2 for the details. We are interested in the exponential decay of the Lyapunov functional (1.14) along the trajectories of this gradient flow. This is related to the entropy-entropy production inequalities of the form

$$\mathcal{E}_{\psi}(\rho) \leq D\mathcal{E}_{\psi}(\rho). \tag{1.17}$$

They can be viewed as unbalanced generalizations of the convex Sobolev inequalities [2, 3, 27], see Section 2.

The main results of the paper are convex Sobolev inequalities akin to (1.17), see Theorems 3.5 and 4.1, and existence and asymptotics of weak solutions to (1.1)-(1.3), see Theorem 3.6.

2.Background and discussion

Assume for a while that Ω is a torus or is convex, although this is not required for our main results. The gradient of a scalar functional \mathcal{E} on the space of finite Radon measures over $\overline{\Omega}$ with respect to the Hellinger-Kantorovich Riemannian structure (also known as the Wasserstein-Fisher-Rao one) was calculated in [30, 35]:

$$\operatorname{grad}_{HK} \mathcal{E}(\rho) = -\operatorname{div}\left(\rho \nabla \frac{\delta \mathcal{E}}{\delta \rho}\right) + u \frac{\delta \mathcal{E}}{\delta \rho}.$$

The first term on the right-hand side is the Otto-Wasserstein gradient $\operatorname{grad}_W \mathcal{E}(\rho)$, cf. [42, 45], and the second one is the Hellinger-Fisher-Rao gradient $\operatorname{grad}_H \mathcal{E}(\rho)$, cf. [28]. It is easy to compute that $\frac{D\mathcal{E}_{\psi_g}(\rho)}{\delta\rho} = -f(x,\rho)$, hence (1.1)–(1.3) may be interpreted as a gradient flow:

$$\partial_t \rho = -\operatorname{grad}_{HK} D\mathcal{E}_{\psi_g}(\rho), \quad \rho(0) = \rho^0.$$
 (2.1)

The production of the relative entropy $\mathcal{E}_{\psi}(\rho)$ along the Otto-Wasserstein gradient flow

$$\partial_t \rho = -\operatorname{grad}_W D\mathcal{E}_{\psi_g}(\rho) \tag{2.2}$$

is

$$D\mathcal{E}_{\psi}^{W}(\rho) := \int_{\Omega} rg'(r)\psi''(r)|\nabla r|^{2}d\rho_{\infty}.$$

Similarly, the production of the same entropy along the Hellinger gradient flow

$$\partial_t \rho = -\operatorname{grad}_H D\mathcal{E}_{\psi_g}(\rho) \tag{2.3}$$

is

$$D\mathcal{E}_{\psi}^{H}(
ho) := \int_{\Omega} rg(r)\psi'(r)d
ho_{\infty}.$$

In the case of non-convex Ω we can abuse the terminology and still refer to (1.1)-(1.3) as to a gradient flow.

It is clear that

$$D\mathcal{E}_{\psi}^{W}(\rho) + D\mathcal{E}_{\psi}^{H}(\rho) = D\mathcal{E}_{\psi}(\rho)$$

Generally speaking, neither the Otto-Wasserstein nor the Fisher-Rao entropy production are able to control the relative entropy, so (1.17) is a result of an interplay between the reaction, diffusion and drift. A simple counterexample to

$$\mathcal{E}_{\psi}(\rho) \leq D\mathcal{E}_{\psi}^{H}(\rho) \tag{2.4}$$

is $\rho_{\infty}1_A$ with A being a proper subset of Ω . Indeed, $D\mathcal{E}_{\psi}^H(\rho_{\infty}1_A) = 0$ due to (1.5), (1.9) and (1.10). It is easy to construct a smooth example by mollifying this one. A trivial counterexample to

$$\mathcal{E}_{\psi}(\rho) \lesssim D\mathcal{E}_{\psi}^{W}(\rho) \tag{2.5}$$

is $k\rho_{\infty}$ where $k \neq 1$ is a non-negative constant.

Remark 2.1. Note that the two counterexamples intersect at $\rho \equiv 0$, which violates our target inequality (1.17). However, we will observe, cf. Theorems 3.5 and 4.1, that it suffices keep the total mass $\int_{\Omega} \rho$ bounded away from 0 to secure (1.17).

In view of (1.11), in order to obtain more interesting and instructive examples we should restrict ourselves to probability densities ρ . The sequence

$$\rho_n = \rho_\infty \frac{n}{n-1} \mathbf{1}_{\left(\frac{1}{n},1\right)}$$

of probability densities on $\Omega = (0, 1)$ is a counterexample to (2.4). Indeed, the left-hand side of (2.4) is of order n^{-1} and the right-hand side is $\leq n^{-2}$.

Inequality (2.5) for $\int_{\Omega} \rho = 1$ deserves a more detailed discussion.

Let us start with considering $g(s) = \log s$. In this case, as first observed in the seminal paper [26], the gradient flow (2.2) is the linear Fokker-Planck equation, and the celebrated Bakry-Émery approach allows one to prove (2.5) for $\Omega = \mathbb{R}^d$ [2, 3, 27]. However, it is crucial to have concavity of $\frac{1}{\psi''(s)}$, which we never assume in this work. These instances of (2.5) are referred to as *convex Sobolev inequalities*, which inspired the title of our paper. The particular case

$$\psi(s) = \begin{cases} \frac{1}{p(p-1)} (s^p - ps + p - 1), & \text{if } 1 (2.6)$$

implies the log-Sobolev inequality for p = 1, the Poincaré inequality for p = 2 and Beckner's inequalities [4] for 1 . Namely, (2.5) may be rewritten as

$$\int_{\Omega} r^{p} d\rho_{\infty} - \left(\int_{\Omega} r d\rho_{\infty} \right)^{p} \lesssim \int_{\Omega} r^{p-2} |\nabla r|^{2} d\rho_{\infty}, \quad 1 (2.7)$$

In contrast, our assumptions on ψ admit any p > 2 in (2.6), which yields the following "Beckner-Hellinger inequality":

$$\begin{split} \int_{\Omega} r^{p} d\rho_{\infty} - \left(\int_{\Omega} r d\rho_{\infty} \right)^{p} &\lesssim \int_{\Omega} r^{p-2} |\nabla r|^{2} d\rho_{\infty} \\ &+ \int_{\Omega} r \log \left(\frac{r}{\int_{\Omega} r d\rho_{\infty}} \right) \left(r^{p-1} - \left(\int_{\Omega} r d\rho_{\infty} \right)^{p-1} \right) d\rho_{\infty}, \quad p > 2. \quad (2.8) \end{split}$$

Consider now the case $g(s) = \frac{s^{\alpha-1}-1}{\alpha-1}$, $\alpha > 0$, $\alpha \neq 1$. Assume for simplicity that $|\Omega| = 1$ and $\rho_{\infty} \equiv 1$. Then (2.2) is the porous medium equation, cf. [42]. The alleged inequality (2.5) for the relative entropy (2.6), $p \in (1, \infty)$, reads

$$\int_{\Omega} r^{p} - \left(\int_{\Omega} r\right)^{p} \lesssim \left(\int_{\Omega} r\right)^{1-\alpha} \int_{\Omega} r^{p+\alpha-3} |\nabla r|^{2}.$$
(2.9)

Setting $q := \frac{2p}{p+\alpha-1}$, $l := \frac{p+\alpha-1}{2}$, $u := r^l$, we rewrite (2.9) in the form

$$\int_{\Omega} u^{q} - \left(\int_{\Omega} u^{1/l}\right)^{lq} \lesssim \left(\int_{\Omega} u^{1/l}\right)^{l(q-2)} \int_{\Omega} |\nabla u|^{2}.$$
(2.10)

The inequality

$$\int_{\Omega} u^{q} - \left(\int_{\Omega} u^{1/l}\right)^{lq} \lesssim \left(\int_{\Omega} |\nabla u|^{2}\right)^{q/2}.$$
(2.11)

similar to (2.10) appears in [11], see also [10, 18]. It holds for 0 < q < 2, lq > 1, that is, for $\alpha > 1$, p > 1. Assume for a moment that the the relative entropy, i.e., the left-hand side of (2.11), is a priori bounded. Since $ql \ge 1$, the mass $\int_{\Omega} u^{1/l}$ is a priori bounded. Consequently, (2.11) is weaker than (2.10) since the exponent q/2 is less than 1, and it is plausible that (2.10) cannot be true. Inequality (2.11) for q = 2 is equivalent to Beckner's inequality (2.7). As explained in [18], inequality (2.11) is wrong for q > 2.

In this connection, our results yield the following variant of (2.10):

$$\begin{split} \int_{\Omega} u^{q} - \left(\int_{\Omega} u^{1/l} \right)^{lq} \lesssim \left(\int_{\Omega} u^{1/l} \right)^{l(q-2)} \int_{\Omega} |\nabla u|^{2} \\ + \left(\int_{\Omega} u^{1/l} \right)^{l(q-2)} \int_{\Omega} u^{1/l} \left(\frac{u^{(\alpha-1)/l} - \left(\int_{\Omega} u^{1/l} \right)^{\alpha-1}}{\alpha - 1} \right) \left(u^{(p-1)/l} - \left(\int_{\Omega} u^{1/l} \right)^{p-1} \right) \\ (2.12) \end{split}$$

for any q > 0, $q \neq 2$, 1 < lq < 1 + 2l, that is, any $\alpha > 0$, $\alpha \neq 1$, p > 1.

The counterparts of the alleged inequalities (2.9) and (2.10) for p = 1 are

$$\int_{\Omega} r \log\left(\frac{r}{\int_{\Omega} r}\right) \lesssim \left(\int_{\Omega} r\right)^{1-\alpha} \int_{\Omega} r^{\alpha-2} |\nabla r|^{2}, \qquad (2.13)$$

$$\int_{\Omega} u^{q} \log \left(\frac{u^{q}}{\int_{\Omega} u^{q}} \right) \lesssim \left(\int_{\Omega} u^{q} \right)^{\frac{q-2}{q}} \int_{\Omega} |\nabla u|^{2}.$$
 (2.14)

Here $q = \frac{2}{\alpha}$. This resembles the inequality

$$\int_{\Omega} u^{q} \log \left(\frac{u^{q}}{\int_{\Omega} u^{q}} \right) \lesssim \left(\int_{\Omega} |\nabla u|^{2} \right)^{q/2}, \quad q < 2,$$
(2.15)

which was established in [10, 18]. Since q/2 < 1, (2.15) is weaker than (2.14), so it seems that (2.14) cannot be true. Our results imply the following variant of (2.14):

$$\begin{split} &\int_{\Omega} u^{q} \log \left(\frac{u^{q}}{\int_{\Omega} u^{q}} \right) \lesssim \left(\int_{\Omega} u^{q} \right)^{\frac{q-2}{q}} \int_{\Omega} |\nabla u|^{2} \\ &+ \left(\int_{\Omega} u^{q} \right)^{\frac{q-2}{q}} \int_{\Omega} u^{q} \log \left(\frac{u^{q}}{\int_{\Omega} u^{q}} \right) \left(\frac{u^{2-q} - \left(\int_{\Omega} u^{q} \right)^{\frac{2}{q}-1}}{2-q} \right), \quad q > 0, q \neq 2. \quad (2.16) \end{split}$$

Remark 2.2. Inequalities (2.8), (2.12), (2.16) are obtained assuming $\int_{\Omega} r d\rho_{\infty} = 1$ (so that (3.4) is automatically satisfied), but hold without this normalization due to their homogeneity.

Many authors studied (2.5) or related inequalities in the particular case $\psi = \psi_g$, that is, when the driving entropy is compared to its production, cf., e.g., [42, 45, 46, 1, 9]. In this connection, the strict geodesic convexity of the driving entropy normally plays the pivotal role. In [33] (see also [30]) we studied (1.17) for $\psi = \psi_g$ without assuming neither Otto-Wasserstein nor Hellinger-Kantorovich geodesic convexity (we also never assume any similar condition in the present paper). The inequalities obtained there can be further refined [32] be means of studying gradient flows in the spherical Hellinger-Kantorovich space [34, 7], which is beyond the scope of the present paper (though it may seem strange, even non-negativity of the entropy production is uncertain for the spherical Hellinger-Kantorovich flows in the case $\psi \neq \psi_g$). The proofs in the present paper are more direct and simple than in [33] due to the "quasihomogeneous structure" (1.12).

Our last example concerns $g(s) = \frac{1}{2} \log \frac{2s^2}{1+s^2}$, which corresponds to the arctangential heat equation [6]. The relative entropy \mathcal{E}_{ψ_g} generated by this g is geodesically convex neither in the Otto-Wasserstein nor in the Hellinger-Kantorovich sense, cf. [32]. Take $\psi(s) = s \log s - s + 1$. Then we infer the following inequality resembling the log-Sobolev one:

$$\begin{split} \int_{\Omega} (r\log r - r + 1) d\rho_{\infty} \\ \lesssim \int_{\Omega} \frac{1}{r(1+r^2)} |\nabla r|^2 d\rho_{\infty} + \int_{\Omega} r\log r \left(\log \frac{2r^2}{1+r^2}\right) d\rho_{\infty} \quad (2.17) \end{split}$$

provided $\int_{\Omega} r d\rho_{\infty}$ is bounded away from 0.

Nonlinear Fokker-Planck equations akin to (2.2) model behaviour of various stochastic systems, see [20, 44, 27, 5]. The related drift-diffusionreaction equation (1.1) was suggested in [19]. On the other hand, equation (1.1) belongs to the class of nonlinear models (cf. [16, 25, 47, 33, 32, 38,15]) for the spatial dynamics of populations which are tending to achieve the *ideal free distribution* [22, 21] (the distribution which happens if everybody is free to choose its location) in a heterogeneous environment. The dispersal strategy is determined by a local intrinsic characteristic of organisms called *fitness*. The fitness manifests itself as a growth rate, and simultaneously affects the dispersal as the species move along its gradient towards the most favorable environment. In (1.1), $\rho(x, t)$ is the density of organisms, and $f(x,\rho)$ is the fitness. The equilibrium $\rho \equiv \rho_{\infty}$ when the fitness is constantly zero corresponds to the ideal free distribution. The works [17, 8, 37, 47, 30, 29, 31, 33] perform mathematical analysis of some of such fitness-driven models. Our Theorem 3.6 indicates that the populations converge to the ideal free distribution with an exponential rate.

3.Main results

We start by introducing the weak solutions to (1.1)-(1.3), following the lines of [33, 32].

Define

$$G(s) = \int_0^s \xi g'(\xi) d\xi \qquad (s \ge 0),$$

where the integral exists by (1.9). Observe that

$$G'(s) = sg'(s) > 0, \quad (s > 0); \qquad G(0) = 0,$$

so that *G* is a nonnegative continuous increasing function on $[0, \infty)$. Set

$$\Phi(x, u) = \rho_{\infty}(x)G\left(\frac{u}{\rho_{\infty}(x)}\right), \quad u \ge 0.$$

As in [33], we can write (1.1) in the form

$$\partial_t \rho = \Delta \Phi - \operatorname{div}(\Phi_x + \rho f_x) + \rho f,$$
 (3.1)

where Φ stands for $\Phi(x, \rho(x, t))$.

Definition 3.1. Let $\rho^0 \in L^{\infty}(\Omega)$; $Q_T := \Omega \times (0,T)$. A function $\rho \in L^{\infty}(Q_T)$ is called a *weak solution* of (1.1)–(1.3) on [0,T] if for $r = \rho/\rho_{\infty}$ we have $G(r(\cdot)) \in L^2(0,T;H^1(\Omega))$ and

$$\int_{0}^{T} \int_{\Omega} (\rho \partial_{t} \varphi + (-\nabla \Phi + \Phi_{x} + \rho f_{x}) \cdot \nabla \varphi + f \rho \varphi) dx dt$$
$$= \int_{\Omega} \rho^{0}(x) \varphi(x, 0) dx \quad (3.2)$$

for any function $\varphi \in C^1(\overline{\Omega} \times [0, T])$ such that $\varphi(x, T) = 0$. A function $\rho \in L^{\infty}_{loc}([0, \infty); L^{\infty}(\Omega))$ is called a *weak solution* of (1.1)-(1.3) on $[0, \infty)$ if for any T > 0 it is a weak solution on [0, T].

Remark 3.2. For $\rho \in L^{\infty}(Q_T)$ we automatically have $G(r) \in L^{\infty}(Q_T)$, so the condition $G(r(\cdot)) \in L^2(0,T; H^1(\Omega))$ is equivalent to $rg'(r)\nabla r \in L^2(Q_T)$. Here $r = \rho/\rho_{\infty}$.

Formally, the integrand $rg'(r)\psi''(r)|\nabla r|^2$ vanishes if r = 0. Otherwise it can be written as

$$rg'(r)\psi''(r)|\nabla r|^{2} = \frac{1}{r}\frac{\psi''(r)}{g'(r)}|rg'(r)\nabla r|^{2} = \frac{1}{r}\frac{\psi''(r)}{g'(r)}|\nabla G(r)|^{2}.$$

This motivates the following extension of the entropy production suitable for weak solutions.

Definition 3.3. If $\rho \in L^{\infty}(\Omega)$ and $G(r) \in H^{1}(\Omega)$, then the *entropy production* is defined by

$$D\mathcal{E}_{\psi}(\rho) = \int_{\Omega} rg(r)\psi'(r)d\rho_{\infty} + \int_{[r>0]} rg'(r)\psi''(r)|\nabla r|^{2}d\rho_{\infty}$$
$$\equiv \int_{\Omega} rg(r)\psi'(r)d\rho_{\infty} + \int_{[r>0]} \frac{1}{r}\frac{\psi''(r)}{g'(r)}|\nabla G(r)|^{2}d\rho_{\infty}.$$
(3.3)

Remark 3.4. Observe that although the integrand with the gradient in (3.3) is a nonnegative measurable function on Ω , the integral, and hence the entropy production, may be infinite.

The following entropy-entropy production inequality applicable to weak solutions is based on an isoperimetric-type inequality established in Section 4.

Theorem 3.5 (Entropy-entropy production inequality). Suppose that g and ψ satisfy (1.5)–(1.10). Let $U \subset L^{\infty}_{+}(\Omega)$ be a set of functions such that for any $\rho \in U$ and $r = \rho/\rho_{\infty}$, we have $G(r) \in H^{1}(\Omega)$ and

$$\inf_{\rho \in U} \|\rho\|_{L^1(\Omega)} > 0, \tag{3.4}$$

$$\sup\{\mathcal{E}_{\psi}(\rho)\colon \rho\in U\}<\infty.$$
(3.5)

Then there exists C_U such that

$$\mathcal{E}_{\psi}(\rho) \le C_U D \mathcal{E}_{\psi}(\rho) \quad (\rho \in U). \tag{3.6}$$

Proof: The idea is to use the isoperimetric-type inequality provided by Theorem 4.1 (see Section 4). Since we are dealing with a less regular setting at the moment, we argue by approximation.

Take $\rho \in U$ and as usual, put $r = \rho/\rho_{\infty}$. Arguing as in [33, proof of Theorem 1.7], we see that there exists a sequence of functions $G_n \in C(\overline{\Omega}) \cap C^{\infty}(\Omega)$ taking values in (0, a), where $a < G(\infty)$, such that

$$G_n \to G(r(\cdot))$$
 in H^1 and a. e. in Ω .

Set $r_n(x) = G^{-1}(G_n(x))$ and $\rho_n(x) = r_n(x)\rho_{\infty}(x)$, so that $G_n(x) = G(r_n(x))$. Clearly, r_n and ρ_n are positive and reasonably smooth, the sequences $\{r_n\}$ and $\{\rho_n\}$ are bounded in $L^{\infty}(Q_T)$ (specifically, the former is bounded by $G^{-1}(a)$), and by the continuity of G^{-1} we have

$$r_n \rightarrow r$$
, $\rho_n \rightarrow \rho$ a. e. in Ω .

In particular, this implies that ρ_n converges to ρ in $L^1(\Omega)$. Further, by the Lebesgue Dominated Convergence we have

$$\mathcal{E}_{\psi}(\rho_n) \to \mathcal{E}_{\psi}(\rho).$$
 (3.7)

Thus, if we denote the infimum in (3.4) by d_U and the supremum in (3.5) by E_U , there is no loss of generality in assuming that $\|\rho_n\|_{L^1(\Omega)} \ge d_U/2$ and $\mathcal{E}_{\psi}(\rho_n) \le 2E_U$. It follows from Theorem 4.1 that there exist *C* and σ both depending on d_U and E_U (but not on the approximation nor on ρ itself) such that

$$\mathcal{E}_{\psi}(\rho_n) \leq C \left(\int_{\Omega} r_n g(r_n) \psi'(r_n) d\rho_{\infty} + \int_{[r \ge \sigma]} r_n g'(r_n) \psi''(r_n) |\nabla r_n|^2 d\rho_{\infty} \right).$$
(3.8)

By the Lebesgue Dominated Convergence we have

$$\int_{\Omega} r_n g(r_n) \psi'(r_n) d\rho_{\infty} \to \int_{\Omega} r g(r) \psi'(r) d\rho_{\infty}.$$
(3.9)

Further, we have

$$\int_{[r_n \ge \sigma]} r_n g'(r_n) \psi''(r_n) |\nabla r_n|^2 d\rho_{\infty} = \int_{\Omega} \mathbb{1}_{[r_n \ge \sigma]} \frac{\psi''(r_n)}{r_n g'(r_n)} |\nabla G_n|^2 d\rho_{\infty}.$$

On one hand, $\nabla G_n \rightarrow \nabla G$ in $L^2(\Omega)$. On the other hand, the functions

$$h_n = \mathbb{1}_{[r_n \ge \sigma]} \frac{\psi''(r_n)}{r_n g'(r_n)}$$

are uniformly bounded in $L^{\infty}(\Omega)$, and since we obviously have

$$\limsup_{n \to \infty} \mathbb{1}_{[r_n \ge \sigma]} \le \mathbb{1}_{[r \ge \sigma]} \qquad \text{a. e. in } \Omega,$$

we also have

$$\limsup_{n \to \infty} h_n(x) \le \mathbb{1}_{[r \ge \sigma]} \frac{\psi''(r)}{rg'(r)} \qquad \text{a. e. in } \Omega.$$

Using Reverse Fatou's Lemma for products (Lemma A.1 in the Appendix), we obtain

$$\begin{split} \limsup_{n \to \infty} \int_{[r_n \ge \sigma]} r_n g'(r_n) \psi''(r_n) |\nabla r_n|^2 \, d\rho_\infty &= \limsup_{n \to \infty} \int_{\Omega} h_n |\nabla G_n|^2 \, d\rho_\infty \\ &\leq \int_{\Omega} \mathbb{1}_{[r \ge \sigma]} \frac{\psi''(r)}{rg'(r)} |\nabla G|^2 \, d\rho_\infty \\ &\leq \int_{[r>0]} rg'(r) \psi''(r) |\nabla r|^2 \, d\rho_\infty. \end{split}$$

Combining this with (3.7) and (3.9), we see that we can pass to the limit in (3.8) and obtain (3.6) with $C_U = C$.

Theorem 3.6 (Existence and asymptotics of weak solutions). Assume (1.5)–(1.10). Then for any $\rho^0 \in L^{\infty}_+(\Omega)$ there exists a nonnegative weak solution $\rho \in L^{\infty}(\Omega \times (0,\infty))$ of problem (1.1)–(1.3) which enjoys the following properties:

(1) ρ satisfies the entropy dissipation inequality in the sense of measures: for any smooth nonnegative compactly supported function $\chi: (0,T) \rightarrow \mathbb{R}$ we have

$$-\int_0^T \chi'(t)\mathcal{E}_{\psi}(\rho)\,dt \le \int_0^T \chi(t)D\mathcal{E}_{\psi}(\rho)\,dt; \qquad (3.10)$$

(2) the initial entropy satisfies

$$\operatorname{ess\,sup}_{t>0} \mathcal{E}_{\psi}(\rho(t)) \le \mathcal{E}_{\psi}(\rho^{0}); \tag{3.11}$$

(3) ρ satisfies the lower L¹-bound

$$\|\rho(t)\|_{L^{1}(\Omega)} \ge \|\min(\rho^{0}, \rho_{\infty})\|_{L^{1}(\Omega)} \quad a. \ a. \ t > 0;$$
(3.12)

(4) ρ exponentially converges to ρ_{∞} in the sense of entropy:

$$\mathcal{E}_{\psi}(\rho(t)) \le \mathcal{E}_{\psi}(\rho^{0}) e^{-\gamma_{\psi}t}$$
 a. a. $t > 0$, (3.13)

where $\gamma_{\psi} > 0$ can be chosen uniformly over initial data satisfying

$$\|\min(\rho^0, \rho_\infty)\|_{L^1(\Omega)} \ge c, \quad \mathcal{E}_{\psi}(\rho^0) \le C \tag{3.14}$$

with some c, C > 0; (5) for any $p \in [2, +\infty)$,

 $\|\rho(t) - \rho_{\infty}\|_{L^{p}(\Omega)}$

$$\leq e^{-\gamma_p t} \left(1 + \frac{\sup \rho_{\infty}}{\inf \rho_{\infty}} \right) \|\rho^0 - \rho_{\infty}\|_{L^p(\Omega)} \quad a. \ a. \ t > 0, \quad (3.15)$$

where $\gamma_p > 0$ can be chosen uniformly over initial data satisfying

$$\|\min(\rho^0, \rho_\infty)\|_{L^1(\Omega)} \ge c, \quad \|\rho^0\|_{L^p(\Omega)}^p \le C.$$
 (3.16)

Proof: For the proof of existence, the approximating procedure used in [33] is still applicable in the current setting. As a matter of fact, the existence result in [33] requires that $|f(x,\xi)|$ is either large or does not depend on x when ξ is near 0 or near $+\infty$. A similar requirement was imposed for large ξ . However, these assumptions are only needed in order to ensure that any $u \in L^{\infty}_{+}(\Omega)$ can be bounded from above by a function $u_c: \Omega \to \mathbb{R}$ satisfying $f(x, u_c(x)) \equiv cst$ and that u can be bounded from below by another such function provided that u is uniformly bounded away from 0. This is still the case in the current setting. Indeed, assume for simplicity that u is continuous on $\overline{\Omega}$. Set $c = \max_{\Omega} g(u/\rho_{\infty})$ and put $u_c = \rho_{\infty} g^{-1}(c)$, then clearly $f(x, u_c(x)) = -g(u_c(x)/\rho_{\infty}) = -c$; moreover, it follows from the monotonicity of g that $u \leq u_c$, as required. The existence of a lower bound is proved in a similar way, cf. [33, Remark 3.4].

Inequality (3.11) is proved in the same way as the analogous inequality in [33].

We prove that the solution constructed as in [33] satisfies (3.10). To this end it suffices to check that this inequality is preserved under the passage to the limit. Specifically, assume that smooth enough approximate solutions $\{\rho_n\}$ are uniformly bounded in $L^{\infty}(Q_T)$ and converge to ρ a. e. in Q_T , while

$$G_n := G(r_n) \to G(r)$$
 weakly in $L^2(\Omega)$.

By the Lebesgue Dominated Convergence we have

$$\mathcal{E}_{\psi}(\rho_n) \to \mathcal{E}_{\psi}(\rho),$$
 (3.17)

$$\int_{\Omega} r_n g(r_n) \psi'(r_n) \, d\rho_{\infty} \to \int_{\Omega} r g(r) \psi'(r) \, d\rho_{\infty}. \tag{3.18}$$

Arguing as in [33, proof of Theorem 3.9] and, in particular, taking into account that $\nabla G = 0$ a. e. on the set $\{(x, t) \in Q_T : r = 0\}$ and $\nabla G_n = 0$ a. e. on the set $\{(x, t) \in Q_T : r_n = 0\}$, we conclude that for any $\delta > 0$ we have

$$\iint_{\{(x,t)\in Q_T: r>0\}} \frac{\chi(t)\psi''(r)}{\max(r,\delta)g'(r)} |\nabla G|^2 d\rho_{\infty} dt$$

$$\leq \liminf_{n\to\infty} \iint_{\{(x,t)\in Q_T: r_n>0\}} \frac{\chi(t)\psi''(r_n)}{\max(r_n,\delta)g'(r_n)} |\nabla G_n|^2 d\rho_{\infty} dt$$

$$\leq \liminf_{n\to\infty} \iint_{\{(x,t)\in Q_T: r_n>0\}} \frac{\chi(t)\psi''(r_n)}{r_ng'(r_n)} |\nabla G_n|^2 d\rho_{\infty} dt,$$

so sending $\delta \rightarrow \infty$ and applying Beppo Levy's theorem, we obtain

$$\iint_{\{(x,t)\in Q_T: r>0\}} \frac{\chi(t)\psi''(r)}{rg'(r)} |\nabla G|^2 d\rho_{\infty} dt$$
$$\leq \liminf_{n\to\infty} \iint_{\{(x,t)\in Q_T: r_n>0\}} \frac{\chi(t)\psi''(r_n)}{r_ng'(r_n)} |\nabla G_n|^2 d\rho_{\infty} dt$$

or, equivalently,

$$\iint_{\{(x,t)\in Q_T: r>0\}} \chi(t)rg'(r)\psi''(r)|\nabla r|^2 d\rho_{\infty} dt$$
$$\leq \liminf_{n\to\infty} \iint_{\{(x,t)\in Q_T: r_n>0\}} \chi(t)r_ng'_n(r)\psi''(r_n)|\nabla r_n|^2 d\rho_{\infty} dt.$$

Combining this with (3.17) and (3.18), we obtain (3.10).

14

We now prove the exponential convergence of the solution to the steady state. Let ρ be a weak solution of (1.1)-(1.3) with the initial data satisfying (3.14). Let $U \subset L^{\infty}_+$ be the set of functions such that for any $u \in U$, we have $G(u/\rho_{\infty}) \in H^1(\Omega)$ and $||u||_{L^1(\Omega)} \ge c$, $\mathcal{E}_{\psi}(u) \le C$ with the same c and Cas in (3.14). By Theorem 3.5 we have the entropy-entropy production inequality (3.6) for U. It follows from the bounds (3.11) and (3.12) that $\rho(t) \in U$ for a. a. t > 0. Combining the entropy dissipation and entropyentropy production inequalities, we get

$$\partial_t \mathcal{E}_{\psi}(\rho(t)) \leq -C_U^{-1} \mathcal{E}_{\psi}(\rho(t))$$

in the sense of measures. Set $\gamma_{\psi} = C_U^{-1}$ and $\phi(t) = \mathcal{E}_{\psi}(\rho(t))e^{\gamma_{\psi}t}$. It is easy to check that that $\partial_t \phi(t) \leq 0$ in the sense of measures, whence ϕ a. e. coincides with a nonincreasing function. Moreover,

$$\operatorname{ess\,sup}_{t>0}\phi(t) = \operatorname{ess\,lim\,sup}_{t\to 0}\phi(t) = \operatorname{ess\,lim\,sup}_{t\to 0}\mathcal{E}_{\psi}(\rho(t))e^{\gamma_{\psi}t} \leq \mathcal{E}_{\psi}(\rho^{0})$$

by virtue of (3.11), so $\phi(t) \leq \mathcal{E}_{\psi}(\rho^0)$ for a. a. t > 0, which implies (3.13).

We will now use (3.13) with $\psi(s) = |s - 1|^p$, which is a C^2 -function for $p \ge 2$, and satisfies the assumptions (1.6)–(1.8). We immediately get

$$\begin{split} \|\rho(t) - \rho_{\infty}\|_{L^{p}(\Omega)} &\leq (\sup \ \rho_{\infty})^{(p-1)/p} [\mathcal{E}_{\psi}(\rho(t))]^{1/p} \\ &\leq (\sup \ \rho_{\infty})^{(p-1)/p} [\mathcal{E}_{\psi}(\rho^{0})]^{1/p} e^{-\gamma_{\psi}t/p} \\ &\leq \left(\frac{\sup \ \rho_{\infty}}{\inf \ \rho_{\infty}}\right)^{(p-1)/p} \|\rho^{0} - \rho_{\infty}\|_{L^{p}(\Omega)} e^{-\gamma_{p}t} \\ &\leq \left(1 + \frac{\sup \ \rho_{\infty}}{\inf \ \rho_{\infty}}\right) \|\rho^{0} - \rho_{\infty}\|_{L^{p}(\Omega)} e^{-\gamma_{p}t}, \quad (3.19) \end{split}$$

where $\gamma_p = \gamma_{\psi}/p$. Uniform boundedness of $\|\rho^0\|_{L^p}^p$ implies a bound on $\mathcal{E}_{\psi}(\rho^0)$.

4.Inequality

In this section we prove a refined version of our unbalanced convex Sobolev inequality in the smooth case. **Theorem 4.1.** Assume (1.5)–(1.10). Let $U \in C^{\infty}_{+}(\Omega)$ be such that

$$\inf \{ \|\rho\|_{L^1(\Omega)} \colon \rho \in U \} > 0,$$

$$\sup \{ \mathcal{E}_{\psi}(\rho) \colon \rho \in U \} < \infty.$$

Then there exist constants (independent of ρ *)* C > 0*,* $0 < \alpha < \beta < \infty$ *, such that*

$$\mathcal{E}_{\psi}(\rho) \leq C \left(\int_{\Omega} rg(r)\psi'(r) d\rho_{\infty} + \int_{[\alpha < r < \beta]} rg'(r)\psi''(r) |\nabla r|^2 d\rho_{\infty} \right) \quad (\rho \in U). \quad (4.1)$$

The proof of Theorem 4.1 is based on the next two lemmas.

Lemma 4.2. *Fix* $0 < \alpha < \beta < 1$ *. Then*

$$\begin{split} \left| \left[\alpha < r < \beta \right] \right| \int_{\left[\alpha < r < \beta \right]} rg'(r)\psi''(r) |\nabla r|^2 d\rho_{\infty} \\ &\geq C_{\alpha\beta} \min\left(\left| \left[r \le \alpha \right] \right|^{2(d-1)/d}, \left| \left[r \ge \beta \right] \right|^{2(d-1)/d} \right) (4.2) \end{split}$$

Proof: If the minimum on the right-hand side vanishes, there is nothing to prove. Otherwise the set $[\alpha < r < \beta]$ has nonzero measure. In what follows, we use some facts from geometric measure theory, which can be found in [39]. The relative perimeter of a Lebesgue measurable set *A* of locally finite perimeter with respect to Ω is $P(A;\Omega) = |\mu_A|(\Omega)$, where $\mu_A := \nabla 1_A$ is the Gauss-Green measure associated with *A*. The support of μ_A is contained in the topological boundary of *A*.

We have:

$$\int_{[\alpha < r < \beta]} rg'(r)\psi''(r)|\nabla r|^2 d\rho_{\infty}$$

$$\geq \inf_{\Omega} \rho_{\infty} \min_{s \in [\alpha,\beta]} (sg'(s)\psi''(s)) \int_{[\alpha < r < \beta]} |\nabla r|^2 dx$$

$$\geq \frac{\inf_{\Omega} \rho_{\infty} \min_{s \in [\alpha,\beta]} (sg'(s)\psi''(s))}{\left| [\alpha < r < \beta] \right|} \left(\int_{[\alpha < r < \beta]} |\nabla r| dx \right)^2 \quad (4.3)$$

The last integral is the variation of *r* over $[\alpha < r < \beta]$, which can be computed using the coarea formula:

$$\int_{[\alpha < r < \beta]} |\nabla r| dx = \int_{-\infty}^{\infty} P([r < t]; [\alpha < r < \beta]) dt$$
$$= \int_{\alpha}^{\beta} P([r < t]; [\alpha < r < \beta]) dt$$
$$= \int_{\alpha}^{\beta} P([r < t]; \Omega) dt, \qquad (4.4)$$

where we first use the observation that the support of the Gauss–Green measure associated with [r < t] is disjoint with $[\alpha < r < \beta]$ whenever $t \le \alpha$ or $t \ge \beta$, and then we notice that if $\alpha < t < \beta$, then the part of the support of the Gauss–Green measure of [r < t] lying in Ω is contained in $[\alpha < r < \beta]$.

Invoking the relative isoperimetric inequality (1.4), we estimate

$$P([r < t]; \Omega) \ge C_{\Omega} \min\left(\left|[r < t]\right|^{(d-1)/d}, \left|\Omega \setminus [r < t]\right|^{(d-1)/d}\right)$$

and since for $t \in (\alpha, \beta)$ we have

$$[r \le \alpha] \subset [r < t] \subset [r < \beta] = \Omega \setminus [r \ge \beta]$$

we see that

$$P([r < t]; \Omega) \ge C_{\Omega} \min\left(\left| [r \le \alpha] \right|^{(d-1)/d}, \left| [r \ge \beta] \right|^{(d-1)/d} \right)$$

Combining this estimate with (4.3) and (4.4), we obtain (4.2).

Lemma 4.3. Given $\varepsilon > 0$, there exists $C_{\varepsilon} > 0$ such that

$$\psi(s) \le C_{\varepsilon} sg(s)\psi'(s) \quad (s \ge \varepsilon).$$
 (4.5)

Proof: Applying L'Hôpital's rule for liminf, and remembering that *g* is an increasing function, we obtain

$$\liminf_{s \to \infty} \frac{sg(s)\psi'(s)}{\psi(s)} \ge \liminf_{s \to \infty} \left(g(s) + sg'(s) + \frac{sg(s)\psi''(s)}{\psi'(s)} \right)$$
$$\ge \lim_{s \to \infty} g(s) > 0, \quad (4.6)$$

$$\liminf_{s \to 1} \frac{sg(s)\psi'(s)}{\psi(s)} = \liminf_{s \to 1} \frac{g(s)\psi'(s)}{\psi(s)}$$
$$\geq \liminf_{s \to 1} \left(g'(s) + \frac{g(s)\psi''(s)}{\psi'(s)} \right) \geq g'(1) > 0. \quad (4.7)$$

In (4.6) and (4.7) we have used the fact that for $s \neq 1$, the signs of g(s) and $\psi'(s)$ coincide, while $\psi''(s) > 0$. Obviously, (4.6) and (4.7) imply (4.5).

Proof of Theorem **4**.**1**: We claim that there exists $\beta > 0$ such that

$$\delta := \inf_{\rho \in U} \left| [r \ge \beta] \right| > 0 \tag{4.8}$$

Indeed, it follows from (1.8) (L'Hôpital's rule) that

$$\lim_{s\to\infty}\frac{\psi(s)}{s}=\infty.$$

As the entropy \mathcal{E}_{ψ} is bounded on U, by de la Vallée Poussin's theorem the set U is uniformly integrable. Put

$$m = \frac{1}{2|\Omega|} \inf_{\rho \in U} \|\rho\|_{L^1(\Omega)};$$

for any $\rho \in U$ we have

$$2|\Omega|m \le ||\rho||_{L^1(\Omega)} = \int_{[\rho < m]} \rho \, dx + \int_{[\rho \ge m]} \rho \, dx \le |\Omega|m + \omega_U \left(\left| [\rho \ge m] \right| \right),$$

where ω_U is the modulus of integrability of U. Hence

$$\omega_U(|[\rho \ge m]|) \ge |\Omega|m,$$

which clearly implies a lower bound on $|[\rho \ge m]|$ and a fortiori on $|[r \ge \beta]|$ with $\beta = \frac{m}{\sup \rho_{\infty}}$.

Clearly, there is no loss in generality in assuming $\beta < 1$ in (4.8).

In what follows we fix α and β such that $0 < \alpha < \beta < 1$ and β satisfies (4.8). Denote

$$\sigma := \left| [r \le \alpha] \right|,$$

$$\tau := \left| [\alpha < r < \beta] \right|$$

18

and also

$$D_{\alpha\beta}\mathcal{E}_{\psi}(\rho) := \int_{\Omega} rg(r)\psi'(r)\,d\rho_{\infty} + \int_{[\alpha < r < \beta]} rg'(r)\psi''(r)|\nabla r|^2\,d\rho_{\infty}$$

Assume for now that $\sigma > 0$. Using Lemma 4.2, we have

$$D_{\alpha\beta}\mathcal{E}_{\psi}(\rho) \geq \int_{[\alpha < r < \beta]} rg(r)\psi'(r)\,d\rho_{\infty} + \int_{[\alpha < r < \beta]} rg'(r)\psi''(r)|\nabla r|\,d\rho_{\infty}$$
$$\geq \left(\min_{s \in [\alpha,\beta]} sg(s)\psi'(s)\right)\tau + C_{\alpha\beta}\frac{1}{\tau}\min\left(\sigma^{2(d-1)/d}, \left|[r \geq \beta]\right|^{2(d-1)/d}\right).$$

Taking into account (4.8), we can write

$$D_{\alpha\beta}\mathcal{E}_{\psi}(\rho) \geq \frac{c}{2} \left(\tau + \frac{\min(\sigma^{2(d-1)/d}, \delta^{2(d-1)/d})}{\tau} \right)$$

with c independent of ρ . Estimating

$$\tau + \frac{\min(\sigma^{2(d-1)/d}, \delta^{2(d-1)/d})}{\tau} \ge 2\min(\sigma^{(d-1)/d}, \delta^{(d-1)/d}).$$

we obtain

$$D_{\alpha\beta}\mathcal{E}_{\psi}(\rho) \ge c\min(\sigma^{(d-1)/d}, \delta^{(d-1)/d}).$$
(4.9)

If $\sigma = 0$, this estimate trivially holds with any *c*. Since σ is a priori bounded from above by $|\Omega|$, (4.9) implies that

$$\sigma \leq C \min\left(\frac{\sigma}{|\Omega|^{1/d}}, \frac{\delta^{(d-1)/d}\sigma}{|\Omega|}\right)$$
$$\leq C \min(\sigma^{(d-1)/d}, \delta^{(d-1)/d}) \leq C D_{\alpha\beta} \mathcal{E}_{\psi}(\rho). \quad (4.10)$$

Evoking Lemma 4.3, we obtain

$$\begin{split} \mathcal{E}_{\psi}(\rho) &= \int_{[r>\alpha]} \psi(r) \, d\rho_{\infty} + \int_{[r\leq\alpha]} \psi(r) \, d\rho_{\infty} \\ &\leq C_{\alpha} \int_{[r>\alpha]} r \psi'(r) g(r) \, d\rho_{\infty} + \psi(0) \int_{[r\leq\alpha]} d\rho_{\infty} \\ &\leq C_{\alpha} D_{\alpha\beta} \mathcal{E}_{\psi}(\rho) + C_{0} \Big| [r\leq\alpha] \Big| \\ &\leq C D_{\alpha\beta} \mathcal{E}_{\psi}(\rho) + C\sigma. \end{split}$$

Using (4.10) to estimate σ by $D_{\alpha\beta}\mathcal{E}_{\psi}$, we obtain (4.1)

Appendix A. Reverse Fatou's Lemma for products

Lemma A.1. Let (S, Σ, μ) be a measure space. Suppose that $\{f_n\}$ is bounded in $L^{\infty}(S, \mu)$ and $\{g_n\}$ converges to a nonnegative limit g in $L^1(S, \mu)$. Then

$$\limsup_{n \to \infty} \int_{S} f_{n} g_{n} d\mu \leq \int_{S} \left(\limsup_{n \to \infty} f_{n} \right) g d\mu.$$
(A.1)

Proof: As we have $|f_ng| \le (\sup_n ||f_n||)g$, we can use Reverse Fatou's Lemma obtaining

$$\limsup_{n \to \infty} \int_{S} f_{n}g \, d\mu \leq \int_{S} \left(\limsup_{n \to \infty} f_{n}g\right) d\mu$$
$$= \int_{S} \left(\limsup_{n \to \infty} f_{n}\right) g \, d\mu. \tag{A.2}$$

Further, it is clear that

$$\lim_{n \to \infty} \int_{S} f_n(g_n - g) d\mu = 0.$$
 (A.3)

Using (A.2) and (A.3) we obtain

$$\limsup_{n \to \infty} \int_{S} f_{n}g_{n} = \limsup_{n \to \infty} \left(\int_{S} f_{n}g \, d\mu + \int_{S} f_{n}(g_{n} - g) \, d\mu \right)$$
$$= \limsup_{n \to \infty} \int_{S} f_{n}g \, d\mu + \lim_{n \to \infty} \int_{S} f_{n}(g_{n} - g) \, d\mu$$
$$\leq \int_{S} \left(\limsup_{n \to \infty} f_{n}\right) g \, d\mu,$$

as claimed.

Acknowledgments. This research was partially supported by the Portuguese Government through FCT/MCTES and by ERDF through PT2020 (projects UID/MAT/00324/2019, PTDC/MAT-PUR/28686/2017 and TUBITAK/0005/2014).

Conflict of interest statement. We have no conflict of interest to declare.

References

- [1] L. Ambrosio, N. Gigli, and G. Savaré. *Gradient Flows: in Metric Spaces and in the Space of Probability Measures.* Basel: Birkhäuser Basel, 2008.
- [2] A. Arnold, P. Markowich, G. Toscani, and A. Unterreiter. On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. *Comm. Partial Differential Equations*, 26(1-2):43–100, 2001.
- [3] D. Bakry and M. Émery. Diffusions hypercontractives. In Séminaire de Probabilités XIX 1983/84, pages 177-206. Springer, 1985.
- [4] W. Beckner. A generalized Poincaré inequality for Gaussian measures. Proc. Amer. Math. Soc., 105(2):397–400, 1989.
- [5] T. Bodineau, J. Lebowitz, C. Mouhot, and C. Villani. Lyapunov functionals for boundarydriven nonlinear drift-diffusion equations. *Nonlinearity*, 27(9):2111–2132, 2014.
- [6] Y. Brenier. Geometric origin and some properties of the arctangential heat equation. *Tunis*. *J. Math.*, 1(4):561–584, 2019.
- [7] Y. Brenier and D. Vorotnikov. On optimal transport of matrix-valued measures. *ArXiv e-prints*, Aug. 2018.
- [8] R. S. Cantrell, C. Cosner, Y. Lou, and C. Xie. Random dispersal versus fitness-dependent dispersal. J. Differential Equations, 254(7):2905–2941, 2013.
- [9] J. Carrillo, A. Jüngel, P. Markowich, G. Toscani, and A. Unterreiter. Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. *Monatshefte für Mathematik*, 133(1):1–82, 2001.
- [10] J. A. Carrillo, J. Dolbeault, I. Gentil, and A. Jüngel. Entropy-energy inequalities and improved convergence rates for nonlinear parabolic equations. *Discrete Contin. Dyn. Syst. Ser. B*, 6(5):1027–1050, 2006.
- [11] C. Chainais-Hillairet, A. Jüngel, and S. Schuchnigg. Entropy-dissipative discretization of nonlinear diffusion equations and discrete Beckner inequalities. *ESAIM Math. Model. Numer. Anal.*, 50(1):135–162, 2016.
- [12] L. Chizat and S. Di Marino. A tumor growth model of hele-shaw type as a gradient flow. *arXiv preprint arXiv:1712.06124*, 2017.
- [13] L. Chizat, G. Peyré, B. Schmitzer, and F.-X. Vialard. An interpolating distance between optimal transport and Fisher–Rao metrics. *Foundations of Computational Mathematics*, 18(1):1– 44, 2018.
- [14] L. Chizat, G. Peyré, B. Schmitzer, and F.-X. Vialard. Unbalanced optimal transport: Dynamic and Kantorovich formulations. *Journal of Functional Analysis*, 274(11):3090–3123, 2018.
- [15] C. Cosner. A dynamic model for the ideal-free distribution as a partial differential equation. *Theoretical Population Biology*, 67(2):101–108, 2005.
- [16] C. Cosner. Beyond diffusion: conditional dispersal in ecological models. In J. Mallet-Paret et al., editor, *Infinite Dimensional Dynamical Systems*, pages 305–317. Springer, 2013.
- [17] C. Cosner and M. Winkler. Well-posedness and qualitative properties of a dynamical model for the ideal free distribution. *Journal of mathematical biology*, 69(6-7):1343–1382, 2014.
- [18] J. Dolbeault, I. Gentil, A. Guillin, and F.-Y. Wang. L^q-functional inequalities and weighted porous media equations. *Potential Anal.*, 28(1):35–59, 2008.
- [19] T. D. Frank. Asymptotic properties of nonlinear diffusion, nonlinear drift-diffusion, and nonlinear reaction-diffusion equations. Ann. Phys., 13(7-8):461–469, 2004.
- [20] T. D. Frank. *Nonlinear Fokker-Planck equations*. Springer Series in Synergetics. Springer-Verlag, Berlin, 2005. Fundamentals and applications.
- [21] S. D. Fretwell. Populations in a seasonal environment. Princeton University Press, 1972.

- [22] S. D. Fretwell and H. L. Lucas. On territorial behavior and other factors influencing habitat distribution in birds I. Theoretical development. *Acta Biotheoretica*, 19(1):16–36, 1969.
- [23] T. Gallouët, M. Laborde, and L. Monsaingeon. An unbalanced optimal transport splitting scheme for general advection-reaction-diffusion problems. *arXiv:1704.04541*, 2017.
- [24] T. O. Gallouët and L. Monsaingeon. A JKO splitting scheme for Kantorovich-Fisher-Rao gradient flows. SIAM J. Math. Anal., 49(2):1100–1130, 2017.
- [25] I. T. Heilmann, U. H. Thygesen, and M. P. Sørensen. Spatio-temporal pattern formation in predator-prey systems with fitness taxis. *Ecological Complexity*, 34:44–57, 2018.
- [26] R. Jordan, D. Kinderlehrer, and F. Otto. The variational formulation of the Fokker–Planck equation. *SIAM journal on mathematical analysis*, 29(1):1–17, 1998.
- [27] A. Jüngel. *Entropy methods for diffusive partial differential equations*. SpringerBriefs in Mathematics. Springer, [Cham], 2016.
- [28] B. Khesin, J. Lenells, G. Misioł ek, and S. C. Preston. Geometry of diffeomorphism groups, complete integrability and geometric statistics. *Geom. Funct. Anal.*, 23(1):334–366, 2013.
- [29] S. Kondratyev, L. Monsaingeon, and D. Vorotnikov. A fitness-driven cross-diffusion system from population dynamics as a gradient flow. J. Differential Equations, 261(5):2784–2808, 2016.
- [30] S. Kondratyev, L. Monsaingeon, and D. Vorotnikov. A new optimal transport distance on the space of finite Radon measures. *Adv. Differential Equations*, 21(11-12):1117–1164, 2016.
- [31] S. Kondratyev, L. Monsaingeon, and D. Vorotnikov. A new multicomponent Poincaré– Beckner inequality. J. Funct. Anal., 272(8):3281–3310, 2017.
- [32] S. Kondratyev and D. Vorotnikov. Spherical Hellinger-Kantorovich gradient flows. *SIAM J. Math. Anal.* To appear.
- [33] S. Kondratyev and D. Vorotnikov. Nonlinear Fokker-Planck equations with reaction as gradient flows of the free energy. *arXiv preprint arXiv:1706.08957*, 2017.
- [34] V. Laschos and A. Mielke. Geometric properties of cones with applications on the hellingerkantorovich space, and a new distance on the space of probability measures. *Journal of Functional Analysis*, 2019.
- [35] M. Liero, A. Mielke, and G. Savaré. Optimal transport in competition with reaction: the Hellinger-Kantorovich distance and geodesic curves. *SIAM J. Math. Anal.*, 48(4):2869–2911, 2016.
- [36] M. Liero, A. Mielke, and G. Savaré. Optimal entropy-transport problems and a new Hellinger-Kantorovich distance between positive measures. *Inventiones mathematicae*, 211(3):969–1117, 2018.
- [37] Y. Lou, Y. Tao, and M. Winkler. Approaching the ideal free distribution in two-species competition models with fitness-dependent dispersal. SIAM J. Math. Anal., 46(2):1228–1262, 2014.
- [38] A. D. MacCall. *Dynamic geography of marine fish populations*. Washington Sea Grant Program Seattle, 1990.
- [39] F. Maggi. Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2012.
- [40] V. G. Maz'ja. Sobolev spaces. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova.
- [41] K. Modin. Generalized Hunter-Saxton equations, optimal information transport, and factorization of diffeomorphisms. *J. Geom. Anal.*, 25(2):1306–1334, 2015.
- [42] F. Otto. The geometry of dissipative evolution equations: the porous medium equation. *Comm. Partial Differential Equations*, 26(1-2):101–174, 2001.

UNBALANCED SOBOLEV INEQUALITIES

- [43] F. Rezakhanlou. Optimal transport problem and contact structures. *preprint*, 2015.
- [44] C. Tsallis. Introduction to nonextensive statistical mechanics. Springer, 2009.
- [45] C. Villani. *Topics in optimal transportation*. American Mathematical Soc., 2003.
- [46] C. Villani. Optimal transport: old and new. Springer Science & Business Media, 2008.
- [47] Q. Xu, A. Belmonte, R. deForest, C. Liu, and Z. Tan. Strong solutions and instability for the fitness gradient system in evolutionary games between two populations. J. Differential Equations, 262(7):4021-4051, 2017.

Stanislav Kondratyev CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal *E-mail address*: kondratyev@mat.uc.pt

DMITRY VOROTNIKOV CMUC, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COIMBRA, 3001-501 COIMBRA, PORTUGAL *E-mail address*: mitvorot@mat.uc.pt