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Abstract: In the context of regular unital categories we introduce an intrinsic ver-
sion of the notion of a Schreier split epimorphism, originally considered for monoids.

We show that such split epimorphisms satisfy the same homological properties
as Schreier split epimorphisms of monoids do. This gives rise to new examples of
S -protomodular categories, and allows us to better understand the homological
behaviour of monoids from a categorical perspective.
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1. Introduction
Schreier extensions of monoids, introduced in [23], have been studied by

Patchkoria in [21, 20] in connection with the cohomology of monoids with coef-
�cients in semimodules. Indeed, Patchkoria's second cohomology monoids can
be described in terms of Schreier extensions. Moreover, Schreier split extensions
correspond actually to monoid actions [22, 17], where an action of a monoid B
on a monoid X is a monoid homomorphism from B to the monoid EndpXq of
endomorphisms of X. These split extensions turned out to have the classical
homological properties of split extensions of groups, such as the Split Short
Five Lemma (see [9, 10] for more details on these properties).
In order to better understand this phenomenon of a distinguished class of

(split) extensions of monoids behaving as (split) extensions of groups, Schreier
extensions of monoids have been studied from a categorical point of view. The
category of groups is protomodular [2], while the category of monoids is not.
This led to the study of the notion of protomodularity relativised with respect
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to a suitable class S of split epimorphisms, giving rise to the notion of an S -
protomodular category [11], having the category of monoids with Schreier split
epimorphisms as a key example. Later, in [16] it was shown that every Jónsson�
Tarski variety of universal algebras [15] is an S -protomodular category with
respect to (a suitable generalisation of) the class of Schreier split epimorphisms.
These categories satisfy relative versions of the basic properties of protomodular
categories.
However, this categorical description of the homological properties of Schreier

extensions of monoids is not entirely satisfactory. The de�nition of a Schreier
(split) extension is not categorical, because it depends crucially on the element-
wise approach involving a Schreier retraction, which is just a set-theoretical
map (rather than a morphism of monoids). Moreover, for the same category,
there may be several di�erent classes of split epimorphisms that give rise to
a structure of an S -protomodular category: in the case of monoids, some of
such di�erent classes have been identi�ed (see [9] and [12] for a description of
these examples). For these reasons, the notion of an S -protomodular category
is able to capture only some of the (very strong) homological properties of
Schreier split epimorphisms. Indeed, this notion covers other situations that
are not so well-behaved.
The aim of the present paper is to give a characterisation of Schreier split epi-

morphisms in completely categorical terms, without using elements. In order
to do that, we use imaginary morphisms�in the sense of Bourn and Janelidze,
see [6, 8, 7, 24]�for the categorical Schreier retractions. The advantage of ob-
taining this characterisation is two-fold. On one hand, this approach may allow
a sharper categorical interpretation of the homological properties of Schreier
extensions than the one obtained through the notion of an S -protomodular
category. On the other hand, our notion of intrinsic Schreier split extension,
being categorical, can be considered in a wider context than that of Jónsson�
Tarski varieties, namely in regular unital [3] categories (under some additional
assumptions). This may allow us to develop a meaningful cohomology theory
for regular unital categories, which on one hand extends the well-established
cohomology theory for semi-abelian categories [13], and on the other hand in-
terprets categorically Patchkoria's cohomology of monoids. This is material for
future work.
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2. Schreier split extensions of monoids
In this section we recall from [9, 10] the main de�nitions and properties

concerning Schreier split extensions.
A split epimorphism of monoids f with chosen section s and kernel K

K � ,2
k
,2 pX, ¨, 1q

f
,2,2 Y

slr (1)

is called a Schreier split epimorphism if, for every x P X, there exists a
unique element a P K such that x “ kpaq ¨ sfpxq. Equivalently, if there exists
a unique function q : X 99K K such that x “ kqpxq ¨ sfpxq for all x P X.
We emphasise the fact that q is just a function (not necessarily a morphism of
monoids) by using an arrow of type 99K.
The uniqueness property may be replaced [10, Proposition 2.4] by an extra

condition on q: the couple pf, sq is a Schreier split epimorphism if and only if

(S1) x “ kqpxq ¨ sfpxq, for all x P X;
(S2) qpkpaq ¨ spyqq “ a, for all a P K, y P Y .

Remark 2.1. Recall from [9] that Schreier split epimorphisms are also called
right homogenous split epimorphisms. A split epimorphism as in (1) is
called left homogenous if, for every x P X, there exists a unique element
a P K such that x “ sfpxq ¨ kpaq.

Proposition 2.2. [9, Proposition 2.1.5] Given a Schreier split extension as
in (1), the following hold:

(S3) qk “ 1K;
(S4) qs “ 0;
(S5) qp1q “ 1;
(S6) kqpspyq ¨ kpaqq ¨ spyq “ spyq ¨ kpaq, for all a P K, y P Y .

We say that a split epimorphism (with �xed section s) is a strongly split
epimorphism [4] (see also [18], where the same notion was considered, in the
regular context, under the name of regular point) if its kernel k and section s
form a jointly extremal-epimorphic pair pk, sq. It is stably strong [19] if every
pullback of it along any morphism is a strongly split epimorphism (with the
section induced by s).

Lemma 2.3. [9, Lemma 2.1.6] Any Schreier split epimorphism is strongly split.

It is easy to see that every strongly split epimorphism pf, sq is such that f
is the cokernel of its kernel, hence it gives rise to a split extension. The split
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extension (1) is then called a Schreier split extension and the map q is
called the associated (Schreier) retraction. It is indeed a retraction, by
(S3) above.
Actually any Schreier split epimorphism is stably strong, since Schreier split

epimorphisms are stable under pullbacks:

Proposition 2.4. [9, Proposition 2.3.4] Schreier split epimorphisms are stable
under pullbacks along arbitrary morphisms.

Corollary 2.5. Any Schreier split epimorphism is stably strong.

Some examples of Schreier split extensions are given by direct products:

Proposition 2.6. [9, Proposition 2.2.1] A split extension underlying a product
of monoids

X � ,2
x1X ,0y

,2 X ˆ Y
πY

,2,2 Y
x0,1Y ylr

is always a Schreier split extension.

Corollary 2.7. Any terminal split extension and identity split extension

X � ,2
1X

,2 X
!X

,2,2 0
0Xlr and 0 � ,2

0X
,2 X

1X
,2,2 X

1Xlr

is a Schreier split extension.

Several other examples of Schreier split extensions are considered in [9].
A useful property of such split extensions is the following:

Proposition 2.8. [10, Lemma 4.1] Any morphism between two Schreier split
extensions

K � ,2
k

,2

g

��

X
f

,2,2

g

��

q
lr Y

slr

h

��

K 1 � ,2
k1

,2 X 1

f 1
,2,2

q1
lr Y 1

s1lr

is compatible with respect to their retractions, i.e., gq “ q1g.
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3.S -protomodular categories
In this section we recall the de�nition of an S -protomodular category, with

respect to a class S of points in a category with a zero object.
Let C be a �nitely complete category. A point in C is a split epimorphism f

with a chosen section s:

X
f
,2,2 Y,

slr fs “ 1Y .

We say that a point is (stably) strong when it is a (stably) strongly split
epimorphism. Consequently, its kernel k and section s form a jointly extremal-
epimorphic pair pk, sq, and pf, sq is part of a split extension.
We denote by PtpCq the category of points in C, whose morphisms are pairs of

morphisms which form commutative squares with both the split epimorphisms
and their sections. The functor cod: PtpCq Ñ C associates with every split
epimorphism its codomain. It is a �bration, usually called the �bration of
points. For each object Y of C, we denote by PtY pCq the �bre of this �bration,
whose objects are the points with codomain Y .
Let S be a class of points in C which is stable under pullbacks along any

morphism. If we look at it as a full subcategory S -PtpCq of PtpCq, then it
gives rise to a sub�bration S -cod of the �bration of points.

De�nition 3.1. [9, De�nition 8.1.1] Let C be a pointed �nitely complete cat-
egory, and S a pullback-stable class of points. We say that C is S -proto-
modular when:

(1) every point in S -PtpCq is a strong point;
(2) S -PtpCq is closed under �nite limits in PtpCq.

Example 3.2. [9] The categoryMon of monoids is S -protomodular with respect
to the class S of Schreier split epimorphism.

Example 3.3. [16] We recall that a variety of universal algebras is called a
Jónsson�Tarski variety [15] when its theory contains a unique constant 0
and a binary operation ` such that x ` 0 “ x “ 0 ` x. So an algebra is a
unitary magma, possibly equipped with additional operations.
Every Jónsson�Tarski variety is an S -protomodular category with respect

to the class of Schreier split epimorphisms. Indeed, the de�nition of a Schreier
split epimorphism makes sense also in this wider context, and it gives rise to a
whole family of examples of S -protomodular categories.
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4. Imaginary morphisms
The technique of imaginary morphisms stems from the work of Bourn and

Janelidze [6, 8, 7]; it was further explored in [24] by the second and third authors
of the present article. Here we use imaginary morphisms in order to capture
certain characteristic properties of Jónsson�Tarski varieties and to de�ne an
intrinsic version of the concept of a Schreier retraction.
Here we assume that C is a regular category with enough projectives and that

we can choose projective covers functorially. We write εX : P pXq� X for the
chosen projective cover of some object X in C: εX is a regular epimorph-
ism and P pXq is a projective object, which means that for any morphism
z : P pXq Ñ Z and any regular epimorphism f : Y � Z, there exists a morph-
ism y : P pXq Ñ Y in C such that fy “ z. In what follows, it will be convenient
for us to let P be part of a comonad pP, δ, εq; we say that C is equipped with
functorial (comonadic) projective covers. Note that for any morphism
f : X Ñ Y in C

fεX “ εYP pfq (2)

and
P 2
pfqδX “ δYP pfq, (3)

where P 2 “ PP . Also

εP pXqδX “ 1P pXq “ P pεXqδX (4)

and
P pδXqδX “ δP pXqδX , (5)

for all objects X in C.

Example 4.1. If V is a variety of universal algebras, then we may consider the
free algebra comonad pP, δ, εq. For any algebra X, we have

εX : P pXq � X and δX : P pXq ãÑ P 2pXq,
rxs ÞÑ x rxs ÞÑ rrxss

where rxs denotes the one letter word x, which are the generators of P pXq.
In this case, any function f : X 99K Y between algebras X and Y extends
uniquely to a morphism

f : P pXq Ñ Y
rxs ÞÑ fpxq

in V.

This example motivates the following de�nition:
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imaginary composition corresponding morphism in C

X
f
,2

gf

3:Y
g
,2 Z P pXq

f
,2 Y

g
,2 Z

W
h ,2

fh

2:X
f
,2 Y P pW q

P phq
,2 P pXq

f
,2 Y

Figure 1. Imaginary compositions

De�nition 4.2. A morphism f : P pXq Ñ Y is called an imaginary morph-
ism from X to Y ; we write f : X 99K Y .

Example 4.3. In a variety of universal algebras V equipped with the free algebra
comonad (Example 4.1), each function from an algebra X to an algebra Y may
be considered as an imaginary morphism X 99K Y in V.

An imaginary morphism X 99K Y is not actually a morphism X Ñ Y
in C. Rather, it is a morphism in C with domain P pXq. Any real morphism
f : X Ñ Y may be considered as an imaginary morphism f : X 99K Y , namely
the composite fεX . In particular, 1Y : Y Ñ Y , considered as an imaginary
morphism Y 99K Y , is εY : P pY q Ñ Y .
Imaginary morphisms do not compose, however they do compose with real

ones. Let f : X 99K Y be an imaginary morphism and let g : Y Ñ Z and
h : W Ñ X be morphisms in C. Then they compose as in Figure 1.

Lemma 4.4. In a regular category with functorial projective covers, a morph-
ism f : X Ñ Y is a regular epimorphism if and only if it admits an imaginary
splitting s : Y 99K X. This means that fs “ 1Y : Y 99K Y or, equivalently,
that s : P pY q Ñ X satis�es fs “ εY .

Proof : This is an immediate consequence of the de�nitions.

A pointed and regular category with binary coproducts is unital [3, 1] when,
for all objects A, B, the comparison morphism

rA,B “
v

1A 0
0 1B

w

: A`B � AˆB

is a regular epimorphism. If the category has functorial projective covers,
then, by Lemma 4.4, this is equivalent to saying that rA,B admits an imaginary
splitting

tA,B : AˆB 99K A`B,
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i.e., there exists a morphism tA,B : P pAˆBq Ñ A`B such that

rA,BtA,B “ εAˆB. (6)

Example 4.5. A variety of universal algebras V is unital if and only if it is a
Jónsson�Tarski variety [1]. In this case, for any pair of algebras pA,Bq in V,
we make the following canonical choices of imaginary splittings for rA,B: the
direct imaginary splitting td

rpa, bqs ÞÑ a` b

which sends a generator rpa, bqs P P pA ˆ Bq to the sum of a “ ιApaq with
b “ ιBpbq in A`B, and the twisted imaginary splitting tw

rpa, bqs ÞÑ b` a

which does the same, but in the opposite order. Note that each of those choices
determines a natural transformation

t : P pp¨q ˆ p¨qq ñ p¨q ` p¨q

such that rt “ εp¨qˆp¨q, where r : p¨q ` p¨q ñ p¨q ˆ p¨q and

εp¨qˆp¨q : P pp¨q ˆ p¨qq ñ p¨q ˆ p¨q.

De�nition 4.6. In a pointed regular (unital) category C with binary co-
products and functorial projective covers, a natural imaginary splitting
(of the comparison from sum to product) is a natural transformation

t : P pp¨q ˆ p¨qq ñ p¨q ` p¨q

such that rt “ εp¨qˆp¨q.

Note that, by Lemma 4.4, the existence of a natural imaginary splitting in
a pointed regular category with binary coproducts and functorial projective
covers implies that this category is unital. Any Jónsson�Tarski variety comes
equipped with a direct and a twisted natural imaginary splitting td and tw as
in Example 4.5. On the other hand, outside the varietal context there seems
to be no reasonable way to characterise these cases categorically.

Remark 4.7. Any natural imaginary splitting t : P pp¨qˆ p¨qq ñ p¨q`p¨q has the
following properties:
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1. tA,0 is isomorphic to εA

P pAq
εA ,2,2

–

��

A
1A

–

��

A

–

��

P pAˆ 0q
tA,0

,2

εAˆ0

/6/6A` 0
rA,0

,2,2 Aˆ 0,

for all objects A in C;
2. the naturality of t gives the commutative diagram

P pAˆBq
tA,B

,2

P puˆvq
��

A`B

u`v
��

P pC ˆDq
tC,D

,2 C `D

(7)

for all u : AÑ C, v : B Ñ D in C;
3. from (6), we deduce

p1A 0qtA,B “ πAεAˆB
(2)
“ εAP pπAq (8)

and

p0 1BqtA,B “ πBεAˆB
(2)
“ εBP pπBq (9)

for all objects A and B in C;
4. using properties 1. and 2. above, we obtain the (regular epimorphism,

monomorphism) factorisations

P pAq
P px1A,0yq ,2

εA &-&-

P pAˆBq
tA,B

,2 A`B

A
18 ιA

18
(10)

and

P pBq
P px0,1Byq ,2

εB &-&-

P pAˆBq
tA,B

,2 A`B,

B
18 ιB

18

for all objects A and B in C.
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5. Intrinsic Schreier split extensions
In this section we describe a categorical approach towards Schreier extensions.

Here C will denote a regular unital category with binary coproducts, functorial
projective covers and a natural imaginary splitting t.

De�nition 5.1. A split epimorphism f with chosen section s and kernel K

K � ,2
k
,2 X

f
,2,2 Y,

slr (11)

is called an intrinsic Schreier split epimorphism (with respect to t) if there
exists an imaginary morphism q : X 99K K (i.e. a morphism q : P pXq Ñ K),
called the imaginary (Schreier) retraction, such that

(iS1) pkq sfεXqtP pXq,P pXqP px1P pXq, 1P pXqyqδX “ εX , i.e., the diagram

P 2pXq
P px1P pXq,1P pXqyq

,2 P pP pXq ˆ P pXqq
tP pXq,P pXq

,2 P pXq ` P pXq

pkq sfεX q
��

P pXq

LRδX

LR

εX
,2,2 X

commutes;
(iS2) qP ppk sqqP ptK,Y qδKˆY “ πKεKˆY , i.e., the diagram

P 2pK ˆ Y q
P ptK,Y q

,2 P pK ` Y q
P ppk sqq

,2 P pXq

q
��

P pK ˆ Y q

LRδKˆY

LR

εKˆY

,2,2 K ˆ Y πK
,2,2 K

commutes.

Proposition 5.2. If the point pf, sq in (11) admits an imaginary morphism
q : X 99K K satisfying (iS1), then it is a strong point.

Proof : From (iS1) we see that pkq sfεXq : P pXq ` P pXq � X is a regular
epimorphism. It easily follows that also pk sq : K ` Y � X is a regular
epimorphism, thus pk, sq is a jointly extremal-epimorphic pair.

We then call the point and split extension in (11) an intrinsic Schreier
point and an intrinsic Schreier split extension, respectively. The proper-
ties (iS1) and (iS2) are the respective translations of (S1) and (S2) to the
�imaginary� context.
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Proposition 5.3. For an intrinsic Schreier split extension (11), the imaginary
retraction q : X 99K K is unique.

Proof : Suppose that there exist two imaginary retractions q, q1 : P pXq Ñ K
such that (iS1) and (iS2) hold. From (iS1) applied to q we get

εX “ pkq sfεXqtP pXq,P pXqP px1P pXq, 1P pXqyqδX

ô εX “ pk sqpq ` fεXqtP pXq,P pXqP px1P pXq, 1P pXqyqδX
(7)
ô εX “ pk sqtK,YP pq ˆ pfεXqqP px1P pXq, 1P pXqyqδX

ô εX “ pk sqtK,YP pxq, fεXyqδX . (12)

Applying (iS1) to q1 we obtain a similar equality, namely

pk sqtK,YP pxq, fεXyqδX “ pk sqtK,YP pxq
1, fεXyqδX .

We use this equality and (iS2) applied to q to obtain q “ q1. Indeed

qP ppk sqqP ptK,Y qP
2
pxq, fεXyqP pδXqδX

“ qP ppk sqqP ptK,Y qP
2
pxq1, fεXyqP pδXqδX

(5)
ô qP ppk sqqP ptK,Y qP

2
pxq, fεXyqδP pXqδX

“ qP ppk sqqP ptK,Y qP
2
pxq1, fεXyqδP pXqδX

(3)
ô qP ppk sqqP ptK,Y qδKˆYP pxq, fεXyqδX

“ qP ppk sqqP ptK,Y qδKˆYP pxq
1, fεXyqδX

piS2q
ô πKεKˆYP pxq, fεXyqδX “ πKεKˆYP pxq

1, fεXyqδX
(2)
ô πKxq, fεXyεP pXqδX “ πKxq

1, fεXyεP pXqδX
(4)
ô q “ q1.

The next results give the intrinsic versions of those recalled in Proposition 2.2.

Proposition 5.4. Let C be a regular unital category with binary coproducts,
functorial projective covers and a natural imaginary splitting t. If (11) is an
intrinsic Schreier split extension with imaginary retraction q, then:

(iS3) qP pkq “ εK;
(iS4) qP psq “ 0;
(iS5) q0P pXq “ 0K;
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(iS6) ps kqtY,K “ pkqP pps kqqP ptY,Kq sπY εYˆKεP pYˆKqqtP 2pYˆKq,P 2pYˆKq

˝ P px1P 2pYˆKq, 1P 2pYˆKqyqδP pYˆKqδYˆK .

Proof : If we compose each side of (iS2) with P px1K , 0yq, use (3) and (2), we
obtain

qP ppk sqqP ptK,Y qP
2
px1K , 0yqδK “ πKx1K , 0yεK

(10)
ô qP ppk sqqP pιKqP pεKqδK “ εK
(4)
ô qP pkq “ εK ;

this proves (iS3). Similarly, we prove (iS4) by composing each side of (iS2)
with P px0, 1Y yq; (iS5) is obvious.
Next, we prove a stronger equality from which (iS6) easily follows (by pre-

composing with δYˆK and using (4)):

ps kqtY,KεP pYˆKq
(2)
“ εXP pps kqtY,Kq

piS1q
“ pkq sfεXqtP pXq,P pXqP px1P pXq, 1P pXqyqδXP pps kqtY,Kq

(3)
“ pkq sfεXqtP pXq,P pXqP px1P pXq, 1P pXqyqP

2
pps kqtY,KqδP pYˆKq

“ pkq sfεXqtP pXq,P pXqP px1P pXq, 1P pXqyP pps kqtY,KqqδP pYˆKq

“ pkq sfεXqtP pXq,P pXqP pP pps kqtY,Kq ˆ P pps kqtY,Kqq

˝ P px1P 2pYˆKq, 1P 2pYˆKqyqδP pYˆKq
(7)
“ pkqP pps kqtY,Kq sfεXP pps kqtY,KqqtP 2pYˆKq,P 2pYˆKq

˝ P px1P 2pYˆKq, 1P 2pYˆKqyqδP pYˆKq.

To �nish, we use

sfεXP pps kqtY,Kq
(2)
“ sf ps kqtY,KεP pYˆKq

“ sp1Y 0qtY,KεP pYˆKq
(8)
“ sπY εYˆKεP pYˆKq.

Any binary product gives an example of an intrinsic Schreier split extension,
like for Schreier split extensions for monoids (see Proposition 2.6).

Proposition 5.5. Any split extension given by a binary product is a Schreier
split extension.
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Proof : Given any split extension underlying a binary product in C

X � ,2
x1X ,0y

,2 X ˆ Y
πY

,2,2 Y
x0,1Y ylr

we de�ne q “ πXεXˆY : P pXˆY q Ñ X for its imaginary retraction. To prove
(iS1), we use

px1X , 0yπXεXˆY x0, 1Y yπY εXˆY qtP pXˆY q,P pXˆY q

˝ P px1P pXˆY q, 1P pXˆY qyqδXˆY

“ pxπX , 0y x0, πY yqpεXˆY ` εXˆY qtP pXˆY q,P pXˆY q

˝ P px1P pXˆY q, 1P pXˆY qyqδXˆY
(7)
“ pπX ˆ πY q

v

1XˆY 0
0 1XˆY

w

tXˆY,XˆYP pεXˆY ˆ εXˆY q

˝ P px1P pXˆY q, 1P pXˆY qyqδXˆY
(6)
“ pπX ˆ πY qεXˆYˆXˆYP pxεXˆY , εXˆY yqδXˆY
(2)
“ εXˆYP pπX ˆ πY qP pxεXˆY , εXˆY yqδXˆY

“ εXˆYP pεXˆY qδXˆY
(4)
“ εXˆY .

The proof of (iS2) is quite straightforward:

πXεXˆYP
`v

1X 0
0 1Y

w˘

P ptX,Y qδXˆY
(6)
“ πXεXˆYP pεXˆY qδXˆY

(4)
“ πXεXˆY .

Corollary 5.6. For any object X,

X � ,2
1X

,2 X
!X

,2,2 0
0Xlr and 0 � ,2

0X
,2 X

1X
,2,2 X

1Xlr

are intrinsic Schreier split extensions.

Proposition 5.7. Any morphism in PtpCq between intrinsic Schreier split
extensions

K � ,2
k

,2

g

��

X
q

lr

f
,2,2

g

��

Y
slr

h

��

K 1 � ,2
k1
,2 X 1

q1
lr

f 1
,2,2 Y 1

s1lr
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is compatible with respect to their imaginary retractions, i.e., gq “ q1P pgq.

Proof : We start by using (12) for the bottom intrinsic Schreier extension

pk1 s1qtK 1,Y 1P pxq
1, f 1εX 1yqδX 1P pgq “ εX 1P pgq

(3),(2)
ô pk1 s1qtK 1,Y 1P pxq

1, f 1εX 1yqP
2
pgqδX “ gεX

(12)
ô pk1 s1qtK 1,Y 1P pxq

1P pgq, f 1εX 1P pgqyqδX “ gpk sqtK,YP pxq, fεXyqδX
(2)
ô pk1 s1qtK 1,Y 1P pxq

1P pgq, f 1gεXyqδX “ pgk gsqtK,YP pxq, fεXyqδX

ô pk1 s1qtK 1,Y 1P pxq
1P pgq, f 1gεXyqδX “ pk1 s1qtK 1,Y 1P pxgq, f

1gεXyqδX ,

by using the commutativity of the diagram and (7).
We may now proceed as in the second part of the proof of Proposition 5.3 to

conclude that q1P pgq “ gq.

Proposition 5.8. If the point pf, sq in (11) admits an imaginary morphism
q : X 99K K satisfying (iS1), then it is a stably strong point.

Proof : We already know that pf, sq is strong by Proposition 5.2. Now to see
that pf, sq is a stably strong point, we take its pullback along an arbitrary
morphism g

K_��

x0,ky

��

K_��

k

��

Z ˆY X
πX ,2

πZ

����

X

f

����

Z g
,2

x1Z ,sgy

LR

Y.

s

LR (13)

To prove that pπZ , x1Z , sgyq is strong it su�ces to show the existence of an
imaginary morphism q1 : Z ˆY X 99K K satisfying (iS1). We de�ne q1 “
qP pπXq : P pZ ˆY Xq Ñ K and check that

εZˆYX “ px0, kyqP pπXq x1Z , sgyπZεZˆYXq

˝ tP pZˆYXq,P pZˆYXqP px1P pZˆYXq, 1P pZˆYXqyqδZˆYX .
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Indeed, this equality follows from

πZpx0, kyqP pπXq x1Z , sgyπZεZˆYXq

˝ tP pZˆYXq,P pZˆYXqP px1P pZˆYXq, 1P pZˆYXqyqδZˆYX

“ p0 πZεZˆYXqtP pZˆYXq,P pZˆYXqP px1P pZˆYXq, 1P pZˆYXqyqδZˆYX

“ πZεZˆYXp0 1P pZˆYXqqtP pZˆYXq,P pZˆYXqP px1P pZˆYXq, 1P pZˆYXqyqδZˆYX

(9)
“ πZεZˆYXεP pZˆYXqP pπ2qP px1P pZˆYXq, 1P pZˆYXqyqδZˆYX

“ πZεZˆYXεP pZˆYXqδZˆYX
(4)
“ πZεZˆYX

and

πXpx0, kyqP pπXq x1Z , sgyπZεZˆYXq

˝ tP pZˆYXq,P pZˆYXqP px1P pZˆYXq, 1P pZˆYXqyqδZˆYX

“ pkqP pπXq sgπZεZˆYXq

˝ tP pZˆYXq,P pZˆYXqP px1P pZˆYXq, 1P pZˆYXqyqδZˆYX

“ pkqP pπXq sfπXεZˆYXq

˝ tP pZˆYXq,P pZˆYXqP px1P pZˆYXq, 1P pZˆYXqyqδZˆYX

(2)
“ pkq sfεXqpP pπXq ` P pπXqq

˝ tP pZˆYXq,P pZˆYXqP px1P pZˆYXq, 1P pZˆYXqyqδZˆYX

(7)
“ pkq sfεXqtP pXq,P pXqP pP pπXq ˆ P pπXqqP px1P pZˆYXq, 1P pZˆYXqyqδZˆYX

“ pkq sfεXqtP pXq,P pXqP pxP pπXq, P pπXqyqδZˆYX

“ pkq sfεXqtP pXq,P pXqP px1P pXq, 1P pXqyqP
2
pπXqδZˆYX

(3)
“ pkq sfεXqtP pXq,P pXqP px1P pXq, 1P pXqyqδXP pπXq

piS1q
“ εXP pπXq

(2)
“ πXεZˆYX .

We observe that the proof of the previous proposition actually tells us that
the points pf, sq satisfying (iS1) for a certain imaginary retraction q are stable
under pullbacks along any morphism.
Recall from [19] that an object Y is said to be a protomodular object

when all points over it are stably strong. Consequently, a �nitely complete
category is protomodular if and only if all of its objects are protomodular. It
was shown there that the protomodular objects inMon are precisely the groups.
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The next result gives a partial version of Corollary 3.1.7 from [9] which says
that a monoid Y is a group if and only if all points over Y are Schreier points.

Corollary 5.9. If all points over Y are intrinsic Schreier points, then Y is a
protomodular object.

Proof : All points over Y are stably strong by Proposition 5.8.

The converse implication is false in general, as we will show in Section 7.
We prove now that, if we apply our intrinsic de�nition to the category Mon

of monoids, we regain the original de�nition of a Schreier split epimorphism
(= right homogeneous split epimorphism). Also that of a left homogeneous
split epimorphism (see Remark 2.1) �ts the picture.

Theorem 5.10. In the case of monoids, the intrinsic Schreier split epimorph-
isms with respect to the direct imaginary splitting td are precisely the Schreier
split epimorphisms. Similarly, the intrinsic Schreier split epimorphisms with
respect to the twisted imaginary splitting tw are the left homogeneous split epi-
morphisms.

Proof : Let (1) be an intrinsic Schreier split extension of monoids with respect
to td. Then there exists an imaginary retraction q : P pXq Ñ K such that (iS1)
and (iS2) hold, where P pXq is the free monoid on X. We de�ne the function

X ,2

q1

#+
P pXq ,2 K

x ÞÑ rxs ÞÑ qprxsq

to be the Schreier retraction in Mon. From (iS1) we prove (S1): for all x P X,

pkq sfεXqtdP pXq,P pXqP px1P pXq, 1P pXqyqδXprxsq “ εXprxsq

ô pkq sfεXqtdP pXq,P pXqP px1P pXq, 1P pXqyqprrxssq “ x

ô pkq sfεXqtdP pXq,P pXqprprxs, rxsqsq “ x

ô pkq sfεXqprxs ¨ rxsq “ x

ô kqprxsq ¨ sfpxq “ x

ô kq1pxq ¨ sfpxq “ x.
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Note that here the Jónsson�Tarski operation is written as a product. Similarly,
from (iS2) we prove (S2): for all a P K, y P Y ,

qP ppk sqqP ptdK,Y qδKˆY prpa, yqsq “ πKεKˆY prpa, yqsq

ô qP ppk sqqP ptdK,Y qprrpa, yqssq “ πKpa, yq

ô qP ppk sqqpra ¨ ysq “ a

ô qprkpaq ¨ spyqsq “ a

ô q1pkpaq ¨ spyqq “ a.

Conversely, suppose that (1) is a Schreier split extension of monoids with
Schreier retraction q1. We de�ne the morphism of monoids q : P pXq Ñ K by

qprx1s ¨ ¨ ¨ ¨ ¨ rxnsq “ q1px1q ¨ ¨ ¨ ¨ ¨ q
1
pxnq.

So, on the generators we have qprxsq “ q1pxq, @x P X, as above. Then (1)
is an intrinsic Schreier extension with respect to td. Indeed, to prove (iS1)
and (iS2) it su�ces to check these equalities for the generators rxs, for all
x P X, and rpa, yqs, for all a P K and y P Y , respectively. They follow
immediately from (S1) and (S2) and the fact that qprxsq “ q1pxq for all x P X,
as for the previous implication.
The proof for left homogeneous split epimorphisms is similar: replace td

by tw.

Remark 5.11. It is not di�cult to extend this result to Jónsson�Tarski varieties.
The main issue is to de�ne qpθprx1s, . . . , rxnsqq, where θ is an n-ary operation;
we can let it be equal to θpq1px1q, . . . , q

1pxnqq.

6. Stability properties
The aim of this section is to show that any regular unital category C with

binary coproducts, functorial projective covers and a natural imaginary split-
ting t is an S -protomodular category with respect to the class S of intrinsic
Schreier split epimorphisms. First of all, we show that the class S is stable
under pullbacks, which gives a sub�bration of the �bration of points.

Proposition 6.1. Intrinsic Schreier split extensions are stable under arbitrary
pullbacks.

Proof : Consider an intrinsic Schreier split extension and an arbitrary pullback
as in (13). We know from Proposition 5.8 that q1 “ qP pπXq : P pZˆY Xq Ñ K
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satis�es (iS1) for the split epimorphism pπZ , x1Z , sgyq. To prove (iS2) we
calculate

qP pπXqP ppx0, ky x1Z , sgyqqP ptK,ZqδKˆZ

“ qP ppk sgqqP ptK,ZqδKˆZ

“ qP ppk sqqP p1K ` gqP ptK,ZqδKˆZ
(7)
“ qP ppk sqqP ptK,Y qP

2
p1K ˆ gqqδKˆZ

(3)
“ qP ppk sqqP ptK,Y qδKˆYP p1K ˆ gq

piS2q
“ πKεKˆYP p1K ˆ gq

(2)
“ πKp1K ˆ gqεKˆZ “ πKεKˆZ .

We have already explained that every intrinsic Schreier split epimorphism is
a (stably) strong point (see Proposition 5.8). What remains to be shown�see
De�nition 3.1�is that the full subcategory S -PtpCq of intrinsic Schreier points
is closed in PtpCq under �nite limits.

Proposition 6.2. Intrinsic Schreier split extensions are stable under products.

Proof : Let

K � ,2
k

,2X
f

,2,2 Y
slr and K 1 � ,2

k1
,2X 1

f 1
,2,2 Y 1

s1lr

be intrinsic Schreier split extensions. Suppose that the imaginary retractions
are q : P pXq Ñ K and q1 : P pX 1q Ñ K 1, respectively. We want to prove that

K ˆK 1 � ,2
kˆk1

,2X ˆX 1

fˆf 1
,2,2 Y ˆ Y 1

sˆs1lr

is an intrinsic Schreier split extension. As imaginary retraction we use the
imaginary morphism ρ “ pqˆ q1qxP pπXq, P pπX 1qy : P pXˆX

1q Ñ KˆK 1. For
(iS1) we must prove that

εXˆX 1 “ ppk ˆ k1qρ psˆ s1qpf ˆ f 1qεXˆX 1q

˝ tP pXˆX 1q,P pXˆX 1qP px1P pXˆX 1q, 1P pXˆX 1qyqδXˆX 1.
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We have

πXppk ˆ k1qρ psˆ s1qpf ˆ f 1qεXˆX 1q

˝ tP pXˆX 1q,P pXˆX 1qP px1P pXˆX 1q, 1P pXˆX 1qyqδXˆX 1

(2)
“ pkqP pπXq sfεXP pπXqqtP pXˆX 1q,P pXˆX 1qP px1P pXˆX 1q, 1P pXˆX 1qyqδXˆX 1

“ pkq sfεXqpP pπXq ` P pπXqq

˝ tP pXˆX 1q,P pXˆX 1qP px1P pXˆX 1q, 1P pXˆX 1qyqδXˆX 1

(7)
“ pkq sfεXqtP pXq,P pXqP pP pπXq ˆ P pπXqqP px1P pXˆX 1q, 1P pXˆX 1qyqδXˆX 1

“ pkq sfεXqtP pXq,P pXqP pxP pπXq, P pπXqyqδXˆX 1

“ pkq sfεXqtP pXq,P pXqP px1P pXq, 1P pXqyqP
2
pπXqδXˆX 1

(3)
“ pkq sfεXqtP pXq,P pXqP px1P pXq, 1P pXqyqδXP pπXq

piS1q
“ εXP pπXq

(2)
“ πXεXˆX 1.

The proof that

πX 1εXˆX 1 “ πX 1ppk ˆ k
1
qρ psˆ s1qpf ˆ f 1εXˆX 1qq

˝ tP pXˆX 1q,P pXˆX 1qP px1P pXˆX 1q, 1P pXˆX 1qyqδXˆX 1

is similar. For (iS2) we must show that

ρP ppk ˆ k1 sˆ s1qqP ptKˆK 1,YˆY 1qδKˆK 1ˆYˆY 1 “ πKˆK 1εKˆK 1ˆYˆY 1.

We have

πKρP ppk ˆ k
1 sˆ s1qqP ptKˆK 1,YˆY 1qδKˆK 1ˆYˆY 1

“ qP pπXqP ppk ˆ k
1 sˆ s1qqP ptKˆK 1,YˆY 1qδKˆK 1ˆYˆY 1

“ qP ppk sqpπK ` πY qtKˆK 1,YˆY 1qδKˆK 1ˆYˆY 1

(7)
“ qP ppk sqtK,YP pπK ˆ πY qqδKˆK 1ˆYˆY 1

“ qP ppk sqqP ptK,Y qP
2
pπK ˆ πY qδKˆK 1ˆYˆY 1

(3)
“ qP ppk sqqP ptK,Y qδKˆYP pπK ˆ πY q

piS2q
“ πKεKˆYP pπK ˆ πY q

(2)
“ πKpπK ˆ πY qεKˆK 1ˆYˆY 1 “ πKπKˆK 1εKˆK 1ˆYˆY 1.
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The proof that

πK 1ρP ppk ˆ k
1 sˆ s1qqP ptKˆK 1,YˆY 1qδKˆK 1ˆYˆY 1 “ πK 1πKˆK 1εKˆK 1ˆYˆY 1

is similar.

Proposition 6.3. Intrinsic Schreier split extensions in C are closed under
equalisers in PtpCq.

Proof : In the following diagram, the middle and right vertical extensions are
intrinsic Schreier split extensions. Consider the morphisms pg, uq and ph, vq
between them and the induced morphisms g and h. Let e be the equaliser
of pg, hq, w be the equaliser of pu, vq, ϕ and σ be the induced morphisms and
L the kernel of ϕ

L ,2 e ,2
_��

l
��

K
g

,2
_��

k
��

h

,2 K 1
_��

k1

��

E ,2 e ,2

ϕ

����

X
g

,2

h
,2

f

����

X 1

f 1

����

W

σ

LR

,2
w

,2 Y

s

LR

u ,2

v
,2 Y 1.

s1

LR

Since limits commute with limits, we know that the induced morphism e is
the equaliser of pg, hq. Moreover, pe, wq is also the equaliser of ppg, uq, ph, vqq
in PtpCq.
We want to prove that the left vertical extension above is an intrinsic Schreier

split extension. Suppose q : P pXq Ñ K and q1 : P pX 1q Ñ K 1 are the imaginary
retractions for pf, sq and pf 1, s1q, respectively. The morphism γ : P pEq Ñ L,

L
e ,2 K

g
,2

h

,2 K 1

P pEq

γ

LR

P peq
,2 P pXq

q

LR

which is induced by the universal property of the equaliser e because

gqP peq
5.7
“ q1P pgqP peq “ q1P pgeq “ q1P pheq “ ¨ ¨ ¨ “ hqP peq,
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gives the imaginary retraction with respect to pϕ, σq. We prove (iS1) by using
that e is a monomorphism:

eplγ σϕεEqtP pEq,P pEqP px1P pEq, 1P pEqyqδE

“ pelγ eσϕεEqtP pEq,P pEqP px1P pEq, 1P pEqyqδE
(2)
“ pkqP peq sfεXP peqqtP pEq,P pEqP px1P pEq, 1P pEqyqδE

“ pkq sfεXqpP peq ` P peqqtP pEq,P pEqP px1P pEq, 1P pEqyqδE
(7)
“ pkq sfεXqtP pXq,P pXqP pP peq ˆ P peqqP px1P pEq, 1P pEqyqδE

“ pkq sfεXqtP pXq,P pXqP pxP peq, P peqyqδE

“ pkq sfεXqtP pXq,P pXqP px1P pXq, 1P pXqyqP
2
peqδE

(3)
“ pkq sfεXqtP pXq,P pXqP px1P pXq, 1P pXqyqδXP peq

piS1q
“ εXP peq

(2)
“ eεE.

To prove (iS2) we use that e is a monomorphism

eγP ppl σqqP ptL,W qδLˆW “ qP peqP ppl σqqP ptL,W qδLˆW

“ qP ppel eσqtL,W qδLˆW

“ qP ppke swqtL,W qδLˆW

“ qP ppk sqpe` wqtL,W qδLˆW
(7)
“ qP ppk sqtK,YP peˆ wqqδLˆW

“ qP ppk sqqP ptK,Y qP
2
peˆ wqδLˆW

(3)
“ qP ppk sqqP ptK,Y qδKˆYP peˆ wq

piS2q
“ πKεKˆYP peˆ wq

(2)
“ πKpeˆ wqεLˆW

“ eπLεLˆW .

Corollary 6.4. Intrinsic Schreier split extensions in C are closed under �nite
limits in PtpCq.

Proof : By Corollary 5.6, the terminal object of PtpCq, the point 0 Ô 0, is an
intrinsic Schreier point. Then the result follows by Propositions 6.2 and 6.3.
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Corollary 6.5. Any regular unital category with binary coproducts, functorial
projective covers and a natural imaginary splitting is an S -protomodular cat-
egory with respect to the class S of intrinsic Schreier split epimorphisms.

It is easy to see that the closedness of S -PtpCq in PtpCq under �nite limits
implies that, for every object Y , the �bre S -PtY pCq is closed in PtY pCq under
�nite limits.

7. (Intrinsic) Schreier special objects
In this section we investigate S -special objects and the link between them

and protomodular objects.

De�nition 7.1. An object X of an S -protomodular category is said to be
S -special when the point

X � ,2
x1X ,0y

,2 X ˆX
π2

,2,2 X
x1X ,1Xylr (14)

(or, equivalently, the point pπ1, x1X , 1Xyq) belongs to the class S .

Proposition 7.2. [11, Proposition 6.2] Given an S -protomodular category C,
the full subcategory of S -special objects is a protomodular category, called the
protomodular core of C relative to the class S .

If C is the category Mon of monoids, and S is the class of Schreier split
epimorphisms, then the protomodular core is the category Gp of groups ([11],
Proposition 6.4). On the other hand, in [19] we showed that a monoid is a
group if and only if it is a protomodular object. Thus one could be led to
think that the notions of S -special object and protomodular object are always
equivalent, like in the case of monoids. This is false: actually, neither condition
is implied by the other.

Theorem 7.3. In Jónsson�Tarski varieties, the concepts of a protomodular
object and of an S -special object (for S the class of Schreier split epimorph-
isms) are independent.

We start with a counterexample: a variety where not all S -special objects
are protomodular.

Example 7.4. LetMag be the Jónsson�Tarski variety of unitary magmas (whose
theory contains a unique constant 0 and a binary operation ` such that 0`x “
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x “ x` 0). We show that the unitary magma Y “ C2 “ pt0, 1u,`q, the cyclic
group of order 2, is an S -special object which is not protomodular in Mag.
It is easy to see that Y is a special Schreier object: the map q in

Y � ,2
x1Y ,0y

,2 Y ˆ Y
π2

,2,2
q

lr Y
x1Y ,1Y ylr

which sends p0, 0q and p1, 1q to 0, and p1, 0q and p0, 1q to 1, is a Schreier
retraction.
Next we show that Y is not a protomodular object, by giving an example of

a split epimorphism over Y which is not a strong point. In Mag we consider
the point pf, sq and its kernel

t0u �
�

k
,2 X

f
,2,2 Y,

slr

where X “ pt0, a, bu,`q is de�ned by

` 0 a b
0 0 a b
a a 0 0
b b 0 0

and
#

fp0q “ 0

fpaq “ 1 “ fpbq,

#

sp0q “ 0

sp1q “ a.

Note that X is not associative since, for instance, pa` aq ` b “ 0` b “ b and
a` pa` bq “ a` 0 “ a.
The point pf, sq is not strong, because there exists a monomorphism s which

is not an isomorphism, yet makes the diagram

Y
��
s
��

t0u
. �

9C

� �

k
,2 X Ys

lr

commute.

Proposition 7.5. Let V be a Jónsson�Tarski variety. An algebra in V is special
with respect to the class of Schreier split epimorphisms if and only if it has a
right loop structure.
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Proof : We recall that a right loop pX,`,´, 0q is a set X with two binary
operations ` and ´ and a unique constant 0 such that the following axioms
are satis�ed:

x` 0 “ 0` x “ x, px´ yq ` y “ x, px` yq ´ y “ x.

Now, given an object X in V, suppose that the split epimorphism (14) is a
Schreier split epimorphism. Then there exists a map q : X ˆ X 99K X such
that, for all x, y P X, we have

px, yq “ pqpx, yq, 0q ` py, yq,

from which we deduce x “ qpx, yq ` y. Let us then de�ne

x´ y “ qpx, yq.

Clearly we have px´ yq ` y “ qpx, yq ` y “ x. Moreover, (S2) tell us that

qpx` y, yq “ x,

or, in other words,
px` yq ´ y “ x.

Conversely, given a right loop pX,`,´, 0q, we can de�ne q : X ˆX 99K X by
putting qpx, yq “ x´ y. It is then immediate to check that (S1) and (S2) are
satis�ed.

Remark 7.6. In any Jónsson�Tarski variety, a similar proof shows that an ob-
ject X is special with respect to the class of left homogeneous split epimorph-
isms if and only if it has a left loop structure:

x` 0 “ 0` x “ x, x` p´x` yq “ y, ´x` px` yq “ y.

As consequence of these observations, we are able to complete the proof of
Theorem 7.3 with Example 7.7.
We recall from [5] that a pointed variety is protomodular if and only if its

theory contains only one constant 0, and there exists a positive integer n, as
well as n binary operations α1, . . . , αn and an pn ` 1q-ary operation β such
that

#

αipx, xq “ 0 @i P t1, . . . , nu,

βpα1px, yq, . . . , αnpx, yq, yq “ x.

In many of the known examples of pointed protomodular varieties, such as Gp
(or any variety which contains the right loop operations), the characterisation
above works for n “ 1.
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Example 7.7. Let HSLat be the variety of Heyting semilattices, namely the
variety de�ned by a unique constant J and two binary operations ^, Ñ such
that p^,Jq gives the structure of a semilattice with a top element, and the
following axioms are satis�ed:

pxÑ xq “ J

x^ pxÑ yq “ x^ y

y ^ pxÑ yq “ y

xÑ py ^ zq “ pxÑ yq ^ pxÑ zq.

In [14] it was shown that HSLat is a protomodular variety. Accordingly, all ob-
jects in HSLat are protomodular. It was also shown that HSLat is protomodular
for n “ 2, but not for n “ 1. This allows us to conclude that not all objects are
S -special. Indeed, HSLat is a Jónsson�Tarski variety, so by Proposition 7.5
all S -special objects are right loops. If all objects were S -special, then HSLat
would be a protomodular variety with n “ 1, which is false.

This argument can be used on any pointed protomodular variety for which
the smallest number n that makes the characterisation recalled above work is
strictly larger than 1. Hence our notion of intrinsic Schreier split epimorphism
gives a categorical method for distinguishing general pointed protomodular
varieties from varieties of right Ω-loops. Indeed, in every protomodular variety
V all objects are protomodular, while every object in V is S -special with respect
to the class S of (intrinsic) Schreier split epimorphisms if and only if V is a
variety of right Ω-loops.

Proof of Theorem 7.3: Combine Example 7.4 with Example 7.7.
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