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ABSTRACT: In the context of regular unital categories we introduce an intrinsic ver-
sion of the notion of a Schreier split epimorphism, originally considered for monoids.

We show that such split epimorphisms satisfy the same homological properties
as Schreier split epimorphisms of monoids do. This gives rise to new examples of
Z-protomodular categories, and allows us to better understand the homological
behaviour of monoids from a categorical perspective.
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1. Introduction

Schreier extensions of monoids, introduced in [23], have been studied by
Patchkoria in [21, 20] in connection with the cohomology of monoids with coef-
ficients in semimodules. Indeed, Patchkoria’s second cohomology monoids can
be described in terms of Schreier extensions. Moreover, Schreier split extensions
correspond actually to monoid actions [22, 17|, where an action of a monoid B
on a monoid X is a monoid homomorphism from B to the monoid End(X) of
endomorphisms of X. These split extensions turned out to have the classical
homological properties of split extensions of groups, such as the Split Short
Five Lemma (see [9, 10| for more details on these properties).

In order to better understand this phenomenon of a distinguished class of
(split) extensions of monoids behaving as (split) extensions of groups, Schreier
extensions of monoids have been studied from a categorical point of view. The
category of groups is protomodular 2], while the category of monoids is not.
This led to the study of the notion of protomodularity relativised with respect
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to a suitable class . of split epimorphisms, giving rise to the notion of an .-
protomodular category [11], having the category of monoids with Schreier split
epimorphisms as a key example. Later, in [16] it was shown that every Jonsson—
Tarski variety of universal algebras [15] is an .-protomodular category with
respect to (a suitable generalisation of) the class of Schreier split epimorphisms.
These categories satisfy relative versions of the basic properties of protomodular
categories.

However, this categorical description of the homological properties of Schreier
extensions of monoids is not entirely satisfactory. The definition of a Schreier
(split) extension is not categorical, because it depends crucially on the element-
wise approach involving a Schreier retraction, which is just a set-theoretical
map (rather than a morphism of monoids). Moreover, for the same category,
there may be several different classes of split epimorphisms that give rise to
a structure of an .-protomodular category: in the case of monoids, some of
such different classes have been identified (see [9] and [12] for a description of
these examples). For these reasons, the notion of an .#-protomodular category
is able to capture only some of the (very strong) homological properties of
Schreier split epimorphisms. Indeed, this notion covers other situations that
are not so well-behaved.

The aim of the present paper is to give a characterisation of Schreier split epi-
morphisms in completely categorical terms, without using elements. In order
to do that, we use imaginary morphisms—in the sense of Bourn and Janelidze,
see |6, 8, 7, 24]—for the categorical Schreier retractions. The advantage of ob-
taining this characterisation is two-fold. On one hand, this approach may allow
a sharper categorical interpretation of the homological properties of Schreier
extensions than the one obtained through the notion of an .”-protomodular
category. On the other hand, our notion of intrinsic Schreier split extension,
being categorical, can be considered in a wider context than that of Jonsson—
Tarski varieties, namely in regular unital [3]| categories (under some additional
assumptions). This may allow us to develop a meaningful cohomology theory
for regular unital categories, which on one hand extends the well-established
cohomology theory for semi-abelian categories [13], and on the other hand in-
terprets categorically Patchkoria’s cohomology of monoids. This is material for
future work.
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2. Schreier split extensions of monoids

In this section we recall from [9, 10] the main definitions and properties
concerning Schreier split extensions.

A split epimorphism of monoids f with chosen section s and kernel K
is called a Schreier split epimorphism if, for every x € X, there exists a
unique element a € K such that x = k(a) - sf(x). Equivalently, if there exists
a unique function ¢: X --» K such that = = kq(z) - sf(x) for all z € X.
We emphasise the fact that ¢ is just a function (not necessarily a morphism of
monoids) by using an arrow of type --+.

The uniqueness property may be replaced [10, Proposition 2.4| by an extra,
condition on ¢: the couple (f,s) is a Schreier split epimorphism if and only if

(S1) z = kq(z) - sf(x), for all z € X;

(S2) q(k(a) - s(y)) =a,forallae K, yeY.

Remark 2.1. Recall from [9] that Schreier split epimorphisms are also called
right homogenous split epimorphisms. A split epimorphism as in (1) is
called left homogenous if, for every x € X, there exists a unique element
a € K such that « = sf(z) - k(a).

Proposition 2.2. [9, Proposition 2.1.5] Given a Schreier split extension as
in (1), the following hold:

(S3) qk = 1[(,‘

(S4) gs = 0;

(85) Q(l) =1;

(S6) kq(s(y) - k(a)) - s(y) = s(y) - k(a), forallae K, yeY.

We say that a split epimorphism (with fixed section s) is a strongly split
epimorphism [4] (see also [18], where the same notion was considered, in the
regular context, under the name of regular point) if its kernel k and section s
form a jointly extremal-epimorphic pair (k, s). It is stably strong [19] if every
pullback of it along any morphism is a strongly split epimorphism (with the
section induced by s).

Lemma 2.3. |9, Lemma 2.1.6| Any Schreier split epimorphism is strongly split.

It is easy to see that every strongly split epimorphism (f, s) is such that f
is the cokernel of its kernel, hence it gives rise to a split extension. The split
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extension (1) is then called a Schreier split extension and the map ¢ is
called the associated (Schreier) retraction. It is indeed a retraction, by
(S3) above.

Actually any Schreier split epimorphism is stably strong, since Schreier split
epimorphisms are stable under pullbacks:

Proposition 2.4. [9, Proposition 2.3.4| Schreier split epimorphisms are stable
under pullbacks along arbitrary morphisms.

Corollary 2.5. Any Schreier split epimorphism is stably strong.
Some examples of Schreier split extensions are given by direct products:

Proposition 2.6. |9, Proposition 2.2.1| A split extension underlying a product

of monoids
<071Y>
Xr——XxY=—2XxY
<1x,0> Ty

15 always a Schreier split extension.

Corollary 2.7. Any terminal split extension and identity split extension

Ox 1x
XDTX%%> and ODTX%%>
15'¢ X

1s a Schreier split extension.

Several other examples of Schreier split extensions are considered in [9].
A useful property of such split extensions is the following;:

Proposition 2.8. [10, Lemma 4.1| Any morphism between two Schreier split

extensions
q S
Ks-——-s X=——=Y
k f
g g h
q s
/ _— = = / /
K' s / X %f/ Y
k

is compatible with respect to their retractions, i.e., gq = ¢'g.
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3. -protomodular categories

In this section we recall the definition of an .-protomodular category, with
respect to a class . of points in a category with a zero object.

Let C be a finitely complete category. A point in C is a split epimorphism f
with a chosen section s:

P fs = 1ly.

We say that a point is (stably) strong when it is a (stably) strongly split
epimorphism. Consequently, its kernel k& and section s form a jointly extremal-
epimorphic pair (k, s), and (f, s) is part of a split extension.

We denote by Pt(C) the category of points in C, whose morphisms are pairs of
morphisms which form commutative squares with both the split epimorphisms
and their sections. The functor cod: Pt(C) — C associates with every split
epimorphism its codomain. It is a fibration, usually called the fibration of
points. For each object Y of C, we denote by Pty (C) the fibre of this fibration,
whose objects are the points with codomain Y.

Let . be a class of points in C which is stable under pullbacks along any
morphism. If we look at it as a full subcategory .#-Pt(C) of Pt(C), then it
gives rise to a subfibration .#’-cod of the fibration of points.

Definition 3.1. [9, Definition 8.1.1] Let C be a pointed finitely complete cat-
egory, and . a pullback-stable class of points. We say that C is .-proto-
modular when:

(1) every point in .-Pt(C) is a strong point;
(2) .7-Pt(C) is closed under finite limits in Pt(C).

Ezxample 3.2. [9] The category Mon of monoids is .-protomodular with respect
to the class . of Schreier split epimorphism.

Example 3.3. [16] We recall that a variety of universal algebras is called a
Jonsson—Tarski variety [15] when its theory contains a unique constant 0
and a binary operation + such that + + 0 = z = 0 + . So an algebra is a
unitary magma, possibly equipped with additional operations.

Every Jonsson—-Tarski variety is an .-protomodular category with respect
to the class of Schreier split epimorphisms. Indeed, the definition of a Schreier
split epimorphism makes sense also in this wider context, and it gives rise to a
whole family of examples of .-protomodular categories.
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4. Imaginary morphisms

The technique of imaginary morphisms stems from the work of Bourn and
Janelidze [6, 8, 7|; it was further explored in [24] by the second and third authors
of the present article. Here we use imaginary morphisms in order to capture
certain characteristic properties of Jonsson—Tarski varieties and to define an
intrinsic version of the concept of a Schreier retraction.

Here we assume that C is a regular category with enough projectives and that
we can choose projective covers functorially. We write ex: P(X) — X for the
chosen projective cover of some object X in C: ex is a regular epimorph-
ism and P(X) is a projective object, which means that for any morphism
z: P(X) — Z and any regular epimorphism f: Y — Z, there exists a morph-
ismy: P(X) — Y in Csuch that fy = z. In what follows, it will be convenient
for us to let P be part of a comonad (P, d,¢); we say that C is equipped with
functorial (comonadic) projective covers. Note that for any morphism
f: X—>YinC

fex = EYP(f) (2)
and
P*(f)dx = oy P(f), (3)
where P? = PP. Also
epx)0x = lpx) = Plex)dx (4)
and
P(dx)0x = dp(x)0x, (5)

for all objects X in C.

Example 4.1. It V is a variety of universal algebras, then we may consider the
free algebra comonad (P, d,¢). For any algebra X, we have

ex: P(X) - X and 6x: P(X) — P*X),
2] — 2 [z] = [l2]]
where [z] denotes the one letter word z, which are the generators of P(X).

In this case, any function f: X --» Y between algebras X and Y extends
uniquely to a morphism

fiPX) > Y

[z] — f(z)
in V.

This example motivates the following definition:
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imaginary composition corresponding morphism in C
x-Ly Lz PX) -y 27
9f
Wl x -y rv) 2 px) Loy

n

FIGURE 1. Imaginary compositions

Definition 4.2. A morphism f: P(X) — Y is called an imaginary morph-
ism from X to Y; we write f: X --» Y.

Example 4.3. In a variety of universal algebras V equipped with the free algebra
comonad (Example 4.1), each function from an algebra X to an algebra Y may
be considered as an imaginary morphism X --» Y in V.

An imaginary morphism X --» Y is not actually a morphism X — Y
in C. Rather, it is a morphism in C with domain P(X). Any real morphism
f: X — Y may be considered as an imaginary morphism f: X --» Y, namely
the composite fex. In particular, 1y: Y — Y, considered as an imaginary
morphism Y --» Y, isey: P(Y) - Y.

Imaginary morphisms do not compose, however they do compose with real
ones. Let f: X --» Y be an imaginary morphism and let ¢g: ¥ — Z and
h: W — X be morphisms in C. Then they compose as in Figure 1.

Lemma 4.4. In a reqular category with functorial projective covers, a morph-
wsm f: X —Y is a reqular epimorphism if and only if it admits an imaginary
splitting 5: Y —-» X. This means that f5 = 1y: Y --» Y or, equivalently,
that s: P(Y) — X satisfies fs = ey.

Proof: This is an immediate consequence of the definitions. ]

A pointed and regular category with binary coproducts is unital |3, 1] when,
for all objects A, B, the comparison morphism

TA,B=(10A£3]:A+B—»A><B

is a regular epimorphism. If the category has functorial projective covers,
then, by Lemma 4.4, this is equivalent to saying that r4 p admits an imaginary
splitting

tap: Ax B--+ A+ B,
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i.e., there exists a morphism t4 p: P(A x B) — A + B such that

rABtAB = €AxB- (6)

Example 4.5. A variety of universal algebras V is unital if and only if it is a
Jonsson—Tarski variety [1]. In this case, for any pair of algebras (A, B) in V,
we make the following canonical choices of imaginary splittings for r4 p: the
direct imaginary splitting ¢

[(a,b)] — a+b
which sends a generator [(a,b)] € P(A x B) to the sum of a = t4(a) with
b=15(b)in A+ B, and the twisted imaginary splitting ¢*

[(a,b)] — b+ a

which does the same, but in the opposite order. Note that each of those choices
determines a natural transformation

t:P(() x () = () +()

such that 7t = €.y(), where r: (-) + (-) = (-) x (-) and

6(.)X(.): P(() X ()) = () X ()

Definition 4.6. In a pointed regular (unital) category C with binary co-
products and functorial projective covers, a natural imaginary splitting
(of the comparison from sum to product) is a natural transformation

t: P(() x ()= () + ()
such that 7t = ey ().

Note that, by Lemma 4.4, the existence of a natural imaginary splitting in
a pointed regular category with binary coproducts and functorial projective
covers implies that this category is unital. Any Jonsson—Tarski variety comes
equipped with a direct and a twisted natural imaginary splitting ¢¢ and t* as
in Example 4.5. On the other hand, outside the varietal context there seems
to be no reasonable way to characterise these cases categorically.

Remark 4.7. Any natural imaginary splitting ¢: P((-) x (-)) = (-) + (+) has the
following properties:
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. ta is isomorphic to €4

PA) —— A———A
L L |
oo \

P02 A0

EAX0

for all objects A in C;
. the naturality of ¢ gives the commutative diagram

P(AxB) 2% A+ B

P(uxv)l lu—&-v

P(CxD)—C+ D
te,p

forallu: A— C,v: B— D in C;
. from (6), we deduce

2
(14 0)tap = TacaxB < eaP(m4)

and

2
(0 1)tap = TBEAXB 2 epP(mp)

for all objects A and B in C;

(8)

(9)

. using properties 1. and 2. above, we obtain the (regular epimorphism,

monomorphism) factorisations

P((14,0))
_—

x) A/

<0 1B))

\/

for all objects A and B in C.

and

P(AxB)—*" . A+B

P(A x B) %A—i—B,

(10)
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5. Intrinsic Schreier split extensions

In this section we describe a categorical approach towards Schreier extensions.
Here C will denote a regular unital category with binary coproducts, functorial
projective covers and a natural imaginary splitting ¢.

Definition 5.1. A split epimorphism f with chosen section s and kernel K

Kr— X%V, (11)
/

is called an intrinsic Schreier split epimorphism (with respect to ¢) if there
exists an imaginary morphism ¢: X --+ K (i.e. a morphism ¢: P(X) — K),
called the imaginary (Schreier) retraction, such that

(iS1) (kq sfex)tpx)px)P((1px)s 1px)))dx = €x, i.e., the diagram
P2(X) M)P(P(X) X P(X)) —299  pixy 4 P(X)
5xI l(kq sfex)
P(X) - . X
commutes;
(iS2) ¢P((k s))P(tky)0xxy = TkEKxY, i.€., the diagram
PAK x V) —2 pr 4+ v) L8 pix
5nyI q
PKxY)————>KxY — K
commutes.

Proposition 5.2. If the point (f,s) in (11) admits an imaginary morphism
q: X --» K satisfying (1S1), then it is a strong point.

Proof: From (iS1) we see that (kg sfex): P(X)+ P(X) - X is a regular
epimorphism. It easily follows that also (k s): K +Y — X is a regular
epimorphism, thus (k, s) is a jointly extremal-epimorphic pair. |

We then call the point and split extension in (11) an intrinsic Schreier
point and an intrinsic Schreier split extension, respectively. The proper-
ties (iS1) and (iS2) are the respective translations of (S1) and (S2) to the

“imaginary” context.
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Proposition 5.3. For an intrinsic Schreier split extension (11), the imaginary

retraction q: X --» K is unique.

Proof: Suppose that there exist two imaginary retractions ¢,¢q": P(X) — K

such that (1Sl) and (iS2) hold. From (iS1) applied to ¢ we get
= (kq sfex)tp(x) (<1P , 1px)))dx
= (k s)(qg+ fEX)fP X),P( (<1P(X)7 1p(x)))0x
L ex = (k tryPla x (fex)) P{Lpexs Lpoo))ox

< ex = (k s)tgyP(q, fex))dx.
Applying (iS1) to ¢’ we obtain a similar equality, namely
(k s)tiy P((q, fex))ox = (k s)txy P((d, fex))ox
We use this equality and (iS2) applied to ¢ to obtain ¢ = ¢’. Indeed
gP((k 5))P(txy)P*({q, fex))P(6x)dx
= qP((k 5))P(txy)P*({d', fex))P(6x)dx
< qP((k $))P(txy)P*({q, fex))dpx)0x
= qP((k 8))P(txy)P*({d, fex))dp(x)dx

g qP(U{I S))P(tK,Y>CSK><YP(<Q7 f€X>)5X
= qP((k s))P(txy)ox <y P(q, fex))ox
(i52)

<  Trerxy P(q, fex))ox = mrerxv P({{, fex))dx
< wx{q, fex)epx)Ox = Tr{q, fex)ep(x)dx

q=q.

(12)

The next results give the intrinsic versions of those recalled in Proposition 2.2.

Proposition 5.4. Let C be a reqular unital category with binary coproducts,
functorial projective covers and a natural imaginary splitting t. If (11) is an

intrinsic Schreier split extension with imaginary retraction q, then:
(iS3) qp(k) = ECK,

(iS4) qP(s) = 0;

(iS5) qOP(X) = OK,'
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(iSG) [S k]ty’[( = [kqP((s k))P(ty’K) ST(‘yEy><KSP(YXK)]tpz(ny),pz(ny)

o P({(Ip2v i), Lp2(vxk)))OP(y x ) Oy x I¢
Proof: If we compose each side of (iS2) with P({(1x,0)), use (3) and (2), we
obtain

qP((k 8))P(txy)P*((1k,0))6x = mx{lx,0)ex

(10)
= qP(U{ SDP(LK)P(é?K)5K =K
=t qP(k) = ex;
this proves (iS3). Similarly, we prove (iS4) by composing each side of (iS2)
with P({0, 1y)); (iS5) is obvious.

Next, we prove a stronger equality from which (iS6) easily follows (by pre-
composing with dy,x and using (4)):

(s B)tvxeprr) 2exP((s k)tyx)
= (kq sfex)tpx)px)P((1px), 1px)))0x P((s k)tyi)
D (kg sfex)tpoo.peoP(Leeos Lepo)) PH(s Ktv)dpw )
= (kq sfex)tprox).pooP((px), 1poo) ) P((s K)tyx))dpy < k)
= (kq sfex)tpx)p (X)P(P((S ktyx) x P((s k)tyi))

o P(<1p2 (Y xK)> ]-P2(YXK)>)5P(YXK)

[kqP([s ]f)ty’K) SfEXP([S k)ty’K))tpz(nyLpz(ny)

o P({1p2yxk), Lp2(v <)) 0Py x i)

—~~
~J
~—

To finish, we use

ngXP((S k’]tva) (i) Sf[S kI]tY’KZ-Zp(yXK)

= s(ly O)ty.xepry k)
(8)
= STYEYxKEP(Y xK)- u
Any binary product gives an example of an intrinsic Schreier split extension,
like for Schreier split extensions for monoids (see Proposition 2.6).

Proposition 5.5. Any split extension given by a binary product is a Schreier
split extension.
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Proof: Given any split extension underlying a binary product in C

<1X7O> Ty

we define ¢ = mxexxy: P(X xY) — X for its imaginary retraction. To prove
(iS1), we use

((Ix,0)mxexxy €0, 1y)Tyexxy)tp(xxv),P(XxY)
o P({1pixxv), Lp(xxv)))0x xy
= [(7x,0) €0, 7y))(exxy + Exxy)tP(xxV),P(XxY)

o P((1pixxv), Lp(xxv)))0x <y
7
2 (mx x WY)[lonY 1XOXy)tX><Y,X><YP(5X><Y X EXxY)
o P({1pxxvys Lp(xxv)))0x <y
(6)

(mx X Ty )exxyxxxy P((Exxy, €xxy))dxxy

2
@ exxyP(mx x my)P({exxy,exxv))dxxy

= exxy Plexxy)dxxy

4
(:) EXxY-

The proof of (iS2) is quite straightforward:

6 4
mxexxy P(('§ 1)) Pltxy)dxxy 2 Txexxy P(exxy)0xxy Y rxexny. ®

Corollary 5.6. For any object X,

0 1
XHX%O and OHX%X
Ix I X 1x

are intrinsic Schreier split extensions.

Proposition 5.7. Any morphism in Pt(C) between intrinsic Schreier split
extensions

Ki X<V

1k

K/E___X,;Y,
k/ f/
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is compatible with respect to their imaginary retractions, i.e., gq = ¢'P(g).

Proof: We start by using (12) for the bottom intrinsic Schreier extension

k' sty P((d, flex))dx P(g) = ex P(g)
(3),(2

= E s tgr y' P <q flex: )P (9 Ox = gex
12)

(K ) (

"W )ty P(
< (K $)tgy P({d'P(g), f'exP(9)))0x = g(k )ty P({q. fex))dx

(K" ) (

(K" ')tk y P(

)
(
= 'P(g), fgex))ix = (gk g9)trcy P((q, fex))ox
"P(9), f'9ex))ox = (K )trry P({gq, f'9ex))dx,

~~

K s"txry P

]{7/ Sl tK/ Y’

(g
\

0

by using the commutativity of the diagram and (7).
We may now proceed as in the second part of the proof of Proposition 5.3 to
conclude that ¢'P(g) = gq. |

Proposition 5.8. If the point (f,s) in (11) admits an imaginary morphism
q: X --» K satisfying (1S1), then it is a stably strong point.

Proof: We already know that (f,s) is strong by Proposition 5.2. Now to see
that (f,s) is a stably strong point, we take its pullback along an arbitrary
morphism g

To prove that (7z,{1z,sg)) is strong it suffices to show the existence of an
imaginary morphism ¢': Z xy X --» K satisfying (iS1). We define ¢ =
qP(mx): P(Z xy X) — K and check that

EZxyX = (<0,k>qp(7'('x) <1Z739>7TZ‘€Z><YX]

O tp(zxy x),P(Zxy X)P((LP(zxy X)), 1P(Zxy X)))0Zxy X -
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Indeed, this equality follows from
72(€0,k)qP(mx) {1z, 59)TzE 7y x)

O tp(zxy x),P(Zxy X)P((LP(Zxyx), LP(Zxy X)))0Zxy X
= (0 Tze2xy X)tP(Zxy X),P(Zxy X) P ({1P(Zxy x)5 LP(Zxy X)))0 23y X

= T2 7xy X (0 1p(zxy x))tP(Zxy X),P(Zxy )P ({1P(Zxy X)> LP(Zxy X)) 02y X

9
(Z)7TZ€ZxYXé“P(ZXYX)P(W2)P(<1P(ZXYX),1P(Z><YX)>)5ZXYX

4)
= 7TZ5Z><yX€P(Z><yX)5Z><yX = TZEZxyX

and
WX(<07 k>qP(7TX) <1Z> Sg>7TZgZ><yX]
0 tp(zxy x),P(Zxy X)P((LP(zxyx), LP(Zxy X)))0Zxy X
= (kqP(7x) SgTz€7xy x)
O tp(zxy x),P(Zxy X)P((LP(zxy X)), LP(Zxy X)))0Zxy X
= (kqP(7x) sfTxezxyx)
O tp(zxy X),P(Zxy X) P ({LP(Zxy x): 1P(Zxy X)) 2%y X
2
@ (kq sfex)(P(rx) + P(rx))

0 tp(zxy x),P(Zxy X)P((LP(zxyx), LP(Zxy X)))0Zxy X

2 (kg Sféx)tp x)P(P(rx) x P(mx))P((Lpzxyx): LP(zxy X)))02xy X
= (kq sfex)tpx)po) PP (7 ) P(mx)))0zxy x
= (kq ngX)tP ) P((Lpix)s o)) P (X )02y x
&) (kq sfex)tpx)po)P((1px), 1px)))dx P(rx)
(ls—l)EXP(WX) (E)WX(SZX)/X |

We observe that the proof of the previous proposition actually tells us that
the points (f, s) satisfying (iS1) for a certain imaginary retraction ¢ are stable
under pullbacks along any morphism.

Recall from [19] that an object Y is said to be a protomodular object
when all points over it are stably strong. Consequently, a finitely complete
category is protomodular if and only if all of its objects are protomodular. It
was shown there that the protomodular objects in Mon are precisely the groups.
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The next result gives a partial version of Corollary 3.1.7 from [9] which says
that a monoid Y is a group if and only if all points over Y are Schreier points.

Corollary 5.9. If all points over Y are intrinsic Schreier points, then Y is a
protomodular object.

Proof: All points over Y are stably strong by Proposition 5.8. ]

The converse implication is false in general, as we will show in Section 7.

We prove now that, if we apply our intrinsic definition to the category Mon
of monoids, we regain the original definition of a Schreier split epimorphism
(= right homogeneous split epimorphism). Also that of a left homogeneous
split epimorphism (see Remark 2.1) fits the picture.

Theorem 5.10. In the case of monoids, the intrinsic Schreier split epimorph-
isms with respect to the direct imaginary splitting t% are precisely the Schreier
split epimorphisms. Similarly, the intrinsic Schreier split epimorphisms with
respect to the tunsted imaginary splitting t are the left homogeneous split epi-
morphisms.

Proof: Let (1) be an intrinsic Schreier split extension of monoids with respect
to t¢. Then there exists an imaginary retraction ¢: P(X) — K such that (iS1)
and (iS2) hold, where P(X) is the free monoid on X. We define the function

(Ipx)s Lpx)))ox([2]) = ex([z])
ey, Leaop)([[2]]) = 2
[z], [z])]) = =

=3
S
w
=
™
>
~
oS
>
x
s
/'\/tg/\

OB I A
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Note that here the Jonsson—Tarski operation is written as a product. Similarly,
from (iS2) we prove (S2): forallae K, ye Y,

gP((k 8))P(t5 )0y ([(a,9)]) = Trer <y ([(a,9)])
gP((k 8))P(t5y)([[(a,9)]]) = 7x(a,y)

¢P((k s))([a-y]) =a

q([k(a) - s(y)]) = a

= q(k(a) - s(y) = a.

Conversely, suppose that (1) is a Schreier split extension of monoids with
Schreier retraction ¢’. We define the morphism of monoids ¢: P(X) — K by

(o] - - - [an]) = (1) - - - d ().

So, on the generators we have ¢([z]) = ¢/(z), Vx € X, as above. Then (1)
is an intrinsic Schreier extension with respect to t¢. Indeed, to prove (iS1)
and (iS2) it suffices to check these equalities for the generators [z], for all
x € X, and [(a,y)], for all @ € K and y € Y, respectively. They follow
immediately from (S1) and (S2) and the fact that ¢([x]) = ¢/(z) for all x € X
as for the previous implication.

The proof for left homogeneous split epimorphisms is similar: replace t¢
by tv. |

¢ o0

Remark 5.11. It is not difficult to extend this result to Jonsson—Tarski varieties.
The main issue is to define ¢(0([z1], ..., [xs])), where 0 is an n-ary operation;
we can let it be equal to 0(¢'(z1), ..., ¢ (z,)).

6. Stability properties

The aim of this section is to show that any regular unital category C with
binary coproducts, functorial projective covers and a natural imaginary split-
ting t is an .-protomodular category with respect to the class .# of intrinsic
Schreier split epimorphisms. First of all, we show that the class .# is stable
under pullbacks, which gives a subfibration of the fibration of points.

Proposition 6.1. Intrinsic Schreier split extensions are stable under arbitrary
pullbacks.

Proof: Consider an intrinsic Schreier split extension and an arbitrary pullback
as in (13). We know from Proposition 5.8 that ¢ = qP(nx): P(Z xy X) - K
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satisfies (iS1) for the split epimorphism (7z,{1z,sg)). To prove (iS2) we
calculate

)P (tKZ)5KxZ
P(1g + g)P(tk,z)0kxz

))
) P(try)P?(1k % 9))0k <z
8))P(tKy)5KXyP<1K X g)

WKEKXyP(lK X g)

59)

»

—~

2 Tk(lx X 9)ekxz = TKEKxZ- |

We have already explained that every intrinsic Schreier split epimorphism is
a (stably) strong point (see Proposition 5.8). What remains to be shown —see
Definition 3.1—is that the full subcategory .#-Pt(C) of intrinsic Schreier points
is closed in Pt(C) under finite limits.

Proposition 6.2. Intrinsic Schreier split extensions are stable under products.

Proof: Let

K>T>Xi>Y and K> X'<——Y"

K 1z

be intrinsic Schreier split extensions. Suppose that the imaginary retractions
are ¢: P(X) — K and ¢': P(X’) — K’, respectively. We want to prove that

/

SX S8
K x K,WX x X'=—=Y xY'
x fxf

is an intrinsic Schreier split extension. As imaginary retraction we use the
imaginary morphism p = (¢ x ¢'){P(rx), P(rx/)): P(X x X’) - K x K'. For
(iS1) we must prove that

exxx = ((kxK)p (s x ) (f x fexxx)
o tp(xxxv),P(xxx) P ({(Ipxxxs Lp(xxx))0x x x"-
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We have
mx((k x K)p (s x s")(f x fexxx)

o tp(xxx7),P(xxx) P ({1pxxx, Lp(xxx))0x < x7

2
2 (kqP(mx) sfexP(mx))tpxxx7),p(xxx)P({1pxxxn, Lp(xxx7)))0x xx'

)
= (kg sfex)(P(mx) + P(nx))
(

o tpixxxn),P(xxx) P ({Ipxxx7), Lp(x xx1)))0x % X7

qu ngX)tP P(P(WX) x P(mx))P({1p Xfo),lp(XxX/)>)5XxX'
= (kq sfex)tpix).poo)P((P(T ) P(mx)))0xxx
= qu ngthp P(<1p )>)P2(7T)()(5X><X/
D (kg sfex)tpio.poo P (e, Lpao))dx Plrx)

1Sl 2
08y exP(mx) @ TXEXxX'-

The proof that

mxexxx = mx((kx K)p (s x ) (f x flexxx))
o tp(xxx7),P(xxx) P ({(Ipxxx: Lp(xxx)))0xxx7
is similar. For (iS2) we must show that
pP((k x k' s x §))P(trxi yxy )0k xK'xyxy' = TExKEKxK'xY xY"-
We have
T pP((k x k' s x ")) P(tkxr vy )0 x K xy xY"
= qP(mx)P((k x k' s x §"))P(tkx kv xv' )0k« k' <y xY"

= qP((k s)(Tx + Ty )tk sk v xy")OK x K/ <Y xV"
(7)

© qP((k s)tgyP(mx X Ty )0k xK'xVxY"

= P(( )) (tKy)P <7TK XT‘—Y)(SKXK’XYXY/
2 gP((k $))P(txy)Si vy Plri x my)
(iS2)

= WKEKXyP(ﬂ'K X 7Ty)

—~

2)
= 7TK(7TK X 7TY)5K><K’><YXY’ =TMKTKxK'EKxK'XY xY'-
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The proof that
T pP((k x k' s x §))P(trxi yxy )0k xkxyxy' = TKTExKEKxK'xY xY"
1S similar. m

Proposition 6.3. Intrinsic Schreier split extensions in C are closed under
equalisers in Pt(C).

Proof: In the following diagram, the middle and right vertical extensions are
intrinsic Schreier split extensions. Consider the morphisms (g, u) and (h,v)
between them and the induced morphisms g and h. Let e be the equaliser
of (g, h), w be the equaliser of (u,v), ¢ and ¢ be the induced morphisms and
L the kernel of ¢

Since limits commute with limits, we know that the induced morphism € is

the equaliser of (g, h). Moreover, (e,w) is also the equaliser of ((g,u), (h,v))
in Pt(C).

We want to prove that the left vertical extension above is an intrinsic Schreier
split extension. Suppose ¢: P(X) — K and ¢': P(X') — K’ are the imaginary
retractions for (f,s) and (f’, "), respectively. The morphism v: P(E) — L,
z g

L——K
A

K/

I

: h
v q

P(E) o PLY)

which is induced by the universal property of the equaliser € because

gaP(e) 2 ' P(g)P(e) = ' P(ge) = ¢'P(he) = - = hgP(e),
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gives the imaginary retraction with
that e is a monomorphism:

e(ly oveg)tpp),p
= (ely eopep)tpm).p
2)
= (kqP(e) sfexP(e )) P(
= (kq sfex)(P(e) + P(e
= (kg sfex)tpix)pox) P
= (kq SfEX]tP(X),P(X)P(
= (kq sfex)tpox),pon P
® (kg sfex)tpix),pox) P
08 P(e) 2 eep

21

respect to (¢, ). We prove (iS1) by using

(<1P Lp(r)))0E

(<1P lpe)))0E

E),P(E) (<1P lp(E)))oE
)trE) (<1P(E) lpp)))E
P(e) x P(€)>P<<1P(E) lpp)))oE
(P(e), ( )))0E

(pex), Lpx))) P2 (e)dg

(Ipex) >)5XP( )

To prove (iS2) we use that € is a monomorphism

eyP((l o)) P(tLw)drxw =

@

)

(iS2)

2)

qP(e)P((l o)) P(trw)orxw
= qP((el ec)trw)orxw
qP ]CG Sw)th)(SLXW

((
((

= qP((k s)(e +w)trw)or.w
P ((
qP((
((

S]tKyP(e X ’w))éwa
S]) (tK,y)P (6 X w)5wa

k
k
k
k 8]) (tKy)(SKXyP(E X w)

qP
exxy P(e X w)

TK

WK(E X w)Ewa

ETLEL YW - [ |

Corollary 6.4. Intrinsic Schreier split extensions in C are closed under finite

limits in Pt(C).

Proof: By Corollary 5.6, the terminal object of Pt(C), the point 0 < 0, is an
intrinsic Schreier point. Then the result follows by Propositions 6.2 and 6.3. =



22 ANDREA MONTOLI, DIANA RODELO AND TIM VAN DER LINDEN

Corollary 6.5. Any reqular unital category with binary coproducts, functorial
projective covers and a natural imaginary splitting is an . -protomodular cat-
egory with respect to the class . of intrinsic Schreier split epimorphisms.

It is easy to see that the closedness of .#-Pt(C) in Pt(C) under finite limits
implies that, for every object Y, the fibre .#-Pty (C) is closed in Pty (C) under
finite limits.

7. (Intrinsic) Schreier special objects
In this section we investigate .-special objects and the link between them
and protomodular objects.

Definition 7.1. An object X of an .#-protomodular category is said to be
#-special when the point

(Ix,1x)
X —— X x X —/—= (14)
1x,0 T2

(or, equivalently, the point (71, (1x, 1x))) belongs to the class ..

Proposition 7.2. [11, Proposition 6.2] Given an . -protomodular category C,
the full subcategory of .7 -special objects is a protomodular category, called the
protomodular core of C relative to the class .7 .

If C is the category Mon of monoids, and .¥ is the class of Schreier split
epimorphisms, then the protomodular core is the category Gp of groups (|11],
Proposition 6.4). On the other hand, in [19] we showed that a monoid is a
group if and only if it is a protomodular object. Thus one could be led to
think that the notions of .’-special object and protomodular object are always
equivalent, like in the case of monoids. This is false: actually, neither condition
is implied by the other.

Theorem 7.3. In Jonsson—Tarski varieties, the concepts of a protomodular
object and of an .7 -special object (for & the class of Schreier split epimorph-
isms) are independent.

We start with a counterexample: a variety where not all .#-special objects
are protomodular.

Ezxample 7.4. Let Mag be the Jonsson—Tarski variety of unitary magmas (whose
theory contains a unique constant 0 and a binary operation + such that 0+xz =
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x =z +0). We show that the unitary magma Y = Cy = ({0, 1}, +), the cyclic
group of order 2, is an .¥-special object which is not protomodular in Mag.
[t is easy to see that Y is a special Schreier object: the map ¢ in

q y,ly)
ST oY xY=—/—=
(1y,0) 2

which sends (0,0) and (1,1) to 0, and (1,0) and (0,1) to 1, is a Schreier
retraction.

Next we show that Y is not a protomodular object, by giving an example of
a split epimorphism over Y which is not a strong point. In Mag we consider
the point (f,s) and its kernel

{0}?;(%1/,

where X = ({0, a,b}, +) is defined by

+\Oab
010 a b
ala 0 0
b 1b 00

and

{f(()) ~ 0 {3(0) ~ 0
fla) =1=f(b), s(1) = a.

Note that X is not associative since, for instance, (a +a) +b =0+ b = b and
a+ (a+b) =a+0=a.

The point (f, s) is not strong, because there exists a monomorphism s which
is not an isomorphism, yet makes the diagram

Y

N

commute.

Proposition 7.5. Let V be a Jonsson—Tarski variety. An algebra in'V is special
with respect to the class of Schreier split epimorphisms if and only if it has a
right loop structure.
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Proof: We recall that a right loop (X, +,—,0) is a set X with two binary
operations + and — and a unique constant 0 such that the following axioms
are satisfied:

r+0=0+z=uz, (x —y) +y=nux, (x+y) —y=ux.
Now, given an object X in V, suppose that the split epimorphism (14) is a
Schreier split epimorphism. Then there exists a map ¢: X x X --+ X such
that, for all x, y € X, we have
(z,y) = (q(x,9),0) + (v, ),

from which we deduce x = ¢(z,y) + y. Let us then define

r—y=q(z,y).

Clearly we have (x —y) + vy = q(x,y) + y = . Moreover, (S2) tell us that
9(x +y,y) =,

or, in other words,
(z+y)—y=n2x.

Conversely, given a right loop (X, +,—,0), we can define ¢: X x X --+ X by
putting ¢(x,y) = x —y. It is then immediate to check that (S1) and (S2) are
satisfied. n

Remark 7.6. In any Jonsson—Tarski variety, a similar proof shows that an ob-
ject X is special with respect to the class of left homogeneous split epimorph-
isms if and only if it has a left loop structure:

r+0=0+2z=uz, r+ (—r+y) =y, —r+ (x+y)=y.

As consequence of these observations, we are able to complete the proof of
Theorem 7.3 with Example 7.7.

We recall from [5] that a pointed variety is protomodular if and only if its
theory contains only one constant 0, and there exists a positive integer n, as
well as n binary operations a1, ..., a;, and an (n + 1)-ary operation § such
that

a;(x,z) =0 Vie{l,...,n},
Blon(z,y), ... an(z,y),y) = .
In many of the known examples of pointed protomodular varieties, such as Gp

(or any variety which contains the right loop operations), the characterisation
above works for n = 1.
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Fxample 7.7. Let HSLat be the variety of Heyting semilattices, namely the
variety defined by a unique constant T and two binary operations A, — such
that (A, T) gives the structure of a semilattice with a top element, and the
following axioms are satisfied:

r— (yrz)=(x >y A(r—2)).

In [14] it was shown that HSLat is a protomodular variety. Accordingly, all ob-
jects in HSLat are protomodular. It was also shown that HSLat is protomodular
for n = 2, but not for n = 1. This allows us to conclude that not all objects are
Z-special. Indeed, HSLat is a Jonsson-Tarski variety, so by Proposition 7.5
all .-special objects are right loops. If all objects were .#-special, then HSLat
would be a protomodular variety with n = 1, which is false.

This argument can be used on any pointed protomodular variety for which
the smallest number n that makes the characterisation recalled above work is
strictly larger than 1. Hence our notion of intrinsic Schreier split epimorphism
gives a categorical method for distinguishing general pointed protomodular
varieties from varieties of right (2-loops. Indeed, in every protomodular variety
V all objects are protomodular, while every object in V is .#’-special with respect
to the class . of (intrinsic) Schreier split epimorphisms if and only if V is a
variety of right Q-loops.

Proof of Theorem 7.3 Combine Example 7.4 with Example 7.7. ]
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