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VARIATIONAL SOLUTIONS
TO THE ABSTRACT EULER EQUATION
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Abstract: We study a class of nonlinear evolutionary equations of a certain struc-
ture reminiscent of the incompressible Euler equations. This includes, in par-
ticular, the ideal MHD, multidimensional Camassa-Holm, EPDiff, Euler-α and
Korteweg-de Vries equations, and two models of incompressible elastodynamics.
We interpret the “abstract Euler equation” as a concave maximization problem in
the spirit of Y. Brenier. Comm. Math. Phys. () () -. An optimizer
determines a “time-noisy” version of the original unknown function, and the lat-
ter one may be retrieved by time-averaging. Assuming a certain “trace condition”,
which holds for the above-mentioned examples, we prove the existence of the gen-
eralized solutions determined by the maximizers.

Keywords: generalized solution, fluid dynamics, elastodynamics, geodesic equa-
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.Introduction
The Euler equations of motion of a homogeneous incompressible invis-

cid fluid [] are

∂tu + div(u ⊗u) +∇p = 0, (.)
divu = 0, (.)

(u · ν)|∂Ω = 0, (.)
u(0) = u0. (.)

The unknowns are u : [0,T ] ×Ω → R
d and p : [0,T ] ×Ω → R. Here Ω

is the periodic box T
d or an open domain in R

d with sufficiently regular
boundary. The Euler equations may be rewritten in the form

∂tu = PL(u ⊗u), u(t, ·) ∈ P (Xd), u(0, ·) = u0 ∈ P (Xd), (.)

where X := L2(Ω) and P : Xd → Xd is the Leray-Helmholtz projector [],
whereas

L = −div, L :D(L) ⊂ Xd×d
s → Xd
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(we refer to the Notation and conventions subsection at the end of the
Introduction for the meaning of the symbol Xd×d

s ). The kinetic energy

Kt :=
1
2

∫
Ω

|u|2(t,x)dx

is formally conserved due to

(L(u ⊗u),u) = 0, u ∈ P (Xd) (.)

for any sufficiently smooth vector field u.
In this paper, we study the following abstract generalization of (.):

find
v : [0,T ]→ Xn

solving

∂tv = P L(v ⊗ v), v(t, ·) ∈ P (Xn), v(0, ·) = v0 ∈ P (Xn). (.)

Here (Ω,A,µ) is a measure space, X := L2(Ω), n ∈N,

P : Xn→ Xn

is any orthogonal projector (i.e., a self-adjoint idempotent linear operator),
and

L :D(L) ⊂ Xn×n
s → Xn

is a closed densely defined linear operator, satisfying

(L(v ⊗ v),v) = 0, v ∈ P (Xn), (.)

provided v is a sufficiently smooth vector field (see the Notation and con-
ventions subsection for the meaning of this expression).

This setting can be further generalized, see Remarks . and .. As
we will see, the examples of (.) include the ideal MHD, multidimen-
sional Camassa-Holm, EPDiff, Euler-α and Korteweg-de Vries equations,
and two models of incompressible elastodynamics.

Brenier [] recently suggested to regard the incompressible Euler system
(.)–(.) as a concave maximization problem. He also discussed the rela-
tion of his approach with the theory of convex integration [, ]. In this
paper, we adapt his ideas to suit the general equation (.). We will see
that the concave maximization problem generates the “time-noisy” func-
tion V := v+ (t−T )∂tv, and hence the unknown v can be retrieved by time
averaging.
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In Section , we discuss the abstract theory and prove an abstract exis-
tence theorem, and in Section  we examine the above-mentioned exam-
ples.

Notation and conventions. We use the notations Rn×n and R
n×n
s for the spaces

of n × n matrices and symmetric matrices, resp., with the scalar prod-
uct generated by the Frobenius norm. The symbol R(n×n)×(n×n) denotes the
space of matrices with matricial entries. For a tensor Ξ ∈ R(n×n)×(n×n), de-
fine the matrices Ξ̂, Ξ̂ ∈Rn×n by

Ξ̂ij =
∑
k

Ξik,jk, Ξ̂ij =
∑
k

Ξki,kj .

For a matrix M ∈Rn×n, define the tensors M̂∗, M̂
∗
∈R(n×n)×(n×n) by

M̂∗ik,jl =Mijδkl , M̂
∗
ik,jl =Mklδij .

For a tensor Υ ∈Rn×n×n, denote

Υ̃ijk := Υikj .

Let (Ω,A,µ) be a measure space. Denote for brevity X = L2(Ω). Let Xn×n
s

be the subspace of Xn×n consisting of symmetric-matrix-valued functions.
The parentheses (·, ·) will stand for the scalar products in Xn and Xn×n

s . For
A,B ∈ Xn×n

s , we write A ≥ B and A > Bwhen A−B is a nonnegative-definite-
matrix-function and is a strictly-positive-definite-matrix-function, resp.
The action of a matrix-function A from Xn×n

s on a vector-function ξ from
Xn is denoted A.ξ or simply Aξ.

Fix n ∈N and the operators P , L as above. Let L∗ : D(L∗) ⊂ Xn→ Xn×n
s be

the adjoint of L. Fix some linear dense subspace R⊂ X. Assume that

R⊂ L∞(Ω)

and
Rn ⊂D(L) ⊂ Xn, Rn×ns ⊂D(L) ⊂ Xn×n

s ,

L(Rn×ns ) ⊂Rn, L∗(Rn) ⊂Rn×ns , P (Rn) ⊂Rn.
We will abuse the language and call the elements of R sufficiently smooth
functions. For example, if Ω is a Riemannian manifold, we can take the
set of conventional smooth functions as our R.

Fix also a linear dense subspace R̂ ⊂ L2((−ε,T + ε)×Ω). Assume that

R̂ ⊂ L∞((−ε,T + ε)×Ω), ∂tR̂ ⊂ R̂, R̂(t) =R, t ∈ [0,T ],
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and

L(R̂n×ns ) ⊂ R̂n, L∗(R̂n) ⊂ R̂n×ns , P (R̂n) ⊂ R̂n.
A time-dependent function υ : [0,T ]→ X is called sufficiently smooth if
υ ∈ R̂

∣∣∣
[0,T ]

.

.The abstract results
The abstract Euler equation (.) admits the following natural weak for-

mulation: ∫ T

0
[(v,w) + (v,∂ta) + (v ⊗ v,L∗a)] dt + (v0, a(0)) = 0 (.)

for all sufficiently smooth vector fields a : [0,T ] → P (Xn), a(T ) = 0, w :
[0,T ]→ (I − P )(Xn).

We now observe that (.) implies

((u + r)⊗ (u + r),L∗(u + r))− ((u − r)⊗ (u − r),L∗(u − r))− 2(r ⊗ r,L∗r) = 0

for u,r ∈ P (Xn) sufficiently smooth, whence

(u ⊗u,L∗r) + 2(r ⊗u,L∗u) = 0. (.)

Consequently, (.) can be formally recast as∫ T

0
[(v,w) + (v,∂ta)− 2(a⊗ v,L∗v)] dt + (v0, a(0)) = 0. (.)

This implies the following strong reformulation of (.):

∂tv + 2P [L∗v.v] = 0, v(t, ·) ∈ P (Xn), v(0, ·) = v0. (.)

Let us now rewrite problem (.) in terms of the test functions B := L∗a
and E := ∂ta+w. We first observe that

(v0, a(0)) = −
∫ T

0
(v0,∂ta) = −

∫ T

0
(v0,E) (.)

since w is orthogonal to v0. The link between B and E can alternatively be
described by the conditions

∂tB = (L∗ ◦ P )E, B(T ) = 0. (.)
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Indeed, any pair (B,E) satisfying (.) generates a pair (a,w) such that B =
L∗a, E = ∂ta+w, and vice versa. It suffices to take a(t) =

∫ t
T
P E, w = E − P E.

Hence, (.) becomes∫ T

0
[(v − v0,E) + (v ⊗ v,B)] dt = 0 (.)

for all sufficiently smooth vector fields B : [0,T ] → Xn×n
s , E : [0,T ] → Xn

satisfying the constraints (.).
For a technical reason, we now need to extend the class of test func-

tions in (.) (this may make the problem more difficult but definitely not
simpler). Observe that (.) can be rewritten in the following weak form∫ T

0
[(B,∂tΨ ) + (E,P LΨ )] dt = 0 (.)

for all sufficiently smooth vector fields Ψ : [0,T ] → Xn×n
s , Ψ (0) = 0. Ac-

cordingly, the new weak formulation of (.) is to look for functions v ∈
L2((0,T ) ×Ω;Rn) which satisfy (.) for all vector fields B ∈ L∞((0,T ) ×
Ω;Rn×n

s ), E ∈ L2((0,T )×Ω;Rn) meeting the constraint (.).
Formally, (.) implies that the energy

Kt :=
1
2

(v(t),v(t))

is conserved, which yields ∫ T

0
Kt = TK0.

Both of these properties may however fail for the weak solutions. The
idea of Brenier [], which we reemploy here, is to look for a solution that
minimizes

∫ T
0
Kt. This can be recast as a saddle-point problem:

I (v0) = inf
v

sup
E,B

∫ T

0

[
(v − v0,E) +

1
2

(v ⊗ v, I + 2B)
]
dt (.)

where the supremum is taken along all pairs (E,B) satisfying the linear
constraint (.). The dual problem is

J (v0) = sup
E,B: (.)

inf
v

∫ T

0

[
(v − v0,E) +

1
2

(v ⊗ v, I + 2B)
]
dt. (.)
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Since infsup ≥ supinf, one has I (v0) ≥ J (v0).
It is easy to see that any solution to (.) necessarily satisfies

I + 2B ≥ 0. (.)

Assume for a while that
I + 2B > 0. (.)

Then

inf
v

[
(v,E) +

1
2

(v ⊗ v, I + 2B)
]

= −1
2

((I + 2B)−1E,E)

= inf
z⊗z≤M

[
(z,E) +

1
2

(M,I + 2B)
]

=: K−(E,B), (.)

and the first infimum is achieved at v = −(I + 2B)−1E. Consequently, (.)
becomes

J (v0) = sup
E,B: (.),(.)

−
∫ T

0
(v0,E)dt +

∫ T

0
K−(E,B)dt. (.)

As mentioned in [], this is reminiscent of the Benamou-Brenier formula
from the optimal transport theory [, ].

If I+2B is non-negative definite but not invertible at some (t,x) ∈ [0,T ]×
Ω, (.) still makes sense with∫ T

0
K−(E,B)dt := inf

z⊗z≤M

∫ T

0

[
(z,E) +

1
2

(M,I + 2B)
]
dt, (.)

cf. the last equality in (.), where (z,M) : [0,T ] → Xn ×Xn×n
s are suffi-

ciently smooth.
The following theorem shows that a sufficiently smooth solution to (.)

on a small time interval [0,T ] determines a solution to the optimization
problem (.), and vice versa. This advocates the possibility to view the
maximizers of (.) as generalized variational solutions to (.), see also
Remark . below.

Theorem .. Let v be a sufficiently smooth solution to (.) (or, equivalently,
to (.)), satisfying

I ≥ 2(t − T )L∗v(t), t ∈ [0,T ]. (.)
Then there exists a pair (B+,E+) that maximizes (.). Namely, one has

B+ = L∗a, E+ = ∂ta+w,
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where

a = (T − t)v, w = 2(t − T )(I − P )[L∗v.v]. (.)

The original variable v can be retrieved by means of the formula

v(t) =
1

T − t

∫ T

t
(−P E+)(s)ds, t < T . (.)

Proof : By construction, (E+,B+) verify (.) and thus (.). Moreover, (.)
implies (.) for B+. Let us observe that

v + 2B+.v +E+ = 0. (.)

Indeed, using (.) we compute

v + 2B+.v +E+ = v + 2(T − t)L∗v.v + (−v + (T − t)∂tv) + 2(t − T )(I − P )[L∗v.v]

= (T − t)∂tv + 2(T − t)P [L∗v.v] = 0. (.)

On the other hand, since v satisfies (.), we have∫ T

0
[(v − v0,E+) + (v ⊗ v,B+)] dt = 0. (.)

Hence, by (.),∫ T

0
[−(v0,E+) + (v ⊗ v,B+)] dt =

∫ T

0
(v ⊗ v, (I + 2B+))dt, (.)

whence ∫ T

0
[(v0,E+) + (v ⊗ v,B+)] dt = −

∫ T

0
(v ⊗ v, I)dt. (.)

Since v solves (.), we have I (v0) = 1
2

∫ T
0

(v ⊗ v, I)dt = TK0. Thus, we
need to show that ∫ T

0
−(v0,E+) +K−(E+,B+)dt = TK0, (.)
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so that there is no duality gap. Indeed, (.) and (.) yield∫ T

0
−(v0,E+) +K−(E+,B+)dt

=
∫ T

0
−(v0,E+)dt + inf

z⊗z≤M

∫ T

0

[
−(z, (I + 2B+)v) +

1
2

(M,I + 2B+)
]
dt

=
∫ T

0
−
[
(v0,E+) +

1
2

((I + 2B+)v,v)
]
dt

=
∫ T

0

[
(v ⊗ v, I)− 1

2
(v,v)

]
dt = TK0

because the energy conservation holds for the strong solutions.
Finally,

− P E+ = −∂ta = v + (t − T )∂tv, (.)

so ∫ T

t
−P E+(s)ds =

∫ T

t
[v(s) + (s − T )∂sv]ds = (T − t)v(t), (.)

providing (.).

Corollary .. If in Theorem . one has

I > 2(t − T )L∗v(t), t ∈ [0,T ], (.)

then the solution can be also retrieved by the formula

v(t) =
(
−(I + 2B+)−1E+

)
(t), t ∈ [0,T ]. (.)

Indeed, it suffices to observe that (.) means that I + 2B+ > 0, and if
this holds, (.) is equivalent to (.).

Definition .. The operator L is said to satisfy the trace condition if a
uniform (w.r.t. to a.e. x ∈ Ω or any extra parameter) lower bound on
the eigenvalues of the matrix L∗ζ(x), ζ ∈ D(L∗)∩ P (Xn), implies a uniform
upper bound on its eigenvalues (a.e. in Ω).

Remark .. The trace condition is particularly satisfied provided

P L(qI) = 0 (.)
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for any q ∈ X sufficiently smooth. where I ∈ Rn×n
s is the identity matrix.

It suffices to observe that the trace of L∗ζ vanishes almost everywhere.
Indeed,

(Tr(L∗ζ),q) = (L∗ζ,qI) = (ζ,P L(qI))

since ζ ∈ P (Xn). This applies to the Euler equation (.) because

P [−div(qI)] = P (−∇q) = 0.

The next theorem shows existence of variational solutions.

Theorem .. Assume that L satisfies the trace condition. Then for any v0 ∈
P (Xn) there exists a maximizer

(E,B) ∈ L2((0,T )×Ω;Rn)×L∞((0,T )×Ω;Rn×n
s )

of (.), and J (v0) ≥ 0.

Proof : It suffices to consider to the pairs (E,B) that meet the restrictions
(.), (.). Testing (.) with E = 0, B = 0, we see that J (v0) ≥ 0. Let
(Em,Bm) be a maximizing sequence. Without loss of generality, it satisfies

0 ≤ J(v0) ≤ 1
n
−
∫ T

0
(v0,Em)dt +

∫ T

0
K−(Em,Bm)dt. (.)

Since I+2Bm ≥ 0, the eigenvalues of Bm are uniformly bounded from below,
and the trace condition implies a uniform L∞ bound on Bm. Hence, I +
2Bm ≤ kI with some constant k > 0. By the definition of K− in (.), we
have

K−(Em,Bm) ≤ inf
z⊗z≤M

[
(z,Em) +

k
2

(M,I)
]

= − 1
2k

(Em,Em). (.)

We infer that

1
2k

∫ T

0
(Em,Em) ≤ 1

n
−
∫ T

0
(v0,Em)dt ≤ 1

n
+ 2kT K0 +

1
4k

∫ T

0
(Em,Em), (.)

which gives a uniform L2((0,T ) ×Ω;Rn)-bound on Em. The functional
(.) is concave and upper semicontinuous on L2((0,T )×Ω;Rn)×L∞((0,T )×
Ω;Rn×n

s ) as an infimum of affine continuous functionals. The functional∫ T
0

(v0, ·)dt is a linear bounded functional on L2((0,T ) ×Ω;Rn). Conse-
quently, every weak-∗ accumulation point of (Em,Bm) is a maximizer of
(.). Note that the constraints (.), (.) are preserved by the limit.
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Remark .. Let (E,B) be any maximizer of (.). Set V := −P E. Formula
(.), in contrast to (.), does not rely on strict positive-definiteness of
I + 2B. We thus can define a generalized solution to (.) by setting

v :=
1

T − t

∫ T

t
V (s)ds ∈H1

loc ∩C([0,T );Xn), (.)

cf. (.).

Remark .. Assume that µ(Ω) is finite. Then the theory above can be
adapted to the setting

∂tv + PAv = P L(v ⊗ v), v(t, ·) ∈ P (Xn), v(0, ·) = v0 ∈ P (Xn) (.)

where
P : Xn→ Xn

is any orthogonal projector, and

L :D(L) ⊂ Xn×n
s → Xn, A :D(A) ⊂ Xn→ Xn

are linear operators, satisfying

(L(v ⊗ v),v) = (Av,v) = 0, v ∈ P (Xn), (.)

for any sufficiently smooth vector field v. Set

ṽ0 = (v0,1) ∈ Xn+1 ' Xn ×X,

ṽ = (v,1) : [0,T ]→ Xn+1,

P̃ : Xn+1→ Xn+1, P̃ (v,q) =
(
P v,

∫
Ω

qdµ

)
,

L̃ :D(L̃) ⊂ X(n+1)×(n+1)
s → Xn+1, D(L̃) =

(
D(L) D(A)
D(A)> X

)
,

L̃

(
M υ
υ> q

)
=

(
LM −Aυ

0

)
.

Tautologically,
∂t1 = 0. (.)

The “system” (.), (.) can be recast as

∂tṽ = P̃ L̃(ṽ ⊗ ṽ), ṽ(t, ·) ∈ P̃ (Xn+1), ṽ(0, ·) = ṽ0 ∈ P̃ (Xn+1), (.)
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which has the structure of (.). Moreover, any ṽ ∈ P̃ (Xn+1) can be ex-
pressed as

(v,a) '
(
v
a

)
, v ∈ P (Xn), a = cst.

Hence, due to (.),(
L̃ (ṽ ⊗ ṽ) , ṽ

)
=

(
L̃

((
v
a

)
⊗
(
v
a

))
,

(
v
a

))
=

((
L(v ⊗ v)− aAv

0

)
,

(
v
a

))
= 0, (.)

i.e., condition (.) is met. If (.) holds for L, it is valid for L̃ as well.
Indeed, in this situation we have

P̃ L̃

(
qI 0
0 q

)
= P̃

(
L(qI)

0

)
= 0

for any q ∈ X sufficiently smooth.

Remark .. We reckon that with some effort the theory above can be gen-
eralized to the situation when Xn is replaced with the space of L2 vector
fields on a Riemannian manifold.

.Applications
To fix the ideas, in this section we restrict ourselves to the case of the

periodic box Ω = T
d. The symbol P denotes the Leray-Helmholtz projec-

tor in Xd, and I in most cases stands for the d × d identity matrix. Many
of the examples below are known to be the geodesic equations on infinite-
dimensional Lie groups, cf. [, ]. To the best of our knowledge, for
d > 2 the existence of global weak solutions akin to (.) for arbitrary ini-
tial data has never been established for any of these examples excluding
the last one.

Incompressible ideal MHD. The incompressible ideal MHD equations []
read

∂tu + div(u ⊗u) +∇p = div(b⊗ b), (.)
∂tb+ div(b⊗u) = div(u ⊗ b), (.)

divu = 0, (.)
divb = 0, (.)

u(0) = u0, b(0) = b0. (.)
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The unknowns are u,b : [0,T ]×Ω→ R
d and p : [0,T ]×Ω→ R. The ideal

MHD equations are the geodesic equations on the semidirect product of
the Lie group of volume-preserving diffeomorphisms with the dual of its
Lie algebra []. We refer to [, ] for some recent results concerning exis-
tence and non-existence of weak solutions. Since

divdiv(b⊗u) = divdiv(u ⊗ b),

we can rewrite (.), (.) in the equivalent form

∂tu = P (div(b⊗ b)−div(u ⊗u)), (.)
∂tb = P (div(u ⊗ b)−div(b⊗u)). (.)

Set
n = 2d, v = (u,b) : [0,T ]→ Xn ' Xd ×Xd ,

P : Xn→ Xn, P (υ,β) = (Pυ,Pβ),

L :D(L) ⊂ Xn×n
s → Xn, L

(
M N
N> S

)
=

(
divS −divM

divN −div(N>)

)
.

Then (.)–(.) becomes the abstract Euler equation (.). It is straight-
forward to check that (.) holds for v = (u,b) sufficiently smooth. Let
q ∈ X be a sufficiently smooth function. Then

P L

(
qI 0
0 qI

)
= P

(
∇q −∇q

0

)
= 0.

In view of Remark ., Theorem . and Remark . are applicable, and
we get

Corollary .. For any (u0,b0) ∈ Xd ×Xd with divu0 = divb0 = 0, there exists
a generalized solution (.) to (.)–(.).

Multidimensional Camassa-Holm. The multidimensional Camassa-Holm sys-
tem [, ] looks like

∂tm+ (∇u)>.m+ div(m⊗u) = 0, (.)
m = u −∇divu, (.)
u(0) = u0. (.)

The unknown is u : [0,T ] ×Ω→ R
d. It describes the geodesics of the dif-

feomorphism group with H1
div metric, see, e.g., []. A distinct geodesic

interpretation was discussed in []. Relaxed solutions in the spirit of
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the generalized flows of Brenier [] were recently constructed in []. We
recall (cf. [, ]) that, loosely speaking, there is a “fiber-base” duality be-
tween the Monge-Kantorovich transport [] and Euler’s equations (.)-
(.). In a similar way, one can think, cf. [], about a “fiber-base” duality
between (.)–(.) and the unbalanced optimal transport [, , ].

We now define the relevant projector. Namely, for each (υ,σ ) ∈ Xd+1 '
Xd ×X, we consider its orthogonal projection over the vector fields of the
form (u,divu). This is related to the “duality” above and to the unbal-
anced version of Brenier’s polar factorization theorem [] that was dis-
cussed in preliminary preprint versions of []. The explicit expression of
the projector is

P : Xd+1→ Xd+1,

P

(
υ
σ

)
= Pdiv

(
υ
σ

)
:=

(
υ −∇(I −∆)−1(σ −divυ)
σ − (I −∆)−1(σ −divυ)

)
. (.)

Set
n = d + 1, v = (u,divu) : [0,T ]→ Xn ' Xd ×X,

L :D(L) ⊂ Xn×n
s → Xn, L

(
M υ
υ> q

)
=

(
−divM

−divυ+ 1
2 TrM + 1

2q

)
.

We claim that the Camassa-Holm system (.)–(.) is tantamount to
the abstract Euler equation (.) with P and L just defined. Indeed, denote
p := divu, p0 := divu0 in (.)–(.). After some calculations, one finds
that (.)–(.) is equivalent to

∂tu = −div(u ⊗u) +∇
[
∂tp+ div(up)− 1

2
|u|2 − 1

2
p2

]
, (.)

p = divu, (.)
u(0) = u0, p(0) = p0. (.)

Tautologically,

∂tp = −div(up) +
1
2
|u|2 +

1
2
p2 +

[
∂tp+ div(up)− 1

2
|u|2 − 1

2
p2

]
. (.)

The system (.)–(.) can be rewritten as

∂tv = L(v ⊗ v) +
(
∇ξ
ξ

)
, v(0) = v0, (.)
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where

v(t) =
(
u(t)
p(t)

)
∈ P (Xn)

and
ξ = ∂tp+ div(up)− 1

2
|u|2 − 1

2
p2. (.)

Applying the projector P to both sides of (.), we get (.). Reciprocally,
(.) implies (.) where ξ necessarily satisfies (.) due to (.).

A not very tedious calculation verifies (.) for v = (u,divu) sufficiently
smooth. However,

P L

(
qI 0
0 q

)
= P

(
−∇q
d+1

2 q

)
,

which yields that the requirement (.) is not met, and we need to find
another way to secure the trace condition. It will be based on the following
simple multidimensional variant of the Grönwall-Bellman lemma.

Lemma .. Consider a function ψ ∈W 1,1(Td) such that a.e. in T
d one has

|∇ψ(x)| ≤ cψ(x) (.)

with a constant c. Then ψ ∈ C(Td), and

|ψ(x)| ≤ e
c
√
d

2

∫
T
d
ψ(y)dy, x ∈ Td . (.)

Proof : By Sobolev embedding, ψ ∈ Lp(Td), 1− 1
n = 1

p , whence ψ ∈W 1,p(Td).
Bootstrapping, we derive thatψ ∈W 1,∞(Td) ⊂ C(Td). Consequently, logψ ∈
W 1,∞(Td) because

|∇ logψ(x)| ≤ c (.)
due to (.). Since |Td | = 1, there is x0 ∈ Td such that ψ(x0) =

∫
T
d ψ(y)dy.

By (.),

| logψ(x)− logψ(x0)| ≤ c|x − x0| ≤ c
√
d

2
, x ∈ Td , (.)

which implies (.).

We return to the Camassa-Holm system. The adjoint operator is

L∗ :D(L∗) ⊂ Xn→ Xn×n
s , L∗

(
φ
χ

)
=

1
2

(
∇φ+ (∇φ)> +χI ∇χ

(∇χ)> χ

)
.
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If (φ,χ) ∈ P (Xn), then χ = divφ. If the eigenvalues of(
∇φ+ (∇φ)> +χI ∇χ

(∇χ)> χ

)
(x), χ = divφ, (.)

are bounded from below, there is k ≥ 0 such that(
∇φ+ (∇φ)> + (χ+ k)I ∇χ

(∇χ)> χ+ k

)
(x) ≥ 0.

In particular, χ + k ≥ 0. Moreover, considering the principal minors of
order 2, we see that

(χ+ k + 2∂xiφi)(χ+ k) ≥ (∂xiχ)2.

Thus,
3(χ+ k)2 = (3χ+ 3k)(χ+ k) ≥ (3χ+ k)(χ+ k) ≥ |∇χ|2.

Since
∫
T
d χ(y)dy = 0, Lemma . implies that

χ(x) + k ≤ ke
√

3d
2 , x ∈ Td . (.)

This provides a uniform bound on the trace of the matrix in (.). Hence,
the eigenvalues of this matrix are bounded from above, and the trace con-
dition holds. We infer

Corollary .. For every u0 ∈ Xd, there exists a generalized solution (.) to
(.)–(.).

EPDiff. The EPDiff equations [, , , , , ] are

∂tm+ (∇u)>.m+ div(m⊗u) = 0, (.)
m = u −∆u, (.)
u(0) = u0. (.)

The unknown is u : [0,T ]×Ω→R
d. The EPDiff equations are the geodesic

equations on the diffeomorphism group with H1 metric, see, e.g., [].
For each (υ,M) ∈ Xd(1+d) ' Xd × Xd×d, we consider its orthogonal pro-

jection over the fields of the form (u,∇u). This is related to the matricial
optimal transport []. More profoundly, we reckon that there is a “fiber-
base” duality between the matricial transport as considered in [] and the
EPDiff equations, cf. the discussion of the Camassa-Holm example. The
explicit expression of the projector is

P : Xd(1+d)→ Xd(1+d),
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P

(
υ
M

)
= P∇

(
υ
M

)
:=

(
υ −div(I −∇div)−1(M −∇υ)
M − (I −∇div)−1(M −∇υ)

)
. (.)

Remark .. The operator (I −∇div)−1 can be viewed as the Riesz isomor-
phism between the Hilbert spaces E∗ and E, where E := {M ∈ Xd×d |divM ∈
Xd} is equipped with the scalar product (M,N )E = (M,N ) + (divM,divN ),
cf. []. Consequently, (.) defines a bounded linear operator on Xd(1+d).

Set
n = d(1 + d), v = (u,∇u) : [0,T ]→ Xn ' Xd ×Xd×d ,

L :D(L) ⊂ Xn×n
s → Xn,

L

(
M Υ

Υ > Ξ

)
=

(
0

−div(Υ >) +M + Ξ̂− Ξ̂+ 1
2I TrM + 1

2I Tr Ξ̂

)
.

Let us now interpret the EPDiff equations as an abstract Euler equation.
Denote G := ∇u, G0 := ∇u0 in (.)–(.). A tedious calculation shows
that (.)–(.) is equivalent to

∂tu = div
[
∂tG+ div(G⊗u)−u ⊗u − ̂(G⊗G) +

̂

(G⊗G)

−1
2
I Tru ⊗u − 1

2
I Tr ̂(G⊗G)

]
, (.)

G = ∇u, (.)
u(0) = u0, G(0) = G0. (.)

Tautologically,

∂tG = −div(G⊗u) +u ⊗u + ̂(G⊗G)−
̂

(G⊗G) +
1
2
I Tru ⊗u

+
1
2
I Tr ̂(G⊗G) +

[
∂tG+ div(G⊗u)−u ⊗u − ̂(G⊗G) +

̂

(G⊗G)

− 1
2
I Tru ⊗u − 1

2
I Tr ̂(G⊗G)

]
. (.)

The system (.)–(.) can be rewritten as

∂tv = L(v ⊗ v) +
(
divξ
ξ

)
, v(0) = v0, (.)
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where

v(t) =
(
u(t)
G(t)

)
∈ P (Xn)

and

ξ = ∂tG+ div(G⊗u)−u ⊗u − ̂(G⊗G) +

̂

(G⊗G)− 1
2
I Tru ⊗u − 1

2
I Tr ̂(G⊗G).

(.)
Applying the projector P to both sides of (.), we get (.). Reciprocally,
(.) implies (.) where ξ necessarily satisfies (.) due to (.).

A direct calculation shows that (.) holds for v = (u,∇u) sufficiently
smooth, but the requirement (.) is not met.

The adjoint operator is

L∗ :D(L∗) ⊂ Xn→ Xn×n
s ,

L∗
(
φ
Φ

)
=

1
2

(
Φ +Φ> + I TrΦ ∇Φ

(∇Φ)> Φ̂∗ + ̂(Φ>)
∗
− Φ̂

∗
−
̂

(Φ>)
∗
+ (TrΦ )̂I

∗

)
.

If (φ,Φ) ∈ P (Xn), then Φ = ∇φ. If the eigenvalues of(
Φ +Φ> + I TrΦ ∇Φ

(∇Φ)> Φ̂∗ + ̂(Φ>)
∗
− Φ̂

∗
−
̂

(Φ>)
∗
+ (TrΦ )̂I

∗

)
(x), Φ = ∇φ, (.)

are bounded from below, there is k ≥ 0 such that(
Φ +Φ> + (k + TrΦ)I ∇Φ

(∇Φ)> Φ̂∗ + ̂(Φ>)
∗
− Φ̂

∗
−
̂

(Φ>)
∗
+ (k + TrΦ )̂I

∗

)
(x) ≥ 0.

Taking the trace of the last block, we deduce that k + TrΦ ≥ 0. Moreover,
the non-negativity of the principal minors of order 2 yields

(k + TrΦ + 2Φii)(2Φjj − 2Φll + k + TrΦ) ≥ (∂xiΦjl)
2.

Letting j = l and performing the summation w.r.t. to the remaining in-
dices, we arrive at

3(k + TrΦ)2 ≥ (k + 3TrΦ)(k + TrΦ) ≥ |∇TrΦ |2.
But Φ = ∇φ, so

∫
T
d TrΦ(y)dy = 0. As in the Camassa-Holm case above,

Lemma . implies a uniform bound on TrΦ and thus on the trace of the
matrix in (.). This yields the trace condition, and leads to

Corollary .. For every u0 ∈ Xd, there exists a generalized solution (.) to
(.)–(.).
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Euler-α. The Euler-α equations [, , , ] (with α = 1 for definite-
ness) may be written as

∂tm+ (∇u)>.m+ div(m⊗u) +∇p = 0, (.)
m = u −∆u, (.)
divu = 0, (.)
u(0) = u0. (.)

The unknowns are u : [0,T ]×Ω→ R
d and p : [0,T ]×Ω→ R. These equa-

tions are the geodesic equations on the group of volume-preserving diffeo-
morphisms with H1 metric, see, e.g., []. This example is quite similar to
the previous one. We first recast (.)–(.) in the form

∂tu +∇p = div
[
∂tG+ div(G⊗u)−u ⊗u − ̂(G⊗G) +

̂

(G⊗G)

−1
2
I Tru ⊗u − 1

2
I Tr ̂(G⊗G)

]
, (.)

∂tG = −div(G⊗u) +u ⊗u + ̂(G⊗G)−
̂

(G⊗G) +
1
2
I Tru ⊗u

+
1
2
I Tr ̂(G⊗G) +

[
∂tG+ div(G⊗u)−u ⊗u − ̂(G⊗G) +

̂

(G⊗G)

−1
2
I Tru ⊗u − 1

2
I Tr ̂(G⊗G)

]
. (.)

G = ∇u, (.)
TrG = 0, (.)

u(0) = u0, G(0) = G0, (.)

cf. (.)–(.). Set

n = d(1 + d), v = (u,G) : [0,T ]→ Xn ' Xd ×Xd×d ,

L :D(L) ⊂ Xn×n
s → Xn,

L

(
M Υ

Υ > Ξ

)
=

(
0

−div(Υ >) +M + Ξ̂− Ξ̂+ 1
2I TrM + 1

2I Tr Ξ̂

)
.

Consider the set

Y := P∇Xn∩ {(u,G)|TrG = 0},
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where P∇ was defined in (.). It is clear that Y is a closed linear subspace
of Xn. Let

P : Xn→ Y

be the corresponding orthogonal projector. The orthogonal complement
of Y consists of the elements of the form (divξ,ξ + qI), ξ ∈ Xd×d, q ∈ X.
Rewrite the system (.)–(.) as

∂tv = L(v ⊗ v) +
(

divξ
ξ + pI

)
, v(0) = v0, (.)

where

v(t) =
(
u(t)
G(t)

)
∈ P (Xn)

and

ξ = ∂tG+div(G⊗u)−u⊗u− ̂(G⊗G)+

̂

(G⊗G)−1
2
I Tru⊗u−1

2
I Tr ̂(G⊗G)−pI.

(.)
Applying the projector P to both sides of (.), we get the abstract Eu-
ler equation (.). Reciprocally, (.) implies (.) where ξ necessarily
satisfies (.) due to the trivial equality (.).

As in the previous example, (.) holds for v = (u,∇u) sufficiently smooth.
In contrast to EPDiff, (.) is now valid since

P L

(
qI 0
0 q̂I

∗

)
= P

(
0

(d + 1)qI

)
= 0.

Thus we have

Corollary .. For every u0 ∈ Xd, divu0 = 0, there exists a generalized solution
(.) to (.)–(.).

Incompressible isotropic Hookean elastodynamics. The “neo-Hookean” model
of motion of incompressible isotropic elastic fluid [, , , , , ]
reads

∂tu + div(u ⊗u) +∇p = div(FF>), (.)
∂tF + div(F ⊗u) = (∇u)F, (.)

divu = 0, (.)

divF> = 0, (.)
u(0) = u0, F(0) = F0. (.)



 D. VOROTNIKOV

The unknowns are u : [0,T ]×Ω→R
d, F : [0,T ]×Ω→R

d×d and p : [0,T ]×
Ω→R. Consider the projector

P : Xd×d→ Xd×d , P (M) = Pd(M) :=
(
PM1 PM2 · · · PMd

)
, (.)

where M1, . . . ,Md ∈ Xd are the columns of the matrix M. Obviously,

div(PdM)> = 0, M ∈ Xd×d .

It is straigtforward to check that

div(div(F ⊗u))> = div((∇u)F)>,

which allows us to project (.) onto PdXn×n. Set

n = d(1 + d), v = (u,F) : [0,T ]→ Xn ' Xd ×Xd×d ,

P : Xn→ Xn, P (υ,Φ) = (Pυ,PdΦ),

L :D(L) ⊂ Xn×n
s → Xn, L

(
M Υ

Υ > Ξ

)
=

(
div Ξ̂−divM

div Υ̃ −div(Υ >)

)
.

Then (.)–(.) can be recast in the form of the abstract Euler equation
(.). The structure of equations (.)–(.) (in particular, their similar-
ity with the ideal MHD equations) allows us to conjecture that they deter-
mine the geodesics on some Lie group. The conservativity condition (.)
holds for v = (u,F) sufficiently smooth (this can be verified straightfor-
wardly). Let us check (.). Let q ∈ X be a sufficiently smooth function.
Then

P L

(
qI 0
0 q̂I

∗

)
= P

(
d∇q −∇q

0

)
= 0.

As a result, we have

Corollary .. For any (u0,F0) ∈ Xd ×Xd×d with divu0 = 0, divF>0 = 0, there
exists a generalized solution (.) to (.)–(.).
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Conservative incompressible elastic fluid. The motion of the incompressible
Oldroyd-B viscoelastic material (also known as Jeffreys’ fluid) is described
[, , ] by the problem

∂tu + div(u ⊗u)−µ∆u +∇p = divτ, (.)

∂tτ + div(τ ⊗u) +Q(∇u,τ) + aτ =
1
2

(∇u + (∇u)>), (.)

divu = 0, (.)
u(0) = u0, τ(0) = τ0. (.)

The unknowns are u : [0,T ] × Ω → R
d, τ : [0,T ] × Ω → R

d×d
s and p :

[0,T ] ×Ω → R. When the retardation time vanishes, we get Maxwell’s
fluid (this corresponds to µ = 0). The choice a = 0 (cf. [, ]) tallies with
the damping-free case when the relaxation time blows up. We restrict our-
selves to the purely hyperbolic case a = µ = 0, which coheres with a purely
elastic fluid. Note that (cf. [, ]) the purely hyperbolic system with
Q = −∇uτ − τ(∇u)>(the upper-convective case) can be made equivalent to
(.)-(.) if one assumes the ansätze

τ = FF>, divF> = 0. (.)

This makes sense because the constraints (.) are preserved along the
flow. Here we do not assume neither (.) nor even positive-definiteness
of τ . The term Q is related to frame-invariance and is known to create
mathematical difficulties. We consider the simplified model with Q ≡ 0,
cf. [, , , , ]. This model, unlike (.)–(.), is not frame-
indifferent, but it is invariant to the transformations which keep the frame
inertial (e.g., to the Galilean transformation). We arrive at the following
conservative problem:

∂tu + div(u ⊗u) +∇p = divτ, (.)

∂tτ + div(τ ⊗u) =
1
2

(∇u + (∇u)>), (.)

divu = 0, (.)
u(0) = u0, τ(0) = τ0. (.)

Set
n = d + d(d + 1)/2, v = (u,τ) : [0,T ]→ Xn ' Xd ×Xd×d

s ,

P : Xn→ Xn, P (υ,ς) = (Pυ,ς),
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A :D(A) ⊂ Xn→ Xn, A(υ,ς) = −1
2

(2divς,∇υ+ (∇υ)>) ,

L :D(L) ⊂ Xn×n
s → Xn, L

(
M Υ

Υ > Ξ

)
=

(
−divM
−div(Υ >)

)
.

Then (.)–(.) can be written in the abstract form (.). Condition
(.) follows by integration by parts. Moreover, (.) is satisfied since

P L

(
qI 0
0 q̂I

∗

)
= P

(
−div(qI)

0

)
=

(
−P∇q

0

)
= 0

for each q ∈ X sufficiently smooth. In light of Remark ., we have the
following corollary:

Corollary .. For any (u0, τ0) ∈ Xd ×Xd×d
s with divu0 = 0, there exists a gen-

eralized solution (.) of the extended system (.) tantamount to (.)–
(.).

Korteweg-de Vries. Let Ω = T
1. The Korteweg-de Vries equation is

∂tv + vxxx = 6vvx, v(0) = v0. (.)

The unknown is v : [0,T ]×Ω→R. It is the geodesic equation for the Vira-
soro group []. The Korteweg-de Vries equation is known to be globally
well-posed [] but we still consider this example for the sake of curiosity.

Set
n = 1, P = I, A :D(A) ⊂ X→ X, A(υ) = −υxxx,

L :D(L) ⊂ X→ X, L(σ ) = −3σx.
Then (.) can be written in the abstract form (.). Condition (.) can
be easily verified via integration by parts. However, (.) is not satisfied.

As in Remark ., consider the extended problem (.) with

P̃ (υ,a) =
(
υ,

∫
Ω

adµ

)
,

L̃

(
σ z
z a

)
=

(
−3σx + zxxx

0

)
.

The adjoint operator is

L∗ :D(L∗) ⊂ X2→ X2×2
s , L∗

(
φ
ψ

)
=

1
2

(
6φx −φxxx
−φxxx 0

)
.
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If there is k ≥ 0 such that (
6φx + k −φxxx
−φxxx k

)
≥ 0,

then
6kφx + k2 −φ2

xxx ≥ 0.
Consequently, ∫

T
1
φ2
xxx ≤ k2.

By Wirtinger inequality, φx is uniformly bounded in W 2,2(T1) and thus
in L∞(T1). Accordingly, the trace of L∗(φ,ψ) is uniformly bounded, which
implies the trace condition.

Corollary .. For any v0 ∈ X, there exists a generalized solution (.) of the
extended system (.) tantamount to (.).

Remark .. Some of the examples above (namely, the Euler-α and the
ideal MHD) as well as the incompressible Euler itself are known to have
dissipative solutions in the spirit of Lions [] (see [], []). The qua-
dratic conservative structure of the abstract Euler equation (.) complies
nicely with Lions’ concept (see [, Appendix] for a related discussion).
We have little doubt that all the examples of Section  admit dissipative
solutions (this should not be difficult to prove but lies beyond the scope of
this article). It would be interesting to find a link between the variational
solutions (.) and the dissipative solutions.
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