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1. Introduction
The Toda lattice{

ḃn(t) = an(t)− an+1(t)

ȧn+1(t) = an+1(t)(bn(t)− bn+1(t))
, a0 = 0, n = 0, 1 . . . , (1)

when both (an(t))n∈N and (bn(t))n∈N are real or complex functions has been
well studied in the literature from different points of view (cf. [2, 3, 6, 13,
24, 26]). In particular, if we assume that an(t) 6= 0, n > 0, and we define a
sequence of polynomials (pn)n∈N recursively by

pn+1(x, t) = (x− bn(t))pn(x, t)− an(t)pn−1(x, t), p−1 = 0, p0 = 1,

then using Favard’s theorem [9], for each t ∈ R, there exists a linear functional
u(t) such that the sequence of polynomials (pn)n∈N is orthogonal with respect
to u(t). This connection with orthogonal polynomials was used in [7, 13, 26]
to give sufficient conditions for the construction of a new solution (ãn(t))n∈N
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and (̃bn(t))n∈N of (1) from another given one. Both solutions are linked by a
Bäcklund transformation, given by

an = γ2n−1γ2n, bn = γ2n + γ2n+1 + C, n ∈ N,

ãn = γ2nγ2n+1, b̃n = γ2n+1 + γ2n+2 + C, n ∈ N,

where (γn)n∈N is solution of the Volterra lattice

γ̇n+1 = γn+1(γn − γn+2), γ0 = 0, n = 0, 1 . . . . (2)

Here we emphasize that the dot ‘˙’ means differentiation with respect to t ∈ R.
Both the Volterra and the new solution of the Toda lattices are strongly
related with Darboux transformations of orthogonal polynomials (or equiv-
alently, to the LU and UL factorization of its associated Jacobi matrix [8]).
In [5] the above analysis is generalized to high-order Toda and Volterra lat-
tices.

The Darboux transformations has also been used by Spiridonov and Zhe-
danov to study the discrete-time Toda [28] and Volterra lattices [29] and
their connection with Askey-Wilson polynomials.

More recently, a matrix interpretation of high-order Toda lattices is given
in [4] to consider the following semi-infinite system of differential equations

ȧn = cn − cn−2,

ḃn = cnan+1 − cn−1an + dn − dn−2,

ċn = cn(bn+1 − bn) + dnan+2 − dn−1an,

ḋn = dn(bn+2 − bn),

n ∈ N, (3)

with initial conditions a0 = b0 = c0 = d0 = c1 = 0, where an, bn, cn and dn are
complex functions depending on t ∈ R. This system can be characterized in
terms of matrix orthogonal polynomials satisfying the following three term
recurrence relation

xVm(x) = Am+1Vm+1 +BnVm(x) + CmVm−1(x), n ∈ N,

where

Am =
[

1 0
a2m+3 1

]
, Bm =

[
b2m+1 a2m+2

c2m+1 b2m+2

]
, Cm =

[
d2m−1 c2m

0 d2m

]
.
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Notice that from the above differential system, (3) can be written in matrix
notation as

Ȧm = AmDm+1 −DmAm

Ḃm = AmCm+1 − CmAm−1 +BmDm −DmBm

Ċm = BmCm − CmBm−1 + CmDm−1 −DmCm

, n ∈ N,

where Dm =
[

0 0
c2m+1 0

]
. With this new interpretation, the authors find,

under some conditions, a representation of the vector of linear functional
associated with the polynomials (Vn)n∈N, and show that the orthogonality
governs the high-order Toda lattice.

Noncommutative extension of Toda and Volterra lattices is not just a gen-
eralization. We can see that, in recent years, the interest on non-commutative
analogue of solition equations and their integrability have been increased [16],
such is the case of Hirota-Miwa equation [15, 21], KdV equation [10, 19, 25],
KP equation [14, 18, 27], mKP equation [16, 18] and the Toda and Volterra
lattices [18], among others. In particular, the non-commutative Toda equa-
tion, have been extensively studied in the literature (cf. [11, 18, 17, 22, 23]).
For example, in [27] the author introduces the non-commutative Toda lattice
from Sato-Wilson equations and shows that with an appropriate change of
variables, the Toda equation can be written as in (1), but now with (an)n∈N
and (bn)n∈N belonging to a ring. Moreover, the author derives the bilinear
identities for the Baker-Akhiezer functions and calculates the N -soliton so-
lutions. More recently, in [20] the Darboux and the binary Darboux are
used for the construction of the solution (in terms of quasi-determinants) of
non-commutative Toda Lattices.

The propose of this manuscript is to deal with a very special type of non-
commutative Toda and Volterra lattices. In fact, we will consider Toda and
Volterra lattices as in (1) and (2), but now with N × N matrix complex
functions, an, bn and γn. In particular, we are interested in relating the
matrix Toda and Volterra equations with sequences of matrix bi-orthogonal
polynomials which are associated with a matrix sesquilinear forms. The
matrix bi-orthogonal polynomials allow us to find a new solution of Toda
and Volterra lattices from a given one using the symmetrization process (cf.
Section 3).

This work is organized as follows: In Section 2, we present the basic the-
ory about matrix biorthogonal polynomials and a Favard’s matrix theorem.
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Following the ideas given in [9] we expose the symmetrization process for ma-
trix sesquilinear forms associated with a matrix of the linear functionals, this
process involves the LU block factorization (cf. [8] in the scalar case) and the
matrix Christoffel transformation [1]. In Section 4, we study a matrix Toda
system and use this symmetrization process (the analogous to the Bäcklund
transformation) to construct a new solution from another given one. Both
solutions are liked to each other by a matrix Volterra lattice. We also give a
very instructive example which motivates the study in Section 5 of the matrix
Volterra lattice (or equivalently matrix 2-Toda lattice), where we give char-
acterizations of the solution of a Volterra lattice, its corresponding matrix of
linear functionals associated with the block Jacobi matrix and its sequence
of matrix biorthogonal polynomials.

2. Matrix biorthogonal polynomials
First of all we will fix some notation. Let C be the set of complex numbers,

and denote by CN×N the linear space of N×N matrices with complex entries.
For an arbitrary finite or semi-infinite matrix A, the matrix A† is its transpose
conjugate. We will denote by I and 0 the identity and zero N ×N matrices,
respectively.

A sesquilinear form on the bimodule of matrix polynomials CN×N [x], with
real variable, is a map

〈·, ·〉 : CN×N [x]× CN×N [x]→ CN×N ,

such that for any triple P,Q,R ∈ CN×N [x] and for all A,B ∈ CN×N :

1. 〈AP (x) +BQ(x), R(x)〉 = A 〈P (x), R(x)〉+B 〈Q(x), R(x)〉;
2. 〈P (x), AQ(x) +BR(x)〉 = 〈P (x), Q(x)〉A† + 〈P (x), R(x)〉B†.

If 〈P (x), Q(x)〉 = 〈Q(x), P (x)〉†, then 〈·, ·〉 is called a symmetric sesquilin-
ear form.

Given a matrix of linear functionals, i.e.

u =

 u0,0 · · · u0,N−1
...

. . .
...

uN−1,0 · · · uN−1,N−1

 ,
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where ui,j belongs to the dual space of C[x], we define its associated sesquilin-
ear form 〈P,Q〉u as follows

(
〈P,Q〉u

)
i,j

=
N−1∑
k,l=0

[uk,l, Pi,k(x)Qj,l(x)], i, j = 0, 1 · · · , N − 1.

Here, [ui,j, p(x)] is the action of the linear functional ui,j on the scalar poly-
nomial p(x).

An important property of the sesquilinear form defined in terms of a matrix
of linear functionals is that 〈xP (x), Q(x)〉u = 〈P (x), xQ(x)〉u. Hereinafter
we only work with matrix sesquilinear forms satisfying the above property
and, unless otherwise stated, we will assume that 〈I, I〉u = I.

Definition 1. The n-th moment of a sesquilinear form associated with a
matrix of linear functionals is defined as

un =

 〈u0,0, xn〉 . . . 〈u0,N−1, xn〉
...

. . .
...

〈uN−1,0, xn〉 . . . 〈uN−1,N−1, xn〉

 , n ∈ N.

We also define the block moment matrix M and its n-th truncation as

M =

u0 u1 · · ·
u1 u2 · · ·
...

...
. . .

 , Mn =

 u0 · · · un−1
...

. . .
...

un−1 · · · u2n−2

 , n ∈ N, (4)

Let χ(x) =
[
I Ix Ix2 · · ·

]†
. Observe that with this notation, the block

moment matrix can be expressed as M = 〈χ(x), χ(x)〉u.

Proposition 1. The block moment matrix M satisfies

MΛ† = ΛM, where Λ =

0 I 0

0 0 I
. . .

. . .
. . .

. . .

 . (5)

Proof : The proof follows from the identity Λχ(x) = xχ(x).

Definition 2. A sesquilinear form 〈·, ·〉u is said to be quasi-definite if all block
leading sub-matrices of the corresponding block moment matrix are nonsin-
gular.
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Proposition 2 (cf. [1]). If the sesquilinear form 〈·, ·〉u is quasi-definite, then
its block moment matrix M has an unique Gauss-Borel factorization,

M = S−1
1 H(S2)

−†, (6)

where S1, S2 are lower unitriangular block matrices and H is a block diagonal
matrix. Moreover, if M = M †, then S1 = S2.

Definition 3. Let 〈·, ·〉u be a quasi-definite sesquilinear form, such that the
associated block moment matrix has a Gauss-Borel factorization as in (6).
The first and second families of matrix biorthogonal polynomials with respect
to 〈·, ·〉u are defined by

P [1](x) =

P [1]
0 (x)

P
[1]
1 (x)
...

 = S1χ(x), P [2](x) =

P [2]
0 (x)

P
[2]
1 (x)
...

 = S2χ(x).

Proposition 3 (Biorthogonality). The first and second families of monic

matrix polynomials (P
[1]
n )n∈N and (P

[2]
n )n∈N are biorthogonal, i.e.,〈

P [1]
n (x), P [2]

m (x)
〉
u

= δn,mHn, n,m ∈ N,

where Hn is the (n, n)-block element of the block semi-infinite matrix H ob-
tained in the Gauss-Borel factorization (6). These biorthogonal relations
yields,〈

P [1]
n (x), xmI

〉
u

= 0,
〈
xmI, P [2]

n (x)
〉
u

= 0, m = 0, . . . , n− 1,〈
P [1]
n (x), xnI

〉
u

= Hn,
〈
xnI, P [2]

n (x)
〉
u

= Hn, n ∈ N.

Definition 4. The matrices

J1 = S1ΛS
−1
1 , J2 = S2ΛS

−1
2 , (7)

are said to be the Jacobi matrices associated with the moment matrix M .

Proposition 4. The two block tridiagonal Jacobi matrices in (7) are re-
lated by

H−1J1 = J †2H
−1,

Moreover, we have that

J1P
[1](x) = xP [1](x), J2P

[2](x) = xP [2](x). (8)
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Proof : The relation between the above two Jacobi matrices follows from the
Gauss-Borel factorization and by (5). The relation (8) follows from the defi-
nitions of the Jacobi matrices (7).

Observe that as a consequence of the above proposition we get that J1 and
J2 have a three diagonal block shape with the block I on the superdiagonal,

J1 =

b[1]0 I

a
[1]
1 b

[1]
1 I
. . .

. . .
. . .

 , J2 =

b[2]0 I

a
[2]
1 b

[2]
1 I
. . .

. . .
. . .

 . (9)

The equations in (8) means that (P
[1]
n )n∈N and (P

[2]
n )n∈N, respectively satisfies

a three term recurrence relation, for n ∈ N,

xP [1]
n (x) = P

[1]
n+1(x) + b[1]

n P
[1]
n (x) + a[1]

n P
[1]
n−1(x), P

[1]
0 (x) = I, P

[1]
−1(x) = 0,

xP [2]
n (x) = P

[2]
n+1(x) + b[2]

n P
[2]
n (x) + a[2]

n P
[2]
n−1(x), P

[2]
0 (x) = I, P

[2]
−1(x) = 0,

where for i = 1, 2, a
[i]
n , and b

[i]
n are N×N matrices. Moreover, a

[1]
n = HnH

−1
n−1.

Proposition 5. Given a matrix of linear functionals u and its sequence of
moments (un)n∈N. Then un = (Jn1 )0,0, n ∈ N.

Proof : We know from (8) that Jn1 P
[1](x) = xnP [1](x), n ∈ N, and the first

block line gives us

xnP
[1]
0 (x) =

n∑
k=0

(Jn1 )0,kP
[1]
k (x).

Now, applying the sesquilinear form and making use of the biorthogonality
condition we get the desired result.

Definition 5 (cf. [12]). Let A ∈ Cm×m, B ∈ Cm×N , C ∈ CN×m, and D ∈
CN×N , with A a nonsingular matrix. The last quasi-determinant of the block

matrix
[
A B
C D

]
, is given by

Θ∗

[
A B
C D

]
= D − CA−1B.
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Remark 1. The sequences of matrix polynomials (P
[1]
n )n∈N and (Hn)n∈N can

be written in term of the moments (un)n∈N as follows ( cf. [1])

P [1]
n (x) = xnIp −

[
un · · · u2n−1

]
M−1

n


Ip
xIp
...

xn−1Ip

 , and

Hn = Θ∗

 Mn

un
...

u2n−1

un · · ·u2n−1 u2n

 ,
where Mn is given in (4). From these representations and using the three
term recurrence relation, we have

a[1]
n = HnH

−1
n−1, b[1]

n = DnHn, where Dn = Θ∗

 Mn

un+1

...
u2n

un · · ·u2n−1 u2n+1

 .
There exist similar formulas for (P

[2]
n )n∈N, a

[2]
n and b

[2]
n .

Definition 6. Let u be a matrix of linear functionals with sequence of mo-
ments (un)n∈N. Let r = sup{|x| : x ∈ suppu} < ∞ and consider the disks
about infinity, D = {z ∈ C : |z| > r}. For z ∈ D we define the Stieltjes
matrix function as

F (z) =

〈
1

z − x
I, I

〉
u

.

Observe that in this definition we have that the geometric series
∞∑
k=0

(x
z

)k
is uniform convergent in any compact subset of D. With this in mind, F (z)
can also be written as

F (z) =
∞∑
k=0

uk
zk+1

.
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Proposition 6 (Matrix Favard’s theorem). Let (an)n∈N and (bn)n∈N be two
sequences of matrices with an nonsingular for every n ∈ N. If we define the

matrix polynomials (P
[1]
n )n∈N by: P0(x) = I, P−1(x) = 0, and

P
[1]
n+1(x) = (xI− bn)P [1]

n (x)− anP [1]
n−1(x), n ≥ 0, (10)

then we can find a matrix of linear functionals u such that its sesquilinear
form satisfies

〈P [1]
n (x), xmI〉u = an · · · a1 δn,m,

where δn,m is the Kronecker delta function.

Proof : To prove the above result we inductively define the moments (un)n∈N
of the matrix of the linear functional u by

u0 = 〈I, I〉u = I,
〈
P [1]
n (x), I

〉
u

= 0, n = 1, 2 . . . .

So, we can define u1 using the fact that

0 =
〈
P

[1]
1 (x), I

〉
u

= 〈(xI− b0), I〉 = u1 − b0u0.

In the same way u2 can be defined from

0 =
〈
P

[1]
2 (x), I

〉
u

=
〈
x2I− xb1 − xb0 − b1b0, I

〉
u

= u2 − (b0 + b1)u1 − b1b0u0.

Following this process we can find all the moments of u. From the above
definition and the recurrence relation (10), we arrive to the orthogonality
conditions〈
P [1]
n (x), xmI

〉
u

= 0, m < n, as well as Hn =
〈
P [1]
n (x), xnI

〉
u

= an · · · a1.

As a last comment, it is important to point out that from the Proposition 4,
we can construct the second family of matrix biorthogonal polynomials with

respect to 〈·, ·〉u, i.e. (P
[2]
n )n∈N.

3. Symmetrized sesquilinear forms

Let (P
[1]
n )n∈N and (P

[2]
n )n∈N be the sequences of matrix biorthogonal poly-

nomials with respect to a quasi-definite sesquilinear form 〈·, ·〉u. We are in-
terested in finding conditions such that the Jacobi matrices J1 and J2, have
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LU block factorization, i.e,

Ji = LiUi =


I

γ
[i]
2 I

γ
[i]
4 I

. . .
. . .



γ
[i]
1 I

γ
[i]
3 I

γ
[i]
5 I

. . .
. . .

 , i = 1, 2. (11)

where (γ
[i]
2n+1)n∈N are nonsingular matrices.

The above factorization will be our principal tool to construct a new solu-
tion of a Matrix Toda system (as in (18), Section 4) from another given one.

Lemma 1. Let Ji, i = 1, 2, be the Jacobi matrix associated with (P
[i]
n )n∈N.

Then, the P
[i]
n (0) is, for each n ∈ N, a non-singular matrix, if and only if

there exist block matrices Li and Ui as in (11) such that Ji = LiUi. Moreover,

γ
[i]
2n+1 = −P [i]

n+1(0)
(
P [i]
n (0)

)−1
, n ∈ N. (12)

Proof : If the factorization exists, then necessarily

b[i]
n = γ

[i]
2n+1 + γ

[i]
2n, n ≥ 0, a[i]

n = γ
[i]
2nγ

[i]
2n−1, n ≥ 1,

with γ0 = 0. Now, we are going to use the induction process to prove (12).

Observe that for n = 0, b
[i]
0 = −P [i]

1 (0)(P
[i]
0 (0))−1 = γ

[i]
1 . Suppose now that

for k ≤ n, γ
[i]
2k−1 = −P [i]

k (0)(P
[i]
k−1(0))−1. Using the three term recurrence

relation (9),

−P [i]
n+1(0) = b[i]

n P
[i]
n (0) + a[i]

n P
[i]
n−1(0),

then

−P [i]
n+1(0)(P [i]

n (0))−1 = b[i]
n + a[i]

n P
[i]
n−1(0)(P [i]

n (0))−1

= b[i]
n + a[i]

n

[
P [i]
n (0)(P

[i]
n−1(0))−1

]−1

= b[i]
n − γ

[i]
2nγ

[i]
2n−1(γ

[i]
2n−1)

−1

= b[i]
n − γ

[i]
2n = γ

[i]
2n+1.

Thus, if P
[i]
n (0), is a nonsingular matrix, then the block elements of the

matrix Ui are well defined. Defining the block elements of the matrix Li as

γ
[i]
2n = b

[i]
n − γ[i]

2n+1 we obtain the result.
Conversely, assume that there exist block matrices Li and Ui as in (11)

such that Ji = LiUi. Using induction, we are going to prove that P
[i]
n (0)
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is a non-singular matrix for every n ∈ N. Notice that P0(0) = I. Suppose

now that (P
[i]
k (0))n−1

k=0 are non-singular matrices and that the matrix P
[i]
n (0) is

singular. Since Ji has LU block factorization as in (11), then is not difficult
to check that

(Ji)n = (Li)n(Ui)n,

where (A)n is the block n-th truncation of the matrix A. From here

x


P

[i]
0 (x)
...

P
[i]
n−2(x)
Pn−1(x)

 = (Ji)n


P

[i]
0 (x)
...

P
[i]
n−2(x)

P
[i]
n−1(x)

+


0
...
0

P
[i]
n (x)

 = (Li)n(Ui)n


P

[i]
0 (x)
...

P
[i]
n−2(x)

P
[i]
n−1(x)

+


0
...
0

P
[i]
n (x)

 .
Evaluating the above in zero, we get

(Li)n(Ui)n


P

[i]
0 (0)
...

P
[i]
n−2(0)

P
[i]
n−1(0)

 = −


0
...
0

P
[i]
n (0)

 .
Taking into account that (Li)n is a non-singular matrix and its inverse is

also a block triangular matrices with I’s in the main diagonal, then P
[i]
n (0) =

−γ[i]
2n−1P

[i]
n−1(0). Now, as from the hypothesis γ

[i]
2n−1 and P

[i]
n−1(0) are non

singular matrices, we get a contradiction. Thus P
[i]
n (0) is a non-singular ma-

trix.

Now, let consider J̃i = UiLi, i = 1, 2. It is not difficult to check that J̃i is
also a block tridiagonal matrix

J̃i =


b̃
[i]
0 I

ã
[i]
1 b̃

[i]
1 I

ã
[i]
2 b̃

[i]
2 I
. . .

. . .
. . .

 , (13)

thus the sequences (P̃
[i]
n )n∈N, i = 1, 2, of matrix polynomials defined by the

recurrence formula: P̃
[i]
−1(x) = 0, P̃

[i]
0 (x) = I, and

xP̃ [i]
n (x) = P̃

[i]
n+1(x) + b̃[i]

n P̃
[i]
n (x) + ã[i]

n P̃
[i]
n−1(x), n ≥ 0,
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are also biorthogonal with respect to a matrix sesquilinear form. But what
is the corresponding matrix of the functionals? The answer is given in the
next result.

Proposition 7. Let u be a matrix of linear functionals and Ji, i = 1, 2 its
respectively block Jacobi matrices with LU block factorization as in (11), (or

equivalently, for every n ∈ N, P
[i]
n (0) is a nonsingular matrix). Then the

matrix polynomials (P̃
[1]
n )n∈N and (P̃

[2]
n )n∈N associated with J̃1 = U1L1 and

J̃2 = U2L2 are the sequences of matrix biorthogonal polynomials with respect
to the sesquilinear form generated by the matrix of linear functionals xu.

Proof : Define Q[i] = UiP
[i] with i = 1, 2. The hypothesis implies that

Q
[i]
n (x) = P

[i]
n+1(x) + γ

[i]
2n+1P

[i]
n (x) (observe that Q

[i]
n (x) is a polynomial of de-

gree n + 1). From the LU block factorization we also have that xP [i] =
(LiUi)P

[i] = LiQ
[i], thus

xP [i]
n (x) = Q[i]

n (x) + γ
[i]
2nQ

[i]
n−1(x), n ∈ N,

but this implies that Q
[i]
n (0) = −γ[i]

2nQ
[i]
n−1(0) and taking into account that by

definition γ
[i]
0 = 0, then Q

[i]
n (0) = 0 for every n = 0, 1, . . .. From here, Q

[i]
n (x)

can be written as xP̃
[i]
n (x) where P̃

[i]
n (x) is a matrix polynomial of degree n.

As a consequence

xP̃ [i]
n (x) = P

[i]
n+1(x) + γ

[i]
2n+1P

[i]
n (x).

with γ
[i]
2n+1 = −P [i]

n+1(0)
(
P

[i]
n (0)

)−1
. In [1] was shown that (P̃

[1]
n )n∈N and

(P̃
[2]
n )n∈N are precisely the families of matrix biorthogonal polynomials as-

sociated with the sesquilinear form 〈·, ·〉xu.

Definition 7 (cf. [1]). The matrix of linear functionals xu is said to be the
Christoffel transformation of u.

Now, we define the sequences of matrix polynomials (S
[1]
n )n∈N, (S

[2]
n )n∈N by

S
[i]
2n(x) = P [i]

n (x2), S
[i]
2n+1(x) = xP̃ [i]

n (x2), i = 1, 2,

it is not difficult to check that (S
[i]
n )n∈N for i = 1, 2, satisfies the following

three term recurrence relation

xS [i]
n (x) = S

[i]
n+1(x) + γ[i]

n S
[i]
n−1(x), n ∈ N,
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or equivalently, its corresponding block Jacobi matrix has the shape

Γ
[i]
1 =


0 I

γ
[i]
1 0 I

0 γ
[i]
2 0 I
. . .

. . .
. . .

. . .

 , i = 1, 2.

Let s be the matrix of linear functionals for which the sequences (S
[1]
n )n∈N and

(S
[2]
n )n∈N are biorthogonal and (wn)n∈N its corresponding sequence of matrix

moments, then

w2n = un and w2n+1 = 0, n ∈ N.

Observe also that from the LU block factorization, we have the following
relations for i = 1, 2,

b[i]
n = γ

[i]
2n+1 + γ

[i]
2n, n ≥ 0, a[i]

n = γ
[i]
2nγ

[i]
2n−1, n ≥ 1, (14)

b̃[i]
n = γ

[i]
2n+2 + γ

[i]
2n+1, n ≥ 0, ã[i]

n = γ
[i]
2n+1γ

[i]
2n n ≥ 1, (15)

with the convention γ
[i]
0 = 0. From here and Proposition 7,

γ
[i]
2n+1 = −P [i]

n+1(0)
(
P [i]
n (0)

)−1
, γ

[i]
2n = −a[i]

n P
[i]
n−1(0)

(
P [i]
n (0)

)−1
, (16)

γ
[2]
2n+1 = (H−1

n γ
[1]
2n+1Hn)

†, γ
[2]
2n = (H−1

n γ
[1]
2nHn)

†.

The above, give us the following representation for ã
[i]
n and b̃

[i]
n

b̃[i]
n = P

[i]
n+2(0)

(
P

[i]
n+1(0)

)−1
+ b

[i]
n+1 − P

[i]
n+1(0)

(
P [i]
n (0)

)−1
, (17)

ã[i]
n = P

[i]
n+1(0)

(
P [i]
n (0)

)−1
a[i]
n P

[i]
n−1(0)

(
P [i]
n (0)

)−1
.

4. Matrix Toda Lattice
In the scalar case, if we have a moment functional µ(t) : C[x]→ C depend-

ing on a parameter t ∈ R, then it is clear that its moments also depend on t,
i.e 〈µ(t), xn〉 = µn(t). We can define the derivative of a moment functional
with respect to t as follows,〈

d

dt
µ(t), p(x)

〉
= lim

h→0

〈µ(t+ h), p(x)〉 − 〈µ(t), p(x)〉
h

, p(x) ∈ C[x].

An important property that can be proven from the above definition is the
following. Suppose that we have a polynomial depending on t, i.e. p(x, t) =
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m∑
k=0

ck(t)x
k then

d

dt
〈µ(t), p(x, t)〉 =

〈
d

dt
µ(t), p(x, t)

〉
+

〈
µ(t),

d

dt
p(x, t)

〉
.

Extrapolating the above argument, we can define the derivative of a sesquilin-
ear form associated with a matrix of linear functionals that depends on a
parameter t as follows

d

dt
〈P (x), Q(x)〉u(t)

= 〈 d
dt
P (x), Q(x)〉u(t) + 〈P (x), Q(x)〉 d

dtu(t) + 〈P (x),
d

dt
Q(x)〉u(t).

Consider now the following semi-infinite system of matrix differential equa-
tions{

ḃn(t) = an(t)− an+1(t),

ȧn+1(t) = an+1(t)bn(t)− bn+1(t)an+1(t)
, a0(t) = 0, n ∈ N. (18)

To give an interpretation of the above system, we start by considering the

following sequence of matrix orthogonal polynomials (P
[1]
n )n∈N satisfying the

three term recurrence relation: P
[1]
−1(x, t) = 0, P

[1]
0 (x, t) = I, and

xP [1]
n (x, t) = P

[1]
n+1(x, t) + bn(t)P

[1]
n (x, t) + an(t)P

[1]
n−1(x, t) n ≥ 0. (19)

From Proposition 6, we know that there exists a sesquilinear form 〈·, ·〉u
(depending on t) such that the sequence (P

[1]
n )n∈N is the first family of ma-

trix biorthogonal polynomials, as well as that the sequences (an(t))n∈N and
(bn(t))n∈N can be written in term of the quasi-determinants (cf. Remark 1).
In this Section we are interested in showing the relationship between the se-

quence of matrix polynomials (P
[1]
n )n∈N (as well as, its associated matrix of

the linear functionals) and the Toda matrix system (18).
If we assume that J1 is as in (9), we have that the system (18) can be

described in terms of a Lax pair (J1, J1−), i.e.

J̇1(t) = J1−J1 − J1J1−, (20)
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where J1− is the following block matrix

J1− =


0 0 0

a1(t) 0 0
0 a2(t) 0

. . .
. . .

. . .

 . (21)

Lemma 2. Let J1 be a solution of a Toda lattice system as in (18). Then,
the following relation holds,

Ḣn = −bnHn +Hnb0, n ∈ N.

Proof : Taking into account that an(t) = HnH
−1
n−1 then from (18) we get

ḢnH
−1
n−1 −HnH

−1
n−1Ḣn−1H

−1
n−1 = HnH

−1
n−1bn−1 − bnHnH

−1
n−1.

After some manipulations, we arrive to

H−1
n Ḣn −H−1

n−1Ḣn−1 = H−1
n−1bn−1Hn−1 −H−1

n bnHn.

Thus, for every n ∈ N we see that

H−1
n (Ḣn + bnHn) = H−1

0 (Ḣ0 + b0H0),

and remembering that H0 = I, we complete the proof.

Proposition 8. If J1 is a solution of a Toda lattice as in (18), then J2 is a
solution of the semi-infinite matrix differential system{

ḃ
[2]
n = (a

[2]
n − a[2]

n+1) + (b
[2]
0 b

[2]
n − b[2]

n b
[2]
0 )

ȧ
[2]
n+1 = a

[2]
n+1b

[2]
n − b[2]

n+1a
[2]
n+1 + (b

[2]
0 a

[2]
n+1 − a

[2]
n+1b

[2]
0 )

, a
[2]
0 = 0, n ∈ N.

Proof : From Proposition 4 we have that

J̇†2 = −Ḣ−1J1H +H−1J̇1H +H−1J1Ḣ

= −H−1Ḣ(H−1J1H) +H−1(J1−J1 − J1J1−)H +H−1J1Ḣ

= (H−1J1−H −H−1Ḣ)J†2 − J
†
2(H−1J1−H −H−1Ḣ). (22)

On the other hand, from Lemma 2 we get

H−1J1−H −H−1Ḣ =


0

I (b
[2]
1 − b

[2]
0 )†

0 I (b
[2]
2 − b

[2]
0 )†

. . .
. . .

. . .

 .
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Thus, replacing the above in (22) we obtain

(J̇ †2)n,m =

{
(a

[2]†
n − a[2]†

n+1) + (b
[2]†
n b

[2]†
0 − b[2]†

0 b
[2]†
n ), if m = n,

b
[2]†
n a

[2]†
n+1 − a

[2]†
n+1b

[2]†
n+1 + (a

[2]†
n+1b

[2†]
0 − b[2]†

0 a
[2]†
n+1), if m = n+ 1,

and the result follows.

From Proposition 8 we note that J2 is not a solution of the matrix Toda
lattice. However this holds true, if we apply a transformation as we will see
in the next result.

Proposition 9. Let J1 be a solution of a Toda lattice system as in (18). If
for every Hn, we can find two matrix functions Vn and Wn satisfying

V̇n = −bnVn, Ẇn = −b0Wn,

and such that Hn = VnW
−1
n , then

d
dt(W

†
0 b

[2]
n W

−†
0 ) = W †

0a
[2]
n W

−†
0 −W

†
0a

[2]
n+1W

−†
0 n = 0, 1 . . . ,

d
dt(W

†
0a

[2]
n+1W

−†
0 ) = W †

0a
[2]
n+1b

[2]
n W

−†
0 −W

†
0 b

[2]
n+1a

[2]
n+1W

−†
0 , n = 0, 1, . . . .

Proof : First of all observe that if we take derivative on Hn = VnW
−1
n then,

we obtain the result given in Lemma 2. From the fact that d
dt(HnW0) =

−bnHnW0 and taking into account that b
[2]†
n = H−1

n bnHn and a
[2]†
n = H−1

n−1Hn

we get the desired result.

Proposition 10. Let J1 be a solution of a Toda lattice as in (18) and

(P
[1]
n )n∈N its first family of associated matrix biorthogonal polynomials. Then,

for every n ∈ N,

Ṗ [1]
n (x, t) = an(t)P

[1]
n−1(x, t).

Proof : From the relation xP [1] = J1P
[1] (recall that we are taking the derivate

on the variable t), we have

xṖ [1] = J̇1P
[1] + J1Ṗ

[1] = (J1−J1 − J1J1−)P [1] + J1Ṗ
[1].

From here

(xI − J1)(Ṗ
[1] − J1−P

[1]) = 0.

So we get the result.
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Proposition 11. If J1 is a solution of a Toda lattice, then for all n = 1, 2 . . .
the following identity is satisfied

(J̇n1 ) = J1−J
n
1 − Jn1 J1−.

Proof : The proof will be by induction. For n = 1, it follows from (20). For
n = 2 we have

J̇2
1 = J̇1J1 + J1J̇1 = (J1−J1 − J1J1−)J1 + J1(J1−J1 − J1J1−)

= J1−J
2
1 − J2

1J1−.

Suppose that the property is satisfied by n = m− 1 to prove by n = m

J̇m1 = J̇m−1
1 J1 + Jm−1

1 J̇1

= (J1−J
m−1
1 − Jm−1

1 J1−)J1 + Jm−1
1 (J1−J1 − J1J1−)

= J1−J
m
1 − Jm1 J1−.

thus for every n ∈ N we get the result.

Corollary 1. Let u be a matrix of linear functionals such that the corre-
sponding block Jacobi matrix is a solution of (18). Then the sequence of
matrix moments (un)n∈N satisfies the following matrix differential equation

u̇n(t) = un(t)u1(t)− un+1(t), n ∈ N.

Proof : The result follows from the fact that un(t) = (Jn1 )0,0.

Corollary 2. Let u be a matrix of linear functionals such that its correspond-
ing block Jacobi matrix is a solution of (18). Then its associated Stieltjes
function satisfies the following matrix differential equation

Ḟ (z) = F (z)(u1(t)− zI) + I. (23)

Proof : Using Corollary 1 we have that

Ḟ (z) =
∞∑
k=0

u̇k(t)

zk+1
= F (z)u1(t)− z

∞∑
k=0

un+1(t)

zn+2
,

and the result follows from the definition of F (z).

Proposition 12. If J1 is a solution of a Toda lattice as in (18) and u is the
corresponding matrix of linear functionals, then the following equation holds

u̇(t) = u(t)u1(t)− xu(t). (24)
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Proof : Using the original representation of the Stieltjes matrix function F (z)
and (23) we have

Ḟ (z) =

〈
I

z − x
, u1(t)

† − z̄I

〉
u(t)

+ 〈I, I〉u(t) ,

=

〈
I

z − x
, u1(t)

†
〉
u(t)

+

〈
z

z − x
, I

〉
u(t)

+ 〈I, I〉u(t) ,

and so

Ḟ (z) =

〈
I

z − x
, I

〉
u(t)u1(t)

−
〈

I

z − x
, I

〉
xu(t)

.

Thus, if we denote by û the matrix of linear functionals û = − d
dtu+uu1(t)−

ux, then the corresponding Stieltjes function is the zero matrix; but this
implies that every matrix moment of û is equal to 0, and from here û is
equal to the zero matrix of linear functionals.

Corollary 3. If in particular 〈P,Q〉u =

∫
PW (x, t)Q†dx and its correspond-

ing Jacobi matrix J1 satisfies (18), then the matrix weight function W (x, t)
has the structure

W (x, t) = e−xtW (x, 0)K(t), (25)

where K(t) satisfies the following matrix differential equation

K̇(t) = K(t)u1(t).

Proof : Recall that if J1 satisfies (18), then u satisfies (24), but this im-
plies that

Ẇ (x, t) = W (x, t)(u1(t)− xI).

On the other hand, if we take derivative in (25),

Ẇ (x, t) = W (x, t)(K−1(t)K̇(t)− xI),

and taking into account our hypothesis, we get the result.

Suppose now that we have a Jacobi matrix J1(t) with LU block factorization
as in (11). If the sequence of matrix (γn)n∈N is a solution of a Volterra
lattice, i.e.

γ̇n+1(t) = γn+1(t)γn(t)− γn+2(t)γn+1(t), n ≥ 0, (26)
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then using the representation (14) it is easy to prove that J1 and J̃1 are solu-
tions of the Toda lattice (18). Here we are interested in the reciprocal result.

Theorem 1. Let (bn)n∈N and (an)n∈N be a solution of the Toda lattice (18)
satisfying the hypothesis of Lemma 1. If γn is defined by (14), then (15)
defines a new solution of (18).

Proof : First of all, notice that

d

dt

(
P [1]
n (x, t)−1

)
= −P [1]

n (x, t)−1
( d
dt
P [1]
n (x, t)

)
P [1]
n (x, t)−1.

Let J̃1 be as in (13). If we take derivative in (17), we get that J̃1 is also a
solution of the Toda lattice. Now, defining the sequence of matrices (γn)n∈N
as in (16), and taking derivative we obtain

γ̇2n+1 = −an+1P
[1]
n+1(0, t)

(
P [1]
n (0, t)

)−1

+ P
[1]
n+1(0, t)

(
P [1]
n (0, t)

)−1
an(t)P

[1]
n−1(0, t)

(
P [1]
n (0, t)

)−1

= −γ2n+2γ2n+1 + γ2n+1γ2n,

γ̇2n = −(anbn−1 − bnan)P [1]
n−1(0, t)

(
P [1]
n (0, t)

)−1

− anan−1P
[1]
n−2(0, t)

(
P [1]
n (0, t)

)−1 −
(
anP

[1]
n−1(0, t)(P

[1]
n (0, t))−1

)2
;

and, as bn = −P [1]
n+1(0, t)

(
P

[1]
n (0, t)

)−1 − anP [1]
n−1(0, t)

(
P

[1]
n (0, t)

)−1
we get that

γ̇2n = an(t)− P [1]
n+1(0, t)(P

[1]
n (0, t))−1an(t)P

[1]
n−1(0, t)(P

[1]
n (0, t))−1

= γ2nγ2n−1 − γ2n+1γ2n.

Observe that from the above, if (bn)n∈N and (an)n∈N are solutions of the Toda

lattice (18) and we know the sequence of matrix polynomials (P
[1]
n (x, t))n∈N,

that satisfies the recurrence relation (19) and P
[1]
n (0, t), n ≥ 0, is a nonsingular

matrix, then the matrix sequences (ãn(x))n∈N and (̃bn(x))n∈N defined by

b̃n(t) = P
[1]
n+2(0, t)

(
P

[1]
n+1(0, t)

)−1
+ bn+1(t)− Pn+1(0, t)

(
P [1]
n (0, t)

)−1
,

ãn(t) = P
[1]
n+1(0, t)

(
P [1]
n (0, t)

)−1
an(t)P

[1]
n−1(0, t)

(
P [1]
n (0, t)

)−1
,

are also solution of the matrix Toda lattice (18). Moreover, in this case

γ2n+1(t) = −P [1]
n+1(0, t)

(
P [1]
n (0, t)

)−1
, γ2n(t) = −an(t)P [i]

n−1(0, t)
(
P [i]
n (0, t)

)−1
,

is solution of a matrix Volterra lattice.
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Next, we are going to show an illustrative example.

Example 1. Suppose that we have the following matrix weight

W (x, t) = e(1−x)t
[
x −1
0 x

]
e−xxα, x ∈ ]0,∞[, α > −1.

Observe that in this case

∫
W (x, t)dx is an invertible matrix different from

the identity. However, this hypothesis is not necessary in the symmetrization

process. If (P
[1]
n )n∈N is the sequence of left matrix orthogonal polynomials

with respect to W (x, t), then making a suitable change of the variable, we
obtain that

P [1]
n (x, t) =

1

(1 + t)n
Q[1]
n ((t+ 1)x), (27)

where

Q[1]
n (x) =

[
1 1
0 1

(t+1)

] [
Lα+1
n (x) − n

α+1
Lα+2
n−1(x)

0 Lα+1
n (x)

] [
1 −(t+ 1)

0 (t+ 1)

]
, (28)

and (Lαn)n∈N is the sequence of scalar monic Laguerre polynomials of parame-
ter α which are orthogonal with respect to the measure dµ = e−xxαdx and has
the following monomial representation ( cf. [9] for other characterizations),

Lαn(x) =
(−1)n

n!

n∑
k=0

(
n+ α

n− k

)
(−x)k

k!
.

On the other hand, we know that P
[1]
n (x, t) satisfies a three term recurrence re-

lation

P
[1]
n+1(x, t) = (xI− bn(t))P [1]

n (x, t)− an(t)P [1]
n−1(x, t).

Using the representation given in (27) and the properties of the Laguerre
polynomials, we find that

bn(t) =

[
2+α+2n
t+1

− 2
1+α

0 2+α+2n
t+1

]
, an(t) =

[
n(α+n+1)
(t+1)2

0

0 n(α+n+1)
(t+1)2

]
,

and

Hn =
etn!Γ(α + n+ 2)

(t+ 1)α+2n+2

[
1 − (t+1)

α+1

0 1

]
.
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Besides, observe that (bn)n∈N and (an)n∈N satisfy the Toda lattice (18). More-
over, from the representation (27) and (28)

P [1]
n (0) =

1

(t+ 1)n

[
1 1
0 1

(t+1)

] [
Lα+1
n (0) − n

α+1
Lα+2
n−1(0)

0 Lα+1
n (0)

] [
1 −(t+ 1)

0 (t+ 1)

]
,

where Lαn(0) = (−1)n
Γ(α + n+ 1)

Γ(α + 1)
. Thus, if we use the symmetrization pro-

cess we obtain that

γ2n+1(t) =
α + n+ 2

t+ 1

[
1 (t+1)

(α+1)(α+2)

0 1

]
, γ2n(t) =

n

t+ 1

[
1 − (t+1)

(α+1)(α+2)

0 1

]
.

It is not difficult to check that the sequence of matrices (γn)n∈N satisfies (26)
and consequently we can construct a second solution of the matrix Toda
lattice. Moreover, defining the following sequence of matrix polynomials,

(S
[1]
n )n∈N, by

S
[1]
2n(x, t) =

[
1

(t+1)n
1

(t+1)n

0 1
(t+1)n+1

] [
Lα+1
n ((t+ 1)x2) − n

α+1
Lα+2
n−1((t+ 1)x2)

0 Lα+1
n ((t+ 1)x2)

] [
1 −(t+ 1)

0 (t+ 1)

]
,

S
[1]
2n+1(x, t) =

[
x

(t+1)n
x

(t+1)n

0 x
(t+1)n+1

] [
Lα+2
n ((t+ 1)x2) − n

α+3
Lα+2
n−1((t+ 1)x2)

0 Lα+2
n ((t+ 1)x2)

] [
1 −(t+ 1)

0 (t+ 1)

]
,

then, we have that

xS [1]
n (x, t) = S

[1]
n+1(x, t) + γn(t)S

[1]
n−1(x, t).

We can also see that (S
[1]
n )n∈N is the first family of matrix biorthogonal poly-

nomials with respect to the matrix weight

W (x, t) = e(1−x2)tI
[
x2 −1
0 x2

]
e−x

2|x|2α+1, x ∈ R.

Due to the close relation between the matrix lattices of Toda and Volterra
we are going to study the properties of the last one.

5. Matrix Volterra System
Suppose that we have the following matrix Volterra system

γ̇n+1(t) = γn+1(t)γn(t)− γn+2(t)γn+1(t), n ≥ 0. (29)

This system can be described in terms of a Lax pair (Γ1,Γ
2
1−(t)), i.e.

Γ̇1(t) = Γ2
1−Γ1 − Γ1 Γ2

1−, (30)
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where Γ1(t) and Γ2
1−(t) are the following block matrices

Γ1(t) =


0 I

γ1(t) 0 I
0 γ2(t) 0 I

0 γ3(t) 0
. . .

. . .
. . .

. . .

 , Γ2
1−(t) =


0 0 · · ·
0 0 · · ·

γ2(t)γ1(t) 0 · · ·
0 γ3(t)γ2(t)
...

...
. . .

 .
Observe that for each t ∈ R, we have associated to the matrix Γ1(t) a sequence

of matrix polynomials (S
[1]
n )n∈N defined by

S
[1]
n+1(x, t) = xS [1]

n (x, t)− γn(t)S [1]
n−1(x, t),

or, in more compact form,

S [1]Γ1(t) = xS [1], where S [1] =
[
S

[1]†
0 (x, t) S

[1]†
1 (x, t) · · ·

]†
. (31)

We will denote by s the matrix of linear functionals associated with (S
[1]
n )n∈N,

and (wn)n∈N will be the corresponding sequence of moment matrices.

Theorem 2. The following conditions are equivalent

(a) (γn)n∈N is a solution of (29), i.e. Γ̇1(t) = Γ2
1−Γ1 − Γ1Γ

2
1−.

(b) For n ∈ N,

d

dt
(Γn1)0,0 = (Γ2

1)0,0(Γ
n
1)0,0 + (Γn1)0,2(Γ

2
1)2,0. (32)

(c) For n ∈ N, the moments satisfy that ẇn = wnw2 − wn+2.
(d) The Stieltjes function satisfies the following differential equation

Ḟ (z) = F (z)(w2(t)− z2I) + zw0(t). (33)

(e) The following equations for the matrix of the moment functionals hold

ṡ(t) = s(t)w2(t)− x2s(t). (34)

(f) If (S
[1]
n )n∈N is the first sequence of matrix orthogonal polynomials as-

sociated with Γ1, then

d

dt
S [1]
n (x, t) = γn(t)γn−1(t)S

[1]
n−2(x, t). (35)

Proof : We will prove this theorem according to the following scheme

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (f) ⇒ (a) .



MATRIX TODA AND VOLTERRA LATTICES 23

We begin proving that (a) ⇒ (b). First of all we establish that (a) im-
plies that

Γ̇n1 = Γ2
1−Γn1 − Γn1Γ2

1−, n ∈ N. (36)

The proof will be by induction. For n = 2 we have

˙(Γ2
1) = Γ̇1Γ1 + Γ1Γ̇1 = (Γ2

1−Γ1 − Γ1Γ
2
1−)Γ1 + Γ1(Γ

2
1−Γ1 − Γ1Γ

2
1−)

= Γ2
1−Γ2

1 − Γ2
1Γ

2
1−.

Suppose that (36) is satisfied by n = m− 1, and analyze when n = m.

(Γ̇m1 ) = (Γ̇m−1
1 )Γ1 + Γm−1

1 Γ̇1

= (Γ2
1−Γm−1

1 − Γm−1
1 Γ2

1−)Γ1 + Γm−1
1 (Γ2

1−Γ1 − Γ1Γ
2
1−)

= Γ2
1−Γm1 − Γm1 Γ2

1−.

To prove (32), we note that

(Γ̇n1)0,0 =
∞∑
k=0

(Γ2
1−)0,k(Γ

n
1)k,0 − (Γn1)0,k(Γ

2
1−)k,0 = −(Γn1)0,2(Γ

2
1−)2,0.

On the other hand, is not difficult to check that (Γ2
1−)2,0 = (Γ2

1)2,0 and

(Γn+2
1 )0,0 = (Γn1)0,0(Γ

2
1)0,0 + (Γn1)0,2(Γ

2
1)2,0.

From here

(Γ̇n1)0,0 = −(Γn1)0,2(Γ
2
1−)2,0 − (Γn1)0,0(Γ

2
1−)0,0 + (Γn1)0,0(Γ

2
1−)0,0

= (Γn1)0,0(Γ
2
1−)0,0 − (Γn+2

1 )0,0.

To prove that (b)⇒ (c), we use (32) and Proposition 5 to obtain

ẇn = wnw2 − wn+2.

To prove that (c) ⇒ (d), we use the definition of the Stieltjes function, and
the fact that w1(t) = 0.

Ḟ (z) =
∞∑
k=0

ẇk(t)

zk+1
=

∞∑
k=0

wk(t)

zk+1
w2(t)−

wk+2(t)

zk+1

= F (z)(w2(t)− z2I) + zw0(t).
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To prove that (c) ⇒ (d), we use the original representation of the Stieltjes
function F (z). Notice that from (33), we have that

Ḟ (z) =

〈
I

z − x
,w2(t)

† − z̄2I

〉
s(t)

+ z 〈I, I〉s(t) + 〈xI, I〉s(t)

=

〈
I

z − x
,w2(t)

† − z̄2I

〉
s(t)

+ z

〈
z − x
z − x

I, I

〉
s(t)

+

〈
x
z − x
z − x

I, I

〉
s(t)

=

〈
I

z − x
,w2(t)

†
〉

s(t)

−
〈
x2 I

z − x
, I

〉
s(t)

=

〈
I

z − x
, I

〉
s(t)w2(t)

−
〈

I

z − x
, I

〉
x2s(t)

.

Thus, denoting by ŝ the matrix of linear functionals

ŝ =
d

dt
s− s(t)w2(t)− s(t)x2,

then its corresponding Stieltjes function is equal to the zero matrix, but this
implies that every moment matrix of ŝ is equal to 0, and from here ŝ is equal
to the zero matrix of linear functionals.

To prove that (d) ⇒ (e), we use the fact that Ṡ
[1]
n (x, t) − γnγn−1S

[1]
n−2(x, t)

is a matrix polynomial of degree less or equal to n− 1. Let m = 0, . . . , n− 1.
From the hypothesis

0N =
d

dt

〈
S [1]
n (x, t), xmI

〉
s

=
〈
S [1]
n (x, t), xmI

〉
ṡ

+
〈
Ṡ [1]
n (x, t), xmI

〉
s

=
〈
S [1]
n (x, t), xmI

〉
s
w2(t)−

〈
x2S [1]

n (x, t), xmI
〉
s

+
〈
Ṡ [1]
n (x, t), xmI

〉
s

=
〈
Ṡ [1]
n (x, t)− γnγn−1S

[1]
n−2(x, t), x

mI
〉
s
,

and it implies that Ṡn(x, t) = γnγn−1Sn−2(x, t).
Before proving that (e) ⇒ (a) we observe that using the notation in (31)

we can rewrite (35) as d
dtS

[1] = Γ1
2
−(t)S [1]. With this in mind and recall that

S [1]Γ1(t) = xS [1] we get

Γ̇1(t)S
[1](x, t) + Γ1(t)Ṡ

[1](x, t) = xṠ [1](x, t).
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Thus,

Γ̇1(t)S
[1](x, t) + (Γ1(t)− xI)Γ1

2
−(t)S [1](x, t) = 0,

(Γ̇1(t)− Γ1
2
−Γ1 + Γ1Γ1

2
−)S [1](x, t) = 0.

And since for each t, (Pn(x, t))n∈N is a basis of left module CN×N [x] we
conclude that

Γ̇1(t)− Γ1
2
−Γ1 + Γ1Γ1

2
− = 0.

Corollary 4. If in particular 〈P,Q〉s =

∫
PW (x, t)Q†dx and its associated

Jacobi matrix Γ1 satisfies (29), then the matrix weight function W (x, t) has
the structure

W (x, t) = e−x
2tW (x, 0)K(t), (37)

where K(t) satisfies the matrix differential equation K̇(t) = K(t)w2(t).

Proof : Recall that from Theorem 2, Γ1 satisfies (34), which implies that

Ẇ (x, t) = W (x, t)(w2(t)− x2I).

On the other hand, taking derivative in (37),

Ẇ (x, t) = W (x, t)(K−1(t)K̇(t)− x2I),

and making use of our hypothesis, we get the result.

Corollary 5 (Lax-type Theorem). Let S [1] be the block column vector of

matrix monic polynomials S
[1]
n (x, t) and let λ(t) be a spectral point of the

Jacobi matrix Γ1(t), i.e.

Γ1S
[1](λ(t)) = λ(t)S [1](λ(t)). (38)

If Γ1(t) satisfies (30), then λ(t) does not depend on t.

Proof : Taking derivative in (38)

Γ̇1S
[1](λ(t)) + Γ1Ṡ

[1](λ(t)) = λ̇(t)S [1](λ(t)) + λ(t)Ṡ [1](λ(t)),

and using (30) we get

(λ(t)I − Γ1)(Γ
2
1−S

[1](λ)− Ṡ [1](λ)) = λ̇(t)S [1](λ(t)).

Again using that Ṡ [1](x, t) = Γ2
1−S

[1](x, t) we get λ̇(t)S [1](λ(t)) = 0 but this

implies that λ̇(t) = 0.
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Remark 2. We emphasize that we do not have the reciprocal of the last result.

In fact, if the spectral points of the Jacobi matrix Γ1(t) do not depend
on t, then there exists a semi-infinite block matrix C = [cj,k]

∞
j,k=0 such that

Γ̇1 = CΓ1 − Γ1C, where C has the shape

0 0 0 0 0 0 · · ·
0 0 0 0 0 0 · · ·
∗ 0 0 0 0 0 · · ·
0 ∗ 0 0 0 0 · · ·
∗ 0 ∗ 0 0 0 · · ·
0 ∗ 0 ∗ 0 0 · · ·
∗ 0 ∗ 0 ∗ 0 · · ·
...

. . .
. . .

. . .
. . .

. . .
. . .


.

The sequence (γn)n∈N must satisfy that

γ̇n = cn,n−2 − cn+1,n−1, n ∈ N;

moreover, for every n > 2 and m = 2, 3, . . .

0 = cn,n−2m + cn,n−2(m−1)γn−2(m−1) − γncn−1,n−(2m−1) − cn+1,n−(2m−1).

Observe then that in this case we cannot assure that C is equal to Γ2
−. This

is due among other things to the fact that any matrix high-order Volterra
lattice also satisfies the Corollary 5 (cf. [5]), where we said that Γ1 is a
solution of a matrix high-order Volterra lattice if it satisfies that

Γ̇1(t) = (Γ1−)2mΓ1 − Γ1(Γ1−)2m,

for some m ∈ N.
We remark that all the results given here can be generalized, using similar

techniques, to study this type of high order Volterra systems.
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