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COMPLETE SPECTRAL THEORY FOR MATRICES

OVER A FIELD WHOSE GRAPH IS A STAR
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Abstract: For matrices over a field F, whose graph is a star, any characteristic
polynomial may occur if |F| is large enough. Depending upon the diagonal entries,
some linear factors will have to occur, but given this, the characteristic polynomial
is still arbitrary. For smaller fields, a characterization of achievable polynomials is
given. The geometrically multiple eigenvalues are easily identified, and, given this,
the Jordan structure is completely determined. It turns out that no eigenvalue may
enjoy more that one block of size greater than one, a restriction not present in all
trees.
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1. Introduction
We follow standard matricial notation as in [3].
Let F be a field and G an undirected graph on n vertices. By

A = (ai j) ∈ F(G)

we mean an n-by-n matrix with entries from F, in which for i 6= j, ai j 6= 0
iff {i, j} is an edge of G. There is no restriction on diagonal entries other
than that they be in F. Thus, ai j 6= 0 iff aj i 6= 0, and A is combinatorially
symmetric. The star on n vertices, Sn, is the tree with one central vertex and
n− 1 vertices pendent from it. Our interest here is in the spectral theory for
matrices in F(Sn), including the Jordan canonical form (JCF), understood
in a natural way for arbitrary fields, and characteristic polynomials over F.
We give a complete description of what can happen.

Sometimes matrices in F(Sn) are called arrow matrices, and there seems to
be interest in them for a number of reasons (see, e.g., [7, 8]).
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Recently a geometric multiplicity theory has been developed for matrices
in F(T ) when T is a tree [6]; this generalizes a prior multiplicity theory
for real symmetric and Hermitian matrices [4, 5], though there are notable
differences. This will be of use to us. Also, for the path on n vertices, Pn,
the arbitrariness of characteristic polynomials, and more has been discussed
for F(Pn), [1]. However here Jordan structure is very simple as no eigenvalue
may have geometric multiplicity more than one. The case of stars is much
richer.

In the case of algebraically closed fields, because of the additive inverse
eigenvalue problem [2], it is clear that any characteristic polynomial may
occur in F(G), and, in particular in F(Sn). However, the IEP gives no insight
into Jordan structure, nor into non-algebraically closed fields which we are
able to analyze.

2. Supporting Facts
Without loss of generality we may assume

A =


b1 a2 · · · an
1 b2 0
... 0

. . .

1 bn

 (1)

in which b1, . . . , bn, a2, . . . , an ∈ F, because of diagonal similarity and
permutation similarity. We assume ai 6= 0, i = 2, . . . , n.

First we collect the facts we need in order to give our main results in the
next section. The first of these motivates our primary result, by indicating
that we cannot expect to say more. It follows from the new geometric multi-
plicity theory [6], as the center vertex of a star can be the only Parter vertex,
or could be proven, in this case, via a straightforward matrix calculation.
Let mA(λ) denote the (algebraic) multiplicity of λ as an eigenvalue of A and
gmA(λ) the geometric multiplicity.

Theorem 2.1. For A ∈ F(Sn), gmA(α) = k ≥ 2 iff α appears exactly k + 1
times among b2, . . . , bn. For any β ∈ σ(A), if β /∈ {b2, . . . , bn} then
gmA(β) = 1, and if γ appears once among b2, . . . , bn , γ /∈ σ(A).

Next we prove a fact that we will need for our Jordan canonical form
results, by a matrix calculation.
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Lemma 2.2. For A ∈ F(Sn), if α appears exactly k times among b2, . . . , bn,
then rank(A− αI) = n− k + 1 and rank[(A− αI)2] ≥ n− k.

Proof : We may suppose that A has the form (1) and, wlog, that α = 0 and
that the k appearances are in the last k diagonal positions. Then,

A =


0 a2 · · · an
1 0
...
1

+



b1

b2
. . . 0

bn−k

0 0

. . .
0


.

Let A1 be the first summand and A2 the second. Since the first n− k + 1
rows of A are linearly independent and each of the last k− 1 rows repeat the

one above them, rankA = n− k + 1 as claimed. Now, with a =
n∑

i=2

ai

A2 = (A1 + A2)
2 = A2

1 + A1A2 + A2A1 + A2
2

=


a 0 . . . 0
0 a2 . . . an
0 a2 . . . an
...

... · · · ...
0 a2 . . . an

+


0 b2a2 . . . bn−kan−k 0 . . . 0
b1
... 0
b1



+



0 b1a2 . . . b1an
b2
... 0

bn−k
0
...
0


+



b2
1

b2
2

. . . 0
b2
n−k

0 0

. . .
0


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=



b21 + a a2(b1 + b2) a3(b1 + b3) . . . an−k(b1 + bn−k) an−k+1b1 . . . anb1
b1 + b2 a2 + b22 a3 . . . an−k an−k+1 . . . an
b1 + b3 a2 a3 + b23 a4 . . . an−k an−k+1 . . . an

...
...

. . . ...
...

b1 + bn−k a2 a3 a4 . . . an−k + b2n−k an−k+1 . . . an
b1 a2 a3 a4 . . . an−k an−k+1 . . . an
...

...
...

... . . .
...

...
. . .

b1 a2 a3 a4 . . . an−k an−k+1 . . . an


Using row n − k + 1 and then column n − k + 1 this matrix reduces, by

elementary operations, to

a a2b2 a3b3 . . . an−kbn−k 0 . . . 0
b1 b2

2 0 . . . 0 0 . . . 0
...

... . . . ...
...

...
bn−k 0 0 . . . b2

n−k 0 . . . 0
b1 a2 a3 . . . an−k an−k+1 . . . an
0 0 0 0 . . . 0 0 . . . 0
...

...
...

... . . .
...

... . . .
0 0 0 0 . . . 0 0 . . . 0


Since b2 , . . . , bn−k are assumed nonzero, as well as a2 , . . . , an, rows

2, . . . n− k + 1 are linearly independent, so rank[(A− αI)2] ≥ n− k. This
completes the proof.

Finally, we give a technical lemma that explains why GF2 is an exception
to the first result of the next section.

Lemma 2.3. Let F be a field, F 6= GF2, and a ∈ F. For each r ∈ N, r ≥ 2,
there are nonzero elements a1, a2, . . . , ar ∈ F such that a = a1 +a2 + · · · ar.

Proof : If (r − 1)1 6= a take a1 = · · · = ar−1 = 1, ar = a − (r − 1)1. If
(r − 1)1 = a, pick a nonzero element k ∈ F, k 6= 1 and take a1 = · · · =
ar−2 = 1, ar−1 = k, ar = a− (r − 2)1− k.

We will apply this fact both when a = 0 and a 6= 0. For GF2, when r is
odd and a = 0, the claim is false and when r is even and a 6= 0, the claim is
false.
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3.Main Results
Now we may give our primary results. The first of these says that for

the star, we may have any characteristic polynomial, with any values on
the pendent vertices, subject to the algebraic limitations of Theorem 2.1,
for any field, with the exception of GF2. That exception actually occurs
and is because of Lemma 2.3. Using this we determine for which fields
the characteristic polynomials achievable for the star are arbitrary (as the
entries corresponding to the pendent vertices vary) in Theorem 3.5. This is
essentially when |F| ≥ n − 1. When |F < n − 1, some field elements must
occur as roots of the characteristic polynomial. The precise restrictions are
characterized in this case, leaving the characteristic polynomial otherwise
arbitrary (Theorem 3.10). Then, we are able to characterize the possible
Jordan canonical forms (JCF’s) in terms of the diagonal structure and the
characteristic polynomial.

Theorem 3.1. Let F be a field, F 6= GF2, and A ∈ F(Sn), as shown in
(1). Let α1 , . . . , αt, with multiplicities m1 , . . . , mt, respectively, be a
rearrangement of the distinct items among b2 , . . . , bn. If p(x) is any monic
polynomial of degree n over F such that, for i = 1 , . . . , t, (x−αi)

mi−1|p(x)
if mi > 1, and (x−αi) 6 | p(x) if mi = 1, then b1 , a2 , . . . , an, may be chosen
in F so that pA(x) = p(x).

Proof : Let

g(x) =
t∏

i=1

(x− αi)
mi,

d(x) = gcd(p(x), g(x)), p(x) = p1(x)d(x), g(x) = g1(x)d(x). It may happen
that g1(x) = 1 (see example below); if this is not the case, from the divisibility
conditions of the hypothesis of the theorems follows that each root of g1(x)
has multiplicity one and are some of the roots of g(x). Without loss of
generality, we may suppose g1(x) = (x − α1) · · · (x − αs), 0 ≤ s ≤ t (s = 0
corresponding to the case g1(x) = 1). As deg p(x) = deg g(x) + 1 we have
also deg p1(x) = deg g1(x) + 1. From Euclidian division there are b ∈ F,
r(x) ∈ F[x] such that

p1(x) = (x− b)g1(x)− r(x) . (2)

with r(x) = 0 or deg r(x) > deg g1(x); note that we have r(x) = 0 if and
only if g1(x) = 1.
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For r(x) 6= 0 consider the partial fraction decomposition of r(x)
g1(x) ,

r(x)

g1(x)
=

s∑
i=1

Ai

x− αi
(3)

with Ai 6= 0 (otherwise αi will not be a root of g1), i = 1, · · · , s. Now
use Lemma 2.3: For each i, 1 ≤ i ≤ s choose mi nonzero elements in F,
ai1 , . . . , aimi

suck that ai1 + · · · + aimi
= Ai. For s + 1 ≤ i ≤ t, αi is

not a root of g1(x) but is a root of g(x); according to the hypothesis of the
theorem this is only possible if mi > 1, So again using Lemma 2.3, for each
i, s+ 1 ≤ i ≤ t, there are mi nonzero elements in F, ai1 , . . . , aimi

suck that
ai1 + · · ·+ aimi

= 0. Equation 3 can be written as:

r(x)

g1(x)
=

s∑
i=1

mi∑
l=1

ail
x− αi

+
t∑

i=s+1

mi∑
l=1

ail
x− αi

. (4)

This equality is also valid for r(x) = 0, considering the first double sum-
mand as zero. Using the fact that

p(x)

g(x)
=
p1(x)

g1(x)

we get from 2 and 4:

p(x) = (x− b)g(x)−
s∑

i=1

mi∑
l=1

ail
g(x)

x− αi
+

t∑
i=s+1

mi∑
l=1

ail
g(x)

x− αi
. (5)

Now take for A the matrix

A =



b a11 · · · a1m1
· · · at1 · · · atmt

1 α1 0
... 0

. . .

1 α1
... . . .
1 αt
... . . .
1 αt


(6)
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The Laplace expansion of det(xI − A)along the first row and first column
gives the second summand of 4. So the characteristic polynomial of this
matrix A will be the desired polynomial.

We present some examples of the construction described in the previous
theorem.

Example 3.2. Suppose we want to find a matrix A in the form (1) (say over
the rationals)

A =


b1 a2 a3 a4 a5

1 0 0 0 0
1 0 1 0 0
1 0 0 −1 0
1 0 0 0 2


with characteristic polynomial p(x) = x5−2x4−x3 +2x2 +4. The conditions
of Theorem 3.1 are clearly satisfied, so we begin by dividing p(x) by g(x) =
x(x− 1)(x+ 1)(x+ 2) = x4 − 2x3 + 2x, to obtain

p(x) = (x− 0)g(x) + 4

(so b1 = 0). Now we perform the partial fraction decomposition of
4

g(x)
:

4

x(x− 1)(x+ 1)(x+ 2)
=
a

x
+

b

x− 1
+

c

x+ 1
+

d

x− 2

The usual calculations give us a2 = a = 2, a3 = b = −2, a4 = c = −2

3
,

a5 = d =
2

3
and A is determined. Note that the above calculation can, in

fact, be carried out over any field other than GF2 and fields of characteristic
3. For fields of characteristic 3 we have (on the diagonal of A), 2 = −1 and
so, according to Theorem 3.1, 2 must be a root of p(x), which is not the case
(Note also the values obtained for a4 and a5).
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Example 3.3. Suppose we want to find a matrix A (over any field F other
than GF2) in the form

A =


b1 a2 a3 a4 a5

1 0 0 0 0
1 0 0 0 0
1 0 0 1 0
1 0 0 0 1


with characteristic polynomial p(x) = x2(x − 1)3. The conditions of Theo-
rem 3.1 are satisfied, so again we begin by dividing p(x) by g(x) = x2(x−1)2,
to obtain

p(x) = (x− 0)g(x)

(so b1 = 1). We have r(x) = 0 so we just have to find nonzero a2, a3, a4, a5 ∈
F such that a2 + a3 = 0, a4 + a5 (see Lemma 2.3). We may just take
a2 = 1 a3 = −1, a4 = 1, a5 = −1.

Remark 3.4. When F is GF2 the conclusion of Theorem 3.1 is not valid.
Note that the A in 1 becomes

A =


b1 1 · · · 1
1 b2 0
... 0

. . .

1 bn

 ,

and b2 , . . . , bn ∈ {0, 1}. They may be arranged wlog so that there are k 1’s
followed by l 0’s, so that k + l = n− 1. Then by Theorem 2.1,

(x− 1)k−1xl−1|pA(x).

The quotient will be a monic cubic polynomial; overGF2 there are 23 = 8 such
polynomials. For each k, l pair, only 2 possibilities (b=0 or b=1) occur (so
that we do not have the conclusions of Theorem 3.1). However, as k, l vary (4
possibilities for the 2 parities means all 8 cubics do appear), a straightforward,
but tedious, calculation gives:
b1 = 0, k even, l even; quotient: x2(x− 1);
b1 = 0, k even, l odd; quotient: (x− 1)3;
b1 = 0, k odd, l even; quotient: x(x2 + x+ 1);
b1 = 0, k odd, l odd; quotient: x3 + x2 + 1;
b1 = 1, k even, l even; quotient: (x− 1)2x;
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b1 = 1, k even, l odd; quotient: (x− 1)(x2 + x+ 1);
b1 = 1, k odd, l even; quotient: x3;
b1 = 1, k odd, l odd; quotient: x3 + x+ 1.

So each cubic appears exactly once.

Next, we show that the characteristic polynomials that occur, over a field,
are arbitrary, with certain field exceptions that we precisely determine.

Theorem 3.5. Let n be a positive integer and F a field with at least n − 1
elements. If p(x) is a polynomial of degree n over F, then there is a matrix in
F(Sn) with characteristic polynomial p(x), except when n = 2k and F = GF2k.
In the latter case p(x) cannot be

∏n
i=1(x−αi), α1 , . . . , αn ∈ F, distinct, but

all other polynomials do occur.

Proof : First, identify the set

R = {α1 , . . . , αr}
of field elements that occur at least once as a root of p(x). If 2r ≤ n − 1,
choose each element of R to appear exactly twice among b2 , . . . , bn, and
complete this sequence with pairwise distinct elements of F (note the number
of field elements is sufficient). Then, these α’s will appear as roots of PA(x),
which is otherwise arbitrary by Theorem 3.1 and A can be chosen such that
p(x) = pA(x); so the proof is complete in this case .

If 2r > n−1, pick

⌊
n− 1

2

⌋
elements of R and choose them to appear twice

among b2 , . . . , bn, so that they will occur as roots of pA(x) which will be
otherwise arbitrary by Theorem 3.1. If n − 1 is even all bi, 2 ≤ i ≤ n will
be fixed and the proof is again complete. If n − 1 is odd and R 6= F we
may choose the remaining bi, 2 ≤ i ≤ n from F\R and again we are done.
The case in which |F| = n = 2k (the remaining part of the case n − 1 odd)
provides the only difficulty. That difficulty is limited to the case R = F and
then p(x) is the polynomial with each field element occurring exactly once
as a root. This polynomial can not be achieved (at least one field element
must occur an odd number of times among b2 , . . . , bn, but all the others
can be completing the proof.

Remark 3.6. There is a subtlety to the statement of Theorem 3.5 that
should be mentioned. Since there are no polynomials in F[x] of degree k
with exactly k − 1 roots in F, a formal exclusion of such polynomials from
the statement is unnecessary.
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Corollary 3.7. For any infinite field F and any polynomial p(x) over F of
degree n, there is a matrix A ∈ F(Sn) whose characteristic polynomial is
p(x).

When the field is finite and sufficiently small relative to n, the characteristic
polynomial of A ∈ F(Sn) is no longer arbitrary because repeats must occur
among b2, . . . , bn.

Example 3.8. Suppose that F = GF5 and n = 12. Then among the 11 diago-
nal entries b1, b2, . . . , b12 of A ∈ F(S12), there must be at least 6 = 11−5 that
are duplicates of ones that appeared in a prior position. Depending upon the
pattern of duplication, Theorem 3.1 guaranties that duplicate field elements
will appear as roots of the characteristic polynomial at least a certain number
of times. For example, if the field elements are α1, α2, α3, α4, α5 with
frequencies f1 = 2, f2 = 1, f3 = 4, f4 = 3, f5 = 1 among b1, b2, . . . , b12

then the polynomial

p(x) = (x− α1)(x− α3)
3(x− α4)

2

must divide the characteristic polynomial of A (and α2 and α5 will not appear
as roots in this case). Notice that this always accounts for at least n−1−|F| =
6 roots of of the characteristic polynomial and that there could be more.

Regardless of the distribution of repetitions, if there are only 6, any non-
repeated filed elements, will appear exactly once among the bi’s and thus not
appear as a root of the characteristic polynomial.

Example 3.9. There is a more subtle restriction on the characteristic poly-
nomial if n is even and |F|+ 1 < n ≤ 2|F|. For example, again let F = GF5

and suppose n = 10. Now, at least 4 repetitions are guaranteed among
b1, b2, . . . , b10. Then the characteristic polynomial can not have each field
element exactly once as a root. (This restriction is not implied by the one
identified in the prior example.) To have each element no more than once,
none can appear more than twice (according to Theorem 3.1). To have four
repetitions among the bi’s, we must see 4 field elements exactly twice each.
Then, the fifth field element must appear exactly once, and thus cannot be a
root.

The restrictions identified in the above examples are the only ones that
prevent the characteristic polynomial p(x) of A ∈ F(Sn) from being arbitrary.
We formalize this in the following two-part theorem.
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Theorem 3.10. Let n be a positive integer, F a field with |F| < n− 1, p(x)
a monic polynomial of degree n over F. If n is not both even and ≤ 2|F|,
then there is a matrix A ∈ F(Sn) with characteristic polynomial p(x) if and
only if p(x) = p1(x)p2(x), with p1(x), p2(x) ∈ F[x], deg p1(x) ≥ n − 1 − |F|
and p1(x) having all its roots in F.

If n is even and n ≤ 2|F|, then the above restrictions on p(x) still apply,
and there is exactly one additional restriction on p(x): It cannot have every
element of F exactly once as a root.

Proof : Suppose that the field elements are α1 , . . . , α|F|, the number of ap-
pearances of αi on the diagonal of A(1) is ti and that the desired multiplicity
of αi as a root of p(x) = pA (x) is mi (possibly 0), i = 1, . . . , |F|. Suppose
that only m1 > 0, . . . , mk > 0. Then, by Theorem 3.1, this information is
consistent if and only if:
(1) ti ∈ {0, 2, 3, . . . ,mi + 1}, 1 ≤ i ≤ k and ti ∈ {0, 1} , k + 1 ≤ i ≤ |F|.
Of course, we must also have:

(2)

|F|∑
i=1

ti = n− 1.

Now for the necessity of the first restriction:
∑
mi ≥ n − 1 − |F|, notice

that each time ti > 1, we have mi > ti − 1, which is the the number of
repetitions (appearances beyond 1) of αi. Since n − 1 − |F| is the fewest
possible total repetitions of all the αi,the inequality is verified giving the first
stated restriction on pA(x).

For the second restriction, if m1 = m2 = · · · = m|F| = 1, then ti ∈ {0, 2},
1 ≤ i ≤ |F|. But then

∑|F|
i=1 ti is even contradicting (2) when n is even.

For the sufficiency of the conditions, we use the desired multiplicities (meet-
ing the restrictions) to make an assignment of the αi’s to the diagonal of A(1),
ie choice of ti’s consistent with (1) and (2), insuring that the multiplicities are
possible by Theorem 3.1. For each i, 1 ≤ i ≤ k, let ti = m1 + 1, t2 = m2 + 1
and so on. If (

∑
mi) + k = n− 1 no further assignment is necessary and the

proof is complete. If (
∑
mi) + k < n− 1, then there will be unassigned field

elements (that do not occur as roots of p(x)), and these may be assigned
one at a time until n− 1 total assignments are reached. The first restriction
insures and verifies sufficiency in this case. If (

∑
mi) + k > n − 1, we are

allowed by (1) to decrease a selection of assignments (ti’s), so as to make∑
ti = n − 1, as long as no ti = 1 with mi > 0. (We may also assign addi-

tional αi’s, if any, singly.) This may always be done, except in the situation
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in which mi = 1, i = 1, . . . , |F| and n is even. In this event any downward
adjustment of ti would have to be by 2 and there would be no opportunity
to recover. But this situation is precluded by the second restriction of the
theorem.

Remark 3.11. Note that the second restriction in Theorem 3.10 remains
valid when n > 2|F| and n is even. but it is subsumed in the first restriction
in that event.

Normally, the JCF is defined over an algebraically closed field, because we
would like similarity to the special form by a matrix over the field. We may,
of course, think of it over general fields by considering an extension field in
which all the eigenvalues of the given matrix lie, or by simply thinking of it
in terms of Jordan blocks or ranks of powers of (A − λI), [3]. With this in
mind, we may completely determine the possible JCF’s among A ∈ F(Sn)
and see how each occurs.

Theorem 3.12. Let F be a field and A ∈ F(Sn). Then for any eigenvalue
λ ∈ σ(A) at most one Jordan block associated with λ is of size greater than 1.
Moreover, the number of blocks associated with λ is greater than 1 only when
λ appears at least three times among b2 , . . . , bn; in this event the number
of blocks is one less than the number of such appearances. In particular the
number of blocks is 1 if λ /∈ F, or λ apeears exactly twice or not at all.

Proof : According to Lemma 2.2 squaring of A can increase the rank defi-
ciency by at most one. This means that (if 0 is an eigenvalue), all Jordan
blocks associated with 0 are 1-by-1 or just one block has size greater than 1.
Application of this observation, which is independent of the field, to (A−λI)
show that the same is true for any eigenvalue λ. (Note that, as two different
eigenvalues may have geometric multiplicity less than algebraic multiplicity,
we may have a block of size more than one for different eigenvalues). Since the
number blocks associated with λ is its geometric multiplicity, then the sec-
ond statement follows from Theorem 2.1. If λ /∈ F, it cannot appear among
b2 , . . . , bn so that it may have only one block. The last two observations
are similarly clear.

Now it is clear how to determine the JCF of A in any particular instance,
The characteristic polynomial of A determines the eigenvalues of A and,
thus, which numbers have at least one block, whether they are in F or not.
The b2 , . . . , bn determine which eigenvalues have two or more blocks (three
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or more appearances). They can only be in the field. Then the algebraic
multiplicity is determined by the characteristic polynomial and all of this
will go into one block, except for the 1-by-1 blocks required by the geometric
multiplicity. Note that this is rather different from a general matrix.

4. Other trees
Now, for paths and stars, the characteristic polynomial is arbitrary over R,

[1] . For other trees this is not yet know, but we suspect that the characteristic
polynomial remains arbitrary. This is all in the not-necessarily symmetric
case.

In the case of paths and stars, for each eigenvalue, the JCF can have at
most one block of size more than 1. This does not remain true for other
trees. For example, let T be the tree

and let

A =


0 z a −a 0 0
1 y 0 0 c −c
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0

 ∈ R(T ) .

Then rank(A) = 4, 0 ∈ σ(A) has geometric multiplicity 2 and

A2 =


z zy 0 0 zc −zc
y z + y2 a −a yc −yc
0 z a −a 0 0
0 z a −a 0 0
1 y 0 0 c −c
1 y 0 0 c −c

 .
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Since A2 row reduces to

A =


0 0 0 0 0 0
0 z a −a 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 y 0 0 c −c
0 0 0 0 0 0

 ,

rank(A2) = 2. Since rank(A3) = 2 as well, this means that A has two 2-by-2
Jordan blocks associated with the eigenvalue 0.

An additional interesting question is what about a tree determines the num-
ber of Jordan blocks of size greater than 1 associated with a given multiple
eigenvalue.
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