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Abstract: We study embeddings of Besov-Morrey spacesN s
u,p,q(Rd) and of Triebel-

Lizorkin-Morrey spaces Esu,p,q(Rd) in the limiting cases when the smoothness s equals

s0 = dmax(1/u−p/u, 0) or s∞ = d/u, which is related to the embeddings in Lloc
1 (Rd)

or in L∞(Rd), respectively. When s = s0 we characterise the embeddings in Lloc
1 (Rd)

and when s = s∞ we obtain embeddings into Orlicz-Morrey spaces of exponential
type and into generalised Morrey spaces.
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1. Introduction
In recent years function spaces built upon Morrey spaces Mu,p(Rd), 0 <

p ≤ u < ∞, attracted some attention. They include in particular Besov-
Morrey spaces N s

u,p,q(Rd) and Triebel-Lizorkin-Morrey spaces Esu,p,q(Rd), 0 <
p ≤ u < ∞, 0 < q ≤ ∞, s ∈ R. The attention paid to the spaces was
motivated first of all by possible applications. The Besov-Morrey spaces
N s
u,p,q(Rd) were introduced by Kozono and Yamazaki in [7] and used by

them and later on by Mazzucato [10] in the study of Navier-Stokes equa-
tions. In [28] Tang and Xu introduced the corresponding Triebel-Lizorkin-
Morrey spaces Esu,p,q(Rd), thanks to establishing the Morrey version of the
Fefferman-Stein vector-valued inequality. Some properties of these spaces in-
cluding their atomic decompositions and wavelet characterisations were later
described in the papers by Sawano [18, 19], Sawano and Tanaka [20, 21] and
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Rosenthal [17]. Also embedding properties of these spaces were investigated
in a series of papers [4, 5].

In our two recent papers [2] and [3] we studied under which conditions the
spaces N s

u,p,q(Rd) and Esu,p,q(Rd) contain only regular distributions, i.e., when

N s
u,p,q(Rd) ⊂ Lloc

1 (Rd), Esu,p,q(Rd) ⊂ Lloc
1 (Rd) (1.1)

and when they consist of bounded functions

N s
u,p,q(Rd) ⊂ L∞(Rd), Esu,p,q(Rd) ⊂ L∞(Rd). (1.2)

The embeddings (1.1) hold if the smoothness s is related to
so = p

udmax(1
p − 1, 0). Similarly the embeddings (1.2) are valid if s is re-

lated to s∞ = d
u . Therefore we called so and s∞ critical smoothnesses. In

particular, the spaces contain a non-regular distribution if s < so and consist
of locally integrable functions if s > so. The behaviour in the critical case
s = so is a delicate question. The analogous situation occurs in the case of
boundedness of the functions.

This paper is the direct continuation of the above mentioned recent articles.
First in Section 3 we prove that the embeddings (1.1) with smoothness s = so
hold if and only if the spacesN s

u,p,q(Rd) and Esu,p,q(Rd) are embedded into some

Morrey spaces Mv,r(Rd) with properly defined indices v and r, cf. Theorem
3.2 and Theorem 3.4.

In Section 4 we investigate unboundedness properties of the functions be-
longing to smoothness spaces of Morrey type with s = s∞. First we prove

that the spaces N d/u
u,p,q(Rd) and Ed/uu,p,q(Rd) can be embedded into Orlicz-Morrey

spaces of exponential type, cf. Theorem 4.5 and Corollary 4.6. The idea
that exponential Young functions can control the unboundedness of func-
tions belonging to the Sobolev spaces of critical smoothness goes back to
Trudinger [34], cf. also Strichartz [27]. There are several definitions of
Orlicz-Morrey spaces. Here we follow the approach proposed by Nakai [13].
Afterwards we embed the above spaces of smoothness d

u into the so-called
generalised Morrey spaces, cf. Theorem 4.10 and Remark 4.11. The gener-
alised Morrey spaces have been investigated by several authors. Our results
here are close to that ones in papers by Sawano and Wadade [22], Naka-
mura, Noi and Sawano [15] and by Eridani, Gunawan, Nakai and Sawano [1].
However in contrast to the above papers we study also the Besov-Morrey
spaces. Moreover in the case of Sobolev-Morrey spaces we are able to prove
the embeddings for a larger set of parameters.
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In the very short last section, somewhat supplementary, we formulate some
outcome concerning embeddings into spaces with smoothness 0, in particular
to bmo(Rd). In Section 2 we collect the definition and basic facts concerning
the smoothness Morrey spaces that are needed in the next sections.

2. Smoothness spaces of Morrey type
First we fix some notation. By N we denote the set of natural numbers,

by N0 the set N ∪ {0}, and by Zd the set of all lattice points in Rd having
integer components. Let Nd

0, where d ∈ N, be the set of all multi-indices,

α = (α1, . . . , αd) with αj ∈ N0 and |α| :=
∑d

j=1 αj. If x = (x1, . . . , xd) ∈ Rd

and α = (α1, . . . , αd) ∈ Nd
0, then we put xα := xα1

1 · · ·x
αd
d . For a ∈ R, let

bac := max{k ∈ Z : k ≤ a} and a+ := max(a, 0). If 0 < u ≤ ∞, the
number u′ is given by 1

u′ = (1− 1
u)+, with the convention that 1/∞ = 0. All

unimportant positive constants will be denoted by C, occasionally the same
letter C is used to denote different constants in the same chain of inequalities.
By the notation A . B, we mean that there exists a positive constant c such
that A ≤ cB, whereas the symbol A ∼ B stands for A . B . A. We denote
by B(x, r) := {y ∈ Rd : |x − y| < r} the ball centred at x ∈ Rd with radius
r > 0 and | · | denotes the Lebesgue measure when applied to measurable
subsets of Rd. Let Q be the collection of all dyadic cubes in Rd, namely,
Q := {Qj,k := 2−j([0, 1)d + k) : j ∈ Z, k ∈ Zd}.

Given two (quasi-)Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y
and the natural embedding of X into Y is continuous.

We introduce smoothness spaces of Morrey type. We recall first the defi-
nition of Morrey spaces.

Definition 2.1. Let 0 < p ≤ u <∞. The Morrey space Mu,p(Rd) is the set
of all locally p-integrable functions f ∈ Lloc

p (Rd) such that

‖f | Mu,p(Rd)‖ := sup
Q∈Q
|Q|

1
u−

1
p

(∫
Q

|f(y)|p dy

)1/p

< ∞ . (2.1)

Remark 2.2. The spacesMu,p(Rd) are quasi-Banach spaces (Banach spaces
for p ≥ 1), that can be equivalently defined if the supremum in (2.1) is taken
over all balls B(x, r) or over all cubes Q(x, r), with center x ∈ Rd and side
length r > 0, and sides parallel to the axis of coordinates.
These spaces originated from Morrey’s study on PDE (see [12]) and are
part of the wider class of Morrey-Campanato spaces; cf. [16]. They can be
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considered as a complement to Lp spaces, since Mp,p(Rd) = Lp(Rd) with
p ∈ (0,∞), extended byM∞,∞(Rd) = L∞(Rd). In a parallel way one can de-
fine the spacesM∞,p(Rd), p ∈ (0,∞), but using the Lebesgue differentiation
theorem, one arrives at M∞,p(Rd) = L∞(Rd). Moreover, Mu,p(Rd) = {0}
for u < p, and for 0 < p2 ≤ p1 ≤ u <∞,

Lu(Rd) =Mu,u(Rd) ↪→Mu,p1(Rd) ↪→Mu,p2(Rd).

Let S(Rd) be the set of all Schwartz functions on Rd, endowed with the
usual topology, and denote by S ′(Rd) its topological dual, namely, the space of
all bounded linear functionals on S(Rd) endowed with the weak ∗-topology.
Let ϕ0 = ϕ ∈ S(Rd) be such that

suppϕ ⊂ {x ∈ Rd : |x| ≤ 2} and ϕ(x) = 1 if |x| ≤ 1, (2.2)

and for each j ∈ N let ϕj(x) := ϕ(2−jx)− ϕ(2−j+1x). Then {ϕj}∞j=0 forms a
smooth dyadic resolution of unity.

Definition 2.3. Let 0 < p ≤ u < ∞ or p = u = ∞. Let q ∈ (0,∞], s ∈ R
and {ϕj}∞j=0 a smooth dyadic resolution of unity.

(i) The Besov-Morrey space N s
u,p,q(Rd) is defined to be the set of all distri-

butions f ∈ S ′(Rd) such that∥∥f | N s
u,p,q(Rd)

∥∥ :=

( ∞∑
j=0

2jsq
∥∥F−1(ϕjFf)|Mu,p(Rd)

∥∥q)1/q

<∞

with the usual modification made in case of q =∞.
(ii) Let u ∈ (0,∞). The Triebel-Lizorkin-Morrey space Esu,p,q(Rd) is defined

to be the set of all distributions f ∈ S ′(Rd) such that∥∥f | Esu,p,q(Rd)
∥∥ :=

∥∥∥∥( ∞∑
j=0

2jsq|F−1(ϕjFf)(·)|q
)1/q

| Mu,p(Rd)

∥∥∥∥ <∞
with the usual modification made in case of q =∞.

Remark 2.4. Occasionally we adopt the usual custom to write Asu,p,q(Rd) in-

stead ofN s
u,p,q(Rd) or Esu,p,q(Rd), when both scales are meant simultaneously in

some context. The spaces Asu,p,q(Rd) are independent of the particular dyadic
partition of unity {ϕj}∞j=0 appearing in their definitions. They are quasi-

Banach spaces (Banach spaces for p, q ≥ 1), and S(Rd) ↪→ Asu,p,q(Rd) ↪→
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S ′(Rd). Moreover, for u = p we re-obtain the usual Besov and Triebel-
Lizorkin spaces Asp,p,q(Rd) = As

p,q(Rd). Besov-Morrey spaces were introduced
by Kozono and Yamazaki in [7]. They studied semi-linear heat equations and
Navier-Stokes equations with initial data belonging to Besov-Morrey spaces.
The investigations were continued by Mazzucato [10], where one can find the
atomic decomposition of some spaces. The Triebel-Lizorkin-Morrey spaces
were later introduced by Tang and Xu [28], we follow their approach. The
ideas were further developed by Sawano and Tanaka [18–21]. Closely related,
alternative approaches can be found in the monographs [32, 33, 38] or in the
survey papers by Sickel [24,25].

We list some elementary embeddings within this scale of spaces. It holds

As+εu,p,r(Rd) ↪→ Asu,p,q(Rd), if ε > 0, r, q ∈ (0,∞],

and

Asu,p,q1(R
d) ↪→ Asu,p,q2(R

d), if q1 ≤ q2. (2.3)

Sawano proved in [18] that, for s ∈ R and 0 < p < u <∞,

N s
u,p,min(p,q)(R

d) ↪→ Esu,p,q(Rd) ↪→ N s
u,p,∞(Rd), (2.4)

where, for the latter embedding, r =∞ cannot be improved – unlike in case
of u = p. More precisely, Esu,p,q(Rd) ↪→ N s

u,p,r(Rd) if, and only if, r = ∞
or u = p and r ≥ max(p, q). On the other hand, Mazzucato has shown
in [10, Prop. 4.1] that

E0
u,p,2(Rd) =Mu,p(Rd), 1 < p ≤ u <∞, (2.5)

in particular,

E0
p,p,2(Rd) = Lp(Rd), 1 < p <∞.

This is nothing else than the well-known classical coincidence F 0
p,2(Rd) =

Lp(Rd), 1 < p < ∞, cf. [30, Thm. 2.5.6]. Further embedding results for the
above scales of function spaces on Rd can be found in [3–5,36].

The atomic decompositions. An important tool in our later considerations is
the characterisation of the Besov-Morrey and Triebel-Lizorkin-Morrey spaces
by means of atomic decompositions. We follow [17]; see also [20].

Definition 2.5. Let 0 < p ≤ u <∞, q ∈ (0,∞] and s ∈ R. Let K ∈ N0 and
N ∈ {−1}∪N0. A collection of L∞-functions ajm : Rd → C, j ∈ N0, m ∈ Zd,
is a family of (K,N)-atoms if, for some c1 > 1 and c2 > 0, it holds
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(i) supp ajm ⊂ c1Qjm, j ∈ N0, m ∈ Zd,
(ii) there exist all (classical derivatives) Dαajm for α ∈ Nn

0 with |α| ≤ K
and

‖ Dαajm|L∞(Rd)‖ ≤ c22
j|α|, j ∈ N0, m ∈ Zd, (2.6)

(iii) if γ ∈ Nd
0 with |γ| ≤ N , then∫

Rd
xγajm(x) dx = 0, j ∈ N0, m ∈ Zd.

N = −1 means that no moment condition is required.

For 0 < u < ∞, j ∈ N0 and m ∈ Zd we denote by χj,m the characteristic

function of the cube Qj,m and by χ
(u)
j,m := 2jd/uχj,m the u-normalised charac-

teristic function of the same cube, i.e., such that ‖χ(u)
j,m | Mu,p(Rd)‖ = 1.

Definition 2.6. Let 0 < p ≤ u <∞, q ∈ (0,∞] and s ∈ R.

(i) The sequence space esu,p,q(Rd) is defined to be the set of all sequences
λ := {λj,m}j∈N0,m∈Zd ⊂ C such that

‖λ | esu,p,q(Rd)‖ :=
∥∥∥( ∞∑

j=0

2jq(s−
d
u )
∑
m∈Zd

|λj,m|qχ(u)q
j,m

)1/q|Mu,p(Rd)
∥∥∥ <∞

with the usual modification in case of q =∞.
(ii) The sequence space nsu,p,q(Rd) is defined to be the set of all sequences

λ := {λj,m}j∈N0,m∈Zd ⊂ C such that

‖λ | nsu,p,q(Rd)‖ :=
( ∞∑
j=0

2jq(s−
d
u )
∥∥ ∑
m∈Zd

|λj,m|χ(u)
j,m |Mu,p(Rd)

∥∥q)1/q

<∞

with the usual modification in case of q =∞.

Remark 2.7. It was proved in [4] that

‖λ | nsu,p,q(Rd)‖ ∼ ‖λ|nsu,p,q‖∗ :=

=

( ∞∑
j=0

2qj(s−
d
u ) sup
ν:ν≤j;k∈Zd

2qd(j−ν)( 1
u−

1
p )
( ∑
m:Qj,m⊂Qν,k

|λj,m|p
) q
p

)1/q

<∞.

For p, q ∈ (0,∞], let

σp := d

(
1

p
− 1

)
+

and σp,q := d

(
1

min(p, q)
− 1

)
+

. (2.7)
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According to [17, Thms. 2.30 and 2.36] (see also [20, Thm. 4.12]), we have
the following atomic decomposition characterisation of Asu,p,q(Rd), where we

adopt the same custom to write asu,p,q(Rd) instead of nsu,p,q(Rd) or esu,p,q(Rd),
for convenience.

Proposition 2.8. Let 0 < p ≤ u <∞, q ∈ (0,∞] and s ∈ R. Let

K ≥ max(bs+ 1c , 0)

and

N ≥ max(bσp,q − sc ,−1) (E−case) or N ≥ max(bσp − sc ,−1) (N−case).
Then for each f ∈ Asu,p,q(Rd), there exist a family {ajm}j∈N0,m∈Zd of (K,N)-

atoms and a sequence λ = {λjm}j∈N0,m∈Zd ∈ asu,p,q(Rd) such that

f =
∞∑
j=0

∑
m∈Zd

λjm ajm in S ′(Rd)

and
‖λ | asu,p,q(Rd)‖ ≤ C ‖f | Asu,p,q(Rd)‖,

where C is a positive constant independent of λ and f .
Conversely, there exists a positive constant C such that for all families
{ajm}j∈N0,m∈Zd of (K,N)-atoms and λ = {λjm}j∈N0,m∈Zd ∈ asu,p,q(Rd),∥∥∥ ∞∑

j=0

∑
m∈Zd

λjm ajm | Asu,p,q(Rd)
∥∥∥ ≤ C ‖λ | asu,p,q(Rd)‖.

3. Embeddings with smoothness p
uσp

We return to the remarkable coincidence (2.5) and consider the limiting
situation when p = 1. Recall that in case of p = u = 1 it is well-known that
F 0

1,2(Rd) ↪→ L1(Rd) properly embedded, cf. [26]. Now we concentrate on the
Morrey situation when p = 1 < u and can prove some partial counterpart of
(2.5).

Proposition 3.1. Let 1 < u <∞. Then

E0
u,1,2(Rd) ↪→Mu,1(Rd).

Proof : Step 1. We prove that there exists a positive constant C > 0 such
that

‖f |Mu,1(Rd)‖ ≤ C ‖f |E0
u,1,2(Rd)‖ . (3.1)
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Let f ∈ E0
u,1,2(Rd). By the atomic decomposition theorem with atoms satis-

fying the conditions from Definition 2.5 with N > bd(u− 1)c and c1 = 3, we
have

f =
∞∑
j=0

∑
m∈Zd

λjmajm

with ∥∥∥( ∞∑
j=0

∑
m∈Zd

|λjm|2 χjm(·)
) 1

2 ∣∣Mu,1(Rd)
∥∥∥ ≤ c‖f |E0

u,1,2(Rd)‖.

Let Q = Qν,k be a dyadic cube and decompose f as follows

f =
ν∑
j=0

∑
m∈Zd

λjmajm +
∞∑

j=ν+1

∑
m∈Zd

λjmajm = f1 + f2. (3.2)

Remark that fi ∈ E0
u,1,2(Rd) and ‖fi|E0

u,1,2(Rd)‖ ≤ c‖f |E0
u,1,2(Rd)‖, i = 1, 2.

Step 2. We deal first with f1. Recall Q = Qν,k. Let µj,ν = {m ∈ Zd :
Q ∩ supp aj,m 6= ∅} and note that µj,ν ≤ c if j ≤ ν. Then we have

|Q|
1
u−1

∫
Q

|f1(x)| dx ≤ |Q|
1
u−1

ν∑
j=0

∑
m∈µj,ν

|λjm|
∫
Q

|ajm(x)| dx

≤ c|Q|
1
u

ν∑
j=0

∑
m∈µj,ν

|λjm| = c|Q|
1
u

ν∑
j=0

∑
m∈µj,ν

|Qjm|−1

∫
Qjm

(
|λjm|2χjm(x)

) 1
2

dx

≤ c

ν∑
j=0

2(j−ν) du
∑
m∈µj,ν

|Qjm|
1
u−1

∫
Qjm

( ∞∑
`=1

∑
n∈Zd
|λ`n|2χ`n(x)

) 1
2

dx

≤ c
( ν∑
j=0

2(j−ν) du

)
sup

0≤j≤ν
sup
m∈µj,ν

{
|Qjm|

1
u−1

∫
Qjm

( ∞∑
`=1

∑
n∈Zd
|λ`n|2χ`,n(x)

) 1
2

dx
}

≤ c
∥∥∥( ∞∑

j=0

∑
m∈Zd

|λjm|2 χj,m(·)
) 1

2 ∣∣Mu,1(Rd)
∥∥∥ ≤ c‖f |E0

u,1,2(Rd)‖. (3.3)

Step 3. Now we deal with f2 for what we rely on the results in [6]. By
checking the proof in [6, Thm. 4.3], we can see that f2 ∈ E0

u,1,2(Rd) can be



SOME EMBEDDINGS OF MORREY SPACES WITH CRITICAL SMOOTHNESS 9

decomposed in terms of non-smooth atoms bjm supported in cubes cQjm with
side lengths less than 2−ν, that is,

f2 =
∞∑

j=ν+1

∑
m∈Zd

λjmajm =
∞∑

j=ν+1

∑
m∈Zd

tjmbjm

where

‖t|mu,1‖ := sup
P∈Q
|P |

1
u−1
( ∑
Q`k⊂P

|t`k|
)
≤ c‖f2|E0

u,1,2(Rd)‖

and t = {tjm}j∈N0,m∈Zd.
We remark that the non-smooth atoms from [6] differ from the smooth

ones of Definition 2.5 in condition (2.6); in particular, we have

‖bjm|Lu(Rd)‖ ≤ |Qjm|
1
u−1, j ∈ N0, m ∈ Zd.

Then, using Hölder’s inequality and the properties of non-smooth atoms we
obtain

|Q|
1
u−1

∫
Q

|f2(x)| dx ≤ |Q|
1
u−1

∞∑
j=ν+1

∑
m∈Zd

|tjm|
∫

3Qjm∩Q
|bjm(x)| dx

≤ c|Q|
1
u−1

∞∑
j=ν+1

∑
m∈Zd:Qjm⊂cQ

|tjm||Qjm|1−
1
u‖bjm|Lu(Rd)‖

≤ c|Q|
1
u−1

∞∑
j=ν+1

∑
m∈Zd:Qjm⊂c′Q

|tjm| ≤ c‖(tjm)|mu,1‖

≤ c‖f |E0
u,1,2(Rd)‖. (3.4)

The desired outcome is then a consequence of (3.2), (3.3) and (3.4).

We equip the spaces Lloc
1 (Rd) with the metric

d(f, g) =
∞∑
n=1

1

2n
‖f − g|L1(Q̃n)‖

1 + ‖f − g|L1(Q̃n))‖
,

where Q̃n = [−n, n]d. The space Lloc
1 (Rd) with this metric is a complete

locally convex metric space, i.e., a Fréchet space, cf. [11, page 40]. One
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can easily see that a Morrey space Mu,p(Rd) is continuously embedded into
Lloc

1 (Rd) if p ≥ 1. Indeed we have

d(f, g) ≤ C
∞∑
n=1

1

2n
|Q̃n|1−

1
u

1 + ‖f − g|L1(Q̃n)‖
‖f − g|Mu,p(Rd)‖ ≤

≤ C
∞∑
n=1

|Q̃n|1−
1
u

2n
‖f − g|Mu,p(Rd)‖ ≤ C‖f − g|Mu,p(Rd)‖.

Theorem 3.2. Let 0 < p ≤ u <∞, 0 < q ≤ ∞, and s = p
uσp. The following

assertions are equivalent:

(i) Esu,p,q(Rd) ↪→ Lloc
1 (Rd),

(ii) Esu,p,q(Rd) ↪→M u
min(p,1) ,max(p,1)(Rd),

(iii) either p ≥ 1 and q ≤ 2, or 0 < p < 1.

Proof : Note that the implication (ii) ⇒ (i) is already shown, and the part
(i) ⇒ (iii) is covered by [3, Thm. 3.4].
Step 1. Consider first the case p = 1. The implication (iii) ⇒ (ii) is a

consequence of Proposition 3.1 and an elementary embedding,

E0
u,1,q(Rd) ↪→ E0

u,1,2(Rd) ↪→Mu,1(Rd) if 0 < q ≤ 2.

Step 2. Let 0 < p < 1. Then s = p
uσp = d

u(1−p). The general properties of
embeddings between Triebel-Lizorkin-Morrey spaces, cf. [5, Thm. 3.1], and
the first step imply

Esu,p,∞(Rd) ↪→ E0
u
p ,1,1

(Rd) ↪→Mu
p ,1

(Rd),

which shows that (iii) ⇒ (ii), and there is nothing more to be proved in this
case.

Step 3. Now assume p > 1. The implication (iii) ⇒ (ii) follows from

E0
u,p,q(Rd) ↪→ E0

u,p,2(Rd) =Mu,p(Rd) if 0 < q ≤ 2.

Remark 3.3. The above theorem improves the statements of [3, Thm. 3.4]
and extends Theorem 3.3.2(i) and Corollary 3.3.1 in [26] from classical Triebel-
Lizorkin spaces to Triebel-Lizorkin-Morrey spaces.



SOME EMBEDDINGS OF MORREY SPACES WITH CRITICAL SMOOTHNESS 11

Theorem 3.4. Let 0 < p ≤ u <∞, 0 < q ≤ ∞, and s = p
uσp. The following

assertions are equivalent:

(i) N s
u,p,q(Rd) ↪→ Lloc

1 (Rd),

(ii) N s
u,p,q(Rd) ↪→M u

min(p,1) ,max(p,1)(Rd),

(iii) 0 < q ≤ min
(
max(p, 1), 2

)
.

Proof : The case p = u is well known, cf. [26, Thm. 3.3.2, Cor. 3.3.1], so we
can restrict ourselves to the case p < u.
Step 1. We prove that (iii) ⇒ (ii) ⇒ (i). The second implication has been

already shown so it remains to prove the first one.
Let 0 < p ≤ 1. For 0 < q ≤ 1, by general properties of embeddings, in

particular [4, Thm. 3.2], and Theorem 3.2, we have

N s
u,p,q(Rd) ↪→ N 0

u
p ,1,1

(Rd) ↪→ E0
u
p ,1,1

(Rd) ↪→Mu
p ,1

(Rd)

which proves the implication (iii) ⇒ (ii).
Consider the case p ≥ 1. If 0 < q ≤ min(p, 2), then elementary embeddings,

(2.5) and Theorem 3.2 yield

N 0
u,p,q(Rd) ↪→ E0

u,p,2(Rd) ↪→Mu,p(Rd),

which shows that (iii) ⇒ (ii).
Step 2. We prove that the condition (i) implies (iii). For 0 < p < 1 the

implication was proved in [3], cf. Step 2 of the proof of Theorem 3.4. But
the same argument works for p = 1. Also the case 2 ≤ p <∞ is covered by
Theorem 3.4 in [3].

It remains to consider the case 1 < p < 2. We assume that embedding (i)
holds for some q > p. We choose a smooth function ã such that

supp ã ⊂
[
0,

1

2

]d
, 0 ≤ ã ≤ 1 and

∣∣∣∣ ∂ã∂xi
∣∣∣∣ ≤ 1, i = 1, . . . , d,

(3.5)
and put

a(x) = ã(x)− ã(−x). (3.6)

Then a is an atom satisfying the first moment condition and supported in
[−1

2 ,
1
2 ]d. Moreover we consider the family of atoms aj,m, j = 0, 1, . . . and

m ∈ Zd that are the dilations and translations of a, i.e.,

aj,m(x) = a(2jx−m− (1/2, . . . , 1/2)).

The function aj,m is an atom supported in Qj,m.
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Let us fix n ∈ N. For any cube Qj,m ⊂ Q0,0, 1 ≤ j ≤ n, m ∈ Zd, we define
a function

bj,m(x) = 2j−n
∑

k:Qn,k⊂Qj,m

an,k(x).

The function bj,m is an atom satisfying the first moment condition supported
in Qj,m. We define a smooth function fn by the following finite sum

fn(x) =
n∑
j=1

j−
1
p

∑
m:Qj,m⊂Q0,0

bj,m(x).

The functions fn belong to N 0
u,p,q(Rd) and their norms are uniformly bounded

since

‖fn|N 0
u,p,q(Rd)‖ ≤

 n∑
j=1

2−jq
d
u sup
ν:ν≤j,k∈Zd

2dq(j−ν)( 1
u−

1
p )
( ∑
Qj,m⊂Qν,k⊂Q0,0

j−1
) q
p

 1
q

≤

(
n∑
j=1

j−
q
p2−jq

d
u sup
ν:0≤ν≤j,k∈Zd

2dq
(j−ν)
u

) 1
q

≤

( ∞∑
j=1

j−
q
p

) 1
q

= C <∞,

recall q > p. On the other hand, for ν ∈ N,

‖fn|L1(Q̃ν)‖ = ‖fn|L1(Q̃1)‖ =

∫
Q̃1

∣∣∣∣∣∣
n∑
j=1

j−
1
p

∑
Qj,m⊂Q0,0

bj,m(x)

∣∣∣∣∣∣ dx

=

∫
Q̃1

∣∣∣∣∣∣
n∑
j=1

j−
1
p2j−n

∑
Qj,m⊂Q0,0

∑
Qn,k⊂Qj,m

an,k(x)

∣∣∣∣∣∣ dx

=

∫
Q̃1

∣∣∣∣∣∣
n∑
j=1

j−
1
p2j−nn

∑
Qn,k⊂Q0,0

an,k(x)

∣∣∣∣∣∣ dx

=

∫
Q̃1

(
n∑
j=1

j−
1
p2j−nn

)∣∣∣∣∣∣
∑

Qn,k⊂Q0,0

an,k(x)

∣∣∣∣∣∣ dx
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=
n∑
j=1

j−
1
p2j−nn

∑
Qn,k⊂Q0,0

∫
Q̃1

|an,k(x)| dx

= cn2−n
n∑
j=1

j−
1
p2j ≥ cn1− 1

p .

Thus ‖fn|L1(Q̃ν)‖ = ‖fn|L1(Q̃1)‖ → ∞ if n→∞ since 1 < p. The local base

at zero in Lloc
1 (Rd) is given by the sets Vk,ε = {f : ‖f |L1(Q̃ν)‖ < ε, ν =

1, . . . , k}. So the sequence fn is not bounded in Lloc
1 (Rd). This contradicts

the continuity of the embedding (i).

Corollary 3.5. Let 0 < p ≤ u < v < ∞, 1 ≤ q ≤ v and s = d
u −

d
v . Then

the following assertions are equivalent:

(i) Esu,p,∞(Rd) ↪→Mv,q(Rd),

(ii) N s
u,p,q(Rd) ↪→Mv,q(Rd),

(iii) q ≤ v pu.

Proof : Step 1. First we prove the sufficiency of the condition (iii). If p = u
v ,

then p
uσp = d

u −
d
v = s. So (i) follows from Theorem 3.2. If p > u

v , then

s = d
u−

d
v > 0 and qmax = pv

u > 1. In that case the embedding is a consequence
of Sobolev embeddings [5, Thm. 3.2], the Paley-Littlewood formula (2.5) and
the embeddings between Morrey spaces.

Similarly, the embedding (ii) in the case p = u
v follows from Theorem 3.4

since q = 1. To prove (ii) for p > u
v and 1 < q ≤ p vu one can use the

Franke-Jawerth embeddings for smoothness Morrey spaces, cf. [5, Thm. 4.3].
Indeed, we have

N s
u,p,q(Rd) ↪→ E0

v,q,2(Rd) =Mv,q(Rd).

If p > u
v and q = 1, then

N s
u,p,q(Rd) ↪→ N s

u,uv ,q
(Rd) ↪→Mv,1(Rd),

the statement coincides with our previous statement, Theorem 3.4. We refer
to [4] for a proof of the first embedding.
Step 2. Now we prove the necessity of the conditions.
First we assume that

N s
u,p,q(Rd) ↪→Mv,q(Rd). (3.7)
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The last embeddings implies that the space N s
u,p,q(Rd) consists of locally

integrable functions, so s ≥ p
uσp, cf. Theorem 3.3. in [3]. This implies p ≥ u

v .
If 1 < q, then by (2.4) and (2.5) we get

N s
u,p,q(Rd) ↪→Mv,q(Rd) = E0

v,q,2(Rd) ↪→ N 0
v,q,∞(Rd).

But Theorem 3.3 of [4], implies q ≤ pv
u . If q = 1, then the condition q ≤ pv

u
is satisfied automatically since we have already proved that p ≥ u

v .
Using the same argument as above we can prove that q ≤ pv

u if

Esu,p,∞(Rd) ↪→Mv,q(Rd).

Remark 3.6. The embeddings (i) and (ii) of the last corollary holds also
for q < 1 if v pu ≥ 1 since then we increase the target space whereas the source
space is unchanged or smaller.

Remark 3.7. Another class of generalisations of Besov and Triebel-Lizorkin
spaces are Besov-type spaces Bs,τ

p,q (Rd) and Triebel-Lizorkin-type spaces

F s,τ
p,q (Rd), 0 < p, q ≤ ∞ (with p < ∞ in case of F s,τ

p,q ), τ ≥ 0, s ∈ R in-

troduced in [38]. The spaces are strictly related to N s
u,p,q(Rd) and Esu,p,q(Rd)

spaces if 0 ≤ τ < 1
p . Namely

F s,τ
p,q (Rd) = Esu,p,q(Rd) if 0 ≤ τ =

1

p
− 1

u
<

1

p
, (3.8)

and

N s
u,p,q(Rd) ↪→ Bs,τ

p,q (Rd) if 0 ≤ τ =
1

p
− 1

u
<

1

p
. (3.9)

The Besov-Morrey and Besov-type spaces coincide only if τ = 0 or q = ∞.
In contrast to the spaces Asu,p,q(Rd) these scales are embedded into each other
like their classical counterparts, that is,

Bs,τ
p,min(p,q)(R

d) ↪→ F s,τ
p,q (Rd) ↪→ Bs,τ

p,max(p,q)(R
d), (3.10)

whenever 0 < p <∞, 0 < q ≤ ∞, s ∈ R, τ ≥ 0. Using these relations we can
easily transfer our results to the new class of function spaces if 0 ≤ τ < 1

p .

In particular, if 0 ≤ τ < 1
p and s = (1 − τp)σp, then the following three

conditions are equivalent

(i) F s,τ
p,q (Rd) ↪→ Lloc

1 (Rd),
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(ii) F s,τ
p,q (Rd) ↪→Mv,max(p,1)(Rd), where v = p

(1−τp) min(p,1) ,

(iii) either p ≥ 1 and q ≤ 2, or 0 < p < 1.

The above statement improves Theorem 3.8 in [3] and corrects some misprint
concerning non-embeddings of F s,τ

p,q (Rd) spaces stated in formula (3.31) there.
Moreover we have the following counterpart of Corollary 3.5. If

0 ≤ τ <
1

p
,

p

1− pτ
< v <∞, s = d

(
1

p
− τ
)
− d

v
, 1 ≤ q ≤ v, (3.11)

then
F s,τ
p,∞(Rd) ↪→Mv,q(Rd) ⇐⇒ q ≤ v(1− pτ). (3.12)

This is a direct consequence of (3.8) and Corollary 3.5. In case of spaces
Bs,τ
p,q (Rd) we have a partial counterpart only at the moment: assume (3.11)

and q ≤ p. Then
Bs,τ
p,q (Rd) ↪→Mv,q(Rd), (3.13)

as by assumption, q ≤ p < v(1−pτ); thus (3.12) together with (3.10) conclude
the argument. In case of q > p the situation is not yet complete: while the
embedding (3.9) together with Corollary 3.5 always lead to q ≤ v(1 − pτ)
whenever Bs,τ

p,q (Rd) ↪→ Mv,q(Rd), the sufficiency is not clear in all cases:
assume, in addition to (3.11) that p < q ≤ v

τv+1 . Then using some Franke-
Jawerth embedding, cf. [36, Thm. 3.10],

Bs,τ
p,q (Rd) ↪→ F σ,τ

q,∞(Rd), σ = s− d

p
+
d

q
< s,

and, by (3.12) again,

F σ,τ
q,∞(Rd) ↪→Mv,q(Rd) if q ≤ v(1− qτ),

which is satisfied by our additional assumption on q, we get (3.13).

4. Embeddings with smoothness d
u

In this section we are interested in embeddings of spaces with smoothness
s = d

u . This is once more the borderline smoothness since if the smoothness

is strictly bigger than d
u , then the space consists of bounded functions. We

describe the properties of the functions belonging to the spaces with smooth-
ness s = d

u in terms of exponential Orlicz-Morrey spaces and some generalised
Morrey spaces.

Our approach is based on the extrapolation argument that in the case of
Besov and Triebel-Lizorkin spaces was elaborated by Triebel in [29]. We
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follow the general idea of his work. The extrapolation inequalities we need
are formulated in the following lemma.

Lemma 4.1. Let 0 < p ≤ u <∞, 0 < q ≤ ∞, p < r <∞ and v = ur
p .

(i) If r ≥ 1, then there is a constant C > 0 depending on d, p, u and q

but independent of v, r such that for any f ∈ N
d
u
u,p,q(Rd) the following

inequalities hold

‖f |Mv,r(Rd)‖ ≤ Cv1− 1
q‖f |N

d
u
u,p,q(Rd)‖ if q ≥ 1, (4.1)

‖f |Mv,r(Rd)‖ ≤ C‖f |N
d
u
u,p,q(Rd)‖ if q ≤ 1. (4.2)

(ii) If p < r < 1, then there is a constant C > 0 depending on d, p, u but

independent of v and r such that for any f ∈ N
d
u
u,p,∞(Rd) the following

inequality holds

‖f |Mv,r(Rd)‖ ≤ C‖f |N
d
u
u,p,∞(Rd)‖. (4.3)

Remark 4.2. The constant C is independence of v in that sense that it
depends on u and p but takes the same value as far as the the quotient u

p is
constant.

Proof : First we prove that

|ψ(x)| ≤ C‖ψ|Mu,p(Rd)‖ (4.4)

if suppFψ ⊂ B(0, 2) and 0 < p ≤ u <∞. The proof is standard and based
on the Plancherel-Polya-Nikol’skii inequality

sup
y∈Rd

|ψ(x− y)|
(1 + |y|)d/δ

≤ C
(
M(|ψ|δ)(x)

) 1
δ

, x ∈ Rd, δ > 0, (4.5)

cf. [30, Theorem 1.3.1]. Here M stands for the Hardy-Littlewood maximal
operator, as usual.

We repeat the argument for completeness, cf. also [15]. One can easily
prove that if |x− y| ≤ 2, then

|ψ(x)| ≤ c sup
z∈Rd

|ψ(z)|
(1 + |z − y|)d/δ

≤ C
(
M(|ψ|δ)(y)

) 1
δ

. (4.6)
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So, if δ < p, then the boundedness of the maximal function in Morrey spaces
gives us

|ψ(x)| ≤ c

(
|B(x, 2)|−1

∫
B(x,2)

(
M(|ψ|δ)(y)

)p
δ

dy

)1/p

≤ C

∥∥∥∥(M(|ψ|δ)
) 1
δ |Mu,p(Rd)

∥∥∥∥ = C
∥∥M(|ψ|δ)|Mu/δ,p/δ(Rd)

∥∥ 1
δ

≤ C
∥∥|ψ|δ|Mu/δ,p/δ(Rd)

∥∥ 1
δ = C‖ψ|Mu,p(Rd)‖, x ∈ Rd.

Thus, if p < r, then for any cube Q we have(∫
Q

|ψ(x)|r dx
) 1
r ≤ sup

x∈Q
|ψ(x)|1−

p
r

(∫
Q

|ψ(x)|p dx
) 1
r ≤ C|Q|

1
r−

p
ru‖ψ|Mu,p(Rd)‖.

So

‖ψ|Mv,r(Rd)‖ ≤ C‖ψ|Mu,p(Rd)‖. (4.7)

The last inequality implies

‖F−1
(
D2jϕjFf

)
|Mv,r(Rd)‖ ≤ C‖F−1

(
D2j(ϕjFf)

)
|Mu,p(Rd)‖ (4.8)

since suppD2j(ϕjFf) ⊂ B(0, 2), where Dδg(x) = g(δx). Now the formula for
Fourier dilations and the relation between dilations and the Morrey norms
give us

‖F−1
(
ϕjFf

)
|Mv,r(Rd)‖ ≤ C2jd( 1

u−
1
v )‖F−1

(
ϕjFf

)
|Mu,p(Rd)‖. (4.9)

In consequence, if 1 ≤ r and 1 < q ≤ ∞ we have

‖f |Mv,r(Rd)‖ ≤
∞∑
k=0

‖F−1ϕkFf |Mv,r(Rd)‖

≤ C
∞∑
k=0

2kd( 1
u−

1
v )‖F−1ϕkFf |Mu,p(Rd)‖

≤ C
( ∞∑
k=0

2−kd
q′
v

) 1
q′
( ∞∑
k=0

2k
d
uq‖F−1ϕkFf |Mu,p(Rd)‖q

) 1
q

≤ Cv1− 1
q‖f |N

d
u
u,p,q(Rd)‖,
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with obvious changes if q =∞; similarly,

‖f |Mv,r(Rd)‖ ≤ C
∞∑
k=0

2kd( 1
u−

1
v )‖F−1ϕkFf |Mu,p(Rd)‖ ≤ C‖f |N

d
u
u,p,q(Rd)‖

if 1 ≤ r and 0 < q ≤ 1.
Now let p < r < 1 and q =∞. We have

‖f |Mv,r(Rd)‖r ≤
∞∑
k=0

‖F−1ϕkFf |Mv,r(Rd)‖r

≤ C
∞∑
k=0

2kdr(
1
u−

1
v )‖F−1ϕkFf |Mu,p(Rd)‖r

≤ C
(

sup
k∈N0

2k
d
u‖F−1ϕkFf |Mu,p(Rd)‖

)r ∞∑
k=0

2−kd
r
v .

But ( ∞∑
k=0

2−kd
r
v

) 1
r ≤ Cu,p <∞,

so

‖f |Mv,r(Rd)‖ ≤ C‖f |N
d
u
u,p,∞(Rd)‖.

This concludes the argument.

4.1. Embeddings in Orlicz-Morrey spaces. The Orlicz-Morrey spaces
considered below were introduced by Nakai [13]. They are a generalisation
of both Morrey and Orlicz spaces.

Definition 4.3. Let Φ : [0,∞)→ [0,∞) be a Young function, i.e., a contin-
uous convex function with Φ(0) = 0 and limt→∞Φ(t) = ∞. For 1 ≤ r < ∞
and a cube Q we put

‖f‖(r,Φ);Q := inf

{
λ > 0 : |Q|

1
r−1

∫
Q

Φ
(|f(x)|

λ

)
dx ≤ 1

}
.

The Orlicz-Morrey space Mr,Φ(Rd) is the set of all measurable functions f
such that

‖f |Mr,Φ(Rd)‖ := sup
Q∈Q
‖f‖(r,Φ);Q <∞.
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We consider also the following expression

‖f |Mr,Φ(Rd)‖∗ := inf

{
λ > 0 : sup

Q∈Q
|Q|

1
r−1

∫
Q

Φ
(|f(x)|

λ

)
dx ≤ 1

}
.

Since supQ infλ ≤ infλ supQ we have ‖f |Mr,Φ(Rd)‖ ≤ ‖f |Mr,Φ(Rd)‖∗. In the
next lemma we show that if the Young function Φ is of exponential type, then
both expressions are equivalent and the spaceMr,Φ(Rd) can be characterised
by extrapolation.

Lemma 4.4. Let 0 < p ≤ u < ∞, 0 < q < ∞, and Φp,q(t) := tp exp(tq).
Then f belongs to the Orlicz-Morrey spaceMu

p ,Φp,q
(Rd) if, and only if,

sup
j≥1

j−1/q ‖f |Mv(j),p(j)(Rd)‖ <∞,

where p(j) = p+ jq and v(j) = u
pp(j). Moreover,

‖f |Mu
p ,Φp,q

(Rd)‖ ∼ ‖f |Mu
p ,Φp,q

(Rd)‖∗ ∼ sup
j≥1

j−1/q ‖f |Mv(j),p(j)(Rd)‖.

Proof : Step 1. It is sufficient to prove that there are constants c, C > 0 such
that for any measurable function f we have

c‖f |Mu
p ,Φp,q

(Rd)‖∗ ≤ sup
j≥1

j−1/q ‖f |Mv(j),p(j)(Rd)‖ ≤ C‖f |Mu
p ,Φp,q

(Rd)‖.

(4.10)
Consider a dyadic cube Q and λ > 0. Using the Taylor expansion of Φp,q

and the Stirling’s formula, we have∫
Q

Φp,q

( |f(x)|
λ

)
dx =

∞∑
j=0

1

j!

∫
Q

|f(x)|p+jq

λp+jq
dx

=
∞∑
j=0

j−jej(2πj)−1/2λ−(p+jq)

∫
Q

|f(x)|p+jq dx.

Let κ ∈ R (be at our disposal) and let

λj := (2π)
1

2(p+qj)e−
j

p+qj j(κ−pq+ 1
2 )/(p+qj), j ∈ N.

It can be easily seen that the sequence (λj)j converges to e−1/q, thus there
are positive constants c0, c1 such that 0 < c0 < λj < c1 < ∞ for any j ∈ N.
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Therefore,∫
Q

Φp,q

( |f(x)|
λ

)
dx ∼

∞∑
j=0

jκ−
p
q−jλ−(p+jq)

∫
Q

|f(x)|p+jq dx. (4.11)

Step 2. We prove the left-hand side inequality in (4.10). Assume that

sup
j≥1

j−1/q ‖f |Mv(j),p(j)(Rd)‖ ≤ λ.

Then, for any dyadic cube Q and any j ∈ N, it holds

λ−(p+qj)j−
p+qj
q |Q|

p
u−1

∫
Q

|f(x)|p(j) dx ≤ 1.

For this λ, inserting the above inequality in (4.11) entails∫
Q

Φp,q

( |f(x)|
λ

)
dx ≤ c

∞∑
j=0

jκ|Q|1−
p
u .

By choosing κ < −1, we conclude that

sup
Q∈Q
|Q|

p
u−1

∫
Q

Φp,q

( |f(x)|
λ

)
dx ≤ c.

Step 3. It remains to show the right-hand side inequality in (4.10). Let
now

‖f |Mr,Φ(Rd)‖ := sup
Q∈Q
‖f‖(r,Φ);Q ≤ 1

and let ε > 0. Then for any dyadic cubeQ there is λQ, 0 < λQ ≤ ‖f‖(r,Φ);Q+ε,
such that

|Q|
p
u−1

∫
Q

Φp,q

(|f(x)|
λQ

)
dx ≤ 1.

Then, by (4.11),
∞∑
j=0

jκ−
p
q−jλ

−(p+jq)
Q |Q|

p(j)
v(j)−1

∫
Q

|f(x)|p+jq dx ≤ c

for all dyadic cubes Q and for some positive constant c independent of Q.
Hence, for any j ∈ N and any dyadic cube Q, it holds

j−
p
q−j|Q|

p(j)
v(j)−1

∫
Q

|f(x)|p+jq dx ≤ cj−κλp+jqQ ≤ cj−κ(‖f‖(r,Φ);Q + ε)p+jq.
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Taking the infimum over ε we get

j−
p
q−j|Q|

p(j)
v(j)−1

∫
Q

|f(x)|p+jq dx ≤ cj−κ‖f‖p+jq(r,Φ);Q

and afterwards taking the supremum over all dyadic cubes gives

j−1/q‖f |Mv(j),p(j)(Rd)‖ ≤ c1/p(j)j−κ/p(j)‖f |Mr,Φ(Rd)‖.

Now we take the supremum over all j. The expression on the right-hand side
is of the size j1/j so it can be bounded by a positive constant. This yields

sup
j≥1

j−1/q‖f |Mv(j),p(j)(Rd)‖ ≤ c‖f |Mr,Φ(Rd)‖.

Theorem 4.5. Let 0 < p ≤ u <∞ and 1 < q ≤ ∞. Then

N
d
u
u,p,q(Rd) ↪→Mu

p ,Φp,q′
(Rd),

where q′ is the conjugate exponent of q.

Proof : For each j ∈ N, by Lemma 4.1 with r = p(j) = p + qj and v(j) =
u
pp(j),

‖f |Mv(j),p(j)(Rd)‖ ≤ c{v(j)}1/q′‖f |N
d
u
u,p,q(Rd)‖,

where c is a positive constant independent of v(j) and p(j), and thus of j.
Since {v(j)}1/q′ ∼ j1/q′, using also Lemma 4.4, we get

‖f |Mu
p ,Φp,q′

(Rd)‖ ∼ sup
j≥1

j−1/q′ ‖f |Mv(j),p(j)(Rd)‖ ≤ c‖f |N
d
u
u,p,q(Rd)‖.

Corollary 4.6. Let 0 < p ≤ u <∞ and 0 < q ≤ ∞. Then

E
d
u
u,p,q(Rd) ↪→Mu

p ,Φp,1
(Rd).

Proof : The result follows from the above theorem and elementary embed-
dings:

E
d
u
u,p,∞(Rd) ↪→ N

d
u
u,p,∞(Rd) ↪→Mu

p ,Φp,1
(Rd).
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Remark 4.7. According to [22, Cor. 1.5] it holds

E
d
u
u,p,2(R

d) ↪→Mu
p ,Φp

(Rd),

where 1 < p ≤ u <∞ and

Φp(t) :=
∞∑
j=jp

tj

j!
, t ≥ 0,

with jp := min{j ∈ N : j ≥ p}. Since there exists a constant c > 0 such that

Φp,1(t) ≥ cΦp(t) for all t ≥ 0,

it turns out that
Mu

p ,Φp,1
(Rd) ↪→Mu

p ,Φp
(Rd).

Hence Corollary 4.6 does not only extend [22, Cor. 1.5] from q = 2 to any
1 < q ≤ ∞, it improves it.

4.2. Embeddings in generalised Morrey spaces. Now we turn to the
generalised Morrey spaces. The spaces were extensively studied, cf. Nakai
[14], Nakamura, Noi and Sawano [15], Sawano and Wadade [22] and the
references given there. Let 0 < r < ∞ and let ϕ : [0,∞) → [0,∞) be a
suitable function. For a locally r-integrable function f we put

‖f |Mϕ
r ‖ := sup

Q∈Q
ϕ(|Q|)

(
|Q|−1

∫
Q

|f(y)|r dy

)1/r

. (4.12)

The space Mϕ
r (Rd) is the set of all measurable functions f for which the

quasi-norm (4.12) is finite. If ϕ(t) = t1/u, 0 < r ≤ u, then the definition
coincides with the definition of the Morrey space Mu,r(Rd). Since we will
work with the given examples of functions ϕ we avoid the discussions which
functions ϕ define the reasonable spaces, and we refer the interested reader
to the above mentioned papers.

We start with a proposition that somehow compares the Orlicz-Morrey
spaces with generalised Morrey spaces we will use.

Proposition 4.8. Let 0 < p ≤ u <∞, 1 ≤ q <∞ and r ≥ p+q. Then there
is a positive constant C depending on u, p, q and r such that the following
inequality(

1

|Q|

∫
Q

|f(x)|r dx

) 1
r

≤ c (1 + |Q|)−
p
ru

(
log
(
e+ |Q|−1

)) 1
q ‖f |Mu

p ,Φp,q
(Rd)‖
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holds for all dyadic cubes Q and all f ∈Mu
p ,Φp,q

(Rd).

Proof : It should be clear that it is sufficient to consider the case r = p+j0q for
some j0 ∈ N. Note that this refers to r = p(j0) in the notation of Lemma 4.4.

Let Q be a dyadic cube with side length 2−j and |Q| = 2−jd, j ∈ Z. Assume
first j ≤ 0. Then by Lemma 4.4 we get(

1

|Q|

∫
Q

|f(x)|r dx

) 1
r

≤ C j
1/q
0 |Q|−

p
ur‖f |Mu

p ,Φp,q
(Rd)‖

≤ C(1 + |Q|)−
p
ur‖f |Mu

p ,Φp,q
(Rd)‖. (4.13)

Next we assume that j ≥ j0. Then Hölder’s inequality and Lemma 4.4
imply(

1

|Q|

∫
Q

|f(x)|r dx

) 1
r

≤
(

1

|Q|

∫
Q

|f(x)|p(j) dx

) 1
p(j)

≤ C j1/q|Q|−
p

up(j)‖f |Mu
p ,Φp,q

(Rd)‖

≤ C
(
log(e+ |Q|−1)

) 1
q ‖f |Mu

p ,Φp,q
(Rd)‖ (4.14)

since

log(e+ |Q|−1) ∼ j and |Q|−
p

up(j) = 2
jdp

u(p+jq) ≤ 2
dp
uq .

At the end we consider the cubes with 0 < j < j0. We have

2−
j0d
v(j0) sup

Q: |Q|=2−jd, 0<j<j0

(
1

|Q|

∫
Q

|f(x)|r dx

) 1
r

≤ sup
Q
|Q|

1
v(j0)

(
1

|Q|

∫
Q

|f(x)|r dx

) 1
r

≤ C j
1
q

0 ‖f |Mu
p ,Φp,q

(Rd)‖,

by Lemma 4.4, recall r = p(j0). Thus(
1

|Q|

∫
Q

|f(x)|r dx

) 1
r

≤ C
(
log(e+ |Q|−1)

) 1
q ‖f |Mu

p ,Φp,q
(Rd)‖. (4.15)

Consequently, the inequalities (4.13)-(4.15) prove the proposition.

The next corollary is an immediate consequence of Theorem 4.5, Corol-
lary 4.6 and Proposition 4.8.
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Corollary 4.9. Let 0 < p ≤ u <∞ and 0 < q ≤ ∞.

(i) If 1 < q ≤ ∞ and r ≥ p + q′ . Then there is a positive constant C
such that the inequality

(
1

|Q|

∫
Q

|f(x)|r dx

) 1
r

≤ c (1 + |Q|)−
p
ru

(
log
(
e+ |Q|−1

)) 1
q′ ‖f |N

d
u
u,p,q(Rd)‖

(4.16)

holds for all dyadic cubes Q and all f ∈ N
d
u
u,p,q(Rd).

(ii) If 0 < q ≤ ∞ and r ≥ p + 1 . Then there is a positive constant C
such that the inequality

(
1

|Q|

∫
Q

|f(x)|r dx

) 1
r

≤ c (1 + |Q|)−
p
ru

(
log
(
e+ |Q|−1

))
‖f |E

d
u
u,p,q(Rd)‖

(4.17)

holds for all dyadic cubes Q and all f ∈ E
d
u
u,p,q(Rd).

The inequalities (4.16) and (4.17) can be extended to the smallest values
of r and q. Recall that q′ is defined by q′ = q

q−1 if 1 < q <∞ and q′ =∞ if

0 < q ≤ 1, where the usual convention 1/∞ = 0 is assumed.

Theorem 4.10. Let 0 < p ≤ u < ∞ and 0 < q ≤ ∞. If 1 ≤ r < ∞, then
there exists a positive constant c such that

(
1

|Q|

∫
Q

|f(x)|r dx

) 1
r

≤ c (1 + |Q|)−
min(1,

p
r )

u

(
log
(
e+ |Q|−1

)) 1
q′ ‖f |N

d
u
u,p,q(Rd)‖

holds for all dyadic cubes Q and all f ∈ N
d
u
u,p,q(Rd).

Proof : Step 1. Given r ≥ 1, let r0 be such that r0 > max(p, r). By Lemma
4.1, there exists a positive constant c, not depending on r0 and v0, with
v0 = ur0

p , such that the inequality

|Q|
1
v0
− 1
r0

(∫
Q

|f(x)|r0 dx

) 1
r0

≤ c v
1
q′

0 ‖f |N
d
u
u,p,q(Rd)‖ (4.18)
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holds for all dyadic cubes Q and all f ∈ N
d
u
u,p,q(Rd). The Hölder inequality

and (4.18) yield(∫
Q

|f(x)|r dx

) 1
r

≤ |Q|
1
r−

1
r0

(∫
Q

|f(x)|r0 dx

) 1
r0

≤ c |Q|
1
r−

1
v0 v

1
q′

0 ‖f |N
d
u
u,p,q(Rd)‖ (4.19)

for all dyadic cubes Q and all f ∈ N
d
u
u,p,q(Rd).

For convenience we deal with the case q ≥ 1, the other case is even easier.
Assume first that the cubes are small, that is, they satisfy |Q| < e−umax(1, rp ).
Then v0 = log(|Q|−1) and r0 = p

uv0 satisfy the above assumptions. Hence
(4.19) leads to(

1

|Q|

∫
Q

|f(x)|r dx

) 1
r

≤ c
(
log
(
e+ |Q|−1

)) 1
q′ ‖f |N

d
u
u,p,q(Rd)‖, (4.20)

for any small enough cube Q with |Q| < e−umax(1, rp ), and all f ∈ N
d
u
u,p,q(Rd).

It remains to deal with the bigger cubes.

Step 2. Let r ≥ p. Elementary embeddings and [4, Thm. 3.3] yield

N
d
u
u,p,q(Rd) ↪→ N 0

ur
p ,r,1

(Rd) ↪→ E0
ur
p ,r,2

(Rd) =Mur
p ,r

(Rd), if r > 1,

and

N
d
u
u,p,q(Rd) ↪→ N 0

u
p ,1,1

(Rd) ↪→Mu
p ,1

(Rd), if r = 1,

where the last embedding is due to Theorem 3.4. Therefore, for r ≥ 1 and
r ≥ p, we have(

1

|Q|

∫
Q

|f(x)|r dx

) 1
r

≤ c |Q|−
p
ur‖f |N

d
u
u,p,q(Rd)‖, (4.21)

for all dyadic cubes Q and all f ∈ N
d
u
u,p,q(Rd). Together with Step 1 this

completes the argument in case of r ≥ p.
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Step 3. Let 1 ≤ r < p. Using Hölder’s inequality we obtain(∫
Q

|f(x)|r dx

) 1
r

≤ |Q|
1
r−

1
p

(∫
Q

|f(x)|p dx

) 1
p

≤ |Q|
1
r−

1
u‖f |Mu,p(Rd)‖

≤ c|Q|
1
r−

1
u‖f |N

d
u
u,p,q(Rd)‖, (4.22)

for all dyadic cubes Q and all f ∈ N
d
u
u,p,q(Rd), where in the last step we used

the fact that

N
d
u
u,p,∞(Rd) ↪→ N 0

u,p,1(Rd) ↪→ E0
u,p,2(Rd) =Mu,p(Rd).

Again the final outcome in this case follows from Step 1 and (4.22).

Remark 4.11. (i) In terms of embeddings in generalised Morrey spaces,
what has been proved could be stated as follows. Let 0 < p ≤ u < ∞,
0 < q ≤ ∞, and 1 ≤ r <∞. Then

N
d
u
u,p,q(Rd) ↪→Mϕr,q

r (Rd)

where

ϕr,q(t) =

{(
log(t−1)

)− 1
q′ if 0 < t < e−

u
d max(1, rp ),

t
d
u min(1,pr ) if t ≥ e−

u
d max(1, rp ).

(4.23)

(ii) If we would consider local generalised Morrey spaces LMϕ
p (Rd), where

the supremum taken in the definition of the norm is restricted to cubes with
volume less or equal than 1 (cf. [33, page 7]), then we can state that

N
d
u
u,p,q(Rd) ↪→ LMϕ

r (Rd), ϕ(t) = | log(t)|−
1
q′ , 1 ≤ r <∞.

Corollary 4.12. Let 0 < p ≤ u < ∞ and 0 < q ≤ ∞. If 1 ≤ r < ∞, then
there exists a positive constant c such that(

1

|Q|

∫
Q

|f(x)|r dx

) 1
r

≤ c (1 + |Q|)−
min(1,

p
r )

u log
(
e+ |Q|−1

)
‖f |E

d
u
u,p,q(Rd)‖

holds for all dyadic cubes Q and all f ∈ E
d
u
u,p,q(Rd).

Proof : The outcome is a direct consequence of Theorem 4.10 taking into
account the embedding

E
d
u
u,p,q(Rd) ↪→ N

d
u
u,p,∞(Rd).
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Remark 4.13. (i) As in Remark 4.11, we can state the following: Let 0 <
p ≤ u <∞, 0 < q ≤ ∞, and 1 ≤ r <∞. Then

E
d
u
u,p,q(Rd) ↪→Mϕr

r (Rd) and E
d
u
u,p,q(Rd) ↪→ LMϕ

r (Rd)

with ϕr = ϕr,∞ given by (4.23) and ϕ(t) = | log(t)|−1.
(ii) In the particular case of p > 1, q = 2 and r = 1, the result in the above

corollary coincides with Theorem 5.1 of [22].
(iii) In the particular case of p = 1, q = 2 and r = 1, the result in the

above corollary is comparable with Proposition 1.7 of [1].

5. Further embeddings into spaces with smoothnesss = 0
In the preceding subsection we dealt with (limiting) embeddings of spaces
Asu,p,q when s = d

u , into spaces of Orlicz-Morrey type or generalised Morrey
type. In Corollary 3.5 the parallel setting was studied for embeddings into
Morrey spaces Mv,q(Rd) when s = d

u −
d
v . For convenience we briefly recall

the forerunners, that is, when Asu,p,q(Rd) is embedded into classical Lebesgue

spaces Lr(Rd), and into the space C(Rd) of bounded, uniformly continuous
functions. We also consider the target space bmo(Rd), i.e., the local (non-
homogeneous) space of functions of bounded mean oscillation, consisting of
all locally integrable functions f ∈ Lloc

1 (Rd) satisfying that

‖f‖bmo(Rd) := sup
|Q|≤1

1

|Q|

∫
Q

|f(x)− fQ| dx+ sup
|Q|>1

1

|Q|

∫
Q

|f(x)| dx <∞,

where Q appearing in the above definition runs over all cubes in Rd, and fQ
denotes the mean value of f with respect to Q, namely, fQ := 1

|Q|
∫
Q f(x) dx.

Most of these results have been obtained in different papers before, we recall
it for completeness and to simplify the comparison with our new findings
presented above.

Corollary 5.1. Let 0 < p ≤ u <∞, q ∈ (0,∞] and s ∈ R.
(i) Then

N s
u,p,q(Rd) ↪→ C(Rd) ⇐⇒

{
s > d

u , or

s = d
u and q ≤ 1,
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and

Esu,p,q(Rd) ↪→ C(Rd) ⇐⇒

{
s > d

u , or

s = d
u and u = p ≤ 1.

Here C(Rd) can be replaced by L∞(Rd).
(ii) Then

Asu,p,q(Rd) ↪→ bmo(Rd) if, and only if, s ≥ d

u
. (5.1)

(iii) Let 1 ≤ r < ∞. If p < u, then Asu,p,q(Rd) is never embedded into

Lr(Rd). If p = u, then

N s
u,u,q(Rd) ↪→ Lr(Rd) ⇐⇒ r ≥ u and

{
s > d

u −
d
r , or

s = d
u −

d
r and q ≤ r,

and

Esu,u,q(Rd) ↪→ Lr(Rd) ⇐⇒ r ≥ u and

{
s ≥ d

u −
d
r and s > 0, or

s = d
u −

d
r = 0 and q ≤ 2.

Proof : Step 1. Part (i) is well-known, we refer to [4, Prop. 5.5] and [5,
Prop. 3.8] for the Morrey situation when p < u, while the classical setting
p = u can be found in [31, Theorem 11.4].
Step 2. We prove (ii). In case of Asu,p,q = Esu,p,q, this follows from the

analogous statement for F s,τ
p,q (Rd) spaces and the coincidence Esu,p,q(Rd) =

F s,τ
p,q (Rd) if τ = 1

p −
1
u , cf. [37, Props. 5.13, 5.14] and (3.8). The similar

statement for N s
u,p,q(Rd) spaces

N s
u,p,q(Rd) ↪→ bmo(Rd) if, and only if, s ≥ d

u
(5.2)

can be proved analogously. Let τ = 1
p −

1
u . Then, in view of (3.9) and the

subsequent remark,

N s
u,p,∞(Rd) = Bs,τ

p,∞(Rd) ↪→ bmo(Rd) = B
0, 12
2,2 (Rd)

if 1
p −

1
u −

1
2 6= 0, cf. [37, Prop. 5.10, Theorem 2.5]. If 1

p −
1
u −

1
2 = 0, then we

can choose r such that u < r < p and 1
r −

1
u −

1
2 > 0. Hence

N s
u,p,∞(Rd) ↪→ N s

u,r,∞(Rd) ↪→ bmo(Rd).

This proves the sufficiency of the conditions.
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To prove necessity let us take s < d
u . If N s

u,p,∞(Rd) ↪→ bmo(Rd), then

Esu,p,q(Rd) ↪→ bmo(Rd). This contradicts (5.1).
Step 3. Part (iii) in case of p < u can be found in [4,5], whereas the classical

results for p = u are well-known.

Remark 5.2. A partial forerunner of (i) can be found in [23, Prop. 1.11]
dealing with the sufficiency part; see also [25]. In some sense the embeddings
into C(Rd) and bmo(Rd) can be understood as limiting cases of Corollary 3.5
when v → ∞, whereas the embedding into Lr(Rd) refers to the situation of
r = v = q in Corollary 3.5.

Remark 5.3. Based on arguments on the known properties of Triebel-
Lizorkin type spaces one can easily strengthen Remark 3.6, in particular
(3.12) with (3.11), as follows. Let 0 < p < ∞, 0 < q ≤ ∞, 1 ≤ r ≤ v < ∞,
s ∈ R, τ ≥ 0. Then

F s,τ
p,q (Rd) ↪→Mv,r(Rd) (5.3)

if, and only if,

r ≤ v(1− pτ), and


s > d(1

p − τ −
1
v) ≥ 0, or

s = d(1
p − τ −

1
v) > 0, or

s = d(1
p − τ −

1
v) = 0, and q ≤ 2.

The case 0 ≤ τ < 1
p is covered by Remark 3.6 together with the usual

monotonicity for spaces F s,τ
p,q (Rd) and Mv,r(Rd), see also the forerunner [5,

Thm. 3.1]. Thus it remains to disprove any embedding of type (5.3) whenever
τ ≥ 1

p . Assume first τ > 1
p or τ = 1

p and q = ∞. Thus the coincidence

F s,τ
p,q (Rd) = B

s+d(τ− 1
p )

∞,∞ (Rd), cf. [35], together with (5.3) would imply

B
s+d(τ− 1

p )
∞,∞ (Rd) = F s,τ

p,q (Rd) ↪→Mv,r(Rd) ↪→ N 0
v,r,∞(Rd),

and hence v = ∞ in view of [4, Thm. 3.3]. But this contradicts our general
assumption. Otherwise, if τ = 1

p and q <∞, then we may use [38, Prop. 2.6]

which states, that F s,τ
p,q (Rd) ↪→ B

s+d(τ− 1
p )

∞,∞ (Rd). We choose a number % such
that v < % < ∞, and apply an embedding proved by Marschall, cf. [9], to
obtain

B
s+d

%
%,∞ (Rd) ↪→ F s

∞,q(Rd) = F
s, 1p
p,q (Rd) ↪→Mv,r(Rd) ↪→ N 0

v,r,∞(Rd).
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Again the embedding (5.3) would thus lead to % ≤ v in view of [4, Thm. 3.3],
i.e., to a contradiction by our choice of %. Here we also used the identification

F s
∞,q(Rd) = F

s, 1p
p,q (Rd), see [24, Props. 3.4 and 3.5] and [25, Rem. 10]. In

a completely parallel way one can show that an embedding Bs,τ
p,q (Rd) ↪→

Mv,r(Rd) is never possible when τ ≥ 1
p .

Note that the limiting case v = ∞ is covered by [37, Prop. 5.4], [36,
Prop. 4.1], in view of M∞,r(Rd) = L∞(Rd). In particular, if 0 < p < ∞,
0 < q ≤ ∞, s ∈ R and τ > 0, then

F s,τ
p,q (Rd) ↪→ L∞(Rd) if, and only if, s > d

(
1

p
− τ
)
.

The result for Bs,τ
p,q (Rd) looks alike.
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