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DESCENT DATA AND ABSOLUTE KAN EXTENSIONS
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Abstract: The fundamental construction underlying descent theory, the lax de-
scent category, comes with a functor that forgets the descent data. We prove that,
in any 2-category A with lax descent objects, the forgetful morphisms create all
absolute Kan extensions. As a consequence of this result, we get a monadicity theo-
rem which says that a right adjoint functor is monadic if and only if it is, up to the
composition with an equivalence, a functor that forgets descent data. In particular,
within the classical context of descent theory, we show that, in a fibred category,
the forgetful functor between the category of internal actions of a precategory a and
the category of internal actions of the underlying discrete precategory is monadic if
and only if it has a left adjoint. This proves that one of the implications of the cele-
brated Bénabou-Roubaud theorem does not depend on the so called Beck-Chevalley
condition. Namely, we show that, in a fibred category with pullbacks, whenever an
effective descent morphism induces a right adjoint functor, the functor is monadic.
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Introduction
The (lax) descent objects [44, 46, 33, 36], the 2-dimensional limits underly-

ing descent theory [18, 19, 23, 46, 34], play an important role in 2-dimensional
universal algebra [27, 6, 30, 32]. They can be seen as 2-dimensional ana-
logues of the equalizer. While equalizers encompass equality and commu-
tativity of diagrams in 1-dimensional category theory, the (lax) descent ob-
jects encompass 2-dimensional coherence: morphism (or 2-cell) plus coher-
ence equations [30, 32, 33]. For this reason, results on the lax descent ob-
jects [46, 34] (or on descent theory) usually shed light to a wide range of
situations [5, 9, 20, 30, 33, 34, 36].
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As shown in [23], in the classical case of the 2-category Cat of categories,
internal category theory provides a useful perspective to introduce descent
theory [19, 18]. The lax descent category can be seen as a generalization of
the 2-functor

MonpSetqop Ñ Cat, m ÞÑ m-Set

in which MonpSetq denotes the usual category of monoids (of the cartesian
monoidal category Set), and m-Set is the category of sets endowed with
actions of the monoid m, usually called m-sets.

Recall that every small category a (internal category in Set) has an under-
lying truncated simplicial set, called the underlying precategory [20, 21],

Catpj�, aq : ∆op
3 Ñ Set

Catp1, aq Catps0,aq // Catp2, aq
Catpd1,aq

kk

Catpd0,aqss

Catp3, aq
CatpD2,aq

kk
CatpD1,aqoo

CatpD0,aqss

in which, denoting by ∆ the category of the finite non-empty ordinals and
order preserving functions, j : ∆3 Ñ Cat is the usual inclusion given by the
composition of the inclusions ∆3 Ñ ∆ Ñ Cat.

It is well known that there is a fully faithful functor Σ : MonpSetq Ñ
CatpSetq between the category of monoids (internal monoids in Set) and
the category of small categories (internal categories in Set) that associates
each monoid with the corresponding single object category. The underlying
precategory of Σm is given by

Σm : ∆op
3 Ñ Set

tmu Σmps0q // mjj
tt

m�m
ΣmpD2q

hh ΣmpD1qoo

ΣmpD0q
vv

in which m is the underlying set of the monoid, tmu is the singleton with m
as element, ΣmpD2q,ΣmpD0q : m�mÑ m are the two product projections,
ΣmpD1q is the operation of the monoid, and Σmps0q gives the unit. In this
context, the objects and morphisms of the category m-Set can be described
internally in Set as follows.
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Since Set has pullbacks, we can consider the (basic) indexed category, that
is to say, the pseudofunctor coming from the basic bifibration

Set{� : Setop Ñ Cat

w ÞÑ Set{w

f ÞÑ f �

in which Set{w denotes the comma category, and f � denotes the change of
base functor (given by the pullback along f).

An m-set is a set w endowed with an endomorphism ξ of the projection
projm : m� w Ñ m in the comma category Set{m, subject to the equations

p �mps0q
�pξq � p � idSet, mpD0q

�pξq � p �mpD2q
�pξq � p �mpD1q

�pξq � p

in which, by abuse of language, we denote by p the appropriate canonical
isomorphisms given by the pseudofunctor Set{� (induced by the universal
properties of the pullbacks in each case). These equations correspond to the
identity and associativity equations for the action. The morphisms pw, ξq Ñ
pw1, ξ1q of m-sets are morphisms (functions) w Ñ w1 between the underlying
sets respecting the structures ξ and ξ1.

This viewpoint gives m-Set precisely as the lax descent category of the
composition of op pΣmq : ∆3 Ñ Setop with the pseudofunctor Set{� : Setop Ñ
Cat. More generally, given a small category a, the lax descent category (see
Definition 1.2) of

Set{Catp1, aq

Set{Catpd0,aq � Catpd0,aq�

++

Catpd1,aq�

33
Set{Catp2, aqCatps0,aq�oo

CatpD2,aq�

33
CatpD1,aq� //

CatpD0,aq�

++

Set{Catp3, aq

is equivalent to the category Cat ra, Sets of functors a Ñ Set and natural
transformations, that is to say, the category of actions of the small category
a in Set.

In order to reach the level of abstraction of [23], firstly it should be noted
that the definitions above can be considered in any category C with pullbacks,
using the basic indexed category C{� : Cop Ñ Cat. That is to say, we get
the (basic) internal notion of the category of actions aÑ C for each internal
category a. Secondly, we can replace the pseudofunctor C{� by any other
pseudofunctor (indexed category) F : Cop Ñ Cat of interest. By definition,
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given an internal (pre)category a : ∆op
3 Ñ C of C, the lax descent category

of

F ap1q

F apd0q
**

F apd1q

44
F ap2qF aps0qoo

F apD2q

44
F apD1q //

F apD0q
**
F ap3q

is the category of F-internal actions of a in C.
Recall that, if C has pullbacks, given a morphism p : e Ñ b, the kernel

pair induces a precategory which is actually the underlying precategory of
an internal groupoid of C, denoted herein by Eqppq. Following the definition,
given any pseudofunctor F : Cop Ñ Cat, we have that the category of internal
actions of Eqppq is given by the lax descent category lax-Desc pF � op pEqppqqq.
In this case, the universal property of the lax descent category induces a
factorization (see [23, 34] or, in our context, Lemma 3.6)

Fpbq Fppq //

))

Fpeq

lax-Desc pF � op pEqppqqq

55

(F -descent factorization of Fppq)
in which lax-Desc pF Eqppqq Ñ Fpeq is the forgetful functor that forgets
descent data.

In this setting, Bénabou and Roubaud [3, 34] showed that, if F : Cop Ñ Cat
comes from a bifibration satisfying the so called Beck-Chevalley condition [34,
32], then the F -descent factorization of Fppq is equivalent to the Eilenberg-
Moore factorization of the adjunction Fppq! % Fppq, that is to say, the
semantic factorization of Fppq (see [16, 43, 36]). In particular, in this case,
Fppq is monadic if and only if p is of effective F-descent (which means that
Fpbq Ñ lax-Desc pF � op pEqppqqq is an equivalence).

It should be observed that, without assuming the Beck-Chevalley condi-
tion, monadicity of Fppq does not imply that p is of effective F -descent. This
is shown for instance in Remark 7 of [42], where Sobral, considering Cat en-
dowed with the fibration of op-fibrations, provides an example of a morphism
that is not of effective descent but does induce a monadic functor.

The main result of the present paper is within the general context of the lax
descent object of a truncated pseudocosimplicial object inside a 2-category
A (see [34, 36]). In the case of A � Cat, the main result says that, for any
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given truncated pseudocosimplicial category

A : ∆3 Ñ Cat

Ap1q
Apd0q

))

Apd1q
55 Ap2qAps0qoo

ApD2q

55ApD1q //

ApD0q
))
Ap3q

the functor dA : lax-Desc pAq Ñ A that forgets descent data creates the right
Kan extensions that are preserved by Apd0q and ApD0q�Apd0q. In particular,
such forgetful functor creates absolute Kan extensions, and, hence, more
particularly, it creates absolute limits and colimits.

The result sheds light to 2-dimensional exact properties of Cat and general
2-categories. For instance, it might suggest a conjecture towards the char-
acterization of effective faithful functors in Cat (see [36] for the definition of
effective faithful morphisms in a 2-category). Yet, in the present paper, we
focus on the consequences within the context of [22, 23, 24] briefly described
above.

The main result implies that, given any pseudofunctor F : Cop Ñ Cat, the
forgetful functor

lax-Desc pF � oppaqq Ñ F ap1q

between the F -internal actions of a precategory a : ∆op
3 Ñ C and the category

of internal actions of the underlying precategory of a creates absolute limits
and colimits. This generalizes the fact that, if a is actually a small category,
the forgetful functor (restriction functor)

Cat ra, Sets Ñ Cat
�
ap1q, Set

�

creates absolute limits and colimits, in which, by abuse of language, ap1q
denotes the underlying discrete category of a.

As a particular case of this conclusion, given any indexed category F :
Cop Ñ Cat, whenever p is of effective F -descent, Fppq creates absolute limits
and colimits. Therefore, by Beck’s monadicity theorem [1, 15], assuming that
Fppq has a left adjoint, if p is of effective F -descent then Fppq is monadic.

This result shows that, if F comes from a bifibration, one of the impli-
cations of the Bénabou-Roubaud theorem does not depend on the Beck-
Chevalley condition. Namely, in a bifibred category with pullbacks, effective
descent morphisms always induce monadic functors.
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This consequence can be seen as a generalization of an observation given
in Remark 7 of [42]. Therein, Sobral suggested that, for the particular case
of the fibration of op-fibrations in Cat, descent gives more information than
monadicity.

In Section 1, we briefly show the basic definition of the lax descent category,
and give the corresponding definition for a general 2-category. Namely, a 2-
dimensional limit [44, 27, 33] called the lax descent object. We mostly follow
the approach of [36] but, because of our setting, we start with pseudofunctors
pA, aq : ∆3 Ñ A, instead of using a strict replacement of the domain.

In Section 2, we establish our main theorems on the morphisms that forget
descent data. In order to do so, we start by recalling the definitions on Kan
extensions [16] (sometimes just called extensions [47]) inside a 2-category.
Then, we prove the main theorem (Theorem 2.4) and show the main conse-
quences, including the monadicity characterization (Theorem 2.8), proven as
a consequence of Theorem 2.4 and the monadicity theorem of Section 5 of
[36]. It says that a right adjoint functor is monadic if and only if it is, up to
the precomposition of an equivalence, a functor that forgets descent data.

Section 3 establishes the setting of [19, 3, 22, 23], finishing with the defini-
tion of effective descent morphism. Finally, in Section 4, we discuss the main
consequences of our Theorem 2.4 in the context of [3, 22, 23], including the
result that effective descent morphisms always induce monadic functors.

1. The lax descent category
Let Cat be the cartesian closed category of categories in some universe (see,

for instance, Section 1 of [33, 31, 36]). We denote the internal hom by

Catr�,�s : Catop � Cat Ñ Cat,

which of course is a 2-functor (Cat-enriched functor). Moreover, we denote
by

Catp�,�q : Catop � Cat Ñ Cat

the composition of Catr�,�s with the functor that gives the underlying dis-
crete category. Finally, a small category is a category S such that the un-
derlying discrete category, i.e. Catp1,Sq, and the collection of morphisms,
i.e. Catp2,Sq, consist of sets. Equivalently, a small category is an internal
category of Set.
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A 2-category herein is the same as a Cat-enriched category. We denote the
enriched hom of a 2-category A by

Ap�,�q : Aop � A Ñ Cat

which, again, is of course a 2-functor. As usual, the composition of 1-cells
(morphisms) are denoted by �, � or omitted whenever it is clear from the
context. The vertical composition of 2-cells is denoted by � or omitted when
it is clear, while the horizontal composition is denoted by �. From the verti-
cal and horizontal compositions, we construct the fundamental operation of
pasting [39, 45], introduced in [2, 26].

We denote by ∆ the full subcategory of the underlying category of Cat
whose objects are finite nonempty ordinals seen as posets (or thin categories).
We are particularly interested in the subcategory ∆3 of ∆ with the objects
1, 2 and 3 generated by the morphisms

1
d0

""

d1
<< 2s0oo

D0

""
D1 //

D2

<< 3

with the following relations:

D2d0 � D0d1;

D1d0 � D0d0;

D2d1 � D1d1;

s0d1 � id1;

s0d0 � id1.

In order to fix notation, we briefly recall the definition of pseudofunctor [30]
between a category C and a 2-category A below. For the case of A � Cat,
this definition was originally introduced by Grothendieck [18, 19] in its con-
travariant form, while its further generalization for arbitrary bicategories
was originally introduced by Bénabou [2] under the name homomorphism of
bicategories.

Definition 1.1. Let C be a category (which can be seen as a locally discrete
2-category) and A a 2-category. A pseudofunctor F : C Ñ A is a pair pF , fq
with the following data:

– A function F : objpCq Ñ objpAq;
– For each pair px, yq of objects in C, functions

Fx,y : Cpx, yq Ñ ApFpxq,Fpyqq;
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– For each pair g : x Ñ y, h : y Ñ z of morphisms in C, an invertible
2-cell

fhg : FphqFpgq ñ Fphgq;
– For each object x of C, an invertible 2-cell

fx : idFpxq ñ Fpidxq;
such that, if g : x Ñ y, h : y Ñ z and e : w Ñ x are morphisms of C, the
following equations hold in A:

(1) Associativity:

Fw
Fpeq

//

Fphgeq

��

Fpgeq

  

Fx

Fpgq

��

fge
ðù

Fw
Fpeq

//

Fphgeq

��

fphgqe

ðùù

Fx

Fpgq

��

Fphgq

~~

�

Fz

fhpgeq

ðùù
Fy

Fphq
oo Fz Fy

Fphq
oo

fhg
ðù

(2) Identity:

Fw
Fpeq

//

Fpidxeq

��

Fx

Fpidxq

!!

fx
ðù idFx

}}

Fw

Fpeidwq

��

Fw

Fpidw q

!!

fwðù idFw

}}

Fw

Fpeq

��

� Fpeq

��

fidxeðùù � feidwðùù �

Fx Fx Fx Fw
Fpeq

oo Fx

In this paper, we are going to be particularly interested in pseudofunctors
of the type

pA, aq : ∆3 Ñ A,

also called truncated pseudocosimplicial objects. For simplicity, given such
a truncated pseudocosimplicial category, we define:

Apσ01q � a�1

D0d0
� a

D1d0
;

Apσ02q � a�1

D0d1
� a

D2d0
;

Apσ12q � a�1

D1d1
� a

D2d1
;

Apn0q � a�1
1
� a

s0d0
;

Apn1q � a�1
1
� a

s0d1
.

Using this terminology, we recall the definition of the lax descent category of
a pseudofunctor ∆3 Ñ Cat (see, for instance, [23, 33, 36]).
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Definition 1.2. [Lax descent category] Given a pseudofunctor

pA, aq : ∆3 Ñ Cat,

the lax descent category lax-Desc pAq of A is defined as follows:

(1) The objects are pairs pw,ϕq in which w is an object of Ap1q and ϕ :
Apd1qpwq Ñ Apd0qpwq is a morphism in Ap2q satisfying the following
equations:

Associativity:

ApD0qpϕq � Apσ02qw � ApD2qpϕq � Apσ01qw � ApD1qpϕq � Apσ12qw;

Identity:

Apn0qw � Aps0qpϕq � Apn1qw.

If the pair pw,ϕq satisfies the above, we say that ϕ is a descent datum
for w w.r.t. A, or just an A-descent datum.

(2) A morphism m : pw,ϕq Ñ pw1, ϕ1q is a morphism m : w Ñ w1 in Ap1q
such that

Apd0qpmq � ϕ � ϕ1 �Apd1qpmq.

The composition of morphisms is given by the composition of morphisms in
Ap1q.

The lax descent category comes with an obvious forgetful functor

d
A : lax-Desc pAq Ñ Ap1q

pw,ϕq ÞÑ w

m ÞÑ m

and a natural transformation ψ : Apd1q�dA ùñ Apd0q�dA defined pointwise
by

ψpw,ϕq :� ϕ : Apd1qpwq Ñ Apd0qpwq.

Actually, the pair
�
d
A : lax-Desc pAq Ñ Ap1q,ψ : Apd1q � dA ñ Apd0q � dA�

is a two dimensional limit (see [44, 31, 33, 36]) of A. Namely, the lax descent
category of

pA, aq : ∆3 Ñ Cat

is the lax descent object, as defined below, of the pseudofunctor A in the
2-category Cat.
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Definition 1.3. [Lax descent object [36]] Given a pseudofunctor A : ∆3 Ñ A,
the lax descent object lax-Desc pAq is an object lax-Desc pAq of A together
with a pair

�
�������

lax-Desc pAq d
A
// Ap1q ,

lax-Desc pAq
d
A

ww
d
A

''
Ap1q

Apd1q
''

ψ
ùùñ Ap1q

Apd0q
ww

Ap2q

�
������


in which d
A : lax-Desc pAq Ñ Ap1q is a morphism, called herein the for-

getful morphism (of descent data), and ψ is a 2-cell satisfying the following
universal property.

(1) For each pair pF : S Ñ Ap1q, β : Apd1q � F ñ Apd0q � F q in which F
is a morphism and β is a 2-cell such that the equations

S
F //

F

��

β
ùùñ

Ap1q

Apd0q
��

Apd0q
//

Apσ01qùùùùñ

Ap2q

ApD0q

��

Ap1q
Apd1q

//

Apd1q
��

Apσ12qùùùùñ

Ap2q
ApD1q

// Ap3q

idAp3q

��

Ap2q
ApD2q

// Ap3q

�

Ap3q
Apσ02qùùùùñ

Ap2q
ApD0q
oo

β
ùùñ

Ap2q

Ap2q

β
ùùñ

ApD2q

OO

Ap1q
Apd0q
oo

Apd1q

OO

Ap1q

Apd1q

OO

S
F

oo

F

OO

F
// Ap1q

Apd0q

OO

(descent associativity)

S
F //

F

��

Ap1q

Apd0q

��

Apn0qùùùñ

β
ùùñ

Ap1q Apd1q //

Apn1q
�1

ùùùùñ

Ap2q
Aps0q

$$

Ap1q

�

S

F

��

� F

��

Ap1q

(descent identity)
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hold in A, there is a unique morphism F 1 : S Ñ lax-Desc pAq in A
such that

S

F 1

��

S

F

��

F

��

lax-Desc pAq
d
A

ww
d
A

''

Ap1q
Apd1q

''

ψ

ùùùùùùñ Ap1q
Apd0q
ww

� Ap1q
Apd1q

##

Ap1q
Apd0q
{{

Ap2q Ap2q

β
ùùñ

and F � d
A �F 1. In this case, we say that the 2-cell β is an A-descent

datum for the morphism F .
(2) The pair pdA,ψq satisfies the descent associativity and descent identity

equations above. In this case, the unique morphism induced is clearly
the identity on lax-Desc pAq.

(3) Assume that pF1, β1q and pF0, β0q are pairs satisfying the descent as-
sociativity and descent identity equations, and that they induce re-
spectively the morphisms

F 1
1, F

1
0 : SÑ lax-Desc pAq .

For each 2-cell ξ : F1 ñ F0 : SÑ Ap1q satisfying the equation

S

F0

##F0
rr

F1

		

ξ
ùùñ

S

F1

{{

F0

��F1
,,

ξ
ùùñ

Ap1q
Apd1q

""

β0
ùùùñ Ap1q

Apd0q
||

� Ap1q
Apd1q

""

β1
ùùùñ Ap1q

Apd0q
||

Ap2q Ap2q

there is a unique 2-cell

ξ1 : F 1
1 ñ F 1

0 : Ap1q Ñ lax-Desc pAq
in A such that iddA � ξ1 � ξ.

Lemma 1.4. Let A : ∆3 Ñ A be a pseudofunctor. The pseudofunctor A has
a lax descent object lax-Desc pAq if and only if there is an isomorphism

A pS, lax-Desc pAqq � lax-Desc pA pS,A�qq
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2-natural in S, in which A pS,A�q : ∆3 Ñ Cat is the composition below.

∆3
A //

ApS,A�q

66A
ApS,�q

// Cat

2. Forgetful morphisms and Kan extensions
Assuming the existence of the lax descent object of a pseudofunctor

pA, aq : ∆3 Ñ A,

the forgetful morphism d
A has many properties that are direct consequences

of the definition. Among them, the morphism d
A is faithful and conservative

(by which we mean that, for any object S of A, the functor ApS,dAq is faithful
and reflects isomorphisms). In this section, we give the core observation
of the present paper. Namely, we investigate the properties of creation of
Kan extensions by d

A. We start by briefly recalling the basic definitions on
preservation and creation of Kan extensions [16, 43, 47, 36].

Let J : S Ñ C and H : S Ñ B be morphisms of a 2-category A. The right
Kan extension of J along H is, if it exists, the right reflection RanH J of J
along the functor

ApH, Cq : ApB, Cq Ñ ApS, Cq.

This means that the right Kan extension is actually a pair

pRanH J : BÑ C, γ : pRanH Jq �H ñ Jq

consisting of a morphism RanH J and a 2-cell γ, called the universal 2-cell,
of A such that, for each morphism R : BÑ C of A,

B

R
00

β
ùùñ

RanH J

��

B

R
00

β
ùùñ

RanH J

��

S
γ

ùùùùñ

Hoo

J

��

ÞÑ

C C

defines a bijection ApB, CqpR,RanH Jq � ApS, CqpR �H, Jq.
Let J : S Ñ C, H : S Ñ B and G : C Ñ D be morphisms in A. On the

one hand, if pĴ , γq is the right Kan extension of J along H, we say that G
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preserves the right Kan extension RanH J if the pair�
������
G � Ĵ ,

B

Ĵ $$

S
γ

ùùñ
Hoo

J
��
C
G��

D

�
�����


is the right Kan extension RanH GJ ofGJ alongH. Equivalently, G preserves
RanH J if RanH GJ exists and, in addition to that, the unique 2-cell

G � Ĵ ñ RanH GJ,

induced by the pair pG � Ĵ , idG � γq and the universal property of RanH GJ ,
is invertible [37, 10, 35].

On the other hand, we say that G reflects the right Kan extension of J
along H if, whenever pG � Ĵ , idG � γq is the right Kan extension of GJ along

H, pĴ , γq is the right Kan extension of J along H.
Finally, assuming the existence of RanH GJ , we say that G : CÑ D creates

the right Kan extension of GJ : SÑ D along H if we have that (1) G reflects
RanH GJ and (2) RanH J exists and is preserved by G.

Remark 2.1. [Coduality] The dual notion of that of a right Kan extension is
called right lifting (see [47] or [36]), while the codual notion is called the left
Kan extension, denoted herein by LanHJ . Finally, of course, we also have
the codual notion of the right lifting, the left lifting.

Remark 2.2. [Conical (co)limits [37, 10, 35]] For A � Cat, right Kan exten-
sions along functors of the type S Ñ 1 give the notion of conical limits. This
is the most elementary and well known relation between Kan extensions and
conical limits [37, 16, 41], which give the most elementary examples of right
Kan extensions. We briefly recall this fact below.

Let J : S Ñ C be a functor in which S is a small category. Firstly, recall
that a cone over J is a pair�

�������
w,

S

κ
ùùùùñ

��
J

zz

1

w ��
C

�
������
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in which 1 is the terminal category, w : 1 Ñ C denotes the functor whose
image is the object w, and κ is a natural transformation.

Secondly, denoting the composition of

S // 1
w // C

by w, a morphism ι : w Ñ w1 of C defines a morphism between the cones
pw, κ : w ñ Jq and pw1, κ1 : w1 ñ Jq over J if the equation

S

κ
ùùùùñ

��
J

zz

1

w ��
C

�

S

��
J

ww

κ1

ùùñ1
ι

ùùñw

++

w1

��

C

holds, in which, by abuse of language, ι denotes the natural transformation
defined by the morphism ι : w Ñ w1.

Thirdly, of course, the above defines a category of cones over J . If it exists,
the conical limit of J is the terminal object of the category of cones over J .
This is clearly equivalent to say that the conical limit of J , denoted herein
by limJ , is the right Kan extension RanSÑ1 J in the 2-category of categories
Cat, either one existing if the other does. In this context, the definitions
of preservation, reflection and creation of conical limits coincide with those
coming from the respective notions in the case of right Kan extensions along
S Ñ 1 [37, 29, 41].

Codually, the notion of conical colimit of J : S Ñ C coincides with the
notion of left Kan extension of J along the unique functor S Ñ 1 in the
2-category Cat. Again, the notions of preservation, reflection and creation
of conical colimits coincide with those coming from the respective notions in
the case of left Kan extensions along S Ñ 1.

It is well known that there is a deeper relation between conical (and
weighted) limits and Kan extensions for much more general contexts. For
instance, in the case of 2-categories endowed with Yoneda structures [47],
the concept of pointwise Kan extensions [16, 47] encompasses this relation.
Although this concept plays a fundamental role in the theory of Kan exten-
sions, we do not give further comment or use to this concept in the present
paper.
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In order to prove our main theorem, we present an elementary result below,
whose version for limits and colimits is well known.

Lemma 2.3. Let A be a 2-category and H, J,G morphisms of A. Assume that
RanHJ : B Ñ C exists and is preserved by G : C Ñ D. If G is conservative,
then G creates the right Kan extension of GJ along H.

Proof : By hypothesis, pG � RanHJ, idG � γq is the right Kan extension of GJ
along H. If pG � J̌ , idG �γ

1q is also the right Kan extension of GJ along H, on
the one hand, we get a (unique) induced invertible 2-cell G � J̌ ñ G �RanHJ .
On the other hand, by the uniqueness property of the universal properties,
this induced invertible 2-cell should be the image by ApS, Gq of the 2-cell
J̌ ñ RanHJ induced by the universal property of RanHJ and the 2-cell γ1.
Since ApS, Gq reflects isomorphisms, the proof is complete.

Theorem 2.4 (Main Theorem). Assume that the lax descent object of the
pseudofunctor pA, aq : ∆3 Ñ A exists. Given morphisms J : SÑ lax-Desc pAq
and H : S Ñ B of A, the forgetful morphism d

A : lax-Desc pAq Ñ Ap1q
creates the right Kan extension of dAJ : S Ñ Ap1q along H, provided that
RanH d

AJ exists and is preserved by the morphisms Apd0q and ApD0q�Apd0q.

Proof : By Lemma 2.3, since d
A is conservative, in order to prove that dA

creates the right Kan extension of dAJ : S Ñ Ap1q along H, it is enough to
prove that RanH J exists and is preserved by d

A.
Let

�
d
A,ψ

�
be the universal pair that gives the lax decent object lax-Desc pAq.

We assume that J : S Ñ lax-Desc pAq is a functor satisfying the hypotheses
above. We denote by

�
RanH d

AJ, ν :
�
RanH d

AJ
�
�H ñ d

AJ
�

the right Kan extension of dAJ along H.

– By the universal property of the right Kan extension
�
�������
Apd0q � RanH d

AJ,

B

RanH d
AJ

**

S
ν

ùùñ

Hoo

d
AJ

��

Ap1q
Apd0q��

Ap2q

�
������
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we get that there is a unique 2-cell ϕ : Apd1q � RanH d
AJ ñ Apd0q �

RanH d
AJ in A such that the equation

B

ν
ùñRanH d

AJ

��

S
Hoo

J
��

lax-Desc pAq
d
A

zz

d
A

$$
ψ

ùùùùñAp1q

Apd1q $$

Ap1q

Apd0qzz

Ap2q

�

S
J

((
H
��
B

RanH d
AJ
��

ν
ùùñ

RanH d
AJ

zz

lax-Desc pAq

d
Aww

Ap1q

Apd1q $$

ϕ
ùùñ Ap1q

Apd0q
��

Ap2q
(definition of ϕ)

holds. We prove below that pRanH d
AJ, ϕq satisfies the descent iden-

tity and descent associativity equations w.r.t. A.
By the definition of ϕ, we have that

ϕ1 :�

S
J //

H
��

ν
ùùñ

lax-Desc pAq
d
A

��

B
RanH d

AJ
//

RanH d
AJ
��

ϕ
ùùñ

Ap1q
Apd0q

��

Apd0q
//

Apσ01qùùùñ

Ap2q
ApD0q
��

Ap1q Apd1q //

Apd1q
��

Apσ12qùùùùñ

Ap2q ApD1q // Ap3q
idAp3q
��

Ap2q
ApD2q

// Ap3q

is equal to

S
J //

ν
ùùñH

��

lax-Desc pAq d
A

//

d
A

��

ψ

ùùñ

Ap1q

Apd0q
��

Apd0q
//

Apσ01qùùùñ

Ap2q

ApD0q

��

B
RanH d

AJ

// Ap1q
Apd1q

//

Apd1q
��

Apσ12qùùùùñ

Ap2q
ApD1q

// Ap3q

idAp3q

��

Ap2q
ApD2q

// Ap3q
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Since ψ is an A-descent datum for dA, we have that the 2-cell above
(and hence ϕ1) is equal to

Ap3q
Apσ02qùùùùñ

Ap2q
ApD0q

oo

ψ

ùùñ

Ap2q

Ap2q
ψ

ùùñ

ApD2q
OO

Ap1qApd0qoo

Apd1q
OO

Ap1q
Apd1q

OO

lax-Desc pAqd
Aoo

d
A

OO

d
A

// Ap1q

Apd0q

OO

B

ν
ùùñRanH d

AJ
OO

S
H

oo
J
OO

which, by the definition of ϕ, is equal to the 2-cell

Ap3q
Apσ02qùùùùñ

Ap2q
ApD0q

oo

ϕ
ùùñ

Ap2q

Ap2q
ϕ

ùùñ

ApD2q

OO

Ap1qApd0qoo

Apd1q
OO

Ap1q
Apd1q

OO

B
RanH d

AJ

oo

RanH d
AJ

OO

RanH d
AJ // Ap1q

Apd0q

OO

S
J

//

H

OO

lax-Desc pAq

ν
ùùñ d

A
OO

denoted by ϕ2. It should be noted that we proved that ϕ1 � ϕ2.
By the universal property of the right Kan extension

�
������������

ApD0q �Apd0q � RanH d
AJ,

B

RanH d
AJ

$$

S
ν

ùùùùñ
Hoo

d
AJ

��

Ap1q
Apd0q��

Ap2q
ApD0q��

Ap3q

�
�����������


the equality ϕ1 � ϕ2 implies that the descent associativity equation
w.r.t. A for the pair pRanH d

AJ, ϕq holds.
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Analogously, we have that, by the definition of ϕ, the equation

S
J //

H
��

ν
ùùñ

lax-Desc pAq
d
A

��

B
RanH d

AJ

//

RanH d
AJ

��

Ap1q

Apd0q

��
Apn0qùùùñ

ϕ
ùùñ

Ap1q
Apd1q

//

Apn1q
�1

ùùùùñ

Ap2q
Aps0q

##

Ap1q

�

S

J
��

pRanH d
AJq �H

%%

ν
ùùñ

lax-Desc pAq d
A
//

d
A

��

Ap1q

Apd0q

��
Apn0qùùùñ

ψ

ùùñ

Ap1q
Apd1q

//

Apn1q
�1

ùùùùñ

Ap2q
Aps0q

��

Ap1q

holds. Moreover, by the descent identity equation w.r.t. A for the
pair

�
d
A,ψ

�
, the right side (hence both sides) of the equation above

is equal to ν.
Therefore, by the universal property of the right Kan extension

pRanH d
AJ, νq, we conclude that the the descent identity equation

w.r.t. A for the pair pRanH d
AJ, ϕq holds.

This completes the proof that ϕ is an A-descent datum for RanH d
AJ .

– By the universal property of the lax descent object, we conclude that
there is a unique morphism J̌ : BÑ lax-Desc pAq of A such that

ψ � idJ̌ � ϕ and d
A � J̌ � RanH d

AJ.

Moreover, by the universal property of the lax descent object and the
definition of ϕ, it follows that there is a unique 2-cell ν̃ : J̌ � H ñ J
in A such that

iddA � ν̃ � ν.

We prove below that the pair pJ̌ , ν̃q is in fact the right Kan extension
of J along H.

Given any morphism R : BÑ lax-Desc pAq and any 2-cell

ω : R �H ñ J

of A, by the universal property of
�
RanH d

AJ, ν
�
, there is a unique

2-cell

β : dA �Rñ RanH d
AJ
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in A such that

B

R

��
β

ùùñ

J̌

��

S

ν̃
ùùùùñ

Hoo

J

��

lax-Desc pAq

d
A

%%

lax-Desc pAq

d
A

��

Ap1q

�

B

d
A�R

))

β
ùùùùñ

RanH d
AJ

��

S

ν
ùñ

Hoo

d
AJ

��

Ap1q

� iddA �ω.

Thus, since the 2-cell iddA � ω is in the image of ApS,dAq, we have
that

�
idApd0q � ν

�
�
�
idApd0q � β � idH

�
� pψ � idR�Hq �

�
idApd0q � pν � pβ � idHqq

�
� pψ � idR�Hq

�
�
idApd0q � iddA � ω

�
� pψ � idR�Hq

� pψ � idJq �
�
idApd1q � iddA � ω

�

� pψ � idJq �
�
idApd1q � pν � pβ � idHqq

�

� pψ � idJq �
�
idApd1q � ν

�
�
�
idApd1q � β � idH

�
.

By the definition of ϕ,

pψ � idJq�
�
idApd1q � ν

�
�
�
idApd1q � β � idH

�
�
�
idApd0q � ν

�
�pϕ � idHq�

�
idApd1q � β � idH

�

and, hence, the equation

S

d
A�J

��

H
��

ν
ùùñB

β
ùùñ

R
��

RanH d
AJ

��

lax-Desc pAq

d
A

''

d
A

ww
Ap1q

Apd1q ''

ψ

ùùñ Ap1q

Apd0qww
Ap2q

�

S

H
��

d
A�J

��

ν
ùùñlax-Desc pAq

d
A
��

B
β

ùùñ

Roo

RanH d
AJ

rr

RanH d
AJ
##

ϕ
ùùñAp1q

Apd1q &&

Ap1q

Apd0q{{

Ap2q
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holds. Thus, by the universal property of the right Kan extension
�
ApD0q �Apd0q � RanH d

AJ, idApD0q�Apd0q � ν
�
,

we get that
�
idApd0q � β

�
� pψ � idRq � ϕ �

�
idApd1q � β

�
,

which, by the universal property of lax-Desc pAq, proves that there is
a unique 2-cell β̃ : Rñ J̌ in A such that

iddA � β̃ � β.

By the faithfulness of dA, it is clear then that β̃ is the unique 2-cell
such that

ν̃ �
�
β̃ � idH

	
� ω.

This completes the proof that pJ̌ , ν̃q is the right Kan extension of J
along H.

– Finally, from the definition of RanHJ � pJ̌ , ν̃q, it is clear that RanHJ
is indeed preserved by d

A.

It should be noted that, including the result itself, the Theorem 2.4 has
four duals. We state below the most important one to the present work.

Corollary 2.5. Assume that the lax descent object of the pseudofunctor
pA, aq : ∆3 Ñ A exists. Given morphisms J : S Ñ lax-Desc pAq and
H : SÑ B of A, the forgetful morphism d

A creates the left Kan extension of
d
AJ : SÑ Ap1q along H, provided that LanH d

AJ exists and is preserved by
the morphisms Apd1q and ApD2q �Apd1q.

2.1. Creation of absolute Kan extensions. In a 2-category A, we say
that a right Kan extension RanHJ is absolute if it is preserved by any mor-
phism whose domain is the codomain of RanHJ .

Moreover, we say that a morphism G creates absolute right Kan exten-
sions if, whenever RanHGJ is an absolute right Kan extension, G creates
it. Finally, we say that G creates absolute Kan extensions if it creates both
absolute right Kan extensions and absolute left Kan extensions.

The following is an immediate consequence of Theorem 2.4 and Corollary
2.5.
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Corollary 2.6. Assume that the lax descent object of the pseudofunctor
pA, aq : ∆3 Ñ A exists. The forgetful morphism d

A : lax-Desc pAq Ñ Ap1q
creates absolute Kan extensions.
Consequently, if a morphism F of A is equal to d

A composed with any equiv-
alence, then F creates absolute Kan extensions.

Finally, as a consequence of Remark 2.2 and Corollary 2.6, since the notion
of absolute limits/colimits of diagrams J : S Ñ C coincide with the notion
of absolute right/left Kan extensions along S Ñ 1, we get:

Corollary 2.7. Let pA, aq : ∆3 Ñ Cat be a pseudofunctor. The forgetful
functor dA : lax-Desc pAq Ñ Ap1q creates absolute limits and colimits.
Consequently, if a functor F is equal to d

A composed with any equivalence,
then F creates absolute limits and colimits.

By the result above, Beck’s monadicity theorem [1], and the monadicity
theorem of [36], we get:

Theorem 2.8 (Monadicity Theorem). A functor G : B Ñ C is monadic if
and only if G has a left adjoint and it is, up to the precomposition with an
equivalence, a functor dA that forgets the descent data w.r.t. a pseudofunctor
A.

Proof : Assume that G has a left adjoint.
By the monadicity theorem of Section 5 of [36], if G is monadic then it is

an effective faithful functor, which means in particular that it is the forgetful
functor (possibly composed with an equivalence) of the descent data w.r.t.
the higher cokernel of G.

Reciprocally, if there is a pseudofunctor pA, aq : ∆3 Ñ Cat such that
G � d

A � K for an equivalence K, then G creates absolute coequalizers
by Corollary 2.7. By Beck’s monadicity theorem, we conclude that G is
monadic.

3. Descent theory
We briefly establish the setting of descent theory w.r.t. fibrations [18, 19,

34], within the context of [23]. Instead of considering fibrations, we start
with a pseudofunctor

F : Cop Ñ Cat

which can be also called an indexed category [25, 23].
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A precategory [23, 5] in C is a functor a : ∆op
3 Ñ C. Hence, each internal

category or groupoid of C has an underlying precategory. In particular, inter-
nal groups and monoids w.r.t. the cartesian monoidal structure also have un-
derlying precategories [5, 20]. By abuse of language, whenever a precategory
a is the underlying precategory of an internal category/groupoid/monoid/group,
we say that the precategory a is an internal category/groupoid/monoid/group.

Remark 3.1. [Composition of pseudofunctors] Let a : ∆op
3 Ñ C be a precat-

egory. Firstly, we can consider the functor oppaq : ∆3 Ñ Cop, also denoted
by aop, which is the image of a by the usual dualization (invertible) 2-functor

op : Catco Ñ Cat.

Secondly, we can consider that oppaq : ∆3 Ñ Cop is actually a pseudofunctor
between locally discrete 2-categories. Therefore we can define the composi-
tion

F � oppaq : ∆3 Ñ Cat

as a particular case of composition of pseudofunctors/homomorphisms of
bicategories/2-categories [2, 30]. Namely, the composition is defined by

F � oppaq :� B : ∆3 Ñ Cat

x ÞÑ F papxqq

g : xÑ y ÞÑ F paoppg : xÑ yqq

bx :� fapxq : idFpapxqq ñ F
�
idapxq

�

bhg :� faopphqaoppgq : F aopphq � F aoppgq ñ F aopphgq.

By definition, the category of F-internal actions of a precategory

a : ∆op
3 Ñ C

(actions a Ñ C) is the lax descent object of the composition F � oppaq :
∆3 Ñ Cat. That is to say,

F -IntAct paq :� lax-Desc pF � oppaqq .

As briefly mentioned in the introduction, the definition above generalizes the
well known definitions of categories of actions. For instance, taking C � Set
and F � Set{� : Setop Ñ Cat, if a : ∆op

3 Ñ Set is an internal category, the
category of pSet{�q-internal actions of a coincides up to equivalence with
the category Cat ra, Sets of functors a Ñ Set and natural transformations
(see [23, 5] for further details). This shows that the definition above has as
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particular cases the well known categories of m-sets (or g-sets) for a monoid
m (or a group g).

Analogously, given a topological group g, we can consider the category of
g-Top of the Eilenberg-Moore algebras of the monad g�� with the multipli-
cation g�g�� Ñ g�� given by the operation of g, that is to say, the category
of g-spaces. This again coincides with the category of pTop{�q -IntAct pgq,
in which g, by abuse of language, is the underlying precategory of g.

A precategory is discrete if it is naturally isomorphic to a constant functor
w : ∆op

3 Ñ C for an object w of C. Clearly, we have:

Lemma 3.2. The category of F-internal actions of a discrete precategory w
is equivalent to Fpwq.

Given a precategory a : ∆op
3 Ñ C, the underlying discrete precategory of the

precategory a is the precategory constantly equal to ap1q, which we denote

by ap1q : ∆op
3 Ñ C. We have, then, that the functor

lax-Desc pF � aopq Ñ F � ap1q

that forgets the descent data is the forgetful functor

F -IntAct paq Ñ F -IntAct
�
ap1q

	

between the category of F -internal actions of a and the category of F -internal
actions of the underlying discrete precategory of a.

Remark 3.3. [Underlying discrete precategory] The definition of the under-
lying discrete precategory of a precategory is motivated by the special case
of internal categories, and/or the case of precategories that can be extended
to cosimplicial objects ∆3

op Ñ C,

1 s0 // 2
d0

bb

d1
||

S0

DD

S1

��

3
D0

dd D1
oo

D2zz
Ñ C,

in which ∆3 is the full subcategory of ∆ with the objects 1, 2 and 3. Namely,
we actually get an adjunction

Cat r∆op
3 ,Cs 00K Cat r1,Cs � C

qq

in which the left adjoint is given by the usual functor w ÞÑ w that associates
each object to the constant functor w : ∆3 Ñ C. Of course, the right adjoint
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is given by the conical limit, which, in this case, coincides with ap1q, since
1 is the initial object of ∆3

op. The underlying discrete precategory, in this
case, is given by the monad induced by this adjunction.

Remark 3.4. [Forgetful functor] As particular case of Remark 3.3, in the
case of C � Set and F � Set{�, if a : ∆op

3 Ñ Set is an internal category, the
forgetful functor

pSet{�q -IntAct paq Ñ pSet{�q -IntAct
�
ap1q

	

coincides with the usual forgetful functor Catra, Sets Ñ Setap1q � Set{ap1q
between the category of functors a Ñ Set and the category of functions
between the set ap1q of objects of a and the collection of objects of Set. In
particular, this shows that, if a is a monoid, we get that this forgetful functor
coincides with the usual forgetful functor a-Set Ñ Set. Analogously, taking
C � Top and F � pTop{�q, if g : ∆op

3 Ñ Top is an internal group (topological
group), then the forgetful functor

pTop{�q -IntAct pgq Ñ pTop{�q -IntAct
�
gp1q

	

coincides with the usual forgetful functor g-Top Ñ Top between the category
of g-spaces and Top.

Corollary 3.5. Given an indexed category F : Cop Ñ Cat and a precategory
a : ∆op

3 Ñ C, the forgetful functor

F-IntAct paq Ñ F-IntAct
�
ap1q

	

creates absolute Kan extensions and, hence, in particular, it creates absolute
limits and colimits.

Henceforth, we assume that C has pullbacks, and a pseudofunctor F :
Cop Ñ Cat is given. Every morphism p : e Ñ b of C induces an internal
groupoid whose underlying precategory, denoted herein by Eqppq, is given by

e // e�b e

πe

cc

πe

{{
e�b e�b egg

oo
xx

in which e�be denotes the pullback of p along itself, and the arrows are given
by the projections and the diagonal morphisms (see, for instance, Section 3
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of [23], or Section 8 of [34]). For short, we denote by

Fp : ∆3 Ñ Cat

the composition pseudofunctor F � Eqppqop.

Lemma 3.6. Let
�
d
Fp

,ψ
�

be the universal pair that gives the lax descent
category of Fp. For each morphism p : eÑ b of C, we get a factorization

Fpbq
Kp

((

Fppq
// Fpeq

lax-Desc pFpq

d
Fp

66 (F -descent factorization of Fppq)

in which d
Fp

: lax-Desc pFpq Ñ Fpeq � Fppeq denotes the functor that for-
gets descent data, and Kp the unique functor such that the diagram above is
commutative and the equation

Fpbq

Kp

��

lax-Desc pFpq

d
Fp

yy

d
Fp

��

Fpp1q � Fpeq ψ

ùñ

Fpπeq�Fppd1q

%%

Fpeq � Fpp1q

Fpπeq�Fppd0q

��

Fpe�b eq � Fpp2q

�

Fpbq

Fppq

!!

Fppq

}}

Fpπe�pq�Fpπe�pq

��

f�1
πe p
ùùñ

fπe p
ùùñFpeq

Fpπeq
!!

Fpeq

Fpπeq
}}

Fpe�b eq

holds.

Proof : This factorization can be found, for instance, in Section 3 of [23] or
Section 8 of [34]. In our context, in order to prove this result, it is enough to
verify that

f�1
πe p � fπe p : Fppd1q � Fppq ñ Fppd0q � Fppq

is an Fp-descent datum for Fppq, which follows directly from the fact that
F : Cop Ñ Cat is a pseudofunctor.
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Definition 3.7. [Effective descent morphism] A morphism p of C is of effec-
tive F-descent if the comparison Kp above is an equivalence.

Remark 3.8. By definition, if p is of effective F -descent, this means in
particular that Fppq : Fpbq Ñ Fpeq is, up to the composition with a canonical
equivalence, the forgetful functor between the category of F -internal actions
of the internal groupoid Eqppq and the category of F -internal actions e.

Only with the interpretation above, then, it is easy to see that the effective
pSet{�q-descent morphisms are precisely the surjections (epimorphisms in
Set).

4. Effective descent morphisms and monadicity
The celebrated Bénabou-Roubaud theorem [3, 34] gives an insightful con-

nection between monad theory and descent theory. Namely, the theorem says
that the F -descent factorization of Fppq coincides up to equivalence with the
Eilenberg-Moore/semantic factorization [17, 36] of the right adjoint functor
Fppq, provided that F comes from a bifibration satisfying the so called Beck-
Chevalley condition (see, for instance, [22, 21, 32, 34] for the Beck-Chevalley
condition).

The result motivates what is often called monadic approach to descent [4,
34], and it is useful to the characterization of effective descent morphisms in
in several cases of interest [40, 22, 28, 5, 11, 12, 13, 14].

More precisely, in our context, the result can be stated as follows. Assuming
that F : Cop Ñ Cat is a pseudofunctor such that, for every morphism p of C,

– there is an adjunction pFppq! % Fppq, εp, ηpq : Fpbq Ñ Fpeq, and
– the 2-cell obtained from the pasting

Fpeq
Fppq!

// Fpbq
ηp

ùùùùñ
Fppq

{{

Fppq

��

Fpeq f�1
πe p

�fπe p

ùùùùùñ

Fpπeq

��

Fpeq

επe

ùùùùùñ

Fpπeq

{{

Fpe�b eq Fpπeq!
// Fpeq
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is invertible.

We have that, denoting by T p the monad�
Fppq � Fppq!, idFppq � ε

p � idFppq!, η
p
�
,

the Eilenberg-Moore factorization

Fpbq Fppq //

##

Fpeq

FpeqT p

;;

is pseudonaturally equivalent to the F -descent factorization of Fppq. In par-
ticular, we get that, assuming the above, a morphism p is of effective F-
descent if and only if Fppq is monadic.

Remark 4.1. [Basic bifibration] If C has pullbacks, the basic indexed cate-
gory

C{� : Cop Ñ Cat

satisfies the Beck-Chevalley condition. Therefore, in this case, by the Bénabou-
Roubaud theorem, one reduces the problem of characterization of effective
descent morphisms to the problem of characterization of the morphisms p for
which the change of base functor C{p is monadic.

For instance, if C is locally cartesian closed and has coequalizers, one can
easily prove that C{p is monadic if and only if p is a universal regular epi-
morphism [22]. On the one hand, this result can be seen as a generalization
of the case of Set. On the other hand, this result is an important of the
usual framework to study effective pC{�q-descent morphisms of non-locally
cartesian closed categories via embedding results [40, 21, 34].

4.1. Non-effective descent morphisms inducing monadic functors.
On the one hand, the Bénabou-Roubaud theorem answers the question of
comparison of the Eilenberg-Moore factorization with the F -descent factor-
ization of Fppq in the case of F coming from a bifibration and satisfying
the Beck-Chevalley condition. On the other hand, one might ask what it
is possible to prove in this direction without assuming the Beck-Chevalley
condition.

Firstly, it should be noted that it is well known that there are indexed
categories F : Cop Ñ Cat (coming from bifibrations that do not satisfy
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the Beck-Chevalley condition) for which there are non-effective descent mor-
phisms inducing monadic functors.

For instance, in her master’s thesis [38], Melo gives a detailed proof in
Example 3.2.3 of page 67 (Exemplo 3.2.3) that the so called fibration of points
of the category of groups does not satisfy the Beck-Chevalley condition (in
particular, w.r.t. the morphism 0 Ñ S3). It is known that, denoting by Pt
the corresponding indexed category, Ptp0 Ñ S3q is monadic but 0 Ñ S3 is
not of effective Pt-descent.

We can produce easy examples of non-effective descent morphisms inducing
monadic functors as above, once we observe the results below.

Proposition 4.2. If the domain of p is the terminal object of C, then p is
of effective F-descent if and only if Fppq is an equivalence.

Proof : Indeed, if the domain of p is the terminal object 1 of C, Eqppq is
discrete, naturally isomorphic to the precategory 1 : ∆op

3 Ñ C constantly
equal to 1. Thus

F -IntAct pEqppqq � Fp1q.

Therefore the result follows, since the F -descent factorization of Fppq, in this
case, is given by

Fpbq
Kp

''

Fppq
// Fp1q

F -IntAct pEqppqq

�

77

Remark 4.3. The Example 3.2.3 presented in [38] can be studied using
Proposition 4.2. In an exact protomodular category [7, 8], on the one hand,
denoting again by Pt the indexed category corresponding to the fibration of
points, whenever Ptppq has a left adjoint, it is monadic (see Theorem 3.4 of
[8]).

On the other hand, by Proposition 4.2, 1 Ñ b is of effective Pt-descent if
and only if Ptp1 Ñ bq is an equivalence. In the case of the category of groups,
Ptp0 Ñ S3q has a left adjoint but it is not an equivalence.
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Remark 4.4. It should be noted that, if p : 1 Ñ b is a morphism of C
satisfying the hypothesis of Proposition 4.2, the pasting

Fp1q
Fppq!

// Fpbq
ηp

ùùùùñ
Fppq

xx

Fppq

��

Fp1q �

Fpπ1q�idFp1q

��

Fp1q

�

Fpπ1q�idFp1q

xx

Fp1 �b 1q � Fp1q
idFp1q

// Fp1q

is invertible if and only if ηp is invertible. That is to say, if and only if Fppq! is
fully faithful. In other words, p : 1 Ñ b satisfies the Beck-Chevalley condition
w.r.t. F if and only if Fppq! is fully faithful. In this case, in fact, if Fppq is
(pre)monadic, then it is an equivalence and, hence, by Proposition 4.2, p is
of effective F -descent.

The most elementary examples of non-effective F -descent morphisms in-
ducing monadic functors can be constructed from Lemma 4.5. Namely, in
order to get our desired example, it is enough to consider a pseudofunctor
G : 2op Ñ Cat whose image of d is a monadic functor which is not an equiv-
alence. In this case, by Lemma 4.5, we conclude that, despite Gpdq being
monadic, d is not of effective G-descent.

Lemma 4.5. Consider the category 2 with the only non-trivial morphism
d : 0 Ñ 1. Given a pseudofunctor G : 2op Ñ Cat, d is of effective G-descent
if and only if Gpdq is an equivalence.

Proof : Again, in this case, Eqpdq is discrete. We have that

G-IntAct pEqpdqq � Gp0q,
and, hence, we get the result.

Finally, in Remark 7, Sobral [42], considering the indexed category

E : Catop Ñ Cat

of discrete op-fibrations, gives an example of a morphism p in Cat such that
Eppq is monadic but p is not of effective E-descent. She also suggests that, for
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the indexed category E , descent gives “more information” than monadicity.
We finish this article showing, as an immediate consequence of Theorem 2.8,
that this is in fact the case for any indexed category.

Theorem 4.6 (Effective descent implies monadicity). Let F : Cop Ñ Cat be
any pseudofunctor. If p is of effective F-descent and Fppq has a left adjoint,
then Fppq is monadic.

Proof : It is clearly a particular case of Theorem 2.8.
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