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Abstract: We find closed-form algebraic formulas for the elements of the inverses
of tridiagonal 2- and 3-Toeplitz matrices which are symmetric and have constant
upper and lower diagonals. These matrices appear, respectively, as the impedance
matrices of resonator arrays in which a receiver is placed over every 2 or 3 resonators.
Consequently, our formulas allow to compute the currents of a wireless power transfer
system in closed form, allowing for a simple, exact and symbolic analysis thereof.
Small numbers are chosen for illustrative purposes, but the elementary linear algebra
techniques used can be extended to k-Toeplitz matrices of this special form with k
arbitrary, hence resonator arrays with a receiver placed over every k resonators can
be analysed in the same way.
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1. Introduction

This work concerns the theory and applications of some special tridiagonal
matrices, known in the literature as tridiagonal k-Toeplitz matrices. Those are
tridiagonal matrices of order n, say, where the entries along the main diagonal
and its adjacent diagonals are periodic sequences of period k, so that they have
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the form 

a1 b1

c1
. . . . . .
. . . ak bk

ck a1 b1

c1
. . . . . .
. . . ak bk

ck a1 b1

c1
. . . . . .
. . .


,

where the entries are real or complex numbers, with bjcj 6= 0 for j = 1, . . . , k.
These matrices have proved to be a very useful tool in many contexts of pure
and applied mathematics, e.g., in partial differential equations (appearing in
the discretization of elliptic or parabolic partial differential equations by finite
difference methods), in chain models of quantum physics ([7]), and in sound
propagation theory ([9, 10]). Gover in [13] solved the eigenproblem associated
with such matrices for the special case k = 2. Gover’s results were recasted
by Marcellán and Petronilho in [14] using tools from the theory of orthogonal
polynomials. Later, in [15] these authors solved the associated eigenproblem
for the case k = 3, using again tools from orthogonal polynomials theory
and polynomial mappings (see also the work [7] by Álvarez-Nodarse et al.).
The eigenproblem of a general tridiagonal k-Toeplitz matrix was solved by
da Fonseca and Petronilho ([12]), motivated by the need of finding explicit
formulas for the entries of the inverses of such matrices (whenever they are
nonsingular), the special case k = 3 having been considered previously by
these same authors in [11]. Recently these explicit formulas for the entries of
the inverses have proved to be very useful in real world problems involving
circuit models (e.g. [6]). Such formulas for the entries were obtained in [11,12]
as expressions involving polynomial mappings and Chebyshev polynomials of
the second kind, a fact that (despite the beauty of such formulas) may be
regarded as an additional difficulty in their applications, especially for those
which are not so familiar with the theory of orthogonal polynomials.

Our aim in this contribution is twofold. On the one hand we will determine,
without using the theory of orthogonal polynomials, explicit algebraic expres-
sions for the entries of the inverses of symmetric 2- and 3-Toeplitz matrices
which have constant and equal upper and lower diagonals (b1 = · · · = bk =
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c1 = · · · = ck). To do so we will only resort to elementary linear algebra: we
will compute the determinants of such matrices by linear recurrence relations,
and then apply those determinants to compute the minors appearing in the
cofactor matrix, which directly relate to the elements of the inverse. It is clear
that the methods found here can be applied to k-Toeplitz matrices with con-
stant and equal upper and lower diagonals, for arbitrary k.
On the other hand, we will apply these results to achieve closed formulas for
wireless power transfer (WPT) systems using resonator arrays with multiple
receivers. WPT systems have been going through intensive research lately, as
they allow one to avoid electrical contact and transfer power in rough envi-
ronments with water, dust or dirt. Nowadays they are being used in several
applications as electrical vehicle charging ([1]), mobile devices charging ([18])
and powering biomedical devices ([22]). However, they have the drawback that,
in case of misalignment or distance from the transmitter to the receiver, the
efficiency and power transmitted can drop abruptly. So, in order to overcome
this inconvenience, arrays of resonators can be used to transfer power over
longer distances ([16,17,23]). In these arrays the first resonator is usually con-
nected to a power source and transmits power through magnetic coupling to
the other resonators of the array, which are arranged in a plane with parallel
axes, and a receiver is placed over the array to absorb the power transmitted
([2–5,17,20]). In the literature, these arrays have been examined mostly using
magnetoinductive wave theory ([17, 20]) or through the circuit analysis of the
array ([3,23]), in which the array is represented by an impedance matrix which
contains the impedance of each resonator and the mutual inductances between
pairs of resonators ([2, 17, 19, 23, 24]). In [5, 6] the inversion of the impedance
matrix is performed using generic tridiagonal matrices. In this way, it is possi-
ble to determine closed-form expressions for equivalent impedance, the power
transmitted and the efficiency of these systems. However all these works con-
sider only one receiver placed over the array. Instead, the array could possibly
transmit power to several receivers at the same time. In this paper we study
and give closed-form algebraic formulas for the currents, power transmission
and efficiency in an array powering multiple receivers placed over every two
or three resonators. These small numbers have been chosen for the sake of
simplicity of the exposition, but the same methods work equally well for arrays
with receivers placed every k resonators, with k arbitrary.
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2. Description of the circuit

In this paper we consider an array with N identical resonators and some
identical receivers placed over them. If the lth resonator has a receiver over
it (Fig. 2.1(A,B)) then an impedance Ẑd is added, which is the impedance of
the receiver as seen from the resonator ([17, 20]). The last resonator (Nth) is
connected to a termination impedance ẐT . The first resonator is connected to a
voltage source V̂s, which we consider to generate an ideal sinusoidal voltage, as
has been done in other WPT works ([8,21]). The impedance of each resonator

(a)

(b)

Figure 2.1. Circuit representations of a possible configuration of
the considered resonator array: (A) Receiver over the lth cell. (B)
Receiver represented by an impedance Ẑd.

is given by Ẑ = R+ jωL+ 1/jωC, being L the inductance of the resonator, R
its intrinsic resistance and C the added capacitance. At the resonant angular
frequency ω0 = 2πf0 = 1/

√
LC, the impedance of each resonator becomes

equal to its resistance (Ẑ = R). The mutual inductance between adjacent
resonators is given by M , whereas the one between non-adjacent resonators is
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neglected, as its value is much smaller compared to M in arrays arranged in a
plane with parallel axes ([17, 20]). Then the equivalent circuit can be written
in matrix form as V̂ = ẐmÎ with V̂ = [V̂s, 0, . . . , 0]T , Î = [Î1, . . . , ÎN ]T and the
matrix Ẑm a symmetric tridiagonal matrix:

Ẑm =



Ẑ jωM · · · 0 · · · 0

jωM Ẑ . . . 0 · · · 0
... . . . . . . jωM . . . 0

0 0 jωM Ẑ + Ẑd
. . . 0

... ... . . . . . . . . . jωM

0 0 0 0 jωM Ẑ + ẐT


, (2.1)

where a term Ẑ + Ẑd appears as the lth element of the diagonal whenever the
lth resonator has a receiver placed over it. In order to determine the current
vector Î (i.e., the currents flowing in the resonators) as Î = Ẑ−1m V̂ we need
to determine the inverse matrix Ẑ−1m . Actually, as all components of V̂ are 0

except for the first one, we only need to determine the first column of Ẑ−1m .
Nevertheless, since long lines of resonators may be used, some attenuation
can be expected along the array, so in practice it may become necessary to
add voltage sources at several points (and then V̂ would have more than one
nonzero element). For this reason we determine all entries of Ẑ−1m (see Sections
3.2.1 and 4.2.1). After determining the current in each resonator, one can
determine the power transmitted to a receiver.

In this paper we are interested in the case in which the receivers are period-
ically placed over the resonators, that is, with a receiver placed over every k
resonators. For simplicity of the analysis we will only consider explicitly the
cases k = 2 and k = 3, and no terminal impedance besides the one which even-
tually comes from a receiver placed over the Nth resonator. We also note that,
since the mathematical analysis (undertaken in Sections 3 and 4 for k = 2, 3 re-
spectively) finds the inverse of any symmetric k-Toeplitz matrix with constant
upper and lower diagonals, it actually allows to find the currents in any system
with arbitrary impedances a1, . . . , ak over the first k resonators and periodically
repeating afterwards (in particular, the case with several identical receivers per
period can be handled in the same manner). The current, power and efficiency
formulas with arbitrary periodic impedance matrix for the cases k = 2, 3 would
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then be formally the same as those in Section 5, but with different impedance
parameters, depending on the corresponding impedance matrix.

2.1. Receiver over every 2 resonators.

Figure 2.2. Circuit of a resonator array with a receiver placed
over each resonator of even index (shown here for N odd).

Consider a receiver placed over each resonator of even index (see Fig. 2.2). In
this case the impedance matrix of the array is a 2-Toeplitz matrix with constant
and equal upper and lower diagonals:

Ẑm =



Ẑ jωM 0 . . . . . . . . . . . . 0

jωM Ẑ + Ẑd jωM 0 . . . . . . . . . 0

0 jωM Ẑ jωM 0 . . . . . . 0

0 0 jωM Ẑ + Ẑd jωM 0 . . . 0
... ... . . . . . . . . . . . . . . . ...
... ... . . . . . . . . . . . . . . . ...
... ... . . . . . . . . . . . . . . . jωM

0 0 . . . . . . . . . 0 jωM Ẑ + ẐT


,

with ẐT =

{
0, if N is odd
Ẑd, if N is even

.

2.2. Receiver over every 3 resonators.
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Figure 2.3. Circuit of a resonator array with a receiver placed
over each resonator of index multiple of 3 (shown here for N not a
multiple of 3).

When there is a receiver placed over each resonator of index a multiple of 3 (Fig.
2.3), the impedance matrix of the array is a 3-Toeplitz matrix with constant
and equal upper and lower diagonals:

Ẑm =



Ẑ jωM 0 . . . . . . 0

jωM Ẑ jωM 0 . . . 0

0 jωM Ẑ + Ẑd jωM . . . 0
... ... . . . . . . . . . ...
... ... . . . . . . . . . . . .
0 0 . . . 0 jωM Ẑ + ẐT


,

with ẐT =

{
0 if N 6= 3p

Ẑd if N = 3p
.

3. 2-Toeplitz matrix

Recall that the (i, j)th cofactor of the matrix A ∈ Mn(C) is

Cij = (−1)i+j det(Aij),

where Aij ∈ Mn−1(C) is the submatrix of A formed by removing the ith row
and the jth column. Then the cofactor matrix of A is the matrix C(A) =
(Cij) ∈ Mn(C). The inverse of a regular matrix A can be computed as

A−1 =
adj(A)

detA
,

where the adjugate matrix of A is adj(A) = C(A)T , the transpose of its cofactor
matrix.
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Denote Mn(a1, a2, b) =



a1 b 0 . . . . . . . . . . . . 0
b a2 b 0 . . . . . . . . . 0
0 b a1 b 0 . . . . . . 0
0 0 b a2 b 0 . . . 0
... ... . . . . . . . . . . . . . . . ...
... ... . . . . . . . . . . . . . . . ...
... ... . . . . . . . . . . . . . . . b
0 0 . . . . . . . . . 0 b α


∈ Mn(C), where

α is a1 when n is odd and a2 when n is even. We compute the inverse of
Mn(a1, a2, b) with the previous formula. In this case the adjugate matrix is
just the cofactor matrix, since Mn(a1, a2, b) is symmetric.

3.1. Determinant.

Recall that the Laplace expansion along the jth column gives the determinant
of a matrix A = (aij) ∈ Mn(C) as detA = a1jC1j + · · · anjCnj (Laplace
expansion along a row is analogous). Let D(n) = det(Mn(a1, a2, b)). From
Laplace expansion along the last column we see that

D(n) = αD(n− 1)− bD′ = αD(n− 1)− b2D(n− 2),

where D′ has been computed by Laplace expansion along its last row. We
get two linear recurrence equations for D(n): for D(2k) and for D(2k − 1).
Written in matrix form:(

D(2k)
D(2k − 1)

)
=

(
a2 −b2
1 0

)(
D(2k − 1)
D(2k − 2)

)
,(

D(2k − 1)
D(2k − 2)

)
=

(
a1 −b2
1 0

)(
D(2k − 2)
D(2k − 3)

)
.

Put A =

(
a2 −b2
1 0

)
, B =

(
a1 −b2
1 0

)
. Since A gives D(2k) from D(2k − 1)

and B gives D(2k − 1) from D(2k − 2), which has again even argument, by
induction we get(

D(2k)
D(2k − 1)

)
= (AB)k−1

(
D(2)
D(1)

)
= (AB)k−1

(
a1a2 − b2

a1

)
.
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Denote a2 = a1a2. Let us diagonalize AB (when possible) as PDP−1 with D
diagonal, so that (

D(2k)
D(2k − 1)

)
= PDk−1P−1

(
a2 − b2
a1

)
.

The characteristic polynomial of AB is

X2 + (2b2 − a2)X + b4,

its eigenvalues

r1,2 =
a2

2
− b2 ±

√
a2(a2 − 4b2)

2
.

A sufficient condition for diagonalization is a2 6= 4b2, as this implies r1 6= r2.
In that case, a matrix of eigenvectors is

P =

(
r1+b2

a1
r2+b2

a1
1 1

)
with determinant

det(P ) =
r1 − r2
a1

and inverse (computed via the adjugate matrix)

P−1 =
1

det(P )

(
1 −r2+b2

a1

−1 r1+b2

a1

)
.

Now

PDk−1 =

(
r1+b2

a1
rk−11

r2+b2

a1
rk−12

rk−11 rk−12

)
,

P−1
(
a2 − b2
a1

)
=

1

det(P )

(
a2 − 2b2 − r2
−a2 + 2b2 + r1

)
=

1

det(P )

(
r1
−r2

)
,

since a2 − 2b2 = tr(AB) = r1 + r2. Putting all the results together we get

D(2k) =
1

r1 − r2
((r1 + b2)rk1 − (r2 + b2)rk2),

D(2k − 1) =
a1

r1 − r2
(rk1 − rk2).

The matrix Mn(a1, a2, b) will be invertible if and only if its determinant is
nonzero, which will be the case precisely when rk1 6= rk2 if n = 2k− 1 and when
(r1 + b2)rk1 6= (r2 + b2)rk2 if n = 2k. Observe that the sufficient condition for
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diagonalization a2 6= 4b2 is not enough to assure invertibility, as the example
with n = 3, b = 1, a1 = 1, a2 = 2 shows:

rank

1 1 0
1 2 1
0 1 1

 = 2 < 3

since the second row is the sum of the first and third ones.

3.2. Elements of the inverse.

As stated in Section 2, when there is only a voltage source at the first res-
onator we only need to compute the first column of the inverse, equivalently
the first row (since the matrix is symmetric), so for ease of reasoning we first
explain how to compute the first row of the cofactor matrix. We give the com-
putation for an arbitrary element of the inverse, which solves the more general
problem of having several voltage sources in arbitrary positions, at the end of
this section.

When we compute cofactor C1j of M(a1, a2, b) via its submatrix M1j, by
construction the first row and the jth column of M are removed, the elements
of the 1, . . . , j−1th columns get bumped up one position upwards, and the rest
of elements from M(a1, a2, b) keep their original relative positions in M1j, but
with both their indices lowered by one (e.g., the (j, j)th element becomes the
(j−1, j−1)th one). ThusM1j will have the element b in its diagonal positions
(1, 1), . . . , (j − 1, j − 1), zero in the columns below those b, and the unaltered
lower right block M ′ of Mn(a1, a2, b) from the (j, j)th element onwards:

M(a1, a2, b) =


a1 b
b a2 b

0 b . . . b
... . . . b aj
0 · · · 0 b M ′

⇒M1j =


b a2 b

0 b . . .
... . . . b
0 · · · 0 M ′


So M1j is diagonally composed of an upper triangular block with constant di-
agonal b and a lower right block M ′ which is another 2-Toeplitz matrix (either
Mn−j(a1, a2, b) orMn−j(a2, a1, b), depending on the parity of j), so its determi-
nant is the product of the determinants of these two blocks, which are known.
Denote now by Dn(a1, a2, b) the determinant of the matrix Mn(a1, a2, b). Re-
call that α = α(n) equals a1 when n is odd and a2 when n is even; write α2(n)
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for the function with the opposite behaviour. By the exposition above, the
elements q1j of the first row of the adjugate matrix of Mn(a1, a2, b) are of the
form

q1j = (−1)j−1bj−1Dn−j(α2(j), α(j), b).

To get the elements m1j of the first row of the inverse we just need to divide
by the determinant of the whole matrix:

m1j = (−b)j−1Dn−j(α2(j), α(j), b)

Dn(a1, a2, b)

(when Dn(a1, a2, b) 6= 0).
Example: For the matrix M8(a1, a2, b) we have

m15 =
(−b)4D3(a2, a1, b)

D8(a1, a2, b)
=

b4a2(r
2
1 − r22)

(r1 + b2)r41 − (r2 + b2)r42

(when D8(a1, a2, b) 6= 0 and a2 6= 4b2). Observe that in the numerator we get
a2 instead of a1 because in D3(a2, a1, b) the elements a2, a1 are swapped. Note
also that r1, r2 are symmetric with respect to a1, a2.

3.2.1. General case. The technique applied above allows to find any element
of the inverse. Since the matrix is symmetric we may suppose j ≥ i. In
general, the submatrixMij which gives rise to the cofactor Cij is an upper block-
triangular matrix with three diagonal blocks: a first matrix Mi−1(a1, a2, b), a
middle upper triangular matrix of order j − i with constant diagonal b, and
an ending matrixMn−j(α2(j), α(j), b). Recall that the determinant of a block-
triangular matrix equals the product of the determinants of its diagonal blocks,
so that the (i, j)th element mij of the inverse is

mij = (−b)j−iDi−1(a1, a2, b)Dn−j(α2(j), α(j), b)

Dn(a1, a2, b)
, i ≤ j

(when Dn(a1, a2, b) 6= 0).
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4. 3-Toeplitz matrix

Let Mn(a1, a2, a3, b) =



a1 b 0 . . . . . . 0
b a2 b 0 . . . 0
0 b a3 b . . . 0
... ... . . . . . . . . . ...
... ... . . . . . . . . . . . .
0 0 . . . 0 b α


∈Mn(C),

where α =

 a1, n ≡ 1 (mod 3)
a2, n ≡ 2 (mod 3)
a3, n ≡ 3 (mod 3)

. Note that the impedance matrix in Sec-

tion 2.2 is of the special form Mn(a1, a1, a2, b), but the cases Mn(a1, a2, a1, b)
and Mn(a2, a1, a1, b) will be needed when computing its inverse. We compute
the inverse of Mn(a1, a2, a3, b) via its adjugate matrix, which is again its cofac-
tor matrix.

4.1. Determinant.

Let D(n) = det(Mn(a1, a2, a3, b)). By Laplace expansion along the last
column we see that

D(n) = αD(n− 1)− bD′ = αD(n− 1)− b2D(n− 2),

where D′ has been computed by Laplace expansion along the last row. We get
three linear recurrence equations forD(n): forD(3k), D(3k−1) andD(3k−2).
Written in matrix form:(

D(3k)
D(3k − 1)

)
=

(
a3 −b2
1 0

)(
D(3k − 1)
D(3k − 2)

)
,(

D(3k − 1)
D(3k − 2)

)
=

(
a2 −b2
1 0

)(
D(3k − 2)
D(3(k − 1))

)
,(

D(3k − 2)
D(3(k − 1))

)
=

(
a1 −b2
1 0

)(
D(3(k − 1))

D(3(k − 1)− 1)

)
.

Put Ai =

(
ai −b2
1 0

)
, a3 = a1a2a3, s = a1 + a2 + a3, d = a1a2 − b2. Observe

that a and s are symmetric in a1, a2, a3, but d = d(a1, a2) is not; hence for
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M(a1, a1, a2) we will have to consider d(a1, a1), while for M(a1, a2, a1) and
M(a2, a1, a1) we will consider d(a1, a2). By induction we get(

D(3k)
D(3k − 1)

)
= (A3A2A1)

k−1
(
D(3)
D(2)

)
= (A3A2A1)

k−1
(
a3 + (a2 − s)b2

d

)
.

Let us diagonalize A3A2A1 (when possible) as PDP−1 with D diagonal. The
characteristic polynomial of A3A2A1 is

X2 + (sb2 − a3)X + b6,

its eigenvalues

r1,2 =
a3 − sb2

2
±
√

(a3 − sb2)2 − 4b6

2
.

Observe that r1, r2 are also symmetric with respect to a1, a2, a3, being functions
of a and s. A sufficient condition for diagonalization is a3−sb2 6= ±2b3, as this
implies r1 6= r2. In that case, a matrix of eigenvectors is

P =

(
r1+a2b

2

d
r2+a2b

2

d
1 1

)
with determinant

det(P ) =
r1 − r2
d

and inverse (computed via the adjugate matrix)

P−1 =
1

det(P )

(
1 −r2+a2b

2

d

−1 r1+a2b
2

d

)
.

Now

PDk−1 =

(
r1+a2b

2

d rk−11
r2+a2b

2

d rk−12

rk−11 rk−12

)
,

P−1
(
a3 + (a2 − s)b2

d

)
=

1

det(P )

(
a3 − sb2 − r2
−a3 + sb2 + r1

)
=

1

det(P )

(
r1
−r2

)
,

since a3 − sb2 = tr(A3A2A1) = r1 + r2. Putting all the results together we get

D(3k) =
1

r1 − r2
((r1 + a2b

2)rk1 − (r2 + a2b
2)rk2),

D(3k − 1) =
d

r1 − r2
(rk1 − rk2).
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We still have to compute D(3k− 2), which equals a1D(3(k− 1))− b2D(3(k−
1)− 1):

D(3k − 2) =
1

r1 − r2
((a1r1 + b4)rk−11 − (a1r2 + b4)rk−12 ).

4.2. Elements of the inverse.

The computation of the elements of the inverse matrix from the determi-
nants of the submatrices giving the (i, j)th minors is analogous to the case
of 2-Toeplitz matrices studied in Section 3.2, the main difference being that
the ending block of the block-triangular matrix can now be Mn−j(a1, a2, a3, b),
Mn−j(a2, a3, a1, b) or Mn−j(a3, a1, a2, b), depending on the residue of j modulo
3. Denote by Dn(a1, a2, a3, b) the determinant of the matrix Mn(a1, a2, a3, b)
and by σj(a1, a2, a3) the jth cyclic permutation of (a1, a2, a3) to the left, i.e.,
σ0(a1, a2, a3) = (a1, a2, a3), σ1(a1, a2, a3) = (a2, a3, a1), σ2(a1, a2, a3) = (a3, a1, a2),
σ3(a1, a2, a3) = (a1, a2, a3), etc. The elements q1j of the first row of the adju-
gate matrix of Mn(a1, a2, a3, b) are of the form

q1j = (−b)j−1Dn−j(σj(a1, a2, a3), b).

To get the elements m1j of the first row of the inverse we just need to divide
by the determinant of the whole matrix:

m1j = (−b)j−1Dn−j(σj(a1, a2, a3), b)

Dn(a1, a2, a3, b)

(when Dn(a1, a2, a3, b) 6= 0).
Since the parameter d is not symmetric with respect to a1, a2, a3, care with d
must be taken when n− j ≡ −1 (mod 3).
Example: For the matrix M8(a1, a2, a3, b) we have

m14 = (−b)3D4(a2, a3, a1, b)

D8(a1, a2, a3, b)
= −b3 (a2r1 + b4)r1 − (a2r2 + b4)r2

d(a1, a2) · (r31 − r32)
.

(when Dn(a1, a2, a3, b) 6= 0 and a3 − sb2 6= ±2b3).

Recall that we are chiefly interested in matrices of the form Mn(a1, a1, a2).
In this particular case, the elements mij of the first row of the inverse are

m1j =
(−b)j−1Dn−j(σj(a1, a1, a2), b)

Dn(a1, a1, a2, b)
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(when Dn(a1, a1, a2, b) 6= 0).
If n ≡ −1 (mod 3) then d(a1, a1) = a21 − b2 will appear in the denominator. If
n − j ≡ −1 (mod 3), then in the numerator it will appear either d(a1, a1) if
j ≡ 0 (mod 3) or d(a1, a2) = a1a2 − b2 if j ≡ 1, 2 (mod 3).

4.2.1.General case. SinceMn(a1, a2, a3, b) is symmetric we may suppose j ≥ i.
The submatrix Mij which gives rise to the cofactor Cij is an upper block-
triangular matrix with three diagonal blocks: a first matrix Mi−1(a1, a2, a3, b),
a middle upper triangular matrix of order j − i with constant diagonal b, and
an ending matrix Mn−j(σj(a1, a2, a3), b). Hence the (i, j)th element mij of the
inverse is

mij = (−b)j−iDi−1(a1, a2, a3, b)Dn−j(σj(a1, a2, a3), b)

Dn(a1, a2, a3, b)
, i ≤ j

(when Dn(a1, a2, a3, b) 6= 0).

5. Application of the mathematical results

In this section we will use the generic expressions obtained for the elements of
the inverse of the tridiagonal matrix to determine the expressions for the cur-
rents, power transmitted and efficiency of the resonator array. Subsequently we
will use said expressions to illustrate the mathematical results and understand
how the behaviour of the system changes with the variation of its characteris-
tics and parameters. In particular, we will analyse the behaviour of the system
for different values of the receiver impedance Rd.

5.1. Expressions for the currents in the resonators.

5.1.1. Receiver over every 2 resonators.

The formulas of the 2-Toeplitz case with circuit parameters

b = jωM, a1 = Ẑ, a2 = Ẑ + Ẑd
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produce the values of the currents in the (2k)th resonators.
For even N , N = 2p, we have

Î2k =− V̂s(jωM)2k−1s1r
p−k
1 − s2r

p−k
2

s1r
p
1 − s2r

p
2

,

Î1 =− V̂s(Ẑ + Ẑd)
rp1 − r

p
2

s1r
p
1 − s2r

p
2

with

s1,2 =
1

2
Ẑ(Ẑ + Ẑd)±

1

2

√
Ẑ(Ẑ + Ẑd)(Ẑ(Ẑ + Ẑd) + 4(ωM)2),

r1,2 =s1,2 + (ωM)2.

For N odd, N = 2p− 1, we have

Î2k = −V̂s (jωM)2k−1 r
p−k
1 − rp−k2

rp1 − r
p
2

,

Î1 = −
V̂s

Ẑ

s1r
p−1
1 − s2r

p−1
2

rp1 − r
p
2

with r1,2, s1,2 as before.

5.1.2. Receiver over every 3 resonators.

The formulas of the 3-Toeplitz case with circuit parameters

b = jωM, a1 = a2 = Ẑ, a3 = Ẑ + Ẑd

produce the values of the currents in the (3k)th resonators.
For N = 3p we have

Î3k =V̂s(−jωM)3k−1s3r
p−k
3 − s4r

p−k
4

s3r
p
3 − s4r

p
4

,

Î1 =V̂s(Ẑ(Ẑ + Ẑd) + (ωM)2)
rp3 − r

p
4

s3r
p
3 − s4r

p
4
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with

α =Ẑ2(Ẑ + Ẑd) + (ωM)2(3Ẑ + Ẑd),

r3,4 =
α

2
± 1

2

√
α2 + 4(ωM)6,

s3,4 =r3,4 − Ẑ(ωM)2.

For N = 3p− 1:

Î3k =V̂s (−jωM)3k−1 r
p−k
3 − rp−k4

rp3 − r
p
4

,

Î1 =
V̂s

Ẑ2 + (ωM)2
t3r

p−1
3 − t4rp−1

4

rp3 − r
p
4

with t3,4 = Ẑr3,4 + (ωM)4.
Finally, for N = 3p− 2:

Î3k =V̂s (−jωM)3k−1 t3r
p−k−1
3 − t4rp−k−1

4

t3r
p−1
3 − t4rp−1

4

,

Î1 =V̂s
u3r

p−1
3 − u4r

p−1
4

t3r
p−1
3 − t4rp−1

4

with u3,4 = s3,4 − Ẑd(ωM)2.

5.2. Analysis of the currents on the resonators.

For simplicity we consider now that the resonators and receivers have the
same resonant frequency ω0 and that the array is working at such frequency
(Ẑ = R and Ẑd = Rd are real), and the voltage source having a root-mean-
square (RMS) value of 1V (Vs =1V). In order to illustrate the mathematical
results obtained, we offer some examples of the RMS values of the currents for
each case (I2k and I3k), using the values from [5] (R = 0.11Ω, ω0M = −1.43).
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5.2.1. Receiver over every 2 resonators. Using the expressions from previous
sections, we calculate the RMS values of the currents for four different values of
Ẑd = Rd (R, 5R, 10R, 100R), for N even (Fig. 5.1(A)) and N odd (Fig.5.1(B)).
As we can see from Fig. 5.1, the currents have higher values if the value of Rd

is lower. Also, when the number of resonators of the array is even, the currents
drop less abruptly as we move to the end of the array, compared with the odd
case.

(a) (b)

Figure 5.1. Comparison of the currents in the 2kth resonators,
for (A) N = 20 and (B) N = 21, for different values of Rd.

5.2.2. Receiver over every 3 resonators. Similarly, by using the expressions
from previous sections we obtain the RMS values of the currents for different
values of Rd and N (we use N = 21, N = 22 and N = 23). The results are
shown in Fig. 5.2.

As seen with the values of I2k, the values of the currents decrease as the value
of Rd increases, in this case with alternating highs and lows for a fixed Rd. The
cases N = 3p− 3 and N = 3p− 1 present approximately the same behaviour,
in contrast with the N = 3p − 2 case, in which the alternating behaviour is
reversed. When k is odd, we have higher values for N = 21 and N = 23 than
for N = 22, and the other way around when k is even; this happens in general
for p odd, the behaviour is reversed for p even (See Fig. 5.3). The differences
between the values at the same k for N = 3p− 3, 3p− 1 and N = 3p− 2 get
bigger as k grows.
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(a) (b) (c)

Figure 5.2. Comparison of the currents in the 3kth resonators,
for (A) N = 21, (B) N = 22 and (C) N = 23 for different values
of Rd.

(a) (b)

Figure 5.3. Comparison of the currents in the 3kth resonators,
for (A) N=21 to 23, (B) N=24 to 26.

5.3. Expressions for the power transmitted and efficiency of the sys-
tem.

We use the expressions obtained for the currents in the 2kth and 3kth res-
onators to calculate the power transmitted to each receiver over those res-
onators. Considering I2k and I3k the RMS values for the currents on the 2kth
and 3kth resonators, respectively, and considering the array operating at res-
onant frequency ω0 and that the receivers have the same resonant frequency
as the resonators, meaning that Ẑd is real (Ẑd = Rd), we determine the power
transmitted for the period 2 and 3 cases as being, respectively,

PRd,2k = I22kRd and PRd,3k = I23kRd.
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Afterwards, using the RMS values of voltage (Vs) and of the current (I1) in the
first resonator, we get the expression for the efficiency of the system by adding
the power transmitted to all receivers and dividing it by the input power:

η2k =
Pout

Pin
=

∑
PRd,2k

VsI1
and η3k =

Pout

Pin
=

∑
PRd,3k

VsI1
.

5.3.1. Receiver over every 2 resonators.

For N = 2p we have

PRd,2k = V 2
s Rd(ω0M)4k−2(s1r

p−k
1 − s2r

p−k
2 )2

(s1r
p
1 − s2r

p
2)

2
,

η2k =
Rd

(R +Rd)(r
p
1 − r

p
2)(s1r

p
1 − s2r

p
2)

p∑
k=1

(ω0M)4k−2(s1r
p−k
1 − s2r

p−k
2 )2.

For N = 2p− 1:

PRd,2k = V 2
s Rd(ω0M)4k−2(r

p−k
1 − rp−k2 )2

(rp1 − r
p
2)

2
,

η2k =
RRd

(rp1 − r
p
2)(s1r

p−1
1 − s2r

p−1
2 )

p−1∑
k=1

(ω0M)4k−2(rp−k1 − rp−k2 )2.

5.3.2. Receiver over every 3 resonators.

For N = 3p we have

PRd,3k = V 2
s Rd(ω0M)6k−2(s3r

p−k
3 − s4r

p−k
4 )2

(s3r
p
3 − s4r

p
4)

2
,

η3k =
Rd

(R(R +Rd) + (ω0M)2)(rp3 − r
p
4)(s3r

p
3 − s4r

p
4)

p∑
k=1

(ω0M)6k−2(s3r
p−k
3 − s4rp−k4 )2.
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For N = 3p− 1:

PRd,3k = V 2
s Rd(ω0M)6k−2(r

p−k
3 − rp−k4 )2

(rp3 − r
p
4)

2
,

η3k =
Rd(R

2 + (ω0M)2)

(rp3 − r
p
4)(t3r

p−1
3 − t4rp−1

4 )

p−1∑
k=1

(ω0M)6k−2(rp−k3 − rp−k4 )2.

For N = 3p− 2:

PRd,3k = V 2
s Rd(ω0M)6k−2(t3r

p−k−1
3 − t4rp−k−1

4 )2

(t3r
p−1
3 − t4rp−1

4 )2
,

η3k =
Rd

(t3r
p−1
3 − t4rp−14 )(u3r

p−1
3 − u4rp−14 )

p−1∑
k=1

(ω0M)6k−2(t3r
p−k−1
3 − t4rp−k−14 )2.

5.4. Analysis of the power transmitted to the receivers and efficiency
of the system.

As done previously, we use the values from [5], consider that the resonators
and receivers have the same resonant frequency ω0 with the array working at
such frequency, and an RMS value of 1V for the voltage source (Vs = 1V).

5.4.1. Receiver over every 2 resonators. In Fig. 5.4 we show the values of
the power for four different values of Ẑd = Rd (R, 5R, 10R, 100R), for N even
and N odd. In Fig. 5.5 we plot the efficiency as a function of Rd. The power
transmitted to each of the resonators is approximately the same whether N is
odd or even. The maximum power transmitted is obtained when Rd = 100R,
while the higher average power between all the receivers is obtained when
Rd = 10R. In contrast, we observe that the efficiency is higher when the
number of resonators of the array is even. This phenomenon disappears as N
grows, both efficiency curves becoming identical for N big enough: already for
N = 60 and N = 61 the maximum difference in efficiency is less than 1%.

Considering the efficiency as a function of x with Rd = xR, we can get
the maximum efficiency from the closed-form formula either symbolically or
numerically. For N = 20, the maximum is 0.450, found with Rd = 3.62R,
while for N = 21 the maximum is 0.390, found with Rd = 17.88R. The
calculation could be done with arbitrary parameters. In addition, when Rd
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(a) (b)

Figure 5.4. Comparison of the power transmitted to the receivers
over the 2kth resonators, for (A) N = 20 and (B) N = 21, for
different values of Rd.

(a)

Figure 5.5. Comparison of the efficiency of the system as a func-
tion of Rd, for N = 20 and N = 21.

tends to infinity (the rest of parameters being fixed), r1 becomes the dominant
eigenvalue and η2k behaves essentially as (ω0M)2

RRd
−1 (for both N even and odd); in

particular η2k → 0 as Rd →∞.

5.4.2. Receiver over every 3 resonators. In Fig. 5.6 we show the values of the
power for four different values of Ẑd = Rd (R, 5R, 10R, 100R) and different
values of N . In Fig. 5.7 we plot the efficiency as a function of Rd. The power
transmitted also has different profile for the case N = 3p − 1 compared to
the N = 3p, 3p − 2 cases, which are similar. Differently from the P2k,Rd

case,
the maximum power transmitted is obtained when Rd = 10R, while the higher
average power between all the receivers is obtained when Rd = 5R.



k-TOEPLITZ MATRICES AND RESONATOR ARRAYS 23

(a) (b) (c)

Figure 5.6. Comparison of the power transmitted to the receivers
over the 3kth resonators, for (A) N = 21, (B) N = 22 and (C)
N = 23 for different values of Rd.

(a)

Figure 5.7. Comparison of the efficiency of the system as a func-
tion of Rd, for N = 21, N = 22 and N = 23.

The efficiency behaviour is almost the same for the three values ofN . Consid-
ering the efficiency as a function of x with Rd = xR we find that the maximum
is 0.746 for all three, found approximately with Rd = 24.87R. The calculation
could be done with arbitrary parameters. The values obtained for the period 3
case are higher than the ones for the period 2 case, however this could be due
to the fact that less receivers are being used. In addition, when Rd tends to in-
finity (the rest of parameters being fixed), r3 becomes the dominant eigenvalue
and η3k behaves essentially as (ω0M)4

R(R2+(ω0M)2)Rd
−1 (independently of the character

of N modulo 3); in particular η3k → 0 as Rd →∞.
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6. Conclusions

In this paper, the inversion of special 2- and 3-Toeplitz matrices is used
to analyse and assess the power transfer capability of a resonator array with
multiple receivers. By replacing the generic parameters with the parameters
of the circuit, it is possible to obtain closed-form expressions for the currents
in the resonators, power transfer and efficiency of the system. Using these
expressions, some examples were made in order to illustrate the mathematical
results obtained and show their practical applicability. It was found that, for
the same lengths of the array, the efficiency is higher when considering a receiver
over every three resonators. However, higher values of power transmission are
obtained when using an array with a receiver over every two resonators. Also,
the efficiency profiles for N = 2p and N = 2p − 1 are quite different when
N is small. The results obtained in this work allow one to better understand
the behaviour of an array with multiple resonators in order to expand the
applications for these types of systems. The closed expressions obtained can
help electrical engineers to design systems composed of these resonator arrays,
since they allow for abstract, general reasoning over all circuits, not depending
on the data of a specific case, in contrast with numerical methods. In particular
we can easily predict the behaviour of the system when one of the parameters is
changed, we can study the limit behaviour, and maximization of the efficiency
with the impedance of the receivers as a function of the impedance of the
resonators can be done in a symbolic way. In addition, since the formulas are
rational functions, the only source of numerical instability are denominators,
the number of significant digits is controllable, and computation is fast. Finally,
the same general analysis can be done mutatis mutandis for resonator arrays
having any number of receivers placed periodically every k resonators, with k
arbitrary.
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