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ABSTRACT: We show that any regular (right) Schreier extension of a monoid M by
End(A)
Inn(A)

where SEnd(A) is the monoid of surjective endomorphisms of A,

a monoid A induces an abstract kernel ®: M — . If an abstract kernel factors

through SIE nd(A)

nn(A)
then we associate to it an obstruction, which is an element of the third cohomology
group of M with coefficients in the abelian group U(Z(A)) of invertible elements
of the center Z(A) of A, on which M acts via ®. An abstract kernel ®: M —

S;i 2?11(414)&) (resp. &: M — ﬁ%gﬁg) is induced by a regular weakly homogeneous (resp.

homogeneous) Schreier extension of M by A if and only if its obstruction is zero. We

also show that the set of isomorphic classes of regular weakly homogeneous (resp.

homogeneous) Schreier extensions inducing a given abstract kernel ®: M — SIIZZC(I%)

(resp. ®: M — ?:nglg)’ when it is not empty, is in bijection with the second

cohomology group of M with coefficients in U(Z(A)).

KEYWORDS: monoid, Schreier extension, obstruction, Eilenberg-Mac Lane coho-
mology of monoids.
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1. Introduction

The classification of extensions is a classical problem in group theory. It is
well-known that extensions with abelian kernel inducing the same action are
classified by the 2-dimensional cohomology group. The case of non-abelian
kernels was studied by Schreier [25, 26]: to any group extension
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he associated a group homomorphism ¢: G — ?:;Eﬁg, called abstract kernel

of the extension, and he determined conditions on such a homomorphism
® in order to get the existence of extensions having it as abstract kernel.
Later, Eilenberg and Mac Lane [10] gave an interpretation of such results in
terms of cohomology: to an abstract kernel ® can be associated an element
Obs(®), called obstruction of the abstract kernel, of the third cohomology
group H?(G,Z(A)), where Z(A) is the center of A and the left G-module
structure on Z(A) is induced by ®. Then @ is induced by an extension if
and only if Obs(®) is the zero element of H*(G, Z(A)). Moreover, if there is
an extension inducing ®, then the set of isomorphic classes of the extensions
inducing it is in bijection with the second cohomology group H*(G, Z(A)).
See, for example, [10, 16] for a detailed account of this result.

The same kind of result was then extended to other algebraic structures,
such as associative algebras [12] and Lie algebras [13] over a field, rings [15],
categories of interest [19], categorical groups [11, 7]. A categorical approach
to this problem was initiated by Bourn in [1] and then generalized in [6, 2, 9, §]
to the context of semi-abelian [14] action accessible [3] categories.

The situation for monoid extensions is more complicated. Schreier exten-
sions of monoids, a direct generalization of group extensions, were introduced
by Rédei [24]. In [27] the Schreier extensions of a monoid M by an M-module
A were classified by H?(M, A), the classical second cohomology group of M
with coefficients in the M-module A. Then, in [20, 22] the Schreier exten-
sions of a monoid M by an M-semimodule A (i.e. a commutative monoid
on which M acts) have been classified by means of the second cohomol-
ogy monoid H?(M, A), of a cohomology theory of monoids with coefficients
in semimodules [21, 22| which generalizes the classical Eilenberg-Mac Lane
cohomology of monoids. The problem of classifying Schreier extensions of
monoids whose kernels are (not necessarily abelian) groups was studied in
[27]. There the abstract kernel is involved in the definition of the extension,
because the author of [27] was not able to induce an abstract kernel, i.e.

a monoid homomorphism &: M — %, from a given Schreier extension
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In the present paper, we show how to induce an abstract kernel from a
regular (see Definition 3.6) Schreier extension of monoids, a particular case
of which is a Schreier extension of a monoid whose kernel is a group. More
specifically, in Section 3 we associate to any regular Schreier extension of
a monoid M by a monoid A a monoid homomorphism &: M — ?gs((ﬁ)),
and in Section 4 we show that there is a canonical representative of such a
monoid extension, called the crossed product extension. In Section 5 we show
that, if the abstract kernel ® takes values in SIZZ‘Z%), where SEnd(A) is the
monoid of surjective endomorphisms of A, then it is possible to associate to

® an element Obs(®) of the third cohomology group H*(M,U(Z(A))), where
U(Z(A)) is the abelian group of invertible elements of the center Z(A) of A,
and the action of M on U(Z(A)) is induced by ®. Moreover, we show that an
abstract kernel @ is induced by an extension if and only if Obs(®) is the zero
element of the third cohomology group. Finally, in Section 6 we show that
the set Ext(M, A, ®) of isomorphic classes of regular weakly homogeneous
(resp. homogeneous) Schreier extensions of M by A (see Definition 3.10)
which induce the same abstract kernel ®: M — SEndd) (resp. ®: M —

Inn(A)
?:;Eig ), when it is not empty, is in bijection with the second cohomology group

H?*(M,U(Z(A))) of M with coefficients in the M-module U(Z(A)). This is
done, as for the classical case of extensions of groups, by showing that there
is a simply transitive action of the abelian group H*(M,U(Z(A))) on the
set Fxt(M, A, ®). Hence our approach is very similar to the classical one for
groups, yielding a new, additional interpretation of the classical Eilenberg-
Mac Lane cohomology in terms of monoid extensions.

2. Preliminaries

In this section we recall some notions we need in the rest of the paper and
we fix some notations.

Given a monoid M, we will denote by Z (M) the center of M, namely
ZM)={zeM|zm=mz forallmeM },
and by U (M) the group of invertible elements of M.

Definition 2.1. Given a monoid M and a subgroup H (i.e. a subgroup H
of the group U(M) ), we say that H is
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- right normal if, for allm € M, mH C Hm, where
mH={mh|heH} Hm={hm|heH}

- left normal if, for allm € M, Hm C mH;

- normal if it is both right and left normal, i.e., mH = Hm.

Note that H is right normal in M if and only if H is left normal in M.
If H is a subgroup of a monoid M, the relation on M defined by

my~my < mj;=hmy forsomehecH

is an equivalence relation on M, called the right coset relation. The equiv-
alence class of an element m is cl(m) = Hm. We will denote by % the
quotient set. Similarly we can define the left coset relation.

Proposition 2.2. If H is right normal in M, then the operation
Hmq - Hmey = Hmimao
is well defined, and (%, -, H) is a monoid.
Proof: If Hmy = Hm/ and Hmy = Hm), then there exist hy, hy € H such
that

mi = hlm’l, meo = thIQ
Hence mymsy = hym/homl,. Since H is right normal, there exists hy € H such
that m/{hy = hym/, and so
mymgy = hymihomy = hihsmims,
which proves that Hmymg = Hm/mj,. u

The same happens for the left coset relation, when H is left normal.

Example 2.3. If A is a monoid, End(A) is the monoid of endomorphisms of
A (w.r.t. the usual composition of functions, (gf)(a) = g(f(a))), and Inn(A)
s the subgroup of inner automorphisms induced by the invertible elements of
A, then Inn(A) is right normal, but not left normal, in End(A). Indeed, if
¢ € End(A), puy, € Inn(A), then

(erg)(a) = p(pg(a)) = ©(gag™) = w(g)p(a)(g) ™" = pe (e(a) = (LuEe)(a),

hence ppg = ppyg)p, which shows that Inn(A) is right normal in End(A).
But it is not left normal, in general. A concrete counterexample is the fol-
lowing. If A is the symmetric group S3, consider the endomorphism f of Ss
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defined by

flid) = f((123)) = f((132)) =4d,  f((12)) = f((13)) = f((23)) = (12).

Then, for every element s € S, fus = f, and so fInn(A) = {f}, but the
endomorphism ju13)f is different from f, indeed:

s (12)) = s F(13) = s F((23)) = (13)(12)(13) 1 = (23),
and so Inn(A)f is not contained in fInn(A).

Proposition 2.4. If G is a group, then Inn(G) is normal in the monoid
Epi(G) of epimorphisms of G.

Proof: As we observed before, Inn(G) is right normal in End(G), and so it
is right normal in Epi(G), too. Let us prove that it is also left normal. If
¢ € Epi(G) and g € G, let ¢’ € G be such that ¢(¢') = g (since G is a group,
¢ is surjective). Then, for all z € G, we have

(1g0) (@) = go(2)g™" = w(g)e()e(d) ™ = p(g'2g" ™) = (oug)(@),
hence pInn(G) = Inn(G)ep. _
3. Schreier extensions
Definition 3.1 ([24]). Let

E: 0 A~—"~B-% M 1 (1)

be a short exact sequence of monoids (i.e. o is a surjective monoid homo-
morphism and k is its kernel). E is a (right) Schreier extension of M by
A (some authors would say “A by M” ) if, for every x € M, there exists
an element u, € o~ 1(x) such that for every b € o~ (x) there exists a unique
a € A such that

b= k(a)+ uy.
The elements u,, for x € M, will be called the representatives of E. We
will always choose u; = 0 (we use the multiplicative notation for M and the
additive one for the other monoids involved).

From now on, we will treat x just as an inclusion.

Proposition 3.2. Let E be a Schreier extension as in (1), with representa-
tives uy, v € M. An element b € o~ 1(z) is another representative of x for E
if and only if b= g + u, for some g € U(A).
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Proof: Since u, is a representative, there exists a unique a € A such that
b = a + u,. Moreover, if b is a representative for F, then there is a unique
a’ € A such that u, = o’ + b. Hence we get

b=a+d +0.

By the uniqueness in the Schreier condition, we get a + @’ = 0. Similarly,
from the equality

Uy = a + a+ uy,
we get @’ +a = 0, and so a is invertible. Conversely, if b = g + u, with
g € U(A), then for every I/ € o71(x) there exists a unique a’ € A such that

V=d+u,=d —g+0.

Moreover, if a1 +b = as+0b, then a1 +g+u, = as+g-+u,, then the uniqueness
in the Schreier condition implies a; + g = as + g, and hence a; = ay, being g
invertible. |

Lemma 3.3. Let E be a Schreier extension as in (1), with representatives u,,
x € M. Fora € A, leta be the unique element in A such that u,+a = a’+u,.
If a € U(A), then o’ € U(A), too.

Proof: There exists a unique a” € A such that u, + (—a) = a” + u,. From
the equality u, + a = a’ + u, we obtain
Uy :a/+ux—a:a/+a"—|—ux,
and the uniqueness in the Schreier condition implies a’ + o” = 0. Similarly,
from the equality u, + (—a) = a” + u, we get
ux:a”—kux—l—a:a"—l—a/—i-ux,
from where we obtain a” 4+ a’ = 0. |

Proposition 3.4. Let E be a Schreier extension as in (1), and let w,, uy, vy, vy,
be representatives, for x,y € M. If u, + u, 1s a representative, then so is
Uy 1 Uy.

Proof: Thanks to Proposition 3.2, we know that there exist g1,go € U(A)
such that

Uy = g1 1 Uy, Uy:g2+uy-
Moreover, there exists a unique h € A such that u, + go = h + u,, and such
an h is invertible thanks to the previous lemma. Then we have

Uy + Uy = g1 + Uy + g2+ Uy = g1 + D+ uy + uy,
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with g1 + h € U(A). Then the thesis follows from Proposition 3.2. u

Let E be a Schreier extension as in (1), with representatives u,, © € M.
We already observed that, for all a € A, there is a unique element o’ € A
such that u, +a = a’ +u,. This defines a map p(z): A — A sending a to a'.

Proposition 3.5.  (a) for every x € M we have that ¢(x) € End(A);
(b) if v, is another representative, and ¥ (x): A — A is the induced endo-
morphism of A, then () = pyp(r) with g € U(A).

Proof:  (a) From the obvious equality u, +0 = 0+ u,, we get ¢(x)(0) = 0.
Moreover, on one hand

Uy + a1 + as = @(x) (a1 + az) + uy,
while, on the other hand
Uy + a1 + ag = @(x)(a1) + uy + a2 = p(x)(a1) + w(z)(az) + uy.

By the uniqueness we get that ¢(x)(a; + a2) = ¢(z)(a1) + ¢(x)(asg).
(b) From Proposition 3.2 we know that v, = g + u, with g € U(A).
Moreover, for all a € A,

vy +a=(z)(a) + v,
Therefore
v ta=g+u,+a=g+ep@)(a)+u =g+ e()(a) — g+
This means that
U(z)(a) = g+ ¢(z)(a) — g = (nep(2))(a)

for all a € A.
u

The previous proposition implies that, for a Schreier extension F as in (1),
there is an induced well-defined map
End(A)
: (2)
Inn(A)
given by ®(z) = cl(p(z)), such that (1) = cl(id4) (see Proposition 2.2 and

Example 2.3). In order to have that ® is a monoid homomorphism, we need
an additional assumption:

d: M —
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Definition 3.6. Let E be a Schreier extension as in (1). We say that E is
a regular Schreier extension if, whenever u, and w, are representatives for
E, then so is u, + u, (such extensions are called normal Schreier extensions

in [22)).

Proposition 3.7. If E is a reqular Schreier extension, then the map (2) is
a monoid homomorphism.

Proof: Let x,y € M, and let u,,u, and u,, be representatives. We have the
corresponding (), ¢(y), p(xy) € End(A) with

Ut = o@) @)+, uta= o)) tu,  uyta = play)a)+u,
for all @ € A. Since E is regular, u, + u, is a representative, hence u, +u, =
g + ugy for some g € U(A). On one hand we have

Up + Uy 4+ 0 = g+ Usy + 0 = g+ @(xy)(a) + Uy,
while on the other hand

uztuyta = u4p(y)(a)+uy, = o(x)(p(y) (@) +ustuy = p(2)(0(y)(a))+g+usy.
Therefore
g+ e(xy)(a) = p(z)(¢(y)(a)) + g,
whence
p(@)(p(y)(a) = g+ ¢(zy)(a) — g.
This means that p(x)e(y) = pep(zy), ie. @(2)P(y) = P(xy). _

Definition 3.8. Given a reqular Schreier extension E as in (1), the induced
monotd homomorphism

End(A)

Inn(A)

15 called the abstract kernel induced by the extension E. More generally, we
will call abstract kernel any such homomorphism, even when it is not induced
by an extension.

d: M —

The following proposition gives examples of regular Schreier extensions:

Proposition 3.9. Let E be a Schreier extension as in (1) such that A is a
group (such extensions are called special Schreier extensions in [4, 5, 17, 18] ).
Then every element of B is a representative and therefore E is reqular.
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Proof: Let x € M, and let u, be a representative. For every b € o~!(z) there
exists (a unique) a € A such that b = a+wu,. Being A a group, a is invertible.
Then it follows from Proposition 3.2 that b is a representative. Thus, every
element of B is a representative, and hence FE is regular. |

Definition 3.10. A Schreier extension E as in (1), with representatives u,,

r € M, is:
(a) weakly homogeneous if for all b € o~ 1(z) there exists a € A such that
b=u, +a;

(b) homogeneous if for all b € o~ (x) there is a unique such a.

Note that, thanks to Proposition 3.2, this definition does not depend on
the choice of representatives. (Indeed, for any representative v,, we have
Uy = g+v,, g € U(A). If (a) holds, then b = —g+9+b = —g+u,+a’ = v,+d’.
If (b) holds, then we have v,+a; = v, +as = g+v,+a; = g+v,+ay =
Uy + a1 =u, +a2 = a; =as.)

The following proposition is a generalization of Proposition 3.8 in [5], where
only split extensions were considered:

Proposition 3.11. Let E be a Schreier extension as in (1), with represen-
tatives u,, x € M. Let p(x): A — A be the induced endomorphism of A
relative to the element x € M. Then:

(a) E is weakly homogeneous if and only if p(x) is surjective for allx € M ;
(b) E is homogeneous if and only if p(x) € Aut(A) for all x € M.

Proof - (a) Suppose that E is weakly homogeneous, and consider x € M.
Given a € A, there exists a’ € A such that

/
a—+u, =u, +a,

from which we obtain that ¢(x)(a’) = a, and so p(z) is surjective.
Conversely, suppose that ¢(z) is surjective. Given b € o~1(z), there
exists a unique a € A such that b = a + u, (because E is Schreier).
The surjectivity of p(x) implies the existence of a’ € A such that
o(z)(a’) = a. Hence

uy, +a = p(x)(d) +u, = a+u, =b.

(b) Suppose that E is homogeneous. We already know that, for all x € M,
o(x) is surjective. Suppose that ¢(x)(a1) = ¢(x)(as). Then

Uy + a1 = @(x)(ar1) + uy = @(x)(as) + uy = uy + as,
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and the uniqueness in the definition of a homogeneous Schreier exten-
sion implies that a; = as, and so ¢(z) is injective. Conversely, suppose
that p(z) € Aut(A). We already know that FE is weakly homogeneous.
If u, + ay = u, + as, then

p(x)(a1) + ue = @(x)(az) + ua.
Being F Schreier, this implies that ¢(z)(a1) = ¢(z)(az2), and the
injectivity of ¢(x) gives us that a; = as.
m

From now on, SEnd(A) denotes the monoid of surjective endomorphisms
of a monoid A.

The previous proposition shows that a regular weakly homogeneous Schreier
SEnd(A)
Inn(A) >
while a regular homogeneous Schreier extension induces a monoid homomor-
phism

. Aut(A)
¢: M — Tn(A)"

extension E as in (1) induces a monoid homomorphism &: M —

The following result is a generalization of Proposition 3.4 in [5]:

Proposition 3.12. If £ : 0 A—"~B % M 1 s a regular
Schreier extension and M is a group, then E is homogeneous.

Proof: Given representatives u,, x € M, with u; = 0, consider the induced
endomorphisms ¢(z): A — A. If p(x)(a1) = p(x)(az), then u,+a; = u,+as,
whence

Up—1 + Uy + A1 = Ugp—1 + Uy + Q2.
Since E is regular, u,-1 + u, is a representative of 1, hence it is an invertible
element of A (by Proposition 3.2). This implies that a; = ag, and thus ()
is injective. Moreover, since F is regular, we have

p(x)p(™") = pp(za™) = pgp(1) = py
for some g € U(A) (see Proposition 3.7). Being p, an automorphism, we
deduce that ¢(x) is surjective. Then the thesis follows from Proposition

3.11. |

Example 3.13. Consider the sequence

A" A, Colt) —2 Co(t),
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where A is any monoid, Co(t) is the cyclic group of order 2 with generator t,
g is a fived element of U(Z(A)), Cs(t) acts on the monoid A in a way that
t-g=g, and A x,C5(t) is the cartesian product A x Cs(t) with the monoid
operation defined by

(a1,1) + (az, 1) = (a1 + as, 1), (a1,1) 4 (as,t) = (a1 + as, t),

(a1,t) + (a2, 1) = (a1 +t-az,t),  (a1,t) + (a2,1) = (a1 +t-a2+g,1).
It is straightforward to check that this operation is associative and that (0,1)
15 the neutral element. The morphism o s just the canonical projection, while
k(a) = (a,1). This sequence is a reqular homogeneous Schreier extension. In
order to show that it s Schreier, it suffices to choose the representatives
up = (0,1) and uy = (0,t). Thanks to Proposition 3.4, reqularity is proved
Jqust by observing that the element

us +up = (0,t) +(0,t) = (9,1) = (9,1) + (0,1) = (¢, 1) + uq

is a representative, since (g,1) is invertible (see Proposition 3.2). The pre-
vious proposition implies that the extension is homogeneous.

Several other examples of Schreier and homogeneous Schreier extensions
may be found in [4, 5].

4. The crossed product extension

Let £ : O A"~ B % M 1 be a regular Schreier extension,
with representatives u,, * € M. Being F regular, we know that for all
z,y € M the element u, + u, is a representative. Thanks to Proposition
3.2 we get that there exists a unique element f(z,y) € U(A) such that
Uy + uy = f(z,y) + tyy. This defines a map

f:MxM—U(A)
such that
flz,1)=f(l,y) =0
for all x,y € M (because we are assuming that u; = 0). Then we have, on
one hand
and, on the other hand

Uy +ty s = U+ fy, 2) +uye = 0(2)(F(Y,2) + ue + oy =
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- go(x)(f(y, Z)) + f(iE, yz) + Ugyz,
where ¢: M — End(A) is the map defined by the following equality (as we
explained in the previous section):

uzy + a = p(r)(a) + uy.
Whence
e(@)(f(y,2)) + f(z,y2) = f(z,y) + flay,z)  forallz,y,z€ M. (3)
Furthermore, for every x,y € M and every a € A we have, on one hand
Uptuy+a = ug+o(y)(a)+uy = o(@)p(y)(a)+ustuy = o(@)e(y)(a)+f (2, y)+ay,
and, on the other hand
Uy +uy +a= f(2,y) + ugy +a= f(2,9) + p(ry)(a) + gy,

whence

p(@)p(y)(a) + flz.y) = flz.y) + e(zy)(a).
Being f(z,y) invertible, the last equality implies that

p(x)o(y)(a) = f(z,y) + (zy)(a) — f(z,y).
Thus

p(2)o(y) = prayp(zy)  foralla,y e M.

Proposition 4.1. Let monoids M,A and maps ¢: M — End(A),
f: M x M — U(A) such that, for all z,y,z € M,

p(1) =ida,  flx,1)=f(Ly) =0,  w(@)e(y) = sy r(y),

o(@)(f(y,2)) + f2,y2) = f(z,y) + f(zy, 2),
be given. Then the set [A,p, f, M] of all pairs (a,x) € A x M with the
operation defined by
(a1, 2) + (a2,y) = (a1 + @(x)(az) + f(z,y), zy)

1s a monoid, and the sequence
A—[A 0 f,M] =M, i(a)=(a,1), pla,z)=r,

is a reqular Schreier extension of M by A, called the crossed product ex-
tension, such that the induced monoid homomorphism ®: M — ?gs((ﬁ; sends

x € M to the equivalence class of p(x). Furthermore, a pair (a,z) is a
representative if and only if a € U(A).
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Proof: It is straightforward to show that the operation is associative and
that (0,1) is its neutral element. The maps i and p are clearly monoid
homomorphisms, p is surjective and ¢ is injective, and the image of ¢ is the
kernel of p. Let us show that we get a regular Schreier extension. For any x €
M, we consider the element u, = (0,z). These elements are representatives:
indeed, every element (a,x) € A x M can be written as

(a,x) = (a,1) + (0, x),
and such writing is unique, because the equality
(0’17 1) + (O,I') - (&2, 1) + (va)

implies (a1,z) = (a9, ), and hence a; = as. So, the extension is Schreier.
Proposition 3.2, together with the equality (a,z) = (a,1) + (0, ), implies
that (a,z) is a representative if and only if @ € U(A). It remains to show
that the extension is regular. For all z,y € M, we have

uz +uy = (0,2) + (0,y) = (0+ ¢(2)(0) + f(z,9),vy) = (f(z,y),2y) =

- (f(xay)a 1) + (O,xy) - (f(x7y)? 1) + uﬂfy’
and then, since f(z,y) € U(A), u, + u, is a representative by Proposition
3.2. Hence, thanks to Proposition 3.4, the extension is regular. Furthermore,
for all a € A, we have

upti(a) = (0,2)+(a,1) = (p(x)(a), 2) = (p(x)(a), +(0,2) = i(o(@)(a)) 41,
which means that ® sends x € M to the equivalence class of ¢(x). |

Remark 4.2. If, in the previous proposition, we have that ¢: M — SEnd(A),
then the crossed product extension is weakly homogeneous. Indeed, every el-
ement (a,x) € A X M can be written as

(a,7) = (0,2) + (d, 1),
where o' € A is such that p(x)(a") = a (such an element exists since p(x) is

surjective).

If we have that p: M — Aut(A), then the crossed product extension is
homogeneous. Indeed, if

(07 l’) + (ah 1) = (0737) + (a27 1)7
then

(e(@)(a),2) = (p(z)(az),2) = @r)(ar) = p(x)(az) = a1 =ay
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(See Definition 3.10 and the note after it.)

We recall from [23] the following version of the Short Five Lemma for
monoid extensions:

Proposition 4.3 ([23], Proposition 4.5). Consider the following commutative
diagram of monoid homomorphisms:

A—"-B-2 M

ST

A B —— M,

where the two rows are Schreier extensions and the homomorphism 3 sends
representatives to representatives. Then:

- if a and v are injective, then B also is;

- if a and vy are surjective, then 3 also is;

- if a and v are isomorphisms, then [ is an isomorphism, too.

This fact allows us to prove the following:

Proposition 4.4. Given an abstract kernel ®: M — ?gs((ﬁ)), where A and

M are monoids, fix an endomorphism ¢(x) € ®(x) for every element x € M
(with (1) = idy). Then every reqular Schreier extension E as in (1) which
induces the abstract kernel ® is tsomorphic to the crossed product extension

A—"-[A o, f,M] 2= M.

Proof: We take representatives v,, x € M, of E, with v;y = 0. Then, for all
a € Aandall x € M, we get that

vy +a=1vY(x)(a) + v,
for some ¢ (z) € ®(x). Then, for each x € M,

p() = pg() ()
for some g(x) € U(A), i.e. for all a € A,
p(z)(a) = g(z) + ¥ (z)(a) — g(x).

We define new representatives by putting u, = g(z) 4 v,, for z € M. Choos-
ing g(1) = 0, we get u; = 0. Since E is regular, for all x,y € M, u, +u, is a
representative, hence

Uy + uy = f(2,Y) + Uy
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with f(x,y) € U(A). Furthermore, for all « € A and all x € M,

Uy +a=g(x)+v,+a=g(x)+ ) (a) + v, = g(x) +¥(x)(a) — g(x) + uy,
that is,

Uy +a=p(x)(a) + u,.
Then the maps ¢: M — End(A) and f: M x M — U(A) satisfy the condi-
tions of Proposition 4.1 (see the considerations before this proposition) and

therefore we have the crossed product extension [A, p, f, M]. Consider now
the diagram

A & B d M
]
A>—>[A7907faM]_p)>Ma

?

where the map [ is defined by 5(b) = (a,z), where o(b) = x and a is the
unique element of A such that b = a+wu,. Then S is a monoid homomorphism:
clearly 5(0) = 6(0 4+ u1) = (0,1), and moreover

Blartustastuy) = Slart+e(r)(as)tutuy) = flarte(r)(ag)+f (2, y)+uy)

(a1 + @(z)(az) + f(z,y), 2y) = (a1, ) + (a2,y) = Blar + uz) + flaz + uy).
Furthermore
Br(a) = Bla+uw) = (a,1) = i(a),
and
pBla+uz) = pla,z) = x =o(a+us),

hence the diagram is commutative. Finally, S(u,) = (0,z), and if w, is
another representative of £ then w, = g 4+ u,, g € U(A), whence f(w,) =
i(g) + (0,z), and so the representatives are preserved by 5 (see Proposition
3.2). Thanks to Proposition 4.3, § is an isomorphism. |

5. The obstruction of an abstract kernel

The aim of this section is to show that, to any abstract kernel

S M — Sﬁﬁ‘(%l) (resp. ®: M — %), it is possible to associate an

element of the third Eilenberg-Mac Lane cohomology group of M with coef-
ficients in the M-module U(Z(A)), called the obstruction of ®. Moreover, we

will show that the abstract kernel &: M — SIZ ZL(%D (resp. ®: M — ?ﬁig%)

is induced by a regular weakly homogeneous (resp. homogeneous) Schreier
extension if and only if its obstruction is the zero element of the cohomology
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group. In order to do this, we first describe how to get from ® a structure
of M-module on U(Z(A)).

SEnd(A)
Inn(A) 7
M are monoids, the center Z(A) of A is an M-semimodule w.r.t. the action

defined by
x-c=p(x)(c) forz e M, ce Z(A), p(z) € ®(z).

Proof: We first show that x-c € Z(A) for all x € M, ¢ € Z(A) and ¢(x) €
®(z). Consider an element a € A. Being ¢(x) surjective, there exists a’ € A
such that p(x)(a’) = a. Then

a+o(z)(c) = p(x)(d) + p()(c) = p(z)(a’ + ¢) =

= p(z)(c +a') = p(x)(c) + ¢(z)(d') = p(x)(c) + a.
Now, it remains to show that the definition above does not depend on the
choice of the representative ¢(x) of the class ®(x) in the quotient Sf; Zf(lg)l).
To do that, consider another representative i (z) € SEnd(A). Then there is
an element g € U(A) such that ¢(z) = pyp(z). So, we get

b(x)(e) = ngp(r)(c) = g+ p(@)(c) — g = p(2)(c) + 9 — g = p(z)(c),
where we are using that ¢(z)(c) € Z(A). This concludes the proof. _

where A and

Proposition 5.1. Given an abstract kernel ®: M —

Corollary 5.2. Giwen an abstract kernel ®: M — Sﬁ%‘&‘?), where A and

M are monoids, the group U(Z(A)) of A is an M-module w.r.t. the action
defined by

vog=p(@)g) forz €M, g€ UZ(A)), plx) € Bx).

Proof: It is immediate to observe that, if g € U(Z(A)), then x - g is also
invertible, with inverse x - (—g), so the action of M on Z(A) restricts to
U(Z(A)). u

Now we describe how to associate an obstruction to an abstract kernel.

Given a monoid homomorphism ®: M — SIZ Z‘({({;) , we choose a representative

o(x) € ®(z) for any x € M, with ¢(1) = ids. We have that

(@) o(y) = tif(wyP(Ty)
for some f(x,y) € U(A), with f(z,1) = f(1,y) = 0. Now, given x,y,z € M,
we have, on one hand

(@) e(W)p(2) = @(@) sy, P(Y2) = Ho@)(fy,)P(T)p(Yyz) =
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= L) (f(1,2) Ff (2y2) P(BYZ) = L) (f,2)+ F(xy2) P(EYZ),
and, on the other hand
(@) o(W)(2) = tpey)(TY)P(2) = Bf@p) i ay)L(TYZ) = [fmy)+ oy, P(TYZ).

Comparing the two expressions, and using the fact that p(xyz) is surjective,
we get the equality

Poo(@)(f(y.2))+f(wyz) = Bf () +fay.2)
namely
Hip(a)(£ (9:2)+F (@)~ (F )+ £ (w9.2)) = 1A
which tells us that
p(2)(f(y, 2)) + f@,y2) = (f(2,9) + f2y, 2)) € U(Z(A)).
This means that there exists a unique element k(x,y, z) € U(Z(A)) such that

e(@)(f(y,2) + flx,yz) = k(z,y,2) + f(z,y) + f(2y, 2).
Clearly, k(x,y,1) = k(z,1,2) = k(1,y,2) = 0.

Definition 5.3. The function k: M x M x M — U(Z(A)) we get this way
1s the obstruction of the abstract kernel .

Proposition 5.4. An obstruction k of an abstract kernel ® as above is a 3-
cocycle of the cohomology of M with coefficients in the M-module U(Z(A)).

Proof: Given elements x,y, z,t € M, we compute the expression

(@) (o) (f(z,1) + fy, 1)) + f(=,yz1)
in two different ways. On one hand, we have
() () (f(2,1) + fly, 2t) + f(2,yzt) =
= o(x)(k(y, 2, t) + f(y,2) + f(yz, 1) + [z, y2t) =
=z k(y,z,t) + o@)(f(y,2)) + o(@)(f(yz, 1) + f(2,yzt) =
=z -k(y,2,t) + k(x,y,2) + f(z,y) + f(zy, 2) — f(z,y2)+
+h(z,yz,t) + f(z,y2) + flayz,t) — flz,yzt) + f(o,yzt) =
=x-k(y,z,t) + k(z,y,2) + k(z,yz,1) + f(z,y) + f(zy, 2) + f(zyz,1),

where the last equality holds since k takes values in the center of A. On the
other hand, we have

p(x)(eW)(f(z0) + [y, 2t) + f(2,yzt) =
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= p(@)ey)(f(z.1) +e(@)(f(y, 2t)) + f(z,yzt).
Since p(2)p(Y) = fhp@q)P(2y), this is equal to
f@.y) +e(@y)(f(z,1) = f(z,y) + o(2)(f(y, 21) + [z, yzt) =
= f(z,y)+k(zy, 2, )+ f(zy, 2) + f(zyz, ) — fay, 2t) — [(2,y) + k(z,y, 20)+
+f(z,y) + flzy, 2t) — [z, yzt) + f(z,y2t) =
= k(zy, z,t) + k(z,y, 2t) + f(z,y) + f(zy, 2) + f(zyz, 1),
where, once again, the last equality holds since k takes values in the center
of A. Comparing the two expressions, and using the fact that f takes values
in U(A), we obtain the equality
v k(y,z,t) + k(z,yz,t) + k(z,y, 2) = k(zy, 2, 1) + k(2. y, 2t).

Since k(z,y,1) = k(z,1,z) = k(1,y, 2) = 0, we have that k is a 3-cocycle. =

In the construction of the obstruction of an abstract kernel ®, we used the
fact that, given x,y € M, there exists an element f(x,y) € U(A) such that
o(@)e(y) = pfaye(ry). Such an element is not unique. However, if we

replace it with an f'(x,y) with the same properties, the cohomology class of
the corresponding 3-cocycle k' is the same:

Proposition 5.5. Consider an abstract kernel ®: M — Sizc(%l), with chosen

representatives p(x) € ®(x) for any v € M, with (1) = ida. If, for any
x,y € M, we have

0()o(y) = tr@ne(@y) = fpaye(Ty)

with
flz,1)=0=f(l,y)  and  f(2,1)=0=f'(1Ly),
then the 3-cocycles k and k' constructed using f and f' are cohomologous.

Proof: From the equality

[ () P(TY) = fpray) p(Ty)
We get [Lf(zy) = Mfi(ay), Decause p(xy) is surjective. This means that

Hf(ay)-f(ay) = tda.
Hence
Wz, y) = f(z,y) — [z, y) € U(Z(A)),
so we get a map
h: M x M — U(Z(A))
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such that h(x,1) = 0 = h(1,y). From the equality

fx,y) = h(z,y) + f'(z,y),

valid for all z,y € M, and from the definition of the cocycles k and k', we
get:

k(z,y,2) = o(x)(f(y,2)) + f(z,y2) — f(zy, 2) — f(z,y) =
= p(x)(h(y, 2) + f'(y, 2)) + h(z,y2)+
+f (w yz) — [Mzy, 2) + f'(2y, 2)] — [I(z, y) + (2, 9)] =
p(@)(f'(y,2)) + [(2,y2) = f(zy,2) = f'(z,9)+
+z - h(y,z) — h(zy, 2) + h(x,yz) — h(x,y) =
=k (x,y,2) — 0*h(x,y, 2).
Thus k' — k = 6°h. |

Conversely, starting with cohomologous cocycles:

Proposition 5.6. Consider an abstract kernel ®: M — SEZ—G&)), with cho-

sen representatives p(x) € ®(x) for any x € M, with ¢(1) = ida. Let
f M x M — UA) be a map with p(x)p(y) = Wiwye(ry) and
f(x,1) =0= f(l,y) for any x,y € M, and let k: M x M x M — U(Z(A))
be the 3-cocycle induced by f. If k" is a 3-cocycle which is cohomologous to
k, then there exists a map f": M x M — U(A), with f"(z,1) =0= f"(1,y),
such that

P(2)p(y) = ppray)P(y)
and the 3-cocycle induced by f" is precisely k.
Proof: By assumption, there exists a map h: M x M — U(Z(A)), with
h(x,1) = 0 = h(1,y), such that k — k" = §h. We define f": M x M — U(A)
by putting

f(z.y) = hz,y) + f(z,9).
Clearly f"(x,1) =0= f"(1,y). Moreover,

Kpr(zy) = Phlzy)Af(zy) = Hfey):
since h(x,y) € U(Z(A)). Therefore

o(@)o(Y) = iy p(Ty).

Furthermore, for any z,y, 2 € M we have

gD(Q?)(f//(y, Z)) + f”(lﬁ, yZ) - f//(xyu Z) - f”(.’L‘, y) -
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= p(x)(h(y, z) + f(y,2)) + h(z,yz)+
+f(2,yz) — [h(zy, 2) + flzy, 2)] = [h(z,y) + flz,y)] =
= p(@)(f(y,2)) + f(z,y2) — f(2y, 2) — flz,y)+
+z - h(y,z) — h(zy, 2) + h(x,yz) — h(x,y) =
= k(x,y,2) — 8*h(x,y,2) = k' (x,y, 2).
m
It remains to check what happens if, given an abstract kernel

o: M — Sﬁl 26(11(4‘;1), we consider two different representatives p(x) and ¢'(x) of
O(x):

Proposition 5.7. Consider an abstract kernel ®: M — SE”‘?%), with cho-

sen representatives p(x) € ®(x) for any x € M, with ¢(1) = ids. Let
f: M x M — U(A) be a map with p(x)p(y) = pr@yp(ry) and f(z,1) =
0= f(l,y) for any z,y € M, and let k: M x M x M — U(Z(A)) be the
3-cocycle induced by f. If one chooses other representatives ¢'(x) € ®(x),
again with ¢'(1) = ida, then there exists a map f': M x M — U(A), with
fi(x,1) =0= f'(1,y), such that
P ()¢ (y) = bpiay @ (2y)
and its induced 3-cocycle is precisely k.
Proof: Since p(x),¢'(x) € ®(z) for all x € M, they differ by an inner auto-

morphism of A. In other terms, there is a map g: M — U(A), with ¢g(1) =0,
such that

¢ (2) = pryyp().
Then, for x,y € M, we get

©'(x)¢'(y) = Hg(z)P p(r)p Hg(y)¥ p(y) = Hog(z)Mo(x)(g(y ))@(x)sﬁ(y) =

= L) Ho(2) (g(u) s (1) P(TY) = gy (@) (g) T (2) g (wn € (ZY
/

= () Heo() (g()) 1 f () g (o) P (T 3/) ug<x>+so<x><g<y>>+f<sc y)—gla >90($y)-
Thus, defining

f'(wy) = 9(@) + () (9(W) + f(z,y) — g(xy),
we obtain that ¢'(2)¢'(y) = ppye'(ry), and obviously f'(z,1) = 0 =
f'(1,y). It remains to check that the induced 3-cocycle is k. We have

@l(x)(f/(yv Z)) + f/(l', yZ) - f,($y7 Z) - f/(.%', y) -
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= ¢ (2)g9(y) + o) (9(2) + f(y,2) — g(y2)] + g(x) + p(2)(g(y2))+
+f(x,y2) — g(zyz) — [9(zy) + w(zy)(9(2)) + f(2y, 2) — g(zy2)]+
—[g(x) + w(x)(9(y)) + f(2,y) — g(zy)] =
—ug [90(93)( (y ))+ (fv)@( )(9(2)) + o(z)(f (v,
£

—g(zyz)+g(ryz)—
p(z

z)) — p(x)(g9(y2))]+

vy, z)—p(ry)(9(2))—g(xy)+

)9(y)) —g(z) =

z)(f(y, 2))—p(x)(9(yz))—g(x)+g(x)+
(

~

= g(x)+p(r)(9(y )) p(z
+p(x)(g(y2))+f(z,y2)— f
= g(z) +¢(x)(9(y)) + p(x

<y><glz>>+sa
)<

=g(z) + »(z)(g

+f(z,y) —e(xy)(9(2)) — f(z,y) — ¢(x)(9(y)) — g(x) =
= k(z,y,2) +g(x) + o(@)(9(y) + f(z,y) + 0(xy)(9(2)) — f(z,y) + f(z,y)+
—p(zy)(9(2)) — f(z,y) — w(x)(9(y)) — 9(v) =
= k(z,y, 2),
and this concludes the proof. |

The previous propositions give the following:

Theorem 5.8. Any abstract kernel ®: M — SEnC(lfél)) determines in an invari-

ant way an element Obs(®) of the third cohomology group H3*(M,U(Z(A)))
of the monoid M with coefficients in the M-module U(Z(A)). An abstract

kernel ®: M — Siﬁ?ﬁlf 15 induced by a reqular weakly homogeneous Schreier
extension if and only if Obs(®) is the zero element of H*(M,U(Z(A))).

Proof: The fact that the element Obs(®) € H*(M,U(Z(A))) is uniquely de-
termined is a consequence of the previous propositions. If the abstract kernel
® is induced by a regular weakly homogeneous Schreier extension, we ob-

served at the beginning of Section 4 that there exists a map
f: M x M — U(A) such that f(z,1) =0= f(1,y) and

p(@)(f(y,2)) + flz,yz) = f(z,y) + flay,2z)  forallz,y,z € M.

Hence, the element Obs(®) associated to the abstract kernel ® induced by
the extension is zero. Conversely, if the obstruction of an abstract kernel
d: M — Sli Zc(%l) is zero, then the crossed product extension built in Propo-

sition 4.1 (which is weakly homogeneous by Remark 4.2) induces ®. |
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Aut(A)

Ton(A)” i.e. for

In particular, for abstract kernels which factor through

Aut(A)
Inn(A)

abstract kernels of the form ®: M — , we get:

Theorem 5.9. Any abstract kernel ®: M — ;%Eﬁ; determines in an 1nvari-

ant way an element Obs(®) of the third cohomology group H>(M,U(Z(A)))
of the monoid M with coefficients in the M-module U(Z(A)). An abstract

kernel ®: M — ?S;Efl; 15 induced by a reqular homogeneous Schreier exten-

sion if and only if Obs(®) is the zero element of H*(M,U(Z(A))).
If the monoid A is a group, then SEnd(A) = Epi(A) and every Schreier
extension of M by A is regular (see Proposition 3.9). Recalling that such

extensions are called special Schreier in [4, 5, 17, 18], it is worth mentioning
the following particular case of the previous theorems:

Corollary 5.10. Let M be a monoid and A a group. Any abstract kernel

o: M — ﬁfﬁgf) (resp. &: M — ?g;gﬁ; ) determines in an invariant way an

element Obs(®) of the third cohomology group H?(M, Z(A)) of the monoid M
with  coefficients in  the M-module Z(A). An  abstract  kernel
S M — féﬁﬁ; (resp. ®: M — ?:;Eﬁ%) 18 induced by a weakly homoge-

neous (resp. homogeneous) special Schreier extension if and only if Obs(®)
is the zero element of H3(M, Z(A)).

We observe that the particular case described in the previous corollary
could also be obtained from the results of [27].

6. The classification of regular weakly homogeneous and
regular homogeneous schreier extensions

In this section we show that the set Ext(M, A, ®) of isomorphic classes

of regular weakly homogeneous (resp. homogeneous) Schreier extensions (1)

which induce the same abstract kernel &®: M — Sf; Zc(lg)l) (resp.

O: M — %), when it is not empty, is in bijection with the second co-
homology group H?*(M,U(Z(A))) of M with coefficients in the M-module

U(Z(A)). In order to do this, we show that there is a simply transitive action
of the abelian group H?*(M,U(Z(A))) on the set Ext(M, A, ®).

We start by recalling that an action of a group G on a set S is simply
transitive if, for all s, s’ € S, there exists a unique g € G such that g-s = s'.
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Given a simply transitive action of G on S, every element s € S determines
then a bijection a: G — S, defined by a(g) =g - s.

Suppose now that an abstract kernel &: M — SEZ‘Z;)) is induced by a regu-

lar weakly homogeneous Schreier extension (1), i.e. that the set Ext(M, A, @)
is not empty. For every x € M, we choose a representative ¢(z) € ®(z), with
¢(1) = id4. We define an action of H*(M,U(Z(A))) on Ext(M, A, ) as fol-
lows. Given elements cl(h) € H*(M,U(Z(A))) and cl(E) € Ext(M, A, ®),
Proposition 4.4 tells us that E' is isomorphic to a crossed product extension
(A, , f, M], where f: M x M — U(A) is a map with f(z,1) =0 = f(1,y)
and

P(2)e(Y) = ppayp(2y),
and such that the equality (3) holds. Consider the function
h+f: M x M — U(A) defined by (h+ f)(z,y) = h(x,y) + f(z,y). Clearly

(h+ f)(@,1) =0=(h+ f)(Ly),
and, since h(x,y) € U(Z(A)), we also have
(@) (Y) = it ) () P(TY)-
Furthermore,
p(@)(h(y, z) + f(y, 2) + h(z,yz) + f(z,y2) =

(5, 2)) + (@) (f(y, 2)) + bz, yz) + [z, yz) =
h(y,2)) + hiz, yz) + (@) (f(y, 2)) + f(z,y2) =
= h(@,y) + hzy, 2) + f(z,y) + flay, 2) =

h

= h(z,y) + f(z,y) )+ fzy, 2),
where we are using that h(z,yz), h(zy,z) € U(Z(A)), that h is a 2-cocycle
and the equality (3). Thus

o(x)(h+ )y, 2) + (h+ f)(z,y2) = (h+ f)(z,y) + (b + f)(zy, 2).

Thanks to this equality, we can build the crossed product extension
[A, p, h+ f, M|, which is weakly homogeneous by Remark 4.2. The action of
H*(M,U(Z(A))) on Ext(M, A, ®) we are looking for is then defined by:

(k) - () = cl([A, 0, b+ f, M]). @)
Theorem 6.1. The action (4) is well defined and simply transitive.

+
_|_
+

(xy, 2
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Proof: We first prove that the action is well defined, i.e. that it does not
depend on the choice of the representatives. If c¢l(h) = cl(h') and cl(E) =
cl(E'), with E’ isomorphic to the crossed product extension [A,p, f', M],
then

() - cl(E') = cl([A, @, I + f', M)).

Since cl(F) = cl(E"), there exists a commutative diagram

A—"[Ap, f M]—= M

| I

A>—-/)[A7907f,7M]_>>M
i p

where ( is an isomorphism. For every « € M we have ((0,z) = (r(x), z) with
r(x) € U(A). Indeed, ¢ sends representatives to representatives, and (a, )
is, by Proposition 4.1, a representative if and only if a € U(A). Moreover

(T(l)a 1) - C(Ov 1) - (07 1)7

whence r(1) = 0. So, we get a map r: M — U(A) with (1) = 0. Further-
more, for all a € A and x € M we have

¢la,z) = ¢((a,1) + (0, z)) = ¢(a, 1) + (0, 2) = (a,1) + (r(z),2) =
= (a+e(W)r(z) + f(L,2),2) = (a+r(z),2).
Using this equality, one gets
¢((ar, ) + (az,y)) = C(a1 + p(2)(a2) + f(z,y), 2y) =
= (a1 + ¢(z)(az) + f(z,y) + r(zy), zy),
and
(((ar,z) + (a2, y)) = (a1, 2) + ((az,y) = (a1 + 7(2), ) + (a2 + r(y), y) =

= (a1 +7(z) + ¢(z)(a2) + (@) (r(y)) + f'(z,y), 2y).
Comparing the two expressions, we obtain

ar+ () (az) + (2, y) +r(zy) = a1+ (@) +o(x)(az) + o(2)(r(y)) + [ (@, 515))
Moreover, since cl(h) = cl(h'), there is a 1-cochain v: M — U(Z(A)) such
that

hz,y) +y(zy) = B (2, y) +z-(y) + (). (6)
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Consider now the diagram

A—[A o, h+ f, M]—= M

| k |

A>—>[A7907h/+f/7M]é,>Ma
) p

where the map £ is defined by &(a,x) = (v(x) + a + r(z),z). Clearly the
diagram is commutative. Using the equalities (5) and (6), and the fact that
h,h' and ~ take values in U(Z(A)), it is straightforward to check that ¢ is
a monoid homomorphism. Moreover, it sends representatives to representa-
tives, since &(a, z) = (y(x)+a+r(z),z), and y(x)+a+r(z) € U(A) whenever
a € U(A) (see Proposition 4.1). Then, Proposition 4.3 implies that £ is an
isomorphism. This shows that the action is well defined. It is obviously an
action, since

(cl(h) + cl(h)) - cl(E) = cl(h) - (cI(R) - cl(E)) and cl(0) - cl(E) = cl(F).

The next step of the proof consists in showing that the action is simple,
namely:

cl(hy) - cl(E) = cl(hg) - cl(E) = cl(hy) = cl(hs).
If cl(hy) - cl(E) = cl(hs) - cl(F), we have a commutative diagram

A>L[A7907h1+f7M]ﬂ».]\H4

| |

A>z_'2) [A, p, ho + f, M] E»M’
where 7 is an isomorphism. As we did for ( in the first part of the proof, one
can check that
n(a,z) = (a+b(x),z), withb: M — U(A), b(1)=0.

Let us prove that b is in fact a l-cochain with h; — hy = 6'b. If a € A
and x € M, then there exists ' € A such that ¢(z)(a’) = a, because
() € SEnd(A). Then we get

(a+b(z), ) = nla, x) = n(p(z)(a), z) = n((0,2)+(d’, 1)) = n(0, z)+n(a’, 1) =
= (b(x), z) + (', 1) = (b(x) + p(z)(a’), ) = (b(z) + a, ),
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hence a 4+ b(x) = b(x) + a, which means that b(z) € U(Z(A)) for all x € M.
Moreover
n((0,2) +(0,y)) = n(h(z, y) + f(z,y), zy) = (h(z,y) + f(z,y) + b(zy), zy),
and
n((0,2) + (0,y)) = n(0,z) +n(0,y) = (b(z),z) + (b(y),y) =
= (b(z) + o(x)(b(y)) + ha(z, y) + f(z,y), 2Y).

Therefore

hi(z,y) + f(x,y) + b(zy) = b(z) + ©(2)(b(y)) + ha(z,y) + f(z,y),

whence

hi(z,y) — ho(z,y) = ©(z)(b(y)) — b(zy) + b(z) = §'b(x, ),

and this tells us that cl(hy) = cl(hs) and the action is simple.

[t remains to prove that it is transitive, i.e. that for all cl(F),cl(E") €
Ext(M, A, ®) there exists cl(h) € H*(M,U(Z(A))) such that cl(h) - cl(E) =
cl(E"). Given cl(E),cl(E'") € Ext(M, A, ®), we know from Proposition 4.4
that £ and E’ are isomorphic to crossed product extensions [A, ¢, f, M] and
[A, p, [/, M] respectively, where for all 2,y € M the following equalities hold:

P(2) oY) = bieyP(2y) = by @y P(@y).
Being ¢(xy) surjective, this implies that p s, )z, = ida, and so f'(x,y)—
f(z,y) € U(Z(A)). Let us then define the function h: M x M — U(Z(A))
by putting
h(z,y) = f(z,y) = f(z,y).
A straightforward calculation (using the equality (3) and the fact that h
takes values in U(Z(A))) shows that h is a 2-cocycle. Then we get

cl(h) - cl(E) = cl([A, o, h + f, M]) = cl([A, o, f', M]) = cl(E),
and the action is transitive. ]

The previous theorem gives then the desired bijection between Ext(M, A, ®)
and H2(M,U(Z(A))):

Corollary 6.2. For any fized cl(E) € FExt(M,A,®), the map from
H*(M,U(Z(A))) to Ext(M, A, ®) which sends cl(h) to cl(h) - cl(E) is bi-
jective.
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If U(Z(A)) = 0 (in particular, if U(A) = 0 or Z(A) = 0), then both
H*(M,U(Z(A))) and H3(M,U(Z(A))) are the trivial groups. This means
that, for every abstract kernel ®: M — SIZ Z‘?%), Obs(®) = 0. Hence we get
the following

Corollary 6.3. If U(Z(A)) =0, for every abstract kernel ®: M — SIZZ‘Z%),

there exists, up to isomorphism, a unique weakly homogeneous Schreier ex-
tension of M by A which induces ®. IfU(A) = 0, then also Inn(A) =0, and
so the abstract kernel is a monoid homomorphism ®: M — SEnd(A), i.e.
an action of M on A. In this case the unique weakly homogeneous extension
s the semidirect product of M and A via the action .

It is immediate to see that the results of this section are valid, in particular,

for abstract kernels of the form &: M — ‘;%Eﬁ; and regular homogeneous

Schreier extensions. Let us state them explicitly.

ALEAA;, if the set

Theorem 6.4. Given an abstract kernel ®: M T

Ext(M, A, ®) of isomorphic classes of reqular homogeneous Schreier exten-
sions of M by A which induce ® is not empty, then (4) is a simply transitive
action of the abelian group H*(M,U(Z(A))) on Ext(M,A,®). This action
induces a bijection between Ext(M, A, ®) and H*(M,U(Z(A))).

Corollary 6.5. If the monoid A is such that U(Z(A)) = 0, for every abstract
kernel ®: M — fgg%ﬁ; there exists, up to isomorphism, a unique homoge-
neous Schreier extension of M by A which induces ®. If U(A) = 0, then
also Inn(A) = 0, and so the abstract kernel is a monoid homomorphism
O: M — Aut(A), i.e. an action of M on A. In this case the unique ho-

mogeneous extension is the semidirect product of M and A via the action
.

Finally note that, if A and M are both groups, then Theorem 6.4 turns
into the classical cohomological classification of group extensions with non-
abelian kernel (see, e.g., [16]).

References
[1] D.Bourn, Commutator theory, action groupoids, and an intrinsic Schreier-Mac Lane extension
theorem, Adv. in Math. 217 (2008), 2700-2735.

[2] D. Bourn, Internal profunctors and commutator theory; applications to extensions classifica-
tion and categorical Galois theory, Theory Appl. Categ. 24 (2010), 451-488.



28

[3]

[27]

N. MARTINS-FERREIRA, A. MONTOLI, A. PATCHKORIA AND M. SOBRAL

D. Bourn, G. Janelidze, Centralizers in action accessible categories, Cahiers Top. Géom. Différ.
Catég. 50 (2009), no. 3, 211-232.

D. Bourn, N. Martins-Ferreira, A. Montoli, M. Sobral, Schreier split epimorphisms in monoids
and in semirings, Textos de Matematica (Série B), Departamento de Matematica da Univer-
sidade de Coimbra, vol. 45 (2013).

D. Bourn, N. Martins-Ferreira, A. Montoli, M. Sobral, Schreier split epimorphisms between
monoids, Semigroup Forum 88 (2014), 739-752.

D. Bourn, A. Montoli, Intrinsic Schreier-Mac Lane extension theorem II: the case of action
accessible categories, J. Pure Appl. Algebra 216 (2012), 1757-1767.

P. Carrasco, A.R. Garzén, Obstruction theory for extensions of categorical groups, Appl. Categ.
Structures 12 (2004), 35-61.

A.S. Cigoli, G. Metere, Extension theory and the calculus of butterflies, J. Algebra 458 (2016),
87-119.

A.S. Cigoli, G. Metere, A. Montoli, Obstruction theory in action accessible categories, J.
Algebra 385 (2013), 27—46.

S. Eilenberg, S. Mac Lane, Cohomology theory in abstract groups II. Group extensions with a
non-abelian kernel, Ann. of Math. (2) 48 (1947), 326-341.

A.R. Garzon, H. Inassaridze, Semidirect products of categorical groups. Obstruction theory,
Homol. Homot. Appl. 3 (2001), 111-138.

G. Hochschild, Cohomology and representation of associative algebras, Duke Math. J. 14
(1947), 921-948.

G. Hochschild, Lie algebra kernels and cohomology, Amer. J. Math. 76 (1954), 698-716.

G. Janelidze, L. Marki, W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra 168 (2002),
367-386.

S. Mac Lane, Eztensions and obstructions for rings, Illinois J. Math. 2 (1958), 316—345.

S. Mac Lane, Homology, Springer-Verlag, 1963.

N. Martins-Ferreira, A. Montoli, M. Sobral, Baer sums of special Schreier extensions of
monoids, Semigroup Forum 93 (2016), 403-415.

N. Martins-Ferreira, A. Montoli, M. Sobral, The Nine Lemma and the push forward construc-
tion for special Schreier extensions of monoids with operations, Semigroup Forum 97 (2018),
325-352.

G. Orzech, Obstruction theory in algebraic categories, I, J. Pure Appl. Algebra 2 (1972),
287-314.

A. Patchkoria, Extensions of semimodules by monoids and their cohomological characteriza-
tion, Bull. Georgian Acad. Sci. 86 (1977), 21-24 (in Russian).

A. Patchkoria, Cohomology of monoids with coefficients in semimodules, Bull. Georgian Acad.
Sci. 86 (1977), 545-548 (in Russian).

A. Patchkoria, On Schreier extensions of semimodules, PhD thesis, Thilisi State University,
1979 (in Russian).

A. Patchkoria, Cohomology monoids of monoids with coefficients in semimodules II, Semigroup
Forum 97 (2018), 131-153.

L. Rédei, Die Verallgemeinerung der Schreierischen Erweiterungstheorie, Acta Sci. Math.
Szeged 14 (1952), 252-273.

O. Schreier, Uber die Erweiterung von Gruppen I, Monathsh. Math. 34 (1926), 165-180.

O. Schreier, Uber die Erweiterung von Gruppen II, Abh. Math. Sem. Univ. Hamburg 4 (1926),
276-280.

N. S. Tuen, Non-abelian extensions of monoids, Bull. Georgian Acad. Sci. 84 (1976), 3739
(in Russian).



CLASSIFICATION OF SCHREIER EXTENSIONS WITH NON-ABELIAN KERNEL 29

N. MARTINS-FERREIRA
ESTG, CDRSP, INSTITUTO POLITECNICO DE LEIRIA, LEIRIA, PORTUGAL

E-mail address: martins.ferreira@ipleiria.pt

A. MoONTOLI
DIPARTIMENTO DI MATEMATICA “FEDERIGO ENRIQUES”, UNIVERSITA DEGLI STUDI DI MILANO, VIA
SALDINI 50, 20133 MILANO, ITALY

FE-mail address: andrea.montoli@unimi.it

A. PATCHKORIA
A .RAZMADZE MATHEMATICAL INSTITUTE, IVANE JAVAKHISHVILI TBILISI STATE UNIVERSITY, TAMA-
RASHVILI STR. 6, TBILISI 0177, GEORGIA

E-mail address: alex.patchkoria@googlemail.com

M. SOBRAL
CMUC AND DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COIMBRA, 3001-501 COIMBRA, POR-
TUGAL

E-mail address: sobral@mat.uc.pt



