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IMPROVED PDE MODELS FOR IMAGE RESTORATION
THROUGH BACKPROPAGATION

SÍLVIA BARBEIRO AND DIOGO LOBO

Abstract: In this paper we focus on learning optimized partial differential equa-
tion (PDE) models for image filtering. In this approach, the grey-scaled images are
represented by a vector field of two real-valued functions and the image restoration
problem is modelled by an evolutionary process such that the restored image at
any time satisfies an initial-boundary-value problem of cross-diffusion with reaction
type. The coupled evolution of the two components of the image is determined by
a nondiagonal matrix that depends on those components. A critical question when
designing a good-performing filter lies in the selection of the optimal coefficients
and influence functions which define the cross-diffusion matrix. We propose the use
of deep learning techniques in order to optimize the parameters of the model. In
particular, we use a back propagation technique in order to minimize a cost function
related to the quality of the denoising processe, while we ensure stability during the
learning procedures. Consequently, we obtain improved image restoration models
with solid mathematical foundations. The learning framework and resulting models
are presented along with related numerical results and image comparisons.

Keywords: Nonlinear cross-diffusion, image denoising, back propagation, learning
optimal parameters, stability.

1. Introduction
Nonlinear diffusion processes are well-known and widely used for image

noise removal. Roughly speaking, the idea is to combine an effective noise
reduction by diffusion with the preservation of the edges and other important
image features. Amongst the better known approaches are those where the
diffusion coefficient depends on the gradient with an inverse proportion, [14,
17].

The use of nonlinear complex diffusion filters (NCDF) where the image is
represented by a complex function and the process of filtering is governed
by a diffusion equation with a complex-valued diffusion coefficient, was in-
vestigated in [11]. Those filters, which bring the advantage of using the
imaginary part of the solution as an edge detector avoiding the computation
of the gradient to control the diffusion coefficient, can be successfully applied
for denoising in particular for medical imaging despeckling [6, 15].
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A complex diffusion equation can be written as a cross-diffusion system for
the real and imaginary parts. The use of general cross-diffusion systems
for image processing, which encompasses the complex-diffusion equations
as particular cases, was investigated in [2]. The theoretical studies of the
correspondent initial valued boundary problems were presented in [1] and
[2] for the linear and nonlinear cases, respectively, where well-posedness and
some scale-space representation properties were derived under hypothesis
on the cross-diffusion coefficient matrix. However, besides these conditions,
there is not much insight on the form that these coefficients should take in
practical applications. In [3], the same authors applied the cross-diffusion
model to several examples related to the problem of reducing the speckle
noise in optical coherence tomography (OCT) images. The conclusion is
that the performance of the model is greatly influenced by the choice of the
cross-diffusion coefficient matrix.

All those methods based on diffusion filtering are highly dependent on
some crucial parameters (e.g. [2, 16]). The parameters that lead to the most
effective methods vary depending on the acquisition methods, the nature of
the images and the associated noise profile. Furthermore, diffusion filters
require the specification of a stopping time. To circumvent this issue, a
reaction term can be introduced which keeps the steady-state solution close
to the original image [17].

The challenge lies in the formulation of robust models with optimal parame-
ters corresponding to each architecture. The use of neural networks for image
processing tasks has set the pace of current research in this area. However,
the general intrinsic “black box” nature of such algorithms is a drawback,
particularly in the context of medical applications. In [9] the authors use a
learning framework inspired in nonlinear reaction diffusion processes where
the filters and the influence functions are simultaneously learned from train-
ing data. The results are auspicious. There are, however, some important
questions remaining: the numerical solution is not related with the original
reaction diffusion problem, and more importantly, the qualitative properties
of the computed solution are not derived. Moreover, the method does not
cover promising models as the one based on cross-diffusion.

We propose the use of deep learning techniques such as backpropagation
[12] and Adam algorithm [13] to optimize the parameters of a system of PDEs
for a specific task. In this work, we focus on nonlinear cross-diffusion with
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reaction filters in order to optimize the reaction parameter and the influence
functions of the cross-diffusion matrix for the removal of gaussian noise.

The optimization process we suggest includes the stability of the inherent
numerical method, which is crucial for obtaining successful results. We drive
our attention first to synthetic images in order to develop our learning strat-
egy. The methodology consists in the parametrization of the functions that
govern the cross-diffusion system, the computation of the gradient of a cost
function with respect to these parameters and the application of the back-
propagation technique, widely used in neural network supervised learning, to
learn the optimal parameters. Experiments in real noisy images show that
the training process improves significantly the performance of the filters.

The article is organized as follows. In Section 2 the fully discrete cross-
diffusion with reaction model is presented. Next, the stability conditions are
derived. Section 4 is devoted to the learning model. We present the numerical
experiments in Section 5. We end the paper with a section dedicated to
conclusions.

2. Cross-diffusion reaction model
In this section we present a fully discrete cross-diffusion reaction model

for image restoration. The image is represented by a two-component vector
field, w = (u, v)>, and the restoration process is governed by the nonlinear
cross-diffusion reaction system

ut = ∇ · (d1(w)∇u+ d2(w)∇v)− λ(u− u0) in Ω× R+,

vt = ∇ · (d3(w)∇u+ d4(w)∇v) in Ω× R+,

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω,

uη = 0, vη = 0 on Γ× R+,

(1)

where Ω = (a1, b1)× (a2, b2) ⊂ R2 is the domain of interest, u0 and v0 are the
given initial conditions for u and v and η denotes the outward normal vector
to the boundary Γ = ∂Ω. The cross-diffusion matrix of the model is given
by

D(w) =

(
d1(w) d2(w)
d3(w) d4(w)

)
. (2)

λ is a time dependent non-negative parameter.
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The domain Ω = Ω ∪ Γ is discretized by the points xj = (xj1, xj2), where

xj1 = a1 +h1j1, xj2 = a2 +h2j2, jk = 0, 1, . . . , Nk, hk =
bk − ak
Nk

, k = 1, 2,

for two given integers N1, N2 ≥ 1, j = (j1, j2) and h = (h1, h2) . This spatial
mesh on Ω is denoted by Ωh and Γh = Γ ∩ Ωh. Points halfway between two
adjacent grid points are denoted by xj±(1/2)ek = xj ± hk

2 ek, k = 1, 2, where
{e1, e2} is the canonical basis, that is, ek is the standard basis unit vector in
the kth direction.

For the discretization in time, we consider a mesh with time step ∆t,
0 = t0 < t1 < t2 < . . ., where tm+1 − tm = ∆t.

We denote by Zm
j the value of a mesh function Z at the point (xj, t

m). For
the formulation of the finite difference approximations, we use the centered
finite difference quotients in the kth spatial direction, for k = 1, 2,

δkZj =
Zj+(1/2)ek − Zj−(1/2)ek

hk
, δkZj+(1/2)ek =

Zj+ek − Zj

hk
.

In order to formulate the discrete cross-diffusion restoration problem, let
u0 : Ωh → R be a discrete real-valued function standing for the grey level
values on Ωh of the noisy image to be restored. From u0, an initial distribution
W0 = (U 0, V 0), for the cross-diffusion, is required. This is given by two real-
valued functions U 0, V 0 : Ωh → R, that can be selected following different
criteria. A simple choice, that will be considered in the experiments we
present later in this paper, consists of taking U 0(xj) = u0(xj) and V 0(xj) = 0,
xj ∈ Ωh. A more detailed discussion on the initial data can be seen in [1, 2].

Let Wm
j = (Um

j , V
m
j )>, such that xj ∈ Ωh. Given the initial solution

W0
j = (U 0

j , V
0
j ), the numerical solution of (1) at the time tm+1 is obtained

considering the following finite difference scheme

Um+1
j − Um

j

∆t
=

2∑
k=1

δk

(
d1(W

m)jδkU
m+θ
j + d2(W

m)jδkV
m+θ
j

)
−λm+θ(Um+θ

j − U 0
j ), (3)

V m+1
j − V m

j

∆t
=

2∑
k=1

δk

(
d3(W

m)jδkU
m+θ
j + d4(W

m)jδkV
m+θ
j

)
, (4)
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where

D(Wm)j+(1/2)ek =
D(Wm

j ) +D(Wm
j+ek

)

2
and θ ∈ {0, 1}. If θ = 0 then (3) is an explicit method. If θ = 1 then method
(3) is semi-implicit and its solution is obtained by solving a system of linear
equations. In the next section we will derive the stability properties of both,
explicit and semi-implicit, methods. Later, in sections 4.2 and 4.3, we will
discuss their role in our learning strategy: to optimize the cross-diffusion
model we will use the explicit scheme ; to denoise the images we will use the
semi-implicit discretization of the optimized model.

Equations (3) and (4), for j such that xj ∈ Γh, are defined using points
of the form xj + ek and xj − ek, which don’t belong to Ωh and are not yet
defined. For those points xj + ek and xj − ek, we consider the solution in
xj−ek and xj +ek, respectively. This corresponds to the usual discretization
of the homogeneous Neumann boundary conditions on Γh with central finite
differences.

3. Stability of the numerical scheme
We will now investigate the stability of the finite difference scheme (3)-(4).

The approach generalizes the strategies in [4] used to study the stability of
the particular case of complex-diffusion equations written as a cross-diffusion
system.

For each xj = (xj1, xj2) ∈ Ω̄h, we define the rectangle �j = (xj1, xj1+1) ×
(xj2, xj2+1) and denote by |�j| the measure of �j. We consider the discrete
L2 inner products

(U, V )h =
∑
�j⊂Ω

|�j|
4

(Uj1,j2Vj1,j2 + Uj1+1,j2Vj1+1,j2

+Uj1,j2+1Vj1,j2+1 + Uj1+1,j2+1Vj1+1,j2+1) ,

(U, V )h∗1 =
∑
�j⊂Ω

|�j|
2

(
Uj1+1/2,j2Vj1+1/2,j2 + Uj1+1/2,j2+1Vj1+1/2,j2+1

)
,

and

(U, V )h∗2 =
∑
�j⊂Ω

|�j|
2

(
Uj1,j2+1/2Vj1,j2+1/2 + Uj1+1,j2+1/2Vj1+1,j2+1/2

)
.
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Their correspondent norms are denoted by ‖.‖h, ‖.‖h∗1 and ‖.‖h∗2, respectively.
For W = (U, V )> we define ‖W‖2

h = ‖U‖2
h + ‖V ‖2

h.
To simplify the notation and where it is clear from the context, we write

in what follows d` instead of d`(W
m), or d`(W

m)j, ` = 1, 2, 3, 4.
Multiplying both members of equations (3) and (4) by Um+θ and V m+θ,

respectively, according to the discrete inner product (·, ·)h, and using sum-
mation by parts we get

(
Um+1 − Um

∆t
, Um+θ

)
h

+

(
V m+1 − V m

∆t
, V m+θ

)
h

+
2∑

k=1

(
||(d1)

1
2δkU

m+θ||2h∗k

+ ||(d4)
1
2δkV

m+θ||2h∗k + (d2δkV
m+θ, δkU

m+θ)h∗k + (d3δkU
m+θ, δkV

m+θ)h∗k

)
= −λm+θ(Um+θ − U 0, Um+θ)h.

We can write

Wm+θ =
Wm+1 + Wm

2
+ (θ − 1

2
)∆t

Wm+1 −Wm

∆t

and then

||Wm+1||2h − ||Wm||2h
2∆t

+ (θ − 1

2
)∆t

∣∣∣∣∣∣∣∣Wm+1 −Wm

∆t

∣∣∣∣∣∣∣∣2
h

+
2∑

k=1

(
||(d1)

1
2δkU

m+θ||2h∗k + ||(d4)
1
2δkV

m+θ||2h∗k + (d2δkV
m+θ, δkU

m+θ)h∗k

+ (d3δkU
m+θ, δkV

m+θ)h∗k

)
≤ λm+θ‖Um+θ − U 0‖h‖Um+θ‖h.

(5)

For any ε > 0 we have that

λm+θ‖Um+θ − U 0‖h‖Um+θ‖h ≤ λm+θ(‖Um+θ‖h + ‖U 0‖h)‖Um+θ‖h

≤ λm+θ‖Um+θ‖2
h +

(λm+θ)2

4ε
‖U 0‖2

h + ε‖Um+θ‖2
h.

(6)
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3.1. Stability of the semi-implicit scheme. We start by considering the
case where θ = 1. With the assumption that

2∑
k=1

(
||(d1)

1
2δkU

m+1||2h∗k + ||(d4)
1
2δkV

m+1||2h∗k

+ (d2δkV
m+1, δkU

m+1)h∗k + (d3δkU
m+1, δkV

m+1)h∗k

)
> 0,

(7)

which corresponds to the natural assumption of the diffusion matrix D to be
uniformly positive definite, from (5) and (6) we get

(1− 2∆tλm+1 − 2∆tε)||Wm+1||2h ≤ ||Wm||2h + 2∆t
(λm+1)2

4ε
‖U 0‖2

h.

Assuming that

λm+1 ≤ λmax, 0 < ζ < 1− 2∆tλm+1 − 2∆tε, m = 1, 2, . . . (8)

for some λmax, ζ ∈ IR+ where ε is a constant arbitrarily chosen, we get

||Wm+1||2h ≤ (1 + 2∆t(λ+ ε)ζ−1)||Wm||2h + ∆t
λ2

max

2εζ
‖U 0‖2

h.

If (8) holds, using the Duhamel’s principle ([8], Lemma 4.1 in Appendix B)
we get

||Wm+1||2h ≤ e(1+2(λmax+ε)ζ−1)tm+1
(

1 + tm+1λ
2
max

2εζ

)
||W0||2h

and we conclude that the method is stable.

3.2. Stability of the explicit scheme. We now consider the case where
θ = 0. Applying the || · ||h norm on both sides of equations (3) and (4), and
using the inequalities (a±b)2 ≤ 2a2+2b2 and (a±b)2 ≤ (1+η)a2+(1+η−1)b2

for η > 0, we obtain, respectively,∣∣∣∣∣∣∣∣Um+1 − Um

∆t

∣∣∣∣∣∣∣∣2
h

≤
2∑

k=1

8(1 + η)

h2
k

(
||d1δkU

m||2h∗k + ||d2δkV
m||2h∗k

+ 2(d1δkU
m, d2δkV

m)h∗k

)
+ 2(1 + η−1)(λm)2(‖Um‖2

h + ‖U 0‖2
h),

(9)
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for any η > 0 and∣∣∣∣∣∣∣∣V m+1 − V m

∆t

∣∣∣∣∣∣∣∣2
h

≤
2∑

k=1

8

h2
k

(
||d3δkU

m||2h∗k+||d4δkV
m||2h∗k+2(d3δkU

m, d4δkV
m)h∗k

)
.

(10)
Combining the inequalities (6), (9) and (10) with (5) leads to

||Wm+1||2h − ||Wm||2h
2∆t

+
2∑

k=1

(
||(d1)

1
2δkU

m||2h∗k + ||(d4)
1
2δkV

m||2h∗k

+ (d2δkV
m, δkU

m)h∗k + (d3δkU
m, δkV

m)h∗k

− 4∆t

h2
k

(
(1 + η1)(||d1δkU

m||2h∗k + ||d2δkV
m||2h∗k + 2(d1δkU

m, d2δkV
m)h∗k)

+ ||d3δkU
m||2h∗k + ||d4δkV

m||2h∗k + 2(d3δkU
m, d4δkV

m)h∗k
))

≤
(
λm + ε+ ∆t(1 + η−1)(λm)2

)
‖Um‖2

h

+
((λm)2

4ε
+ ∆t(1 + η−1)(λm)2

)
‖U 0‖2

h.

Let η = ε. In order to obtain a stable scheme we impose that

2∑
k=1

(
||(d1)

1
2δkU

m||2h∗k + ||(d4)
1
2δkV

m||2h∗k

+ (d2δkV
m, δkU

m)h∗k + (d3δkU
m, δkV

m)h∗k

− 4∆t

h2
k

(
(1 + ε)(||d1δkU

m||2h∗k + ||d2δkV
m||2h∗k + 2(d1δkU

m, d2δkV
m)h∗k)

+ ||d3δkU
m||2h∗k + ||d4δkV

m||2h∗k + 2(d3δkU
m, d4δkV

m)h∗k
))
≥ 0,

(11)

for some ε > 0.
If (11) holds, then

||Wm+1||2h ≤‖Wm‖2
h + 2∆t

(
λm + ε+ ∆t(1 + ε−1)(λm)2

)
‖Um‖2

h

+ 2∆t
((λm)2

4ε
+ ∆t(1 + ε−1)(λm)2

)
‖U 0‖2

h.
(12)
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We now take aε = 2
(
λm + ε+ ∆t(1 + ε−1)(λm)2

)
and bε = 2

(
(λm)2

4ε + ∆t(1 +

ε−1)(λm)2
)

. From (12) and using the Duhamel’s principle we get

||Wm+1||2h ≤ eaεt
m+1
(

1 + tm+1bε

)
||W0||2h

and we conclude that the method is stable.
Note that we can rewrite (11) as

2∑
k=1

(δkW )m>MδkW
m ≥ 0, (13)

where M is a square matrix of dimension 2N1N2 × 2N1N2. In order (13) to
hold we require M to be semi-positive definite, that is, the eigenvalues of M
are all non-negative. Using the Gershgorin Theorem, a sufficient condition
for the method to be stable is to impose that the influence functions satisfy,
for some ε > 0,

d1 −
4∆t

h2
k

((1 + ε)d2
1 + d2

3) ≥ |
1

2
(d2 + d3)−

4∆t

h2
k

((1 + ε)d1d2 + d3d4)|,

d4 −
4∆t

h2
k

((1 + ε)d2
2 + d2

4) ≥ |
1

2
(d2 + d3)−

4∆t

h2
k

((1 + ε)d1d2 + d3d4)|.
(14)

4. Learning model
Our goal is to optimize the parameters of our model using deep learning

techniques. In order to adapt the cross-diffusion scheme (3)-(4) to a neural
network architecture, we concatenate U and V into a single column vector
w with 2N1N2 entries:

w = (u, v)>, u =


U1,1

U1,2
...

UN1,N2

 , v =


V1,1

V1,2
...

VN1,N2

 .
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The m-th iteration of the scheme (3)-(4) can now be written in the vector
formulation

wm+1 − wm

∆t

= (Kx
l D

x,m
L Kx

rL +Ky
l D

y,m
L Ky

rL +Kx
l D

x,m
R Kx

rR +Ky
l D

y,m
R Ky

rR)wm+θ

−λm+θ(um+θ − u0), (15)

with λ = eβ, β ∈ IR, where the first difference matrices (K∗r∗) are block
matrices:

Kx
rL =

[
kxr 0
0 kxr

]
, Kx

rR =

[
0 kxr
kxr 0

]
, Ky

rL =

[
kyr 0
0 kyr

]
, Ky

rR =

[
0 kyr
kyr 0

]
,

kxr and kyr denote the backward difference operators with respect to x and
y, respectively. The matrices Dx,m

L , Dy,m
L , Dx,m

R and Dy,m
R are 2N1N2× 2N1N2

diagonal matrices. Each entry (j, j) of Dx,m
L and Dy,m

L depend on the function
d1 for j = 1, . . . , N1N2 and on the function d4 for j = N1N2+1, . . . , 2N1N2, at
the time tm. The entries of Dx,m

R and Dy,m
R follow the same pattern, replacing

d1 and d4 by d2 e d3, respectively. It remains to define the difference matrices
Kx
l and Ky

l :

Kx
l =

[
kxl 0
0 kxl

]
, Ky

l =

[
kyl 0
0 kyl

]
,

where kxl and kyl denote the forward difference operators with respect to x
and y, respectively.

We reiterate that the scheme (15) is equivalent to the cross-diffusion scheme
(3)-(4).

4.1. Parameterization of the influence functions. An important aspect
of the methodology of our learning strategy consists in the parametrization of
arbitrary influence functions. We parameterize the influence functions of the
cross-diffusion matrix (2) through standard gaussian radial basis functions.
Here we consider that they only depend on the second component of the
vector w = (u, v)>, i.e., they depend on the component which plays the role
of edge detector. Each of these functions has the expression

d`(v) =
P∑
i=1

δ`,iφ

(
|v − µi|

2ν

)
, φ(z) = e−||z||

2

, (16)
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where µi, for i = 1, ..., P , are equidistant points in the set A of edge-detector
range of values.

4.2. Constrained optimization. In order to optimize/learn the influence
functions of the cross diffusion matrix d1, d2, d3 and d4 and also the function λ
which characterizes the reaction term, a training cost function and a training
dataset are required. We will use a set of B gray-scale images which will serve
as basis for our training set. We fix the time-step ∆t and a number of steps
M , which will result in a cross-diffusion stopping time of T = M∆t. In the
learning viewpoint, we will have a M -layered convolutional neural network.
We aim to minimize the loss function L,

L(Θ, wm
1 , . . . , w

m
B , w

nl
1 , . . . , w

nl
B ) =

B∑
i=1

l(Θ, wm
i , w

nl
i ) =

B∑
i=1

1

2
||umi − unli ||2,

(17)
with wm

i = (umi , v
m
i )>, wnl

i = (unli , v
nl
i )>, where wm

i and wnl
i are, respectively,

the m- th iteration of (15) of the i-th corrupted image and the non-corrupted
image, respectively, B is the learning batch size, and Θ is the set of param-
eters we want to optimize. As such, the set of parameters Θ is

Θ = {λ, δ1,1, . . . , δ1,P , δ4,1, . . . , δ4,P , δ2,1, . . . , δ2,P , δ3,1, . . . , δ3,P},

and we must now obtain ∂L
∂Θ(Θ, wM

1 , . . . , w
M
B , w

nl
1 , . . . , w

nl
B ) to solve the mini-

mization problem.
We need to guarantee that the learning procedure ends up with a stable

scheme. For that, we will make use of the stability conditions derived in
Section 3. Although the use of the explicit method (15) with θ = 0 can bring
some advantages in terms of computational effort, the stability conditions are
much more restrictive when compared to the semi-implicit method (15) with
θ = 1. Moreover, since we need to impose the stability conditions over the
values of Θ, the nonlinearities in the stability condition (14) corresponding
to the explicit scheme carry out some issues that we want to avoid here. For
that reason our goal is to learn a semi-implicit scheme for image denoising.
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To obtain a stable semi-implicit scheme, instead of minimizing the loss
function (17) we seek the solution of the constrained optimization problem

min
Θ

L(Θ, wM
1 , . . . , w

M
B , w

nl
1 , . . . , w

nl
B ) (18a)

s.t. d1(x) ≥ 1
2 |d2(x) + d3(x)|, ∀x ∈ A, (18b)

d4(x) ≥ 1
2 |d2(x) + d3(x)|, ∀x ∈ A. (18c)

We first note that constraints (18b)-(18c) are not in the standard formu-
lation over the values of Θ. As the radial basis functions (16) are strictly
positive, we replace (18b)-(18c) with

c1,i(Θ) = δ1,i − 1
2(δ2,i + δ3,i) ≥ 0, i = 1, . . . , P, (19a)

c2,i(Θ) = δ1,i + 1
2(δ2,i + δ3,i) ≥ 0, i = 1, . . . , P, (19b)

c3,i(Θ) = δ4,i − 1
2(δ2,i + δ3,i) ≥ 0, i = 1, . . . , P, (19c)

c4,i(Θ) = δ4,i + 1
2(δ2,i + δ3,i) ≥ 0, i = 1, . . . , P, (19d)

using the fact that (19a)-(19d) implies (18b)-(18c). To solve the inequality
constrained problem we define the augmented Lagrangian L as

L(Θ, µ, ρ) = L(Θ) +
ρ

2

P∑
i=1

4∑
`=1

max

(
0,
µ`,i
ρ
− c`,i(Θ)

)2

, (20)

which is the usual Powell-Hestenes-Rockafellar function applied to problem
(18a) with constraints (19a)-(19d). The vector µ is the set of Lagrange multi-
pliers associated with constraints (19a)-(19d) and ρ is the penalty parameter.

We follow the main model algorithm in [7] with some minor modifications.
The learning procedure will iterate through L(Θk, µk, ρk). At the iteration k
of the minimization algorithm, the Lagrange multipliers are updated through
the formula

µk+1 = min{max{0, µk − ρkc(Θk)}, µ̄} (21)

where µ̄ > 0 is a multiplier cap, and the penalty parameter is increased or
decreased if the infeasibility increases or decreases, respectively. The measure
of infeasibility at iteration k is given by the quantity

Ik = min{c(Θk), µk/ρk}. (22)

The penalty parameter is updated in the following way: for some predefined
τ ∈ (0, 1) and γ > 1, if Ik ≤ τIk−1 then ρk+1 = ρk/γ, otherwise ρk+1 = γρk.
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Remark 1. The stability condition (8) is not very limitative and for that
reason we don’t include it in the formulation of the optimization problem
(18). Even so, we verify if the condition is satisfied by the optimal solution.
In our numerical experiments, presented later in the paper, that was always
the case.

4.3. Deriving the gradients. A central step to solve the optimization
problem is to compute the gradients of the loss function with respect to the
training parameters. We note that the direction of maximum growth of L
can be obtained via back-propagation:

∂l(Θ, wM , wnl)

∂Θ
=

M∑
m=1

∂l(Θ, wM , wnl)

∂wM

∂wM

∂wM−1
· · · ∂w

m

∂Θ
. (23)

Although the objective is optimize a semi-implicit cross-diffusion with re-
action scheme, we use the explicit scheme (15) with θ = 0 for the learning
steps.

We can readily determine

∂l(Θ, wM , wnl)

∂wM
=
[
(uM − unl)> 0

]
.

We will obtain ∂wm

∂Θ and ∂wm+1

∂wm using (15). We start by noticing that

∂wm

∂λ
= −∆t

[
(um−1 − u0)

0

]
.

We observe that

Kx
l D

x,m
L Kx

rLw
m = Kx

l diag(Kx
rLw

m)gx,mL

where gx,mL is the vector with the entries of Dx,m
L . From (16), we can write

gx,mL = Gx,mΛ1,4, where Λ1,4 is a 2P sized vector with the parameters δ1,i,
i = 1, . . . , P and δ4,i, i = 1, . . . , P of d1 and d4, respectively, and

Gx,m =
1

2

[
SxΦx,m 0

0 SxΦx,m

]
,

where Sx = |kxr | and with Φx,m being a N1N2 × P matrix

Φx,m =

 φ1(v
m
1 ) · · · φP (vm1 )

...
...

φ1(v
m
N1N2

) · · · φP (vmN1N2
)

 .
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Analogously, we write gy,mL = Gy,mΛ1,4, g
x,m
R = Gx,mΛ2,3, g

y,m
R = Gy,mΛ2,3,

where Sy = |kyr |, and obtain

∂wm

∂Λ1,4
= ∆tKx

l diag(Kx
rLw

m−1)Gx,m−1 + ∆tKy
l diag(Ky

rLw
m−1)Gy,m−1,

∂wm

∂Λ2,3
= ∆tKx

l diag(Kx
rRw

m−1)Gx,m−1 + ∆tKy
l diag(Ky

rRw
m−1)Gy,m−1.

Consequently,
∂wm

∂Θ
=

[
∂wm

∂λ

∂wm

∂Λ1,4

∂wm

∂Λ2,3

]
. (24)

To derive the expression of
∂wm+1

∂wm
, we consider (15). We have

∂wm+1

∂wm
= I +

∂wm+1

∂wm

]x
L

+
∂wm+1

∂wm

]x
R

+
∂wm+1

∂wm

]y
L

+
∂wm+1

∂wm

]y
R

, (25)

with

∂wm+1

∂wm

]x
L

= ∆tKx
l D

x,m
L Kx

rL +
∆t

2
Kx
l diag(Kx

rLw
m)

[
0 Sxd′1(v

m)
0 Sxd′4(v

m)

])
,

∂wm+1

∂wm

]x
R

= ∆tKx
l D

x,m
R Kx

rR +
∆t

2
Kx
l diag(Kx

rRw
m)

[
0 Sxd′2(v

m)
0 Sxd′3(v

m)

])
,

∂wm+1

∂wm

]y
L

= ∆tKy
l D

y,m
L Ky

rL +
∆t

2
Ky
l diag(Ky

rLw
m)

[
0 Syd′1(v

m)
0 Syd′4(v

m)

])
,

∂wm+1

∂wm

]y
R

= ∆tKy
l D

y,m
R Ky

rR +
∆t

2
Ky
l diag(Ky

rRw
m)

[
0 Sxd′2(v

m)
0 Sxd′3(v

m)

])
,

where d′`(v
m) is a vector of dimension N1N2 with entries [d′`(v

m)]j = d′`(v
m
j ),

being vmj is the second component of the vector wm
j = (umj , v

m
j )>. We obtain

these derivatives numerically with a centered difference scheme.

4.4. Back-propagation algorithm. We now describe how the unknown
parameters are learned via back-propagation. We store B gray-scale images
to form the basis for our training set. In each iteration, we crop a random
N1 × N2 section of each image and add the desired synthetic random noise
to each section (for example noise of Gaussian type with zero mean and
standard deviation σ. This set of freshly cut sections with noise will make
up the batch for the iteration.
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Algorithm 1 Algorithm for NCDF learning

Input: B gray-scale images, σ > 0 (s.d. of gaussian noise);
Input: 4t > 0, (N1, N2,M) ∈ N3, Θ1 ∈ R4P+1;
Input: Kmax > 0, µ̄ > 0, µ1 ∈ [0, µ̄]4P , ρ1 > 0, τ ∈]0, 1], γ > 1;
Input: Initialization of Adam parameters.
1: Set k = 1;
2: while k ≤ Kmax do
3: Extract B random N1 ×N2 sections from the training set (batch);
4: Add random noise to the batch;
5: Compute ∂L

∂Θk
through backpropagation;

6: Update Θk via Adam algorithm as in [13];
7: µk+1 = min{max{0, µk − ρkc(Θk)}, µ̄};
8: if Ik ≤ τIk−1 then
9: ρk+1 = ρk/γ;

10: else
11: ρk+1 = γρk;
12: end if
13: k = k + 1;
14: end while
Output: ΘKmax

There is also the need to fix the step time ∆t and the number of layers M
before solving the minimization problem. This is a crucial choice, as T =
M∆t becomes the diffusion time for which the procedure will be optimized.
The functions d1, d2, d3 and d4 are initialized as in the nonlinear complex
diffusion case [2], while λ is initialized with the value that provides the best
average peak to signal noise ratio (PSNR) for the nonlinear complex diffusion
process over the training set.

Given these particular considerations, we present the learning algorithm
model (Algorithm 1), which is the Adam algorithm [13] applied to our par-
ticular problem.

5. Experimental results
Having previously established a learning framework for the optimization

of a cross-diffusion process, we now try it out with some examples. We
set B = 50 and store 50 gray-scaled images (Figure 1) that will serve as
training set. The crop size for the batch extraction was fixed for all tests
as N1 = N2 = 100 and the influence functions were initialized as in the
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Figure 1. Images used as training set for the numerical exper-
iments.

Figure 2. Images used as test set for the numerical experiments.

non-linear complex diffusion case [4, 5, 11],

d1(x) = 0.99g(x), d2(x) = −0.1g(x), d3(x) = 0.1g(x), d4(x) = 0.99g(x),
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4t M T

σ = 10

0.05 10 0.5
0.05 15 0.75
0.1 10 1
0.125 10 1.25
0.125 12 1.5

4t M T

σ = 20

0.1 10 1
0.1 15 1.5
0.1 20 2
0.125 20 2.5
0.2 30 3

Table 1. Time-step 4t and number of iterations M fixed for
the numerical experiments. Different choices lead to different
stopping times.

Figure 3. Loss value (17) in training for gaussian denoising
with σ = 10, Kmax = 2000 and different stopping times. An
initial slope gives rise to a steady decline that seems to converge
to an asymptotic value shared by all stopping times.

with

g(x) =
1

1 + x2
.

We experimented with different values of4t and T to see the effect of chang-
ing stopping times in this learning framework. The values chosen are summa-
rized in (Table 1). For the RBF interpolation (16), we chose A = [−20, 20],
P = 151 and ν = 0.2. For the augmented Lagrangian parameters, we fixed
for all tests µ̄ = 2, ρ1 = 6 × 105, τ = 0.5 and γ = 2. Finally, we set
Kmax = 2000 for the number of iterations of the minimization problem.

In Figure 3 we average the values of (17) over groups of 10 algorithm
updates for all the training procedures carried out with σ = 10. The results
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Figure 4. Influence functions learning results for gaussian de-
noising with σ = 10 and different stopping times. From left to
right, top to bottom: d1, d2, d3 and d4

Figure 5. Average of the values of PSNR (left) and Blur (right)
obtained over the test set of the learning results for gaussian
denoising with σ = 10 and different stopping times. We obtain
a considerable improvement in PSNR through training and no
significant alterations in Blur.

show a similar pattern for all combination of 4t and M . The algorithm
reaches a significant lower loss value relatively fast (in 50 to 100 updates)
and proceeds to improve (although in a slower pace) throughout the rest of
the optimization procedure.
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Original NCDF Learned

Figure 6. Learned NCDF results for gaussian denoising with
σ = 20. Top left: PSNR values of Lena denoising for original
and learned NCDF. Top right: Blur values of Lena denoising for
original and learned NCDF. Bottom: Lena detail of original im-
age (left), three seconds diffusion via original NCDF (middle) and
three seconds diffusion via learned NCDF (right). Considerable
improvements in both metrics.

We describe the learned influence functions in figures 4 and 7 for σ = 10
and σ = 20, respectively. We notice that the learning translates into the
determination of the appropriate scale of the original function in the cases of
influence functions d1, d2 and d4, and into the radical reshaping of d3. The
results are consistent across the different stopping times and both levels of
noise.

In figures 5 and 8 we test the learned parameters against the non-linear
complex diffusion case and with the value of λ that provides the best PSNR
in the training set. The comparisons are performed in the test set (figure
2), which is made by images that were not integrated in the training set.
We see in both cases a significant increase in PSNR and a slight increase in
blur ([10]). The combinations of 4t and M that achieve better performances
both for σ = 10 and σ = 20 are those that combine into a greater value of T ,
that is, a later stopping time. The reason for this is the introduction of the
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Figure 7. Influence functions learning results for gaussian de-
noising with σ = 20 and different stopping times. From left to
right, top to bottom: d1, d2, d3 and d4

Figure 8. Average of the values of PSNR (left) and Blur (right)
obtained over the test set of the learning results for gaussian
denoising with σ = 20 and different stopping times. We obtain
an improvement in PSNR through training and a slight increase
in Blur.

reaction term, which shifts the steady-state solution into a non-trivial one
(when compared to diffusion filters without such reaction), and consequently
the denoising process benefits from a longer and more controlled diffusion.
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Original NCDF Learned

Figure 9. Learned NCDF results for gaussian denoising with
σ = 20. Top left: PSNR values of Lena denoising for original
and learned NCDF. Top right: Blur values of Lena denoising for
original and learned NCDF. Bottom: Lena detail of original im-
age (left), three seconds diffusion via original NCDF (middle) and
three seconds diffusion via learned NCDF (right). Considerable
improvements in both metrics.

Finally, we compare the action of the nonlinear complex filter against the
best learned parameters (that is, the ones trained with a larger T ) on the
widely used Lena image. The results are in figures 6 and 9 for σ = 10 and
σ = 20, respectively. In both cases, we achieved significantly improved PSNR
and blur values.

6. Conclusions
We have successfully adapted a cross-diffusion model for image restoration

into a learning framework, obtaining a way to automatically parametrize the
cross-diffusion matrix for different images and levels of noise. By making the
parallelism between neural networks and the parametrization of PDEs, we
believe that this work can be transferred to a broad scope of related problems.
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