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Matemática.
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1. Introduction
Krein [46, 47] was the first to discuss matrix extensions of real orthogonal

polynomials, some relevant papers that appear afterwards on this subject
are [11], [41] and more recently [6]. The Russian mathematicians Aptekarev
and Nikishin [6] made a remarkable finding: for a kind of discrete Sturm–
Liouville operators they solved the scattering problem and proved that the
polynomials that satisfy

xPk(x) = AkPk+1(x) +BkPk(x) + A∗k−1Pk−1(x), k = 0, 1, . . . ,

are orthogonal with respect to a positive definite matrix measure, i.e. they
derived a matrix Favard theorem. Later, it was found that matrix orthogonal
polynomials (MOP) sometimes satisfy properties as do the classical orthogo-
nal polynomials. For example, for matrix versions of Laguerre, Hermite and
Jacobi polynomials, the scalar-type Rodrigues’ formula [35, 34] and a second
order differential equation [13, 32, 33] has been discussed. It also has been
proven in [37] that operators of the form D = ∂2F2(t)+∂1F1(t)+∂0F0 have as
eigenfunctions different infinite families of MOP’s. In [3, 4] matrix extensions
of the generalized polynomials considered in [1, 2] were studied. Recently,
in [5], the Christoffel transformation to matrix orthogonal polynomials in the
real line (MOPRL) have been extended and a new matrix Christoffel formula
was obtained. Finally, in [7, 8] more general transformations —of Geronimus
and Uvarov type— where also considered.
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Fokas, Its and Kitaev [38] found, in the context of 2D quantum gravity,
that certain Riemann–Hilbert problem was solved in terms of orthogonal
polynomials in the real line (OPRL). They found that the solution of a 2× 2
Riemann–Hilbert problem can be expressed in terms of orthogonal polyno-
mials in the real line and its Cauchy transforms. Later, Deift and Zhou
combined these ideas with a non-linear steepest descent analysis in a series
of papers [27, 28, 30, 31] which was the seed for a large activity in the field.
To mention just a few relevant results let us cite the study of strong as-
ymptotic with applications in random matrix theory [27, 29], the analysis of
determinantal point processes [24, 25, 48, 49], orthogonal Laurent polynomi-
als [51, 52] and Painlevé equations [26, 45].

Recursion coefficients for orthogonal polynomials and its properties is a
subject of current interest. See [57, 58] for a review on how the form of the
weight and its properties translates to the recursion coefficients. Freud [39]
has studied weights in R of exponential variation w(x) = |x|ρ exp(−|x|m),
ρ > −1 andm > 0. Whenm = 2, 4, 6 he constructed relations among them as
well as determined its asymptotic behavior. The role of the discrete Painlevé I
in this context was discovered later by Magnus [50]. For a weight of the form
w(θ) = exp(k cos θ), k ∈ R, on the unit circle it was found [54, 55] the
discrete Painlevé II equation for the recursion relations of the corresponding
orthogonal polynomials, see also [44] for a connection with the Painlevé III
equation. The discrete Painlevé II was found in [9] using the Riemann–
Hilbert problem given in [10], see also [56]. For a nice account of the relation
of these discrete Painlevé equations and integrable systems see [23], and for a
survey on the subject of differential and discrete Painlevé equations (cf. [20]).
We also mention the recent paper [22] where a discussion on the relationship
between the recurrence coefficients of orthogonal polynomials with respect to
a semiclassical Laguerre weight and classical solutions of the fourth Painlevé
equation can be found. Also, in [21] the solution of the discrete alternate
Painlevé equations is presented in terms of the Airy function.

In [17] the Riemann–Hilbert problem for this matrix situation and the ap-
pearance of non-Abelian discrete versions of Painlevé I were explored, show-
ing singularity confinement [18], see also [43]. The singularity analysis for
a matrix discrete version of the Painlevé I equation was performed. It was
found that the singularity confinement holds generically, i.e. in the whole
space of parameters except possibly for algebraic subvarieties. The situation
was considered in [19] for the matrix extension of the Szegő polynomials in
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the unit circle and corresponding non-Abelian versions discrete Painlevé II
equations.

In [14] we have discussed matrix biorthogonal polynomials with matrix of
weights W (z) such that

• The support of W (z) is a non-intersecting smooth curve on the com-
plex plane with no finite end points, i.e. its end points occur at ∞.
• Weight matrix entries were, in principle, Hölder continuous, and even-

tually requested to have holomorphic extensions to the complex plane.
• The matrix of weights W (z) is regular, i.e., det

[
Wj+k

]
j,k=0,...n

6= 0,

n ∈ N := {0, 1, . . .}, where the moment of order n, Wn, associated

with W is, for each n ∈ N, given by, Wn :=
1

2π i

∫
γ

znW (z) d z.

We obtained Sylvester systems of differential equations for the orthogonal
polynomials and its second kind functions, directly from a Riemann–Hilbert
problem, with jumps supported on appropriate curves on the complex plane.
We considered a Sylvester type differential Pearson equation for the matrix of
weights. We also studied whenever the orthogonal polynomials and its second
kind functions are solutions of a second order linear differential operators with
matrix eigenvalues. This was done by stating an appropriate boundary value
problem for the matrix of weights. In particular, special attention was paid to
non-Abelian Hermite biorthogonal polynomials in the real line, understood
as those whose matrix of weights is a solution of a Sylvester type Pearson
equation with given matrices of degree one polynomials coefficients. We also
found nonlinear equations for the matrix coefficients of the corresponding
three term relations, which extend to the non-commutative case the discrete
Painlevé I and the alternate discrete Painlevé I equations.

In this paper we do a similar study but with more relaxed conditions,
namely of Laguerre type.

Definition 1 (Laguerre type Matrix of weights). We say that a regular ma-

trix of weights W =

[
W (1,1) ··· W (1,N)

...
. . .

...
W (N,1) ··· W (N,N)

]
∈ CN×N is of Laguerre type if

• The support of W (z) is a non self-intersecting smooth curve on the
complex plane with an end point at 0 and the other end point at ∞,
and such that it intersects the circles |z| = R, R ∈ R+, once and only
once (i.e., it can be taken as a determination curve for arg z).
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• The entries W (j,k) of the matrix measure W can be written as

W (j,k)(z) =
∑
m∈Ij,k

hm(z)zαm logpm z, z ∈ γ, (1)

where Ij,k denotes a finite set of indexes, αm > −1, pm ∈ N and
hm(z) is Hölder continuous, bounded and non-vanishing on γ. Here
the determination of logarithm and the powers are taken along γ. We
will request, in the development of the theory, that the functions hm
have a holomorphic extension to the whole complex plane.

In this work, for the sake of simplicity, the finite end point of the curve γ is
taken at the origin, c = 0, with no loss of generality, as a similar arguments
apply for c 6= 0. In [33] different examples of Laguerre matrix weights for the
matrix orthogonal polynomials on the real line are studied.

1.1. Matrix biorthogonal polynomials. Given a Laguerre type matrix
of weights as in Definition 1 we introduce the corresponding sequences of
matrix monic polynomials, the sequence of left matrix orthogonal polyno-
mials

{
P L
n (z)

}
n∈N and the sequence of right matrix orthogonal polynomials{

P R
n (z)

}
n∈N characterized by the conditions,

1

2π i

∫
γ

P L
n (z)W (z)zk d z = δn,kC

−1
n , (2)

1

2π i

∫
γ

zkW (z)P R
n (z) d z = δn,kC

−1
n , (3)

for k = 0, 1, . . . , n and n ∈ N, where Cn is an nonsingular matrix. The matrix
of weights W (z) induces a sesquilinear form in the set of matrix polynomials
CN×N [z] given by

〈P,Q〉W :=
1

2π i

∫
γ

P (z)W (z)Q(z) d z, (4)

for which
{
P L
n (z)

}
n∈N and

{
P R
n (z)

}
n∈N are biorthogonal〈

P L
n , P

R
m

〉
W

= δn,mC
−1
n , n,m ∈ N.

As the polynomials are chosen to be monic, we can write

P L
n (z) = INz

n + p1
L,nz

n−1 + p2
L,nz

n−2 + · · ·+ pnL,n,

P R
n (z) = INz

n + p1
R,nz

n−1 + p2
R,nz

n−2 + · · ·+ pnR,n,
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with matrix coefficients pkL,n, p
k
R,n ∈ CN×N , k = 0, . . . , n and n ∈ N (imposing

that p0
L,n = p0

R,n = I, n ∈ N). Here IN ∈ CN×N denotes the identity matrix.
We define the sequence of second kind matrix functions by

QL
n(z) :=

1

2π i

∫
γ

P L
n (z′)

z′ − z
W (z′) d z′,

QR
n(z) :=

1

2π i

∫
γ

W (z′)
P R
n (z′)

z′ − z
d z′,

for n ∈ N. From the orthogonality conditions (2) and (3) we have, for all
n ∈ N, the following asymptotic expansion near infinity

QL
n(z) = −C−1

n

(
INz

−n−1 + q1
L,nz

−n−2 + · · ·
)
, |z| → ∞,

QR
n(z) = −

(
INz

−n−1 + q1
R,nz

−n−2 + · · ·
)
C−1
n , |z| → ∞.

The layout of the paper is as follows. In §2 we give a brief introduction
to Riemann–Hilbert problem for matrix biorthogonal polynomials deriving
the three term recurrence relation, discussing the Pearson–Laguerre matrix
weights with a finite end point and introducing constant jump fundamental
matrix and the important structure matrix. Then, in §3 we give an explicit
example of Laguerre matrix weight and in §4 we apply these ideas to differ-
ential relations and eigenvalue problems for second order matrix differential
operators of Laguerre type. Then, in §5 we end the paper with the finding
of a matrix extension of an instance of the discrete Painlevé IV equation.

2. Riemann–Hilbert problem for Matrix Biorthogonal
Polynomials

2.1. The Riemann–Hilbert problem. We begin this section stating a gen-
eral theorem on Riemann–Hilbert problem for the Laguerre general weights.
A preliminary version of this can be found in [15].

Theorem 1. Given a regular Laguerre type matrix of weights W (x) with
support on γ we have:

i) The matrix function

Y L
n (z) :=

[
P L
n (z) QL

n(z)

−Cn−1P
L
n−1(z) −Cn−1Q

L
n−1(z)

]
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is, for each n ∈ N, the unique solution of the Riemann–Hilbert prob-
lem, which consists in the determination of a 2N×2N complex matrix
function such that:

(RHL1): Y L
n (z) is holomorphic in C \ γ.

(RHL2): Has the following asymptotic behavior near infinity,

Y L
n (z) =

(
IN +

∞∑
j=1

(z−j)Y j,L
n

)[
INz

n 0N
0N INz

−n

]
.

(RHL3): Satisfies the jump condition(
Y L
n (z)

)
+

=
(
Y L
n (z)

)
−

[
IN W (z)
0N IN

]
, z ∈ γ.

(RHL4): Y L
n (z) =

[
O(1) sL1(z)

O(1) sL2(z)

]
, as z → 0, and lim

z→0
zsLj (z) = 0N ,

j = 1, 2 and the O conditions are understood entrywise.
ii) The matrix function

Y R
n (z) :=

[
P R
n (z) −P R

n−1(z)Cn−1

QR
n(z) −QR

n−1(z)Cn−1

]
is, for each n ∈ N, the unique solution of the Riemann–Hilbert prob-
lem, which consists in the determination of a 2N×2N complex matrix
function such that:

(RHR1): Y R
n (z) is holomorphic in C \ γ.

(RHR2): Has the following asymptotic behavior near infinity,

Y R
n (z) =

[
INz

n 0N
0N INz

−n

](
IN +

∞∑
j=1

(z−j)Y j,R
n

)
.

(RHR3): Satisfies the jump condition(
Y R
n (z)

)
+

=

[
IN 0N
W (z) IN

] (
Y R
n (z)

)
−, z ∈ γ.

(RHR4): Y R
n (z) =

[
O(1) O(1)
sR1 (z) sR2 (z)

]
, as z → 0, and lim

z→0
zsRj (z) = 0N ,

j = 1, 2 and the O conditions are understood entrywise.
iii) The determinant of Y L

n (z) and Y R
n (z) are both equal to 1, for every

z ∈ C.



8 BRANQUINHO, FOULQUIÉ AND MAÑAS

Proof : Using the standard calculations from the scalar case it follows that
the matrices Y L

n and Y R
n satisfy (RHL1)–(RHL3) and (RHR1)–(RHR3) re-

spectively.
The entriesW j,k of the matrix measureW are given in (1). It holds (cf. [40])

that in a neighborhood of the origin the Cauchy transform

φm(z) =
1

2π i

∫
γ

p(ζ)hm(ζ)ζαm logpm ζ

ζ − z
d ζ,

where p(ζ) denotes any polynomial in ζ, satisfies limz→0 zφm(z) = 0. Then,
(RHL4) and (RHR4) are fulfilled by the matrices Y L

n , Y
R
n , respectively. Now,

let us consider the matrix function

G(z) = Y L
n (z)

[
0N IN
−IN 0N

]
Y R
n (z)

[
0N −IN
IN 0N

]
.

It can easily be proved that G(z) has no jump or discontinuity on the curve γ
and that its behavior at the end point c is given by

G(z) =

[
O(1)sL1(z) + O(1)sR2 (z) O(1)sL1(z) + O(1)sR1 (z)

O(1)sL2(z) + O(1)sR2 (z) O(1)sL2(z) + O(1)sR1 (z)

]
, z → 0,

so it holds that limz→0 zG(z) = 0 and we conclude that the origin is a re-
movable singularity of G. Now, from the behavior for z →∞,

G(z) =

[
INz

n 0N
0N INz

−n

] [
0N IN
−IN 0N

] [
INz

n 0N
0N INz

−n

] [
0N −IN
IN 0N

]
=

[
IN 0N
0N IN

]
,

hence the Liouville theorem implies that G(z) = I2N , and the uniqueness of
the solution of these Riemann–Hilbert follow.

Consequences of the previous result and the proof given for it follow.

Corollary 1. It holds that(
Y L
n (z)

)−1
=

[
0N IN
−IN 0N

]
Y R
n (z)

[
0N −IN
IN 0N

]
,

that entrywise read as follows

QL
n(z)P R

n−1(z)− P L
n (z)QR

n−1(z) = C−1
n−1, (5)

P L
n−1(z)QR

n(z)−QL
n−1(z)P R

n (z) = C−1
n−1, (6)

QL
n(z)P R

n (z)− P L
n (z)QR

n(z) = 0. (7)
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2.2. Three term recurrence relation. Following standard arguments
we find

Y L
n+1(z) = T L

n (z)Y L
n (z), T L

n (z) :=

[
zIN − βL

n C−1
n

−Cn 0N

]
, n ∈ N,

where T L
n denotes the left transfer matrix. For the right orthogonality, we

similarly obtain,

Y R
n+1(z) = Y R

n (z)T R
n (z), T R

n (z) :=

[
zIN − βR

n −Cn
C−1
n 0N

]
, n ∈ N,

where T L
n denotes the right transfer matrix.

Hence, we conclude that the sequence of monic polynomials
{
P L
n (z)

}
n∈N

satisfies the three term recurrence relations

zP L
n (z) = P L

n+1(z) + βL
nP

L
n (z) + γLnP

L
n−1(z), n ∈ N,

with recursion coefficients given by βL
n := p1

L,n − p1
L,n+1 and γLn := C−1

n Cn−1,

with initial conditions, P L
−1 = 0N , P

L
0 = IN . Analogously,

zP R
n (z) = P R

n+1(z) + P R
n (z)βR

n + P R
n−1(z)γRn , n ∈ N,

where βR
n := Cnβ

L
nC
−1
n and γRn := Cnγ

L
nC
−1
n = Cn−1C

−1
n .

2.3. Pearson–Laguerre matrix weights with a finite end point. In-
stead of a given matrix of weights we consider two matrices of entire functions,
say hL(z) and hR(z), such that the following matrix Pearson equations are
satisfied

z(W L)′(z) = hL(z)W L(z), z(W R)′(z) = W R(z)hR(z), (8)

and, given solutions to them, we construct the corresponding matrix of
weights as W = W LW R. This matrix of weights is also characterized by
a Pearson equation,

Proposition 1 (Pearson differential equation). Given two matrices of entire
functions hL(z) and hR(z), any solution of the Sylvester type matrix differ-
ential equation, which we call Pearson equation for the weight,

zW ′(z) = hL(z)W (z) +W (z)hR(z), (9)

is of the form W = W LW R where the factor matrices W L and W R are solu-
tions of (8).
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Proof : Given solutions W L and W R of (8), it follows immediately, just using
the Leibniz law for derivatives, that W = W LW R fulfills (9). Moreover, given
a solution W of (9) we pick a solution W L of the first equation in (8), then
it is easy to see that (W L)−1W satisfies the second equation in (8).

We can give the following result from the literature [59].

Theorem 2 (Solution at a regular singular point). Let the matrix function
hL(z) be entire. Then, for the solutions of the Pearson equation (8) we have:

i) If AL := hL(0) has no eigenvalues that differs from each other by pos-
itive integers then, the solution of the left matrix differential equation
in (8) can be written as

W L(z) = HL(z)zA
L

W L
0 ,

where HL(z) is an entire and nonsingular matrix function such that
HL(0) = IN , and W L

0 is a constant nonsingular matrix.

ii) If the matrix function AL has eigenvalues that differs from each other
by positive integers, then the solution of the left matrix differential
equation in (8) can be written as

W L(z) = HL(z)zÃ
L

W L
0 ,

where, in this case,

HL(z) = S̃L(z)ΠL(z),

and S̃L(z) is a finite product of factors of the form TiS
L
i (z), with Ti

a nonsingular matrix and SL
i (z) is a shearing matrix, i.e., a matrix

given by blocks as

SL
i (z) =

[
Ini 0
0 zImi

]
,

for some positive integers ni,mi, and ΠL(z) is an entire and non singu-
lar matrix function such that ΠL(0) = I, ÃL is a constant matrix built
from the matrix AL, where the eigenvalues of this matrix are decreased
in such a way that the eigenvalues of the resulting matrix do not differ
by a positive integer and W L

0 is a constant nonsingular matrix.
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We can get analogous results for the right matrix differential equation in (8)
and we will denote the solution as

W R(z) = W R
0 z

AR

HR(z).

The matrix of functions zA = eA log z is a matrix of holomorphic functions
in C \ γ, and

(zA)− = (zA)+ e2πiA = e2πiA(zA)+, z ∈ γ.

We also adopt the convention that (W L(z)W R(z))+ = W (z), i.e., the ma-
trix of weight is obtained from the limit behavior of the right side of the
curve γ of the matrix function W L(z)W R(z).

It is necessary, in other to consider the Riemann–Hilbert problem related to
the matrix of weights W satisfying (9), to study the behavior of W (z) around
the origin. For that aim, let us consider J , the Jordan matrix similar to the
matrix A, so there exists an nonsingular matrix P such that A = PJP−1. It
holds zA = PzJP−1 so if

J = (λ1Im1
+N1)⊕ (λ2Im2

+N2)⊕ · · · ⊕ (λsIms
+Ns)

where mk is the order of the nilpotent matrix Nk, we have that

zJ = zλ1Im1
+N1 ⊕ zλ2Im2

+N2 ⊕ · · · ⊕ zλsIms+Ns

where zλkImk+Nk = zλkImkzNk. It is straightforward that zλkImk = zλkImk
and

zNk = eNk log z = Imk
+ log zNk +

log2 z

2!
N 2
k + · · ·+ logmk−1 z

(mk − 1)!
Nmk−1
k ,

where we have used the nilpotency of N j
k = 0N for j ≥ mk, so we can

conclude that the entries of zA are linear combinations of zλj with polynomials
coefficients in the variable log z. Hence, if we assume a real spectrum σ(A) =
{λ1, . . . , λs} ⊂ R bounded from below by −1, λk > −1, as well as the
regularity of the matrix weight W , it holds that this matrix of weights is of
Laguerre type and fulfills the conditions requested in Theorem 1.

2.4. Constant jump fundamental matrix. According with the above
notation and given a matrix of weights as described in (9), with spectra
σ(AL) and σ(AR), both real and bounded from below by −1, we introduce
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the constant jump fundamental matrices

ZL
n(z) := Y L

n (z)

[
W L(z) 0N

0N (W R(z))−1

]
, (10)

ZR
n (z) :=

[
W R(z) 0N

0N (W L(z))−1

]
Y R
n (z), (11)

for n ∈ N.

Proposition 2. The constant jump fundamental matrices ZL
n(z) and ZR

n (z)
satisfy, for each n ∈ N, the following properties:

i) Are holomorphic on C \ γ.
ii) Present the following constant jump condition on γ(

ZL
n(z)

)
+

=
(
ZL
n(z)

)
−

[
(W L

0 )−1 e−2π iAL

W L
0 (W L

0 )−1 e−2π iAL

W L
0

0N W R
0 e2πiAR

(W R
0 )−1

]
,

(
ZR
n (z)

)
+

=

[
W R

0 e−2πiAR

(W R
0 )−1 0N

W R
0 e−2πiAR

(W R
0 )
−1

W L
0
−1

e2π iAL

W L
0

] (
ZR
n (z)

)
−,

for all z ∈ γ.

Proof : i) The holomorphic properties of ZL
n are inherit from that of the

fundamental matrices Y L
n and zA and taking into account that HL(z) is

an entire matrix function.
ii) From the definition of ZL

n(z) we have(
ZL
n(z)

)
+

=
(
Y L
n (z)

)
+

[
(W L(z))+ 0N

0N (W R(z))−1
+

]
and taking into account Theorem 1 we successively get(

ZL
n(z)

)
+

=
(
Y L
n (z)

)
−

[
IN (W L(z)W R(z))+

0N IN

] [
(W L(z))+ 0N

0N (W R(z))−1
+

]
=
(
Y L
n (z)

)
−

[
(W L(z))− 0N

0N (WR(z))−1
−

] [
(W L(z))−1

− 0N
0N (WR(z))−

] [
(W L(z))+ (W L(z))+

0N (WR(z))−1
+

]
=
(
ZL
n(z)

)
−

[
(W L(z))−1

− (W L(z))+ (W L(z))−1
− (W L(z))+

0N W R(z)−(W R(z))−1
+

]
=
(
ZL
n(z)

)
−

[
(W L

0 )−1 e−2π iAL

W L
0 (W L

0 )−1 e−2π iAL

CL

0N W R
0 e2π iAL

(W R
0 )−1

]
,

and we get the desired constant jump condition for ZL
n(z).



MATRIX LAGUERRE BIORTHOGONAL POLYNOMIALS 13

To complete the proof we only have to check that

ZR
n (z) =

[
0 −IN
IN 0

]
(ZL

n(z))−1

[
0 IN
−IN 0

]
. (12)

Which is a consequence of (11).

2.5. Structure matrix and zero curvature formula. In parallel to the
matrices ZL

n(z) and ZR
n (z), for each factorization we introduce what we call

structure matrices given in terms of the left, respectively right, logarithmic
derivatives by,

ML
n(z) :=

(
ZL
n

)′
(z)
(
ZL
n(z)

)−1
, MR

n (z) :=
(
ZR
n (z)

)−1(
ZR
n

)′
(z). (13)

It is not difficult to prove that

MR
n (z) = −

[
0 −IN
IN 0

]
ML

n(z)

[
0 IN
−IN 0

]
, n ∈ N.

Proposition 3 ([14]). i) The transfer matrices satisfy

T L
n (z)ZL

n(z) = ZL
n+1(z), ZR

n (z)T R
n (z) = ZR

n+1(z), n ∈ N.

ii) The zero curvature formulas[
IN 0N
0N 0N

]
= ML

n+1(z)T L
n (z)− T L

n (z)ML
n(z),[

IN 0N
0N 0N

]
= T R

n (z)MR
n+1(z)−MR

n (z)T R
n (z),

n ∈ N, are fulfilled.

Now, we discuss the holomorphic properties of the structure matrices just
introduced.

Theorem 3. The structure matrices ML
n(z) and MR

n (z) are, for each n ∈ N
meromorphic on C, with singularities located at z = 0, which happen to be a
removable singularity or a simple pole.

Proof : Let us prove the statement for ML
n(z), for MR

n (z) one should proceed
similarly. From (13) it follows that ML

n(z) is holomorphic in C\γ. Due to the

fact that ZL
n(z) has a constant jump on the curve γ, the matrix function

(
ZL
n

)′
has the same constant jump on the curve γ, so the matrix ML

n(z) has no
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jump on the curve γ, and it follows that at the origin ML
n(z) has an isolated

singularity. From (13) and (10) it holds

ML
n(z) =

(
ZL
n

)′
(z)
(
ZL
n(z)

)−1

=
(
Y L
n

)′
(z)
(
Y L
n (z)

)−1
+

1

z
Y L
n (z)

[
hL(z) 0N
0N −hR(z)

] (
Y L
n (z)

)−1
,

where

Y L
n (z) =

[
P L
n (z) QL

n(z)

−Cn−1P
L
n−1(z) −Cn−1Q

L
n−1(z)

]
.

Each entry of the matrix QL
n(z) is a Cauchy transform of certain function

f(z), where f(z) =
∑

i∈I φi(z)zαi logpi z, φi(z) is an entire function, αi > −1,
pi ∈ N, and I is a finite set of indices.

It is clear that limz→0 zf(z) = 0. Now, see [40, §8.3-8.6] and [53], its

Cauchy transform g(z) =
1

2π i

∫
γ

f(t)

t− z
d t also satisfies the same property

limz→0 zg(z) = 0. We can also see that limz→0 z
2g′(z) = 0. Indeed,

zg′(z) =

∫
γ

zf(t)

(t− z)2
d t =

∫
γ

(z − t)f(t)

(t− z)2
d t+

∫
γ

tf(t)

(t− z)2
d t,

= −
∫
γ

f(t)

t− z
d t− tf(t)

t− z

∣∣∣∣
γ

+

∫
γ

(tf(t))′

t− z
d t = −tf(t)

t− z

∣∣∣∣
γ

+

∫
γ

tf ′(t)

t− z
d t.

From the boundary conditions, the first term is zero and we get

zg′(z) =

∫
γ

tf ′(t)

t− z
d t.

and from the definition of f we get that tf ′(t) is a function in the class of
f , that we denote by v and, consequently, limz→0 z

2g′(z) = 0. From these
considerations it follows,

(
Y L
n

)′
(z) =

[
O(1) rL1(z)

O(1) rL2(z)

]
,

(
Y L
n (z)

)−1
=

[
rL3(z) rL4(z)

O(1) O(1)

]
, z → 0,
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where limz→0 z
2rLi (z) = 0N , for i = 1, 2, and limz→0 zr

R
i (z) = 0N , for i = 3, 4,

so it holds that

lim
z→0

z2
(
Y L
n

)′
(z)
(
Y L
n

)−1

= lim
z→0

z2

[
O(1)rL1(z) + O(1)rL3(z) O(1)rL1(z) + O(1)rL4(z)

O(1)rL2(z) + O(1)rL3(z) O(1)rL2(z) + O(1)rL4(z)

]
= 02N .

Similar considerations leads us to the result that

lim
z→0

zY L
n (z)

[
hL(z) 0N
0N −hR(z)

] (
Y L
n (z)

)−1
= 02N ,

so we obtain that

lim
z→0

z2ML
n(z) = 02N ,

and hence the matrix function ML
n(z) has at most a simple pole at the

point z = 0.

3. Durán–Grünbaum type Laguerre matrix weights
Motivated by cases considered in the literature [34, 35, 36, 37] we want to

include here an example of a Laguerre weight. In this case, we are able to
explicitly compute the residue matrix at the simple pole at the origin of the
structure matrix.

Let us consider the weightW (z) = eA1z zα eA2z, z ∈ C, defined in C\[0,+∞)
with support on γ = [0,+∞). Here α,A1, A2 ∈ CN×N are matrices such that
[α,A1] = [α,A2] = 0N , with spectrum σ(α) ⊂ (−1,+∞). To match with
previous developments in [33] we just need to shift each of the matrices A1

and A2 by −IN . Accordingly, we choose

W L(z) = eA1z z
α
2 , W R(z) = z

α
2 eA2z,

It can be seen that the matrix function ZL
n defined by

ZL
n(z) = Y L

n (z)C(z), where C(z) =

[
W L(z) 0

0 (W R(z))−1

]
,

with W L(z)W R(z) = W (z), satisfies

• ZL
n is holomorphic in C \ [0,+∞).

• (ZL
n(z))+ = (ZL

n(z))−

[
e− iπα e− iπα

0 eiπα

]
over (0,+∞).
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3.1. σ(α) ⊂ (−1,+∞)\N. In this case the constant jump matrix
[

e− iπα e− iπα

0 eiπα

]
can be block diagonalized. For that aim we consider the matrix

P =

[
IN e− iπα

0 eiπα− e− iπα

]
, such that

[
e− iπα e− iπα

0 eiπα

]
P = P

[
e− iπα 0

0 eiπα

]
.

So, over the interval (0,+∞), we have

(ZL
n(z)P )+ = (ZL

n(z)P )−

[
e− iπα 0

0 eiπα

]
.

For z ∈ C \ [0,+∞), let us define the matrix

ψ(z) :=

[
z
α
2 0

0 z−
α
2

]
, (14)

which satisfies, over (0,+∞), the following jump condition

(ψ(z))+ = (ψ(z))−

[
e− iπα 0

0 eiπα

]
.

Consequently, the matrix

F L
n (z) := ZL

n(z)Pψ−1(z)

has no jump in the interval (0,+∞). The matrix function F L
n has an iso-

lated singularity at the origin which, as we will show now, is a removable
singularity, i.e., limz→0 zF

L
n (z) = 02N . From its definition we have that

zF L
n (z) =

[
O(z) zsL1(z)

O(z) zsL2(z)

] [
eA1z z

α
2 0N

0N e−A2z z−
α
2

] [
IN e− iπα

0N eiπα− e− iπα

] [
z−

α
2 0

0 z
α
2

]
=

[
O(z) zsL1(z)

O(z) zsL2(z)

] [
eA1z eA1z e− iπα zα

0N e−A2z(eiπα− e− iπα)

]
, z → 0,

and as zsL1, zsL2 → 0N when z → 0 and O(z)zα → 0N , when z → 0 (be-
cause the eigenvalues of α are bounded from below by −1) we conclude that
zFn(z)→ 02N , for z → 0. Hence, F L

n (z) is a matrix of entire functions.
Now, we want to compute F L

n (0) = lim
z→0

F L
n (z). Notice that,

F L
n (0) = lim

z→0
Y L
n (z)

[
eA1z eA1z e− iπα zα

0N e−A2z(eiπα− e− iπα)

]
,

where the limit of each factor inside the limit do not need to exist. Given
that σ(α) ⊂ (−1,+∞) \ N we first separately compute F L

n (0) in the cases,
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when σ(α) ⊂ (0,+∞) \ {1, 2, . . .} and when σ(α) ⊂ (−1, 0), and then we
give F L

n (0) in general.
Case σ(α) ⊂ (0,+∞) \ {1, 2, . . .}. When all the eigenvalues of α are strictly
positive then each limit exists and

F L
n (0) = Y L

n (0)

[
IN 0N
0N eiπα− e− iπα

]
.

Case σ(α) ⊂ (−1, 0). We cannot proceed as before. However, as the limit
exists, if we are able to rewrite

Y L
n (z)

[
eA1z eA1z e− iπα zα

0N e−A2z(eiπα− e− iπα)

]
= Ŷ L

n (z)f(z),

in terms of two matrix factors Ŷ L
n (z) and f(z), a non singular matrix, with f

having a well defined limit for z → 0, also being a non-singular matrix, we
can ensure that exists lim

z→0
Ŷ L
n (z), and F L

n (0) =
(

lim
z→0

Ŷ L
n (z)

)(
lim
z→0

f(z)
)
. This

can be achieved with

Ŷ L
n (z) := Y L

n (z)

[
z−α 0N

IN − e2 iπα zα

]−1

,

f(z) :=

[
z−α 0N

IN − e2 iπα zα

] [
eA1z eA1z e− iπα zα

0N e−A2z(eiπα− e− iπα)

]
=

[
z−α eA1z eA1z e− iπα

(IN − e2 iπα) eA1z (− eA1z + e−A2z)(eiπα− e− iπα)zα

]
So that,

lim
z→0

f(z) =

[
0N e− iπα

IN − e2 iπα 0N

]
, F L

n (0) = Ŷ L
n (0)

[
0N e− iπα

IN − e2 iπα 0N

]
.

General case σ(α) ⊂ (−1,+∞) \N. , Recalling the canonical Jordan form,
we can write α = PJP−1 with

J =

[
J+ 0N+×N−

0N−×N+ J−

]
,

and N+ (N−) being the sum of the algebraic multiplicities associated with
positive (negative) eigenvalues and in J+ (J−) we gather together the Jordan
blocks of all positive (negative) eigenvalues. We have[

eA1z eA1z e− iπα zα

0N e−A2z(eiπα− e− iπα)

]
=
[
P 0N
0N P

] [
eA1z eÃ1z e− iπJ zJ

0N e−Ã2z(eiπJ − e− iπJ)

] [
P 0N
0N P

]−1
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with Ãj = P−1AjP , j = 1, 2. Now, as we did in the previous case, with neg-
ative eigenvalues only, we left multiply by the following nonsingular matrix

S(z) :=
[
P 0N
0N P

]
[

IN+ 0N+×N−

0N−×N+ z−J
−

]
0N[

0N+ 0N+×N−

0N−×N+ IN− − e2 iπJ
−

] [
IN+ 0N+×N−

0N−×N+ zJ
−

]
[ P 0N

0N P

]−1

,

to get

[ P 0N
0N P ]


[

IN+ 0N+×N−

0N−×N+ z−J
−

]
eÃ1z

[
IN+ 0N+×N−

0N−×N+ z−J
−

]
eÃ1z

 e− iπJ+ zJ
+

0N+×N−

0N−×N+ e− iπJ− zJ
−


[

0N+ 0N+×N−

0N−×N+ IN−−e2 iπJ−

]
eÃ1z

[
0N+ 0N+×N−

0N−×N+ IN−−e2 iπJ−

]
eÃ1z

 e− iπJ+ zJ
+

0N+×N−

0N−×N+ e− iπJ− zJ
−


+

[
IN+ 0N+×N−

0N−×N+ zJ
−

]
e−Ã2z

 eiπJ
+ − e− iπJ+ 0N+×N−

0N−×N+ eiπJ
− − e− iπJ−



[ P 0N
0N P ]

−1

which for z → 0 has a well defined limit, being a non-singular matrix, given by

[
P 0N
0N P

]
[

IN+ 0N+×N−

0N−×N+ 0N−

] [
0N+ 0N+×N−

0N−×N+ e− iπJ−

]
[

0N+ 0N+×N−

0N−×N+ IN− − e2 iπJ
−

] [
eiπJ

+ − e− iπJ+
0N+×N−

0N−×N+ 0N−

]
[ P 0N

0N P

]−1

.

Thus,

F L
n (0) = Ŷ L

n (0)[ P 0N
0N P ]

[ [
IN+ 0N+×N−

0N−×N+ 0N−

] [ 0N+ 0N+×N−

0N−×N+ e− iπJ−

]
[ 0N+ 0N+×N−

0N−×N+ IN−−e2 iπJ−

] [
eiπJ

+ − e− iπJ+ 0N+×N−
0N−×N+ 0N−

]] [ P 0N
0N P ]

−1
.

Given

ML
n =

(
ZL
n

)′(
ZL
n

)−1
=
(
F L
n

)′(
F L
n

)−1
+ F L

nψ
′ψ−1

(
F L
n

)−1
,

as detF L
n (z) 6= 0, we know that

(
F L
n

)′(
F L
n

)−1
has no singularities, while

F L
n (z)ψ′(z)ψ−1(z)

(
F L
n (z)

)−1
=

1

z
F L
n (z)

[
α
2 0N

0N −α
2

] (
F L
n (z)

)−1
.

Consequently, ML
n(z) has a simple pole at the origin with

ML
n(z) =

1

z
F L
n (0)

[
α
2 0N

0N −α
2

] (
F L
n (0)

)−1
+ O(1), z → 0.
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3.2. α = mIN ,m ∈ N. It can be seen that the matrix function ZL
n satisfies

over (0,+∞) the following jump condition

(ZL
n(z))+ = (ZL

n(z))−

[
(−1)mIN (−1)mIN

0 (−1)mIN

]
.

For z ∈ C \ [0,+∞), instead of (14), let us define the matrix

ψ(z) :=

[
z
m
2 IN − 1

2πiz
m
2 log zIN

0 z−
m
2 IN

]
,

where log z is the branch of the logarithmic function defined in C \ [0,+∞),
which satisfies, over (0,+∞), the same jump condition

(ψ(z))+ = (ψ(z))−

[
(−1)mIN (−1)mIN

0 (−1)mIN

]
.

Consequently, the matrix

F L
n (z) := ZL

n(z)ψ−1(z)

has no jump in the interval (0,+∞). The matrix function F L
n has an iso-

lated singularity at the origin which, as we will show now, is a removable
singularity, i.e.,

zF L
n (z) =

[
O(z) zsL1(z)

O(z) zsL2(z)

] [
O(1) 0N
0N O(1)

] [
O(1) O(log z)

O(1) O(1)

]
=

[
O(z) + zsL1(z) O(z log z) + zsL1(z)

O(z) + zsL2(z) O(z log z) + zsL2(z)

]
, z → 0,

and as zsL1, zsL2 → 0N when z → 0, we conclude that zFn(z) → 02N , for
z → 0.

Hence, F L
n (z) is a matrix of entire functions. To compute Fn(0) notice that,

F L
n (0) = lim

z→0
Y L
n (z)

[
eA1z 1

2πiz
m log z eA1z

0N e−A2z

]
.

For m = 1, 2, . . . it holds that F L
n (0) = Y L

n (0). For m = 0 the limit of each
factor inside the limit do not need to exist. As the limit exists, let us write

Y L
n (z)

[
eA1z 1

2πi log z eA1z

0N e−A2z

]
= Ŷ L

n (z)f(z),
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with

Ŷ L
n (z) := Y L

n (z)

[
(log z)−1IN 0N
−2π i IN log zIN

]−1

,

f(z) :=

[
(log z)−1IN 0N
−2π i IN log zIN

] [
eA1z 1

2π i log z eA1z

0N e−A2z

]
=

[
(log z)−1 eA1z 1

2π i eA1z

−2π i eA1z − log z(eA1z− e−A2z)

]
.

So that,

lim
z→0

f(z) =

[
0N

1
2π iIN

−2π i IN 0N

]
, F L

n (0) = Ŷ L
n (0)

[
0N

1
2πiIN

−2π i IN 0N

]
.

Using the same kind of reasoning as above we get that, ML
n(z) has a simple

pole at the origin with

ML
n(z) =

1

z
F L
n (0)

[
m
2 IN −

zm

2πiIN
0N −m

2 IN

] (
F L
n (0)

)−1
+ O(1), z → 0.

4. Eigenvalue problems
4.1. Differential relations from the Riemann–Hilbert problem. We
are interested in the differential equations fulfilled by the biorthogonal ma-
trix polynomials determined by Laguerre type matrices of weights. Different
attempts appear in the literature when one considers matrix orthogonality.
Here we use the Riemann–Hilbert problem approach in order to derive these
differential relations.

We use the notation for the structure matrices

M̃L
n(z) = zML

n(z), M̃R
n (z) = zMR

n (z),

with M̃L
n(z) and M̃R

n (z) matrices of entire functions.

Proposition 4 (First order differential equation for the fundamental matri-
ces Y L

n (z) and Y R
n (z)). It holds that

z
(
Y L
n

)′
(z) + Y L

n (z)

[
hL(z) 0N
0N −hR(z)

]
= M̃L

n(z)Y L
n (z) (15)

z
(
Y R
n

)′
(z) +

[
hR(z) 0N

0N −hL(z)

]
Y R
n (z) = Y R

n (z)M̃R
n (z). (16)
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Proof : Equations (15) and (16) follows immediately from the definition of
the matrices ML

n(z) and MR
n (z) in (13).

We introduce the N transform, N (F (z)) = F ′(z) +
F 2(z)

z
.

Proposition 5 (Second order differential equation for the fundamental ma-
trices). It holds that

z
(
Y L
n

)′′
+
(
Y L
n

)′ [2hL + IN 0N
0N −2hR + IN

]
+ Y L

n (z)

[
N (hL) 0N

0N N (−hR)

]
= N (M̃L

n)Y L
n ,

(17)

z
(
Y R
n

)′′
+

[
2hR + IN 0N

0N −2hL + IN

] (
Y R
n

)′
+

[
N (hR) 0N

0N N (−hL)

]
Yn

R(z) = Y R
n N (M̃R

n ).

(18)

Proof : Differentiating in (13) we get(
ZL
n

)′′(
ZL
n

)−1
=

(
M̃L

n

)′
z
− M̃L

n

z2
+

(M̃L
n)2

z2
,

so that

z
(
ZL
n

)′′(
ZL
n

)−1
+
(
ZL
n

)′(
ZL
n

)−1
=
(
M̃L

n

)′
+

(M̃L
n)2

z
.

Now, using (10) and (8), we get the stated result (17). The equation (18)
follows in a similar way from definition of MR

n in (13).

We introduce the following C2N×2N valued functions

HL
n =

[
HL

1,1,n HL
1,2,n

HL
2,1,n HL

2,2,n

]
:= N (M̃L

n), HR
n =

[
HR

1,1,n HR
1,2,n

HR
2,1,n HR

2,2,n

]
:= N (M̃R

n ).

It holds that the second order matrix differential equations (17) and (18)
split in the following differential relations

z
(
P L
n

)′′
+
(
P L
n

)′(
2hL + IN

)
+ P L

nN (hL) = HL
1,1,nP

L
n − HL

1,2,nCn−1P
L
n−1, (19)

z
(
QL
n

)′′
+
(
QL
n

)′(− 2hR + IN
)

+QL
nN (−hR) = HL

1,1,nQ
L
n − HL

1,2,nCn−1Q
L
n−1, (20)

z
(
P R
n

)′′
+
(
2hR + IN

)(
P R
n

)′
+N (hR)P R

n = P R
nH

R
1,1,n − P R

n−1Cn−1H
R
2,1,n, (21)

z
(
QR
n

)′′
+
(
− 2hL + IN

)(
QR
n

)′
+N (−hL)QR

n = QR
nH

R
1,1,n −QR

n−1Cn−1H
R
2,1,n. (22)
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Now, we illustrate these constructions with the example discussed in § 3.
Using the identities p1

R,n = −q1
L,n−1 and p1

L,n = −q1
R,n−1 we can get

ML
n(z) =

M̃L
n(z)

z

=
1

z

[
A1z + [p1

L,n, A1] + nIN + α
2 A1C

−1
n + C−1

n A2

−Cn−1A1 − A2Cn−1 −A2z + [p1
R,n, A2]− nIN − α

2

]
.

Using (17), we obtain the second order differential equation

z
(
Y L
n

)′′
+
(
Y L
n

)′[ α+IN+2A1z 0N
0N IN−α−2A2z

]
+ Y L

n

[
A1+ 1

2A1α+ 1
2αA1+zA1

2 0N

0N −A2+ 1
2A2α+ 1

2αA2+zA2
2

]
+

1

z
Y L
n

[
(α2 )2 0N
0N (α2 )2

]
=
(

(M̃L
n)′(0)

+ (M̃L
n(0))2 1

z
+ (M̃L

n)′(0)M̃L
n(0) + M̃L

n(0)(M̃L
n)′(0) +

(
(M̃L

n)′(0)
)2
z
)
Y L
n (z)

As we have proven in § 3 for Durán–Grünbaum Laguerre type matrices of
weights, under the restriction [α,A1] = [α,A2] = 0N , and the spectrum of α

is contained on (−1,+∞) \ N the matrix ML
n =

(
ZL
n

)′(
ZL
n

)−1
has a pole of

order 1 at z = 0, with residue given by

M̃L
n(0) = F L

n (0)

[
α
2 0N

0N −α
2

] (
F L
n (0)

)−1
.

If we now also assume on the matrix α that α2 = λIN , we get

(M̃L
n(0))2 = F L

n (0)

[(
α
2

)2
0N

0N
(
α
2

)2

] (
F L
n (0)

)−1
=
λ

4
I2N .

We remark that as the spectrum of α is contained in (−1,+∞) \ N when
|λ| < 1 the ±λ are admissible eigenvalues for α, and when |λ| > 1 only
positive and bigger than 1 eigenvalues are admissible for α, and then α = λIN .
In an analogous way we obtain for α = mIN , m = 0, 1, 2, . . .

(M̃L
n(0))2 = F L

n (0)

[(
m
2

)2
0N

0N
(
m
2

)2

] (
F L
n (0)

)−1
=
m2

4
I2N .
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In both cases the second order differential equation is simplified to

z
(
Y L
n

)′′
+
(
Y L
n

)′[ α+IN+2A1z 0N
0N IN−α−2A2z

]
+ Y L

n

[
A1+A1α+A1

2z 0N
0N −A2+A2α+A2

2z

]
=
[
A1+[p1L,n,A

2
1]+(nIN+α)A1+A2

1z A2
1C

−1
n −C−1

n A2
2

−Cn−1A
2
1+A2

2Cn−1 −A2−[p1R,n,A
2
2]+(nIN+α)A2+A2

2z

]
Y L
n (z).

Notice that this equation has no pole at zero as it happens in the scalar
Laguerre case. In fact, in the scalar case this equation reduces to

z
(
Y L
n

)′′
+
(
Y L
n

)′[ α+1+2A1z 0
0 1−α−2A1z

]
+ Y L

n

[
A1+A1α+A1

2z 0
0 −A1+A1α+A1

2z

]
=
[
A1+(n+α)A1+A2

1z 0

0 −A1+(n+α)A1+A2
1z

]
Y L
n (z),

as A2
1C
−1
n = C−1

n A2
1 and A1 = A2 = −1/2, and so

z
(
Y L
n

)′′
+
(
Y L
n

)′[ α+1−z 0
0 1−α+z

]
+ Y L

n

[
−1/2 0

0 1/2

]
=
[
−(n+1)/2 0

0 −(n−1)/2

]
Y L
n (z),

and so we get the second order equations for the
{
Pn
}
n∈N (cf. for exam-

ple [16]) and
{
Qn

}
n∈N in the Laguerre case, i.e. for all n ∈ N we have

zP ′′n (z)− (z − α− 1)P ′n(z) = −nPn(z),

zQ′′n(z) + (z − α + 1)Q′n(z) = −(n+ 1)Qn(z).

4.2. Adjoint operators.

Definition 2. Given linear operator L : CN×N [z] → CN×N [z] and a matrix
of weights W , its adjoint linear operator L∗ is an operator such that

〈L(P ), P̃ 〉W = 〈P,L∗(P̃ )〉W , P (z), P̃ (z) ∈ CN×N [z],

in terms of the sesquiliner form introduced in (4).

Care must be taken at this point because in this definition of adjoint of a
matrix differential operator we are not taken the transpose or the Hermitian
conjugate of the matrix coefficients as was done in [32].

Definition 3. Motivated by (19) and (21) we introduce two linear opera-
tors `̀̀L and `̀̀R, acting on the linear space of polynomials CN×N [z] as follows

`̀̀L(P ) := zP ′′ + P ′aL(z) + PbL(z), `̀̀R(P ) := zP ′′ + aR(z)P ′ + bR(z)P,

where aL(z) := 2hL + IN , bL(z) := N (hL(z)), aR(z) := 2hR + IN , and
bR(z) := N (hR(z)).
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Proposition 6. Let us assume that the matrix of weights W do satisfy the
following boundary conditions

zW
∣∣∞
0

= 0N ,
((
zW
)′ − aLW)∣∣∞

0
= 0N ,

((
zW
)′ −WaR

)∣∣∞
0

= 0N . (23)

Here f(z)
∣∣∞
0

:= lim
z→∞

f(z)− lim
z→0

f(z). Then, W satisfies a Pearson differential

equation (9) if, and only if, W satisfies the following second order matrix
differential equations (

zW
)′′ − (aLW)′ + bLW = WbR, (24)(

zW
)′′ − (WaR

)′
+WbR = bLW. (25)

Proof : Taking derivative on (9), we get

W ′′ =
(hL
z

)′
W +

hL

z
W ′ +W ′h

R

z
+W

(hR
z

)′
=
((hL)′

z
− hL

z2

)
W +

hL

z

(hL
z
W +W

hR

z

)
+
(hL
z
W +W

hR

z

)hR
z

+W
((hR)′

z
− hR

z2

)
,

so it holds that

(zW )′′ = 2W ′ + zW ′′

= 2W ′ +
(

(hL)′ − hL

z

)
W + hL

(hL
z
W +W

hR

z

)
+
(hL
z
W +W

hR

z

)
hR +W

(
(hR)′ − hR

z

)
= W ′ + bLW +WbR +

2

z
hLWhR.

But, it is easy to see that(
aLW

)′
= 2(hL)′W + 2

(hL)2

z
W +

2

z
hLWhR +W ′ = W ′ + 2bLW +

2

z
hLWhR,

and(
WaR

)′
= 2W (hR)′ + 2W

(hR)2

z
+

2

z
hLWhR +W ′(WaR

)′
= W ′ + 2WbR +

2

z
hLWhR,
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and so we arrive to (24) and (25).
The reciprocal result is a consequence of adding the equations (24), (25)

and using the boundary conditions (23).

Now, we will see that these two operators are adjoint to each other with
respect to the sesquilinear form induced by the weight functions W .

Proposition 7. Whenever W satisfies (9) and the boundary conditions (23),
we have that

`̀̀R =
(
`̀̀L
)∗
. (26)

Proof : By using the linearity of these operators it is sufficient to prove

〈`̀̀L(P L
n ) , P R

k 〉W = 〈P L
n , `̀̀

R(P R
k )〉W , n, k ∈ N.

If we omit, for the sake of simplicity, the z dependence of the integrands in
the integrals, we have

〈`̀̀L(P L
n ) , P R

k 〉W =

∫
γ

z(P L
n )′′W P R

k d z

+

∫
γ

(P L
n )′ aLW P R

k d z +

∫
γ

P L
n b

LW P R
k d z,

and, using integration by parts, we find

〈`̀̀L(P L
n ), P R

k 〉W =
(
z(P L

n )′WP R
k

)∣∣
∂γ

−
∫
γ

(P L
n )′
((
zWP R

k

)′ − aLWP R
k

)
d z +

∫
γ

P L
n b

LWP R
k d z

=
(
z(P L

n )′WP R
k

)∣∣
∂γ
−
(
P L
n

((
zWP R

k

)′ − aLWP R
k

))∣∣∣
∂γ

+

∫
γ

P L
n

(
(zW P R

k )′′ − (aLW P R
k )′ + bLW P R

k

)
d z.

Now, considering the boundary conditions (23) and taking into account that(
zW P R

k

)′′
=
(
zW
)′′
P R
k + 2

(
zW
)′

(P R
k )′ + zW (P R

k )′′,

(aLW P R
k )′ = (aLW )′ P R

k + (aLW ) (P R
k )′,
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we arrive to

〈`̀̀L(P L
n ) , P R

k 〉W =

∫
γ

P L
n

((
zW
)′′ − (aLW )′ + bLW

)
P R
k d z

+

∫
γ

P L
n

(
2
(
zW
)′ − aLW)(P R

k )′ d z +

∫
γ

P L
nzW (P R

k )′′ d z,

and so

〈`̀̀L(P L
n ) , P R

k 〉W =

∫
γ

P L
nW

(
z(P R

k )′′ + aR(P R
k )′ + bR

)
P R
k d z, n, k ∈ N,

or, equivalently,

〈`̀̀L(P L
n ) , P R

k 〉W = 〈P L
n , `̀̀

R(P R
k )〉W ,

which completes the proof.

Definition 4. Let αL and αR be two N×N matrices and define the following
linear operators acting on the space of matrix polynomials CN×N [z] as follows

LL(P ) := zP ′′ + P ′aL + PαL, LR(P ) := zP ′′ + aRP ′ + αRP.

Observe that

LL(P ) = `̀̀L(P )− P bL + PαL, LR(P ) = `̀̀R(P )− bRP + αRP.

We have the following characterization.

Theorem 4. The following conditions are equivalent:
i) LR =

(
LL
)∗

with respect to the matrix of weights W .
ii) The matrix of weights W satisfies the matrix Pearson equation (9) with

the boundary conditions (23) as well as fulfills the constraint(
αL − bL

)
W = W

(
αR − bR

)
. (27)

iii) The matrix of weights W satisfies the boundary conditions (23) as
well as

(zW )′′ −
(
aLW

)′
+ αLW = WαR, (28)

(zW )′′ −
(
WaR

)′
+WαR = αLW. (29)

Proof : From Proposition 7

〈LL(P ), P̃ 〉W = 〈P,LR(P̃ )〉W ,
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if and only if

〈−P bL + PαL, P̃ 〉W = 〈P,−bRP̃ + αRP̃ 〉W ,
that is (27) takes place, and so i) is equivalent to ii).

To prove that i) is equivalent to iii) observe that, adding (28) and (29), the
following holds

zW ′′ =
(
aLW

)′
+
(
WaR

)′
,

which transforms (9) if we integrate requesting boundary conditions (23).
Moreover, if we subtract (28) and (29) we arrive directly to (27).

4.3. Eigenvalue problems. Now we discuss how our findings based on
the Riemann–Hilbert problem are linked with previous results by Durán and
Grünbaum [32, 33, 35, 36]. The next theorem shows when the polynomials
and associated functions of second kind are eigenfunctions of a second order
operator.

Theorem 5 (Eigenvalue problems for Laguerre matrix orthogonal polyno-
mials). Let hL and hR be degree one matrix polynomials, i.e.

hL(z) = ALz +BL, hR(z) = ARz +BR, AL, AR, BL, BR ∈ CN×N ,

with AL, AR definite negative, and W a matrix of weights a solution of (28),
(29) subject to the boundary conditions (23). Then, the following conditions
are equivalent:

i) The operators LL and LR are adjoint operators with respect to the matrix
of weights W , i.e. LR =

(
LL
)∗

.

ii) The biorthogonal polynomial sequences with respect to W , say
{
P L
n

}
n∈N,{

P R
n

}
n∈N, are eigenfunctions of LL and LR, i.e. there exist N × N ma-

trices, λLn, λRn such that

LL(P L
n ) = λLnP

L
n , LR(P R

n ) = P R
n λ

R
n,

with λLnC
−1
n = C−1

n λRn, n ∈ N.
iii) The functions of second kind,

{
QL
n

}
n∈N and

{
QR
n

}
n∈N, associated with

the biorthogonal polynomials,
{
P L
n

}
n∈N and

{
P R
n

}
n∈N, fulfill the second

order differential equations,

z
(
QL
n

)′′
(z) +

(
QL
n

)′
(z)
(
− 2hR(z) + IN

)
+QL

n(z) (αR − 2AR) = λLnQ
L
n(z),

z
(
QR
n

)′′
(z) +

(
− 2hL(z) + IN

)(
QR
n

)′
(z) + (αL − 2AL)QR

n(z) = QR
n(z)λRn.
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Proof : The proof follows from similar arguments as in [14, Theorem 5].

The interpretation in terms of adjoint operators, inherits from the Riemann–
Hilbert problem the characterization for the

{
QL
n

}
n∈N and

{
QR
n

}
n∈N that re-

sembles the ones in (20) and (22). Moreover, Theorems 4 we see that W
in Theorem 5 can be taken as a solution of a Pearson Sylvester differential
equation like (9) and satisfying (27).

4.4. Reductions. We consider two possible reductions for the matrix of
weights, the symmetric reduction and the Hermitian reduction.

i) A matrix of weights W (z) with support on γ is said to be symmetric if

(W (z))> = W (z), z ∈ γ.
ii) A matrix of weights W (x) with support on R is said to be Hermitian if

(W (x))† = W (x), x ∈ R.
These two reductions lead to orthogonal polynomials, as the two biorthogo-

nal families are identified, i.e., for the symmetric case P R
n (z) =

(
P L
n (z)

)>
,

QR
n(z) =

(
QL
n(z)

)>
, and for the Hermitian case, with γ = R, P R

n (z) =(
P L
n (z̄)

)†
, QR

n(z) =
(
QL
n(z̄)

)†
. In both cases biorthogonality collapses into

orthogonality.
For the symmetric or Hermitian reductions we find that

`̀̀R(P ) =
(
`̀̀L(P>)

)>
, symmetric,

`̀̀R(P ) =
(
`̀̀L(P †)

)†
, Hermitian,

where in the last case we take x ∈ R. Relation (26) reads in this case
as follows

`̀̀∗(P ) = (`̀̀(P>))>, symmetric,

`̀̀∗(P ) = (`̀̀(P †))†, Hermitian,

for P any matrix polynomial and `̀̀ := `̀̀L.
We find that

LR(P ) =
(
LL(P>)

)>
, symmetric,

LR(P ) =
(
LL(P †)

)†
, Hermitian,

where in the last case we take x ∈ R.
Moreover, the following are equivalent conditions
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i) Equations

L∗(P ) = (L(P>))>, symmetric, (30)

L∗(P ) = (L(P †))†, Hermitian, (31)

are satisfied by any matrix polynomial P , where L := LL.
ii) The matrix of weights W satisfies the matrix Pearson equation

zW ′(z) = h(z)W (z) +W (z)(h(z))>, symmetric, (32)

zW ′(z) = h(z)W (z) +W (z)(h(z̄))†, Hermitian. (33)

with the boundary conditions

zW
∣∣∞
0

= 0N ,
((
zW
)′ − (2h+ IN)W

)∣∣∞
0

= 0N (34)

as well as fulfills the constraint(
α− N (h(z))W (z) = W (z)

(
α> −N (h(z))>

)
, symmetric,(

α− N (h(z))
)
W (z) = W (z)

(
α† −N (h(z))†

)
, Hermitian,

iii) The matrix of weights W satisfies the boundary conditions (34) as
well as

(zW (z))′′ −
(
(2h(z) + IN)W (z)

)′
+ αW (z) = W (z)α>, symmetric, (35)

(zW (z))′′ −
(
(2h(z) + IN)W (z)

)′
+ αW (z) = W (z)α†, Hermitian. (36)

For the symmetric or Hermitian reductions we take h(z) = Az+B, with A
definite negative, and W a matrix of weights a solution of (35) subject to
the boundary conditions (34). Then, the following conditions are equivalent:

i) Equation (30) is satisfied.
ii) The matrix orthogonal polynomials with respect to W are eigenfunctions

of L.
iii) The functions of second kind,

{
Qn(z)

}
n∈N, associated with the ma-

trix orthogonal polynomials,
{
Pn(z)

}
n∈N fulfill the second order differ-

ential equations, in the symmetric

z
(
Qn

)′′
(z) +

(
Qn

)′
(z) (−2h(z) + IN)> +Qn(z) (α> − 2A>) = λnQn(z),

respectively, Hermitian case

z
(
Qn

)′′
(z) +

(
Qn

)′
(z) (−2h(z) + IN)† +Qn(z) (α† − 2A†) = λnQn(z).



30 BRANQUINHO, FOULQUIÉ AND MAÑAS

These equivalences, excluding the one for the second kind functions (which
is new), coincide with those of [33]. Therefore, these results could be under-
stood as an extension of those obtained by Durán and Grünbaum to the non
Hermitian orthogonality scenario.

5. Matrix discrete Painlevé IV
We can consider, using the notation introduced before, the matrix weight

measure W = W LW R such that

z(W L)′(z) = (AL +BLz + CLz
2)W L(z),

z(W R)′(z) = W R(z)(AR +BRz + CR)z2.

From Theorem 5 we get that the matrix M̃n = zML
n is given explicitly by

(M̃L
n)11 = C−1

n CRCn−1 + (AL +BLz + CLz
2) +BLq

1
R,n−1 + p1

L,nBL

+ z(CLq
1
R,n−1 + p1

L,nCL) + CLq
2
R,n−1 + p2

L,nCL + p1
L,nCLq

1
R,n−1,

(M̃L
n)12 = (BL + CLz + CLq

1
R,n + p1

L,nCL)C
−1
n

+ C−1
n (BR + CRz + CRp

1
R,n + q1

L,nCR),

(M̃L
n)21 = −Cn−1(BL + CLz + CLq

1
R,n−1 + p1

L,n−1CL)

− (BR + CRz + CRp
1
R,n−1 + q1

L,n−1CR)Cn−1,

(M̃L
n)22 = −Cn−1CLC

−1
n − (AR +BRz + CRz

2)−BRp
1
R,n − q1

L,n−1BR

− z(CRp
1
R,n + q1

L,n−1CR)− CRp
2
R,n − q2

L,n−1CR − q1
L,n−1CRp

1
R,n.

From the three term recurrence relation for {P L
n}n∈N we get that p1

L,n −
p1
L,n+1 = βL

n and p2
L,n − p2

L,n+1 = βL
np

1
L,n + γLn where γLn = C−1

n Cn−1. Con-
sequently,

p1
L,n = −

n−1∑
k=0

βL
k , p2

L,n =
n−1∑
i,j=0

βL
i β

L
j −

n−1∑
k=0

γLk .

In the same manner, from the three term recurrence relation for {QL
n}n∈N

we deduce that q1
L,n−q1

L,n−1 = βR
n := Cnβ

L
nC
−1
n and q2

L,n−q2
L,n−1 = βR

nq
1
L,n+γRn ,

where γRn = CnC
−1
n+1.
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If we consider that W = W L and W R = IN , and use the representation for
{P L

n}n∈N and {QL
n}n∈N in z powers, the (1, 2) and (2, 2) entries in (15) read

(2n+ 1)IN + AL + CL(γ
L
n+1 + γLn + (βL

n)2) +BLβ
L
n

= [p1
L,n, CL]p

1
L,n+1 − [p2

L,n, CL]− [p1
L,n, BL],

βL
n = γLn

(
CL(β

L
n + βL

n−1) + [p1
L,n−1, CL] +BL

)
−
(
CL(β

L
n + βL

n+1) + [p1
L,n, CL] +BL

)
γLn+1.

We can write these equations as follows

(2n+ 1)IN + AL + CL(γ
L
n+1 + γLn)) + (CLβ

L
n +BL)β

L
n

=
[ n−1∑
k=0

βL
k , CL

] n∑
k=0

βL
k −

[ n−1∑
i,j=0

βL
i β

L
j −

n−1∑
k=0

γLk , CL

]
−
[ n−1∑
k=0

βL
k , BL

]
,

(37)

βL
n − γLn

(
CL(β

L
n + βL

n−1) +BL

)
+
(
CL(β

L
n + βL

n+1) +BL

)
γLn+1

= −γLn
[ n−1∑
k=0

βL
k , CL

]
+
[
−

n−1∑
k=0

βL
k , CL

]
γLn+1.

(38)

We will show now that this system contains a noncommutative version of
an instance of discrete Painlevé IV equation, as happens in the analogous
case for the scalar scenario.

We see, on the r.h.s. of the nonlinear discrete equations (37) and (38)
nonlocal terms (sums) in the recursion coefficients βL

n and γLn, all of them in-
side commutators. These nonlocal terms vanish whenever the three matrices
{AL, BL, CL} conform an Abelian set. Moreover, {AL, BL, CL, β

L
n, γ

L
n} is also

an Abelian set. In this commutative setting we have

(2n+ 1)IN + AL + CL(γ
L
n+1 + γLn)) + (CLβ

L
n +BL)β

L
n = 0N ,

βL
n − γLn

(
CL(β

L
n + βL

n−1) +BL

)
+
(
CL(β

L
n + βL

n+1) +BL

)
γLn+1 = 0N .

In terms of

ξn :=
AL

2
+ nIN + CLγn and µn := CLβ

L
n +BL

the above equations are

βL
nµn = −(ξn + ξn+1), βL

n(ξn − ξn+1) = −γnµn−1 + γn+1µn+1.
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Now, we multiply the second equation by µn and taking into account the first
one we arrive to −(ξn + ξn+1)(ξn − ξn+1) = −γnµn−1µn + γn+1µnµn+1, and so

ξ2
n+1 − ξ2

n = γn+1µnµn+1 − γnµn−1µn.

Hence,

ξ2
n+1 − ξ2

0 = γn+1µnµn+1 and βL
nµn = −(ξn + ξn+1) (39)

coincide to the ones presented in [12] as discrete Painlevé IV (dPIV) equation.
In fact, taking νn = µ−1

n we finally arrive to

νnνn+1 =
CL

(
ξn+1 − AL/2− nIN

)
ξ2
n+1 − ξ2

0

,

ξn + ξn+1 =
(
C−1

L BL − C−1
L ν−1

n

)
ν−1
n .

If we take BL = 0 in (39) then µn = CLβ
L
n, and so (βL

n)2CL = −(ξn + ξn+1).
Now, taking square in the first equation in (39) we get(

ξn + ξn+1

)(
ξn+1 + ξn+2

)
=
((
ξn+1 − AL/2− nIN

)−1(
ξ2
n+1 − ξ2

0

))2

,

which is an instance of dPIV by Grammaticos, Hietarinta, and Ramani (cf. [42]).
Thus, (37) and (38) for BL = 0N may be considered as non-Abelian exten-

sion of this instance of dPIV.

Theorem 6 (Non-Abelian extension of the dPIV). When BL = 0N , the
following nonlocal nonlinear non-Abelian system for the recursion coefficients
is fulfilled

(2n+ 1)IN + AL + CL(γ
L
n+1 + γLn)) + CL(β

L
n)2

=
[ n−1∑
k=0

βL
k , CL

] n∑
k=0

βL
k −

[ n−1∑
i,j=0

βL
i β

L
j −

n−1∑
k=0

γLk , CL

]
,

βL
n − γLn

(
CL(β

L
n + βL

n−1)
)

+
(
CL(β

L
n + βL

n+1)
)
γLn+1

= −γLn
[ n−1∑
k=0

βL
k , CL

]
+
[
−

n−1∑
k=0

βL
k , CL

]
γLn+1.

Moreover, this system reduces in the commutative context to the standard
dPIV equation.
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Departamento de Matemática, Universidade de Aveiro, 3810-193 Aveiro, Portugal

E-mail address: foulquie@ua.pt

Manuel Mañas
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