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D-ULTRAFILTERS AND THEIR MONADS

J. ADÁMEK AND L. SOUSA

Abstract: For a number of locally finitely presentable categories K we describe
the codensity monad of the full embedding of all finitely presentable objects into
K. We introduce the concept of D-ultrafilter on an object, where D is a “nice”
cogenerator of K. We prove that the codensity monad assigns to every object an
object representing all D-ultrafilters on it. Our result covers e.g. categories of
sets, vector spaces, posets, semilattices, graphs and M-sets for finite commutative
monoids M.

1.Introduction
We present a generalization of the concept of an ultrafilter on a set:

for a number of categories K we define D-ultrafilters on an object of K.
Here D is a cogenerator of K with a special property; we speak about ∗-
cogenerators, see below. For example D = {0,1} is a ∗-cogenerator of Set,
here D-ultrafilters are the usual ultrafilters. By a classical result of Ken-
nison and Gildenhuys [7] the ultrafilter monad on Set (assigning to ev-
ery set the set of all ultrafilters) is the codensity monad of the embedding
Setfp ↪→ Set of finite sets. We will prove that, in general, the correspond-
ing monad ofD-ultrafilters on K is the codensity monad of the embedding
Kfp ↪→K of finitely presentable objects of K.

We consider closed monoidal categories, thus, the given cogenerator
yields a contravariant endofunctor [−,D]. Our examples include all com-
mutative varieties, for instance, vector spaces, semilattices or M-sets for
finite commutative monoids M. Recall that a variety of algebras is closed
monoidal with respect to the usual tensor product if and only if it is com-
mutative (aka entropic), see [2]. Another sort of examples are cartesian
closed categories such as posets or graphs.
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All of our examples (except the last section presenting some general-
izations) are locally finitely presentable categories in the sense of Gabriel
and Ulmer [5]. One of the most important features of locally finitely pre-
sentable categories K is that the full embedding

E : Kfp ↪→K

of all finitely presentable objects is dense, i.e. every object X is a canonical
colimit of all morphisms a : A→ X with A finitely presentable. More pre-
cisely: the forgetful functor Kfp /X→K of the coslice category has colimit
X with the canonical colimit cocone.

Not surprisingly, finitely presentable objects are usually not codense. A
measure of how “far away” a functor E is from being codense is the coden-
sity monad T of E. This monad is given by the right Kan extension of E
along itself:

T = RanEE,

see below. For codense functors E, this is the trivial monad Id.
Recently, Leinster proved that the codensity monad of the embedding of

finite-dimensional vector spaces into the category K-Vec of vector spaces
over a field K is the double-dualization monad

TX = X∗∗.

And he asked for a general description of the codensity monad of E :
Kfp ↪→K for locally finitely presentable categories K.

The purpose of our paper is to answer to Leinster’s question. Not for
general locally finitely presentable categories, but for quite some. Given
a cogenerator D we denote by (−)∗ = [−,D] the contravariant endofunctor
X 7→ [X,D]; then D is a ∗-cogenerator if for every object X we have that X∗

is a canonical colimit of objects A∗ with A finitely presentable. We prove
that every finitely presentable cogenerator is a ∗-cogenerator. The com-
posite (−)∗∗ of (−)∗ with itself is the well-known double-dualization monad
(relative to D).

We introduce the concept of a D-ultrafilter on an object X and form the
corresponding D-ultrafilter monad on K as a submonad of the double-
dualization monad. This turns out to be the desired codensity monad of E :
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Kfp ↪→K. Example: in the category of posets the 2-chain is a ∗-cogenerator.
Here X∗ is the poset of all ↑-sets of X, ordered by inclusion. Therefore X∗∗

is the poset of all upwards closed collections W of ↑-sets, again ordered by
inclusion. A D-ultrafilter on X is such a nonempty collection W which is

(i) closed under finite intersections,
and

(ii) prime, i.e., if it contains R∪S, then it contains R or S, and it does not
contain ∅.
This is analogous to the classical ultrafilters on sets, which are nonempty,
upwards closed, prime collections of subsets, closed under finite intersec-
tions.

Analogously in all examples that our result covers: the codensity monad
T assigns to every object X an object formed by all D-ultrafilters on X, and
there is a close analogy between the latter and the classical ultrafilters.

On codensity monads. Recall that for every functor E : A → K the
codensity monad is defined as the right Kan-extension along itself, T =
RanEE. That is, T is an endofunctor endowed with a natural transforma-
tion τ : T E→ E universal among natural transformations from (−) ·E to E.
Applying the universal property to id : Id ·E→ E we get a unique natural
transformation η : Id→ T . And applying it to τ · T τ : T T E → E we get a
unique natural transformation µ : T T → T . Then (T ,η,µ) is a monad, see
[9].

If A (like Kfp) is an essentially small full subcategory of a complete cate-
gory K, then the codensity monad of the embedding E : A→K is obtained
by the following limit formula: for every object X denote by

CX : X/A→K

the functor assigning to every arrow a : X→ A the codomain A, and put

TX = limCX .
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We have a limit cone denoted by ψa : TX → A for (A,a) ∈ X/A. On mor-
phisms f : X → Y , T f is defined as follows: there exists a unique mor-
phism T f : TX→ T Y with

ψa · T f = ψa·f for all a : Y → A in Y /A.

The unit ηTX : X→ TX is the unique morphism given by

ψa · ηTX = a for all a : X→ A in X/A

and the multiplication is defined by the following commutative triangles

T TX
µTX //

ψψa ""

TX

ψa}}
A

for all a : X→ A in X/A.

Related work. As mentioned already, our paper was inspired by that
of Leinster [9]. A related topic was discussed in the PhD thesis of Barry-
Patrick Devlin [3]. He also aimed to describe codensity monads of embed-
dings of “finite-objects”, and he also introduced a concept of ultrafilter
on an object. However his thesis is fundamentally disjoint from our paper.
For example, the categories he works with are varieties whose monads con-
tain that of abelian groups as a submonad – the only example on our list
above with this property is K-Vec. This is a meeting point of Devlin’s work
and ours, see Example 3.6 below.

2.∗-cogenerators
Throughout we work with a symmetric monoidal closed category (K,⊗, I)

with a specified object D.
The functor [−,D] : K→Kop is denoted by (−)∗. Since it is left adjoint to

its dual, we obtain a monad (−)∗∗ on K given by

X∗∗ = [[X,D],D]

called the double-dualization monad. Its unit

ηX : X→ [[X,D],D]
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is the mate of the evaluation map [X,D] ⊗ X → D precomposed by the
braiding X ⊗ [X,D]

�−→ [X,D]⊗X.

Remark 2.1. (−)∗ is defined on morphisms f : X → Y by yielding the
unique morphism f ∗ : Y ∗→ X∗ for which the square below commutes:

X ×Y ∗

f ×Y ∗
��

X×f ∗
// X ×X∗

ev
��

Y ×Y ∗
ev

// D

Examples 2.2. Most of our examples are commutative varieties of finitary
algebras. Recall that a variety K is called commutative (or entropic) if for
each of its n-ary operation symbols σ and every algebra K ∈ K we have a
homomorphism σK : Kn→ K . Let | − | denote the forgetful functor. Every
variety is symmetric monoidal w.r.t. the usual tensor product:

A⊗B represents bimorphisms from |A| ⊗ |B|
and the unit

I=free algebra on one generator.
As proved by Banaschewski and Nelson [2], this is a monoidal closed cate-
gory iff it is a commutative variety. Then, for arbitrary objects A and B, all
morphisms in K(A,B) form a subalgebra of the power B|A| which yields the
object [A,B]. Another equivalent formulation, as observed by Linton [10],
is that the monad associated with K is commutative in Kock’s sense [8].

Here are our leading examples of commutative varieties with a specified
finitely presentable cogenerator D.

(a) Set with D = {0,1}. Here (−)∗ is the contravariant power-set functor
P, thus X∗∗ = PPX consists of all collections of subsets of X. For a
function f : X→ Y the function f ∗∗ takes a collection U ⊆ PX to

f ∗∗(U) = {R ⊆ Y | f −1(R) ∈ U}.

And ηX assigns every element x of X the trivial ultrafilter ηX(x) =
{R ⊆ X | x ∈ R}.

(b) Par, the category of sets and partial functions, with D = {1}. This is
completely analogous, X∗∗ = PPX.
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(c) K-Vec, the category of vector spaces over a field K . This example
was the motivation for our notation: X∗ is the usual dual space (of
all linear forms on X). Thus X∗∗ is the double-dual. For a linear
function f : X → Y , the function f ∗∗ assigns to every a : X∗→ K in
X∗∗ the element a · f ∗ : Y ∗ → K of Y ∗∗. And ηX : X → X∗∗ assigns to
x ∈ X the evaluation-at-x of linear forms.

(d) JSL, the category of join-semilattices (i.e., posets with finite joins)
and homomorphisms, with D = 2, the chain 0 < 1. Observe that ho-
momorphisms preserve 0, the join of ∅. Given a semilattice X, every
homomorphism f : X → 2 defines a subset of X by f −1(1). This is
an ↑-set which is prime, i.e., it does not contain 0 and whenever it
contains x1 ∨ x2, then it contains x1 or x2. Conversely, every prime
↑-set R of X defines a homomorphism fR : X → 2 by fR(x) = 1 iff
x ∈ R. We can thus identify

X∗ = all prime ↑-sets of X

ordered by inclusion. The least element of X∗ is ∅. Consequently,

X∗∗ = all prime upwards closed collections of prime ↑-sets of X.

Here a collection is called prime if it does not contain the empty set
and whenever it containsR1∪R2, then it containsR1 orR2. X∗∗ is also
ordered by inclusion. Its smallest element is the empty collection.

(e) M-Set, the category of sets with an action of a monoid M. We
assume that M is commutative (so that M-Set is a commutative
variety) and finite. We need the latter assumption to have a ∗-
cogenerator, see Example 2.10 below. A cogenerator of M-Set is
the power-set

D = PM,

with the monoid action

mR = {x ∈M |mx ∈ R} for R ⊆M, m ∈M.

To see that this is indeed a cogenerator, observe that M-set homo-
morphisms f : X → PM correspond bijectively to subsets (not only



D-ULTRAFILTERS AND THEIR MONADS 7

subalgebras!) of X: to every subset Y ⊆ X assign fY defined by

fY (x) = {m ∈M |mx ∈ Y } for all x ∈ X.

The inverse assignment takes every g : X → PM to Y = {mx | m ∈
g(x), x ∈ X}.

Thus for every M-set X we conclude that

X∗ = PX

is the power-set of the (underlying set of) X with the monoid action
mR = {x ∈ X |mx ∈ R}. And the monoid action of X∗∗ = PPX assigns
to U ⊆ PX and m ∈M the result mU = {R ⊆ X |mR ∈ U}.

Examples 2.3. Further we consider some cartesian closed categories.

(a) Pos, the category of posets and monotone maps, with D = 2, the
chain 0 < 1. Here [A,B] = Pos(A,B) ordered pointwise. Thus

X∗ = all ↑-sets of X

(ordered by inclusion) and

X∗∗ = all upwards closed collections of ↑-sets,

also ordered by inclusion.
(b) Gra, the category of undirected graphs and homomorphisms. Thus

an object (V ,E) consists of a set V of vertices and a symmetric re-
lation E ⊆ V × V of edges. In case E = V × V we speak about the
complete graph on V . Gra has a cogenerator D, the complete graph
on {0,1}. Given graphs A and B, then

[A,B] = Set(VA,VB)

consists of all functions, not only homomorphisms, and its edges
are all pairs (f ,g) with (a,a′) ∈ EA⇒ (f (a), g(a′)) ∈ EB, for all a,a′ ∈ A.
We conclude that

X∗ = complete graph on PVX

and
X∗∗ = complete graph on PPVX .
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(c) Σ-Str, the category of relational structures, where Σ is a signature
of finitely many finitary symbols. Objects X, Σ-structures, consist
of a set VX and an n-ary relation σX ⊆ V n

X for every σ ∈ Σ n-ary.
Analogously to (b) we choose as D the complete structure on {0,1},
that is, σD = {0,1}n for every n-ary symbol n. Then

X∗ = complete Σ-structure on PVX .

Remark 2.4. As explained in the introduction we want to describe the co-
density monad of the full embedding

Kfp ↪→K

of the subcategory of finitely presentable objects. Recall that in case K

is locally finitely presentable, Kfp is colimit-dense: every object X is the
canonical colimit of the diagram Kfp /X→K assigning to every morphism
a : A→ X with A ∈ Kfp the domain. We are, however, not assuming that
K is locally finitely presentable. Instead, we need that every object X∗ is a
canonical colimit of all A∗ with A finitely presentable:

Notation 2.5. Recall that, for every object X, the diagram CX : X/Kfp→K

assigns to a : X→ A with A ∈Kfp the codomain. We denote the composite

(−)∗ ·
(
CX

)op
by C∗X . That is,

C∗X : (X/Kfp)
op→K with C∗X(A,a) = A∗.

Definition 2.6. An object D is called a ∗-object provided that for all ob-
jects X we have X∗ = colimC∗X with the canonical colimit cocone. If D is a
cogenerator, we speak about ∗-cogenerator.

Proposition 2.7. Every finitely presentable object D of a commutative variety
is a ∗-object.

Proof : Let X be an arbitrary object and suppose that a cocone of C∗X with
codomain Z is given as follows

X
a−→ A

A∗
ā−→ Z

for (a,A) ∈ X/Kfp.
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We prove that there exists a unique morphism f making the following
triangles

A∗
a∗

}}

ā

  
X∗

f
// Z

(a,A) ∈ X/Kfp

commutative.
(1) Uniqueness. The cocone of all a∗’s is collectively surjective, hence,

collectively epic: given b : X→D in X∗, then (b,D) ∈ X/Kfp and b = b∗(id).
(2) Existence. For every b ∈ X∗ we have the corresponding b̄ : D∗ =

[D,D]→ Z. We define f by

f (b) = b̄(idD).

To prove the equality
f · a∗ = ā (1)

observe that every b ∈ A∗ is a morphism of X/Kfp from X
a−→ A to X

ba−−→ D.
The compatibility of the above cocone a 7→ ā implies that the following
triangle

D∗

ba   

b∗ // A∗

ā~~
Z

commutes. This applied to idD ∈D∗ yields

ā(b) = ba(idD)

hence
f · a∗(b) = f (ba) = ā(b)

as desired.
It remains to prove that f is a morphism of K. Let Σ be a signature in

which K is equationally specified. For every n-ary symbol σ ∈ Σ we are to
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prove that f preserves σ , i.e., the outward square in the following diagram

[X,D]n

f n

��

σ[X,D]
// [X,D]

f

��

[A,D]n

(a∗)nee

σ[A,D]
//

ānyy

[A,D]

a∗
::

ā %%
Zn

σZ
// Z

(2)

commutes. For the triangles use the above equality (1). The upper part
commutes since a∗, being a morphism of K, preserves σ . Analogously for
the lower part.

Proposition 2.8. Every finite object of the categories Pos, Gra or Σ-Str is a
∗-object.

Proof : (1) For Pos this is completely analogous to the proof of Proposition
2.7, except the part that f , defined by f (b) = b̄(idD), is a morphism of Pos.
For that it is sufficient to prove that every comparable pair b1 ≤ b2 in [X,D]
is the image under some a∗ of a comparable pair in [A,D]. By the definition
of [X,D] we have b1(x) ≤ b2(x) for every x ∈ X. Let A be the subposet of D2

on all comparable pairs. Then we conclude that < b1,b2 >: X → D2 has a
codomain restriction

a : X→ A.

The projections π1,π2 : A→D fulfil

π1 ≤ π2 in A∗ and bi = πi · a.

Therefore bi = a∗(πi), as required.
(2) For Σ-Str again the proof is analogous to 2.7, just the proof of that f

is a morphism needs to be modified. Let σ be an n-ary symbol of Σ. It is
our task to prove that f n restricted to σ[X,D] factorizes through σZ :
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σ[X,D]
// //

f ′

��

[X,D]n

f n

��

σ[A,D]

(a∗)′cc

ā′

zz

// // [A,D]n
ān

%%

(a∗)n

99

σZ // // Zn

In the above diagram (a∗)n has the depicted restriction (a∗)′ because a∗ is a
morphism of Σ-Str, analogously for ān. Thus, to prove that f ′ making the
diagram commutative exists, we just need to show that every n-tuple

(b1, . . . , bn) ∈ σ[X,D]

lies in the image of (a∗)′ for some a : X → A in X/Kfp. By the definition of
σ[X,D] the morphisms bi : X→ D fulfil (b1(x), . . . , bn(x)) ∈ σD for every x ∈ X.
Let A be the strong subobject of Dn on the subset σD , then < bi >: X → Dn

has a codomain restriction
a : X→ A.

The projections πi : A→ D fulfil (π1, . . . ,πn) ∈ σ[A,D] and bi = πi · a. There-
fore, (b1, . . . , bn) = (a∗)n(π1, . . . ,πn), as required.

(3) The proof for Gra uses the same diagram as in (2).

Observe that in all examples of 2.2 and 2.3 the unit object I is finitely
presentable. For commutative varieties, where I is the free algebra on one
generator, this is automatic. In the cartesian closed categories Pos and Gra
this also holds. For Σ-Str the terminal object I = 1 is finitely presentable
iff Σ is finite.

Proposition 2.9. All ∗-objects are finitely presentable, assuming that I is.

Proof : Denote by ρA : A ⊗ I → A the right unitor isomorphism. If D is a
∗-object, then D∗ itself is a filtered colimit of the diagram (D/Kfp)op → K

with the colimit cocone a∗ : A∗ → D∗. The mate ρ̂D : I → [D,D] of ρD :
D⊗ I →D factorizes, if I is finitely presentable, through one of the colimit
maps a∗. The factorizing morphism from I to [A,D] is a mate û · ρA : A⊗I →
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D for a morphism u : A→D:

I
ρ̂D

//

û·ρA !!

[D,D]

[A,D]
a∗=[a,D]

::

We obtain a commutative triangle by multiplying the above one with D:

D ⊗ I
D⊗ρ̂D

//

D⊗û·ρA

$$

ρD
++

D ⊗ [D,D]

ev
rrD

A⊗ [A,D]

ev

OO

D ⊗ [A,D]

a⊗[A,D]

OO
D⊗a∗

::

Moreover, the upper triangle commutes by the definition of mate, and the
right-hand one does by Remark 2.1. Consequently, the left-hand triangle
also commutes. Consider the following diagram, using the above triangle
in its left-hand part:

D
a //

id
//

A

u

oo

D ⊗ I

ρD
ee

a⊗I
//

D⊗ûρA
��

A⊗ I
A⊗ûρA
��

ρA
99

D ⊗ [A,D]
a⊗[A,D]

// A⊗ [A,D]

ev
yy

D

The right-hand part commutes by the definition of mate, the upper part
by naturality of ρ, and the middle square commutes since both passages
yield a⊗ û · ρA. This proves u · a = id. Thus D is a split quotient of A ∈Kfp,
concluding the proof.
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Example 2.10. A commutative variety with a cogenerator does not have to
possess a ∗-cogenerator. An example is the variety

Un

of unary algebras on one operation. This is equivalent to N-Set for the
additive monoid N of natural numbers. It has a cogenerator analogous to
that of Example 2.2(e): take PN with the unary operation sending V ⊆ N

to {n− 1 | n ∈ V ,n , 0}.
Assuming that Un has a ∗-cogenerator D, we derive a contradiction as

follows:
The operation of D forms some cycles, and since D is by Proposition 2.9

finitely generated, there exists a prime n such that all cycles of D have
lengths smaller than n. But then D is not a cogenerator: if A is an algebra
consisting of a cycle of length n, there exists no non-constant homomor-
phism from A to D.

Proposition 2.11. For every cogenerator D the unit of the double-dualization
monad is monic.

Proof : (1) ηD is monic. Indeed, by definition, ηD is the mate of the compos-
ite

D ⊗D∗ s−→D∗ ⊗D ev−−→D

where s is the braiding. Thus we have a commutative triangle as follows:

D∗ ⊗D ev //

s−1
��

D

D ⊗D∗

ηD⊗D∗
��

D∗∗ ⊗D∗

ev

==

Denote by i : I → D∗ the mate of the left unitor isomorphism λD : I ⊗D →
D:

I ⊗D
λD //

i⊗D
��

D

D∗ ⊗D
ev

;;
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Thus the following diagram commutes (due to naturality of s):

I ⊗D
λD //

i⊗D
��

D

D∗ ⊗D
D∗⊗ηD

��

D∗ ⊗D∗∗

s−1
��

D∗∗ ⊗D∗

ev

CC

Therefore, i ⊗ ηD is a split monomorphism (with splitting λ−1
D · ev · s−1).

Consequently, given morphisms u1, u2 : Y →D with ηD ·u1 = ηD ·u2, then
I⊗u1 = I⊗u2 (since i⊗ηD merges that last pair) which proves u1 = u2, since
I ⊗− � IdK.

(2) For every object X the morphism ηX is monic. Indeed, given u1, u2 :
Y → X with u1 , u2, there exists, since D is a cogenerator, a morphism
f : X → D with f · u1 , f · u2. Hence, by (1), ηD · f · u1 , η · f · u2. The
following commutative diagrams

Y
ui // X

ηX
//

f
��

X∗∗

f ∗∗
��

D
ηD
// D∗∗

(i = 1,2)

prove ηX ·u1 , ηX ·u2.

3.D-ultrafilters
We assume that a finitely presentable cogenerator D in a symmetric

monoidal category K with preimages is given. Recall from Proposition
2.11 that each ηA : A→ A∗∗ is monic.

Definition 3.1. (1) Given a morphism a : X→ AwithA finitely presentable,
we call the preimage of ηA under a∗∗ : X∗∗→ A∗∗ the derived subobject a′ of a.
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We use the following notation for the corresponding pullback:

A′

p(a)
��

// a
′
// X∗∗

a∗∗
��

A //
ηA
// A∗∗

(3)

(2) A D-ultrafilter on an object X is an external element of X∗∗ lying in
every derived subobject. That is, a morphism f : I → X∗∗ factorizing as
follows:

I

}}
f
��

A′
a′
// X∗∗

for all (A,a) in X/Kfp

Example 3.2. In Set with D = {0,1}, this is precisely an ultrafilter on X.
Recall that this means a nonempty collection U of subsets that is upwards
closed, closed under finite intersections and prime (i.e., ∅ < U and if U

contains R∪ S then it contains R or S).
Why do ultrafilters and {0,1}-ultrafilters coincide? Recall that ηA(t) is

the collection U of all Z ⊆ A with t ∈ Z. And a∗∗ takes every collection of
subsets to the collection of their preimages under a. Thus, a collection of
subsets U lies in the derived subobject A′ iff there exists t ∈ A such that

a−1(Z) ∈ U iff t ∈ Z (for all Z ⊆ A). (4)

We are going to prove that this holds iff U is an ultrafilter. This can be de-
rived from the result of Galvin and Horn [4] which states that U is an ultra-
filter iff for every finite disjoint decomposition of X precisely one member
lies in U. We provide a full (short) proof since we need modifications of it
below.

Lemma 3.3. Let K = Set with D = {0,1}, or K = Par with D = {1}. Then a
D-ultrafilter on a set is precisely an ultrafilter on it.

Proof : To give an external element f : 1→ X∗∗ = PPX means precisely to
give a collection U of subsets of X. It is clear that (4) holds whenever U

is an ultrafilter: in the finite decomposition X = ∪t∈a[X]a
−1(t) we have a

unique t ∈ A with a−1(t) ∈ U, then (4) follows.
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Conversely, suppose U is a {0,1}-ultrafilter. From (4) we immediately see
that U , ∅ (it contains a−1({t})). Given subsets R,S ⊆ X expressed by their
characteristic functions, we put

A = {0,1}2 and a =< χR,χS >: X→ A.

(i) If R ⊆ S and R ∈ U, then S ∈ U. We see that R = a−1({(1,1)}), thus
in (4) we have t = (1,1). Consequently, S lies in U, since it is a−1(Z) for
Z = {(1,1), (0,1)}.

(ii) If R,S ∈ U, then R∩ S ∈ U, since this is a−1({(1,1)}).
(iii) IfR∪S ∈ U, thenR ∈ U or S ∈ U. Indeed, assumingR = a−1({(1,0), (1,1)})

does not lie in U, then t in (4) is (0,1): it cannot be (0,0) since a−1({(0,0)}) =
∅. Consequently, S = a−1({(0,1), (1,1)}) lies in U. And ∅ < U since we can
choose a : A→ 1.

Example 3.4. Let K = Pos and D = 2. A D-ultrafilter on a poset X is pre-
cisely a prime nonempty collection U of ↑-sets of X which is closed un-
der upper sets and finite intersections. Here prime means that ∅ < U and
whenever R∪ S ∈ U, then R ∈ U or S ∈ U (for all ↑-sets R, S).

The proof is completely analogous to that of the above lemma. To give
an external element f : 1→ X∗∗ means, by Example 2.3(a), to give an up-
wards closed collection of ↑-sets U. If it is nonempty, prime, and closed
under finite intersections, then for every morphism a : X → A with A fi-
nite, the collection Û = {Z ∈ X∗ | a−1(Z) ∈ U} also has those properties, thus
∩Z∈ÛZ =↑ t ∈ Û for some t ∈ A. Then Z ∈ Û iff t ∈ Z, ensuring that U is a
D-filter. The rest is the same, just the set A = {0,1}2 is substituted by the
poset D2:

(1,1)

(1,0) (0,1)

(0,0)

Example 3.5. Let K = JSL with D = 2. A D-ultrafilter on a semilattice X is
precisely a prime, upwards closed collection of prime ↑-sets of X. Indeed,
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every element U of X∗∗ is a D-ultrafilter. To see this, given a morphism
X

a−→ A, put Û = {Z ∈ A∗ | a−1(Z) ∈ U}. We want to prove that there is a
unique t0 in A such that Z ∈ Û iff t0 ∈ Z. If Û = ∅, then t0 = 0. If Û , ∅,
every Z ∈ Û is of the form Z =↑ u1 ∪ · · ·∪ ↑ uk with u1, . . . , uk incomparable
elements of A. Since U is prime, so is Û, therefore some ↑ ui belongs to Û.
Thus, there are incomparable elements of A, t1, . . . , tn, such that Û consists
of all sets ↑ ti, i = 1, . . . ,n, and all sets of A∗ containing some of them. It is
easily seen that t0 = t1∨ · · · ∨ tn is as desired.

The rest is analogous to Pos, using that the above poset D2 is a semilat-
tice.

Example 3.6. Let K = K-Vec andD = K . AD-ultrafilter on a vector spaceX
is a vector of the double-dual spaceX∗∗. Indeed, for every finite-dimensional
space A the unit ηA : A→ A∗∗ is well-known to be invertible. Thus, the de-
rived subobject is all X∗∗.

It turns out that there is a close analogy between ultrafilters on a set
and vectors of the double-dual of a space. It is based on the following
observation made in [1]:

(i) To give an ultrafilter on a set X means precisely to give a choice, for
every finite decomposition a : X� n (n ∈ N) of a class a−1(i), i ∈ n, which is
compatible. That is, if b : X�m is a coarser decomposition (one factorizing
through a) then the chosen class for b contains a−1(i).

(ii) To give a vector of X∗∗ for a space X means precisely to give a choice,
for every finite-dimensional decomposition a : X � Kn (n ∈ N) of a class
a−1(i), i ∈ Kn, which is compatible.

A different analogy between X∗∗ and ultrafilters was presented in De-
vlin’s thesis [3].

Example 3.7. Let M be a finite commutative monoid. For D = PM, a D-
ultrafilter on an M-set (X, ·) is precisely an ultrafilter on X. Indeed, we
know from Example 2.2(e) that an external element of X∗∗ is a collection U

of subsets of X. U is a D-ultrafilter iff for every homomorphism a : X→ A

with A finite (= finitely presentable) there exists t ∈ A such that (4) holds.
Therefore, every D-ultrafilter is an ultrafilter. The proof of the converse is
analogous to Lemma 3.3. We just use, instead of the function χR there, the
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function fR : X→ PM of Example 2.2(e). Thus, we work with a =< fR, fS >:
X→ (PM)2.

4.The codensity monad of the embedding Kfp ↪→K

In this section K is a complete, symmetric monoidal closed category with
a ∗-cogenerator D.

Notation 4.1. For every object X we denote by iX : TX → X∗∗ the wide in-
tersection of all derived subobjects. (Thus, the external elements of TX are
precisely the D-ultrafilters on X.) The factorizing morphisms are denoted
by q(a) for all a : X→ A, A ∈Kfp:

A′��
a′
��

TX
<<

q(a) <<

//
iX

// X∗∗
for (A,a) ∈ X/Kfp

(5)

Lemma 4.2. The morphisms iX : TX→ X∗∗ carry a subfunctor T of (−)∗∗.

Proof : The definition of T on morphisms f : X → Y follows automatically
from the naturality of i : T → (−)∗∗. Indeed, given a morphism f : X → Y ,
in order to verify that a (necessarily unique) morphism T f exists making
the following square

TX
iX //

T f
��

X∗∗

f ∗∗
��

T Y
iY

// Y ∗∗

commutative, we just need to observe that f ∗∗ factorizes through all de-
rived subojects of Y ∗∗. Indeed, for all a : Y → A with A finitely presentable
put

ā = a · f : X→ A.
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Use the universal property of the pullback a′ (of ηA along a∗∗) to define a
morphism u as follows:

TX

q(ā)
��

iX

""

Ā′

u
��

ā′ //

p(ā)

&&

X∗∗

f ∗∗
��

A′
a′ //

p(a)
��

Y ∗∗

a∗∗
��

A
ηA
// A∗∗

Then u · q(ā) is the desired factorization.

Remark 4.3. The functor T of Lemma 4.2 carries a monad T which is a
submonad of (−)∗∗ via (iX). This is proved in the next theorem. T is called
the D-ultrafilter monad.

Examples 4.4. (a) For K = Set we see that T is the ultrafilter monad, for
K = K-Vec it is the double-dualization monad. In both cases, T is the
codensity monad of Kfp ↪→K (see Introduction).

(b) In case K = Pos the monad T assigns to every poset X the poset of all
nonempty, prime collections of ↑-sets closed under upper sets and finite
intersections. It is ordered by inclusion, see Examples 3.4 and 2.3(a).

(c) In K = JSL for every semilattice X the semilattice TX consists of
all prime, upwards closed collections of nonempty prime ↑-sets. And the
semilattice operation is the set-theoretic union. See Example 3.5.

(d) For K = Par, Gra, Σ-Str or M-Set, the underlying set of TX is that of
all ultrafilters on X.

In Gra, TX is a complete graph (all pairs of ultrafilters form an edge),
see Examples 3.5 and 2.3(b). Analogously in Σ-Str.

InM-Set the monoid action assigns to every ultrafilter U on X and every
element m ∈M the ultrafilter

mU = {R ⊆ X;mR ∈ U}
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where
mR = {x ∈ X;mx ∈ R}.

See Examples 3.7 and 2.2(e).

Theorem 4.5. Let K be a complete, symmetric monoidal closed category with
a ∗-cogenerator D. Then the D-ultrafilter monad is a submonad of (−)∗∗ which
is the codensity monad of the embedding Kfp ↪→K.

Proof : Since the natural transformation i : T → (−)∗∗ is monic, there is at
most one monad structure making i a monad morphism. We are going to
prove that this structure exists, and that the resulting monad fulfils, for
the embedding E : Kfp → K, the limit formula for codensity monads (see
Introduction).

(i) For every object X the cone

a∗∗ : X∗∗→ A∗∗ (for all (A,a) ∈ X/Kfp)

is collectively monic. Indeed, since D is a ∗-object, we have X∗ = colimC∗X ,
see Notation 2.5. Now (−)∗ : Kop → K is a right adjoint, thus, it takes the
colimit to a limit cone a∗∗ : X∗∗→ A∗∗ in K.

(ii) Recall the notation p(a) from Definition 3.1 and q(a) from Notation
4.1. We are going to prove that for the embedding E : Kfp → K we have
the limit formula of the Introduction

TX = limCX

with the following limit cone

ψa ≡ TX
q(a)
−−−→ A0

p(a)
−−−→ A (a ∈ X/Kfp). (6)

First, ψa is a cone of CX , i.e., given a morphism h

X
a

��

b

��
A

h
// B

(7)
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of X/Kfp, then h ·ψa = ψb. Indeed, the following diagram

TX
q(a)

(5)vv

q(b)

(5) ((

iX
��

A′
a′

//

p(a)
(3)

��

X∗∗
a∗∗

||

b∗∗

""

B′
b′

oo

p(b)
(3)

��

A∗∗
h∗∗ // B∗∗

A

ηA
==

h

(η natural)

// B

ηB
aa

commutes.
Next suppose a cone of CX with domain Z is given:

X
a−→ A

Z
ã−→ A

for (A,a) ∈ X/Kfp.

We prove that there is a unique morphism k making the following triangles

Z

ã

��

k // TX

q(a)}}

A′

p(a)~~
A

commutative. The diagram C∗∗X = (−)∗∗ ·CX has the following cone:

X
a−→ A

Z
ã−→ A

ηA−−→ A∗∗

Indeed, this is compatible with C∗∗X , since given a morphism (7) of X/Kfp

we have the following commutative diagram
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Z
ã

��

b̃

��
A

ηA

~~

h
// B

ηB

  

A∗∗
h∗∗

// B∗∗

Since by (i) X∗∗ is the limit of C∗∗X , we obtain a unique morphism

k0 : Z→ X∗∗

making the following squares

Z
k0 //

ã
��

X∗∗

a∗∗
��

A
ηA
// A∗∗

for all X
a−→ A in X/Kfp

commutative. This implies that k0 factorizes through the preimage a′ of ηA
under a∗∗. Hence, it factorizes through iX = ∩a′:

TX

iX
��

Z

k
==

k0

// X∗∗

This is the desired factorization, i.e., we have

ψa · k = ã for all X
a−→ A in X/Kfp.

Indeed in the following diagram

Z
k=

**

k
!!

ψa·k

��

TX
iX //

q(a)
��

X∗∗

a∗∗

��

A′

a′
77

p(a)
��

A
ηA

// A∗∗
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all inner parts commute. Thus, by using the square above we get

ηA · (ψa · k) = a∗∗ · k0 = ηA · ã (8)

By Proposition 2.11, ηA is monic, so k is the desired factorization.
Given a factorization k̂, we prove k̂ = k. Let k̂0 = iX · k̂, then we get a∗∗ · k̂0 =

ηA · ã. Comparing this with (8) yields a∗∗ · k̂0 = a∗∗ · k0. From (i) we conclude
k̂0 = k0. Since iX is monic, this proves k̂ = k.

(iii) For every morphism h : X → Y we need to verify that the definition
of T h (see Lemma 4.2) agrees with the definition in the Introduction, i.e.,
the triangles

TX

ψā !!

T h // T Y

ψa}}
A

a : Y → A in Y /Kfp

commute for ā = a ·h. For that consider the following diagram in which we
denote, for a : Y → A, by ā‘ : Ā′→ X∗∗ the derived subobject of ā:

X∗∗

ā∗∗=(a·h)∗∗

..

h∗∗ // Y ∗∗

a∗∗

pp

TX

iX
gg

q(ā)
��

ψā

""

T h // T Y
ψa

||

q(a)
��

iY
77

Ā′

(ā)′

__

p(ā)
// A

ηA
��

A′
p(a)
oo

a′

??

A∗∗

Its inner parts, except the desired triangle, commute by (3), 4.1, definition
of ψ and naturality of i. The outward triangle also commutes. Thus, the
desired triangle commutes since ηA is monic by Proposition 2.11.

(iv) T has the structure of a monad, namely, the codensity monad of the
embedding Kfp ↪→ K. It remains to verify that it is a submonad of (−)∗∗,
more precisely, that i : T → (−)∗∗ is a monad morphism. We denote by ηT

and µT the monad structure of T and by η and µ that of (−)∗∗.
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To prove that i preserves the unit, consider the following diagram for
every object X and all (A,a) in X/Kfp:

X

a

��

ηTX

''

ηX
// X∗∗

a∗∗

��

TX

ψa

��

q(a)
��

iX
77

A′

p(a)ww

a′

??

A
ηA

// A∗∗

The left-hand triangle is the definition of ηTX , see Introduction. All the
other inner parts except the upper triangle commute by Notation 4.1, (3)
and (6). Since the outward square commutes, this proves that the desired
triangle, when prolonged by a∗∗, commutes. From (i) we conclude that the
triangle commutes.

To prove that i preserves multiplication, recall from Introduction that
µTX is defined by the following commutative triangles

T TX
µTX //

q(ψa) ##

TX

q(a)}}

A′′

p(ψa)   

A′

p(a)~~
A

(A,a) ∈ X/Kfp

(9)

Consider the desired equality

iX ·µTX = µX · i∗∗X · iTX .

which in view of Notation 4.1 means

a′ · q(a) ·µTX = µX · (a′)∗∗ · q(a)∗∗ ·ψ′a · q(ψa)
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where the derived subobject ofψa : TX→ A is denoted byψ′a : A′′→ (TX)∗∗.
This follows from the commutative diagram below:

T TX

iTX

��

q(ψa)
��

µTX // TX

q(a)
��

iX

��

A′′

ψ′a
��

p(ψa)
// A

ηA
��

A′
p(a)
oo

a′

��

(TX)∗∗

(iX )∗∗

��

q(a)∗∗
��

ψ∗∗a // A∗∗

η∗∗A

��

(A′)∗∗

(a′)∗∗

��

(p(a))∗∗

44

A∗∗∗∗
µA

// A∗∗

X∗∗∗∗
a∗∗∗∗

::

µX
// X∗∗

a∗∗
bb

All inner parts commute: for the upper one see (9), the lowest one is the
naturality of µ, and the triangle above it is the monad law µ · η∗∗ = id. All
the other parts commute by definition of a′ and ψ′a. Consequently, the
desired outward square commutes when postcomposed by a∗∗. Once again
apply (i) to see that the proof is complete.

Observation 4.6. The components ηTA : A→ TA of the unit of the codensity
monad are invertible for all finitely presentable objects A. Indeed, recall
from the Introduction the formula ψa · ηTX = a. The case a = idA : A→ A,
gives

ψidA
· ηTA = idA.

On the other hand, for every b : A→ B in A/Kfp, we have

ψb · ηTA ·ψidA
= b ·ψidA

= ψb.

The morphisms ψb are the components of a limit, therefore they are col-
lectively monic and we get

ηTA ·ψidA
= idA.
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Corollary 4.7. The codensity monad of the embedding Kfp ↪→K is the largest
submonad of (−)∗∗ whose unit has invertible components at all finitely pre-
sentable objects.

Proof : We show that every submonad

j : (T̂ , µ̂, η̂)→ ((−)∗∗,µ,η)

with η̂A invertible for all A ∈ Kfp factorizes through i. Indeed, it is suffi-
cient to verify that for every object X and all a : X→ A in X/Kfp

jX factorizes through a′.
This implies that jX factorizes through iX , i.e., we have uX : T̂ X → TX

with jX = iX · uX . Since i and j are monic monad morphisms, it follows
easily that u : T̂ → T is also a monad morphism.

For every a : X→ A in X/Kfp we have ηA = jA · η̂A, thus,

jA = ηA · (η̂A)−1.

Since j is natural, we derive from a∗∗ · jX = jA · T̂ a that

a∗∗ · jX = ηA · η̂−1
A · T̂ a.

This yields the desired factorization of jX through a′:

T̂ X

T̂ a

��

!!

jX

((
A′

a′ //

p(a)
��

X∗∗

a∗∗
��

TA
η̂−1
A

// A
ηA
// A∗∗

Example 4.8. (1) The codensity monad of the embedding of finite semi-
lattices into JSL is the (full) double-dual monad. Indeed, for every fi-
nite semilattice A the dual A∗ is isomorphic to Aop: to every prime ↑-set
M ⊆ A (see Example 2.2(d)) assign its meet in A to get a dual isomorphism
A∗

∼−→ Aop. Thus A∗∗ is isomorphic to A, and it is easy to see that ηA : A→ A∗∗

is indeed an isomorphism.
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(2) Analogously for K-Vec. We thus obtain another proof of Leinster’s
result that (−)∗∗ is the codensity monad.

Remark 4.9. The last corollary gives a characterization that does not need
the technical concept of ∗-cogenerator or D-ultrafilter.

It is an open problem whether it holds for arbitrary finitely presentable
cogenerators in arbitrary symmetric monoidal closed categories that are
locally finitely presentable.

4.10. Summarizing all our examples, here is a survey of the codensity
monad T = (T ,µT ,ηT ) for embeddings Kfp ↪→ K. In each case we describe
the action of T on an arbitrary object X; in the table we just name the
underlying set |TX | of TX consisting of all D-ultrafilters, its structure as
an object of K follows from Example 4.4. For morphisms f : X → Y the
map T f is always given by assigning to a collection U of subsets of TX the
collection {R ⊆ |T Y |; f −1(R) ∈ U}.

Category D D-ultrafilters on an object

Set {0,1} ultrafilters
Par {0} ultrafilters

Pos
0•
1• nonempty, prime collections of ↑-

sets closed under upper sets and fi-
nite intersections

JSL
0•
1• prime, upwards closed collections

of prime
↑-sets

Gra
0 1

ultrafilters on the set of vertices

Σ-Str
{0,1}

complete
ultrafilters on the underlying set

K-Vec K vectors of the double-dual space

M-Set PM ultrafilters on the underlying set
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5.Further Examples
In this section we consider a more general setting: a complete category

K and a small, full subcategory A, and we discuss the codensity monad of
the embedding A ↪→K.

Given a set {Di}i∈I of cogenerators of K lying in A we obtain a monad S

on K from the well-known adjunction L a R :
(
SetI

)op
→K where

LX =
(
K(X,Di)

)
i∈I

and R(Mi)i∈I =
∏
i∈I

DMi
i .

We can characterize the codensity monad of A ↪→ K as the smallest sub-
monad of S with a property called the limit property below. We continue
using the notation of Introduction:

CX : X/A→K, (X
a−→ A) 7→ A.

Remark 5.1. The above monad S is given on objectsX by SX =
∏
i∈ID

K(X,Di )
i

with the unit ηS : Id → S defined by the projections πf (f : X → Di) as
follows

πf · ηSX = f .

Thus ηSX is monic, since (Di) is a cogenerating set.
The multiplication µS is determined by the commutativity of the trian-

gles

SSX
µSX //

ππa ""

SX

πa}}

Di

for all a : X→Di and i ∈ I .

Definition 5.2. A monad T on K has the limit property (with respect to the
embedding A ↪→ K) if for every object X we have TX = limTCX with the
canonical limit cone of all T a for a ∈ X/A.

Example 5.3. (1) The codensity monad of A ↪→ K has the limit property:
use the limit formula.
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(2) In a symmetric monoidal closed complete category K, for every ∗-
object D, the double-dualization monad (−)∗∗ = [D, [D,−]] has the limit
property, since [−,D] : Kop→K is a right adjoint.

Lemma 5.4. The monad S has the limit property.

Proof : Since S = R · L and R preserves limits, it is sufficient to prove that
the diagram L · CX has in

(
SetI

)op
the limit

(
K(X,Di)

)
i∈I

with respect to

the canonical cone of all maps (−) · a :
(
K(A,Di)

)
i∈I
→

(
K(X,Di)

)
i∈I

with
a : X → A. We can work with the components individually, thus, let i ∈ I
be fixed. Hence in Set, rather than Setop, we are to prove that the cocone

K(A,Di)
(−)·a
−−−→K(X,Di) (for a : X→ A, A ∈A)

is a colimit cocone. Indeed, let another cocone

za : K(A,Di)→ Z

be given. Compatibility means that given a commutative triangle

X
a

��

b

��
A

u
// B

in K, then zb(t) = za(tu) for all t : B→Di. The function

z : K(X,Di)→ Z, z(t) = zt(idDi ),

for all t : X→Di, is the desired factorization.
Indeed, the equality za = z ·

(
(−) · a

)
means that

za(r) = z(r · a) = zra(idDi ) for all r : A→Di

by choosing t = idDi and u = r (thus b = ra).
The uniqueness of z is clear.

Theorem 5.5. The codensity monad of the embedding A ↪→ K is the smallest
submonad of S with the limit property.

Proof : (1) Let M be a monad on K with the limit property and with a monic
unit η : Id→ M. Looking at the proof of Theorem 4.5, we see that it works
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for A ↪→ K if, instead of the double-dualization monad (−)∗∗, we take the
monad M. Thus, the codensity monad can be obtained from M by using the
intersection of derived subalgebras analogous to that described in Defini-
tion 3.1 and Lemma 4.2. In particular, the codensity monad is a submonad
of M. For M = S, we deduce that the codensity monad T is a submonad of
S.

(2) Let T be the monad defined analogously to Theorem 4.5 with S re-
placing (−)∗∗ everywhere. Thus, for every object X, TX is the intersection
of the preimages of ηSA (see Remark 5.1) under Sa for all a : X→ A in X/K:

TX

q(ā)
��

iX

""

A0
a0 //

p(a)
��

SX

Sa
��

A
ηSA

// SA

(10)

This defines a functor T , its action on morphisms is defined precisely as in
Lemma 4.2.

Then T is a submonad of S via the monad morphism i : T→ S with the
above components iX .

(3) Moreover, this works in a entirely similar way for every submonad S

of S with the limit property, showing that the codensity monad is a sub-
monad of any such S.

Since the codensity monad has the limit property, the proof is concluded.

Example 5.6. Let K be a locally finitely presentable category with a cogen-
erating set (Di)i∈I in Kfp. Then the codensity monad of the embedding of

Kfp into K is the smallest submonad of the monad SX =
∏
i∈ID

K(X,Di )
i with

the limit property. This is actually quite analogous to the description of
Section 4, just the desired subobjects are now related to S rather than (−)∗∗

(see the proof above). However, in the concrete situations of Section 4 the
description using ∗-cogenerators is more illustrative.
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Given a ∗-cogenerator D, how is the present description related to that
of the last section? We would like to see the codensity monad of Section 4
as a submonad of S with the limit property. For that we need (−)∗∗ to be a
submonad of S. This holds for the examples of Section 4. Indeed, this is
the consequence of the fact that the ∗-cogenerators D considered in those
examples are well-behaved in the following sense:

Definition 5.7. Let K be a complete, symmetric monoidal closed category
with a ∗-cogenerator D. We say that D is well-behaved if there exists a
morphism e :D∗∗→D which satisfies the following conditions:

(1) e · ηD = idD ,
(2) e ·µD = e · e∗∗;
(3) the morphisms e · a∗∗, a ∈ X/Kfp, are jointly monic.

Example 5.8. In the examples of Section 4 the ∗-cogenerator D is well-
behaved. Indeed, in all those examples, for every object X, the underlying
set of X∗ = [X,D] is K(X,D) and ηX : X→ X∗∗ is defined by (ηX(x))(a) = a(x).
Furthermore, the counit of the adjunction [−,D] a [−,D] : Kop → K is just
the dual of the unit, thus µX = η∗X∗. Let

e = ηD∗(idD) :D∗∗→D.

It is clear that e ·ηD = idD . To verify (2), given v ∈D∗∗∗∗, that is, a morphism
v :D∗∗∗→D, we have that:

(e ·µD)(v) = e(v · ηD∗) = (v · ηD∗)(idD) = v(ηD∗(idD)) = v(e)

as well as

(e · e∗∗)(v) = e(v · e∗) = (v · e∗)(idD) = v(e∗(idD)) = v(e).

Finally, for (3) given u,v ∈ X∗∗, (e·a∗∗)(u) = (e·a∗∗)(v) is equivalent to e(u·a∗) =
e(v ·a∗), that is, (u ·a∗)(idD) = (v ·a∗)(idD), which means that u(a) = v(a). Since
this holds for all a ∈ X∗, we conclude that u = v.

Notation 5.9. Given a well-behaved ∗-cogenerator D, for every object X
denote by mX : X∗∗→ DK(X,D) the unique morphism making the following
square commutative (where πa denotes the projection w.r.t. a : X→D and
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e is as in Definition 5.7):

X∗∗

a∗∗
��

mX// DK(X,D)

πa
��

D∗∗
e

// D

Lemma 5.10. Let D be a well-behaved ∗-cogenerator. Then (−)∗∗ is a submonad
of S (for A = Kfp) via the above natural transformation m : (−)∗∗→ S.

Proof : We use the notation
(
(−)∗∗,µ,η

)
and

(
S,µS ,ηS

)
for the corresponding

monad structures.
(i) Naturality is seen from the following diagram where a ranges over

K(A,D):

X∗∗

h∗∗

��

(a·h)∗∗

""

mX // SX
π(a·h)

}}
Sh

��

D∗∗
e
// D

Y ∗∗
a∗∗

<<

mY
// SY

πa

aa

The right-hand triangle is the definition of Sh.
(ii) Each mX is monic. This is clear since the cone of all e · a∗∗ is monic.
(iii)m preserves units. The unit ηS of S has components ηSX : X→DK(X,D)

defined by
πa · ηSX = a for all a : X→D.

Thus, we obtain the following commutative diagram

X∗∗

a
��

ηSX

��

ηX

��

D
ηD

||

D∗∗
e

// D

X∗∗
a∗∗

<<

mX
// SX

πa

aa
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(iv) To prove that m preserves multiplication, consider the following di-
agram:

X∗∗∗∗
mX∗∗ //

µX

��

(πa·mX )∗∗

##

X∗∗
SmX //

ππa·mX
��

SmX // SSX

µSX

��

ππa{{
D∗∗

e
// D

X∗∗

a∗∗
;;

mX
// SX

πa
cc

The upper left-hand part and the lower part commute due to the defini-
tion of m. The right-hand upper triangle expresses the definition of S on
morphisms, and the lower one commutes due to Remark 5.1. Therefore,
the outside square commutes.

Example 5.11. Let K = Set and A = Setλ, sets of power less than λ.
(a) Leinster observed in [9] that the ultrafilter monad is the codensity

monad of Set4 ↪→ Set (sets of at most 3 elements). In contrast, Set3 ↪→ Set
has the codensity monad defined by

TX = collections of nonempty sets of PX with either Y or Y for every Y ⊆ X.
(b) For every infinite cardinal λ let Uλ be the submonad of the ultrafilter

monad U of all λ-complete ultrafilters F. Recall that this means that in
every disjoint decomposition e : X� A with |A| < λ one component lies in
F.

The codensity monad of Setλ ↪→ Set is the submonad Uλ of U on all λ-
complete ultrafilters, see [1].

Remark 5.12. Recall that a cardinal λ is measurable if there exists a non-
principle λ-complete ultrafilter. Setλ is codense in Set (i.e., has the trivial
codensity monad Id) iff λ is not measurable. This was proved by Isbell in
[6].

Example 5.13. Let K = K-Vec and A = K-Vecλ, spaces of dimension less
than λ.
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(a) If λ is an infinite cardinal, then the codensity monad is analogous
to the above example of Setλ ↪→ Set, see [1]. A vector x in X∗∗ is called λ-
complete if for every linear decomposition e : X→ Awith dimA < λ, e∗∗(x) is
an evaluation (a vector of ηA[A]). All λ-complete vectors form a submonad
of (−)∗∗. And this is the codensity monad of K-Vecλ ↪→ K-Vec.

(b) For A = {K} the codensity monad is larger than (−)∗∗: it assigns to X
all homogeneous functions from X∗ to K (i.e., those preserving the scalar
multiplication). More precisely, T is the subfunctor of SX = KX∗ given by

TX = all homogeneous functions in KX∗.

Indeed, the diagram CX given by (X
a−→ K) 7→ K has the cone πa : TX → K

formed by restrictions of the projections of KX∗. That is,

πa(h) = h(a) for h ∈ TX, a ∈ X∗.

To prove that this is a limit cone, let another cone with domain Z be given:

X
a−→ K

Z
ā−→ K

It is compatible, therefore, for every scalar λ ∈ K the morphism λ ·(−) : a→
λa of X/{K} yields λ · ā = λ · a.

Consequently, we can define a function r : Z → TX by taking z ∈ Z and
putting r(z) : a 7→ ā(z) for a ∈ X∗.

Then r(z) is homogeneous. This is the desired factorization: r is a linear
function with πa · r = ā for all a ∈ X∗.

And it is clearly unique.
(2) In contrast, for A = {K, K2} in K-Vec the codensity monad is (−)∗∗.

Indeed, given a cone of CX

X
a−→ K i

Z
ā−→ K i

(i = 1,2)

then we again define r by r(z) : a 7→ ā(z) for a ∈ X∗. We have to verify that
each r(z) is linear, the rest is as above. Homogeneity is verified as before.
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To prove additivity,

a1 + a2 = a1 + a2 for a1, a2 ∈ X∗

consider the projections as morphisms

πi : (K2,< a1, a2 >)→ (K,ai) (i = 1,2)

of X/A which by compatibility yield

πi ·< a1, a2 > = ai .

That is, < a1, a2 > =< a1, a2 > .

We also have a morphism

π1 +π2 : (K2,< a1, a2 >)→ (K,a1 + a2)

therefore
(π1 +π2) ·< a1, a2 > = a1 + a2.

Since (π1 +π2)· < a1, a1 >= a1 + a2, the proof is complete.

Example 5.14. Let K = x, the category of topological spaces and contin-
uous maps, and A = xf consist of all finite spaces. The corresponding
codensity monad T is, as for sets, the ultrafilter monad. More precisely, for
every space X, TX is the set of all ultrafilters on the underlying set of X
with the topology τ having as a basis all sets of the form

4G = {U ∈ TX | G ∈ U}, G open in X.

To see this, let D = {0,1} be equipped with the indiscrete topology. This
is a cogenerator of x, and the space SX = Dx(X,D) is the indiscrete space
PPX of all collections of subsets of X. The proof that the ultrafilters on the
underlying set of a topological space X coincide with D-ultrafilters on X
is completely analogous to that of Lemma 3.3.

To verify that τ is the topology of TX, we just need to show that τ makes
all the morphisms q(a) (see diagram (10) of Theorem 5.5) continuous and
jointly initial. Indeed, the open sets of A0 are of the form

Ĥ = {U ∈ SX | a−1(H) ∈ U} for H an open set of A,
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and (q(a))−1(Ĥ) = 4a−1(H). The initiality follows immediately, since, for
every open set G of X, 4G = 4χ−1

G ({1}) for χG the characteristic function
into the Sierpinski space.

Example 5.15. Let K = x0, the category of T0-topological spaces and con-
tinuous maps, and A consist of the finite T0 spaces. The corresponding
codensity monad is the prime open filter monad. More precisely, for ev-
ery space X, TX is the set of all prime filters on (ΩX,⊆) with the topology
having as a basis all sets of the form

�G = {U ∈ TX | G ∈ U}, G open in X.

The proof is analogous to the one for posets, using as cogenerator the Sier-
pinski space.
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