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1. Introduction
Assume a particle, at instant 0 at the origin of three
dimensional euclidean space jumps at each tick of the
clock exactly one unit from its current position into a
random direction. (Here the directions are defined as
position vectors to uniformly distributed points of the
origin-centered unit sphere.)

Question: What is - as a function of r - the probability to encounter the
particle after exactly n random jumps within the 0-centered ball B = B(0, r)
of radius r?

For this problem an elementary solution by L. R. G. Treloar and solutions
which use Fourier transforms and discontinuous factors are known. Thanks
to an answer given by an anonymous person [Kh], we learned about relevant
literature and the fact that the proper search word would be Random flights
only after we had found the essence of our solution. As [Dt, p. 352] notes,
in well known books on random walks little attention is paid to continuous
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2 PEDRO SÁ AND A. KOVAČEC

random walks. About those earlier solutions we report in sections 6 and 7 of
this article.

In this paper we give a new elementary solution which unlike Treloar’s uses
the multivariate change of variable rule and integrations over a polytopes.
This possibility might come unexpected since the expressions to which we
are led at first are highly nonlinear.

In Section 2 we give the recursive formula for the random variable Rn

defined as the distance of the particle from the starting place after n steps
and show that the wanted probability distribution r 7→ prob(Rn ≤ r) can be
computed from a certain volume. Then Corollary 3.3 shows

prob(Rn ≤ r) = 2−(n−1)

∫ r

0

xfn−1(x)dx,

where the functions fn(x) are obtained as certain multiple integrals depen-
dent on a parameter x, whose values we determine in Section 4 where we
will recognize them as depending piecewise polynomially from x. The results
in Section 5 give explicit formulas for the probability distribution mentioned
above and we compute the distribution function r 7→ prob(R4 ≤ r) for illus-
tration.

In this preprint we add furthermore in Section 6 the solution of Treloar.
We give a complete proof which as it stood till now had to be composed from
various sources. In the present authors’ view it also left too many details to
be filled by the reader. In Section 7 we report on the history and further
results on random flights to the extent they are close to the ones given here.

2. Some preliminary considerations
One of the tools we need is a very old theorem. It is the base to one of

the area preserving maps of the Earth, known as cylindrical projection or
Lambert projection (1772), see e.g. Kreyszig [Kr, p. 210 ].

Theorem 2.1. (Archimedes). The area of the region of a sphere S contained
within two parallel planes (which both intersect S) depends only on the dis-
tance between the planes and not on their position with respect to S. Thus if
S is the unit sphere and d the distance between the planes, the area is given
by 2dπ.

We call the region referred a spherical ring of height d. We use it only for
the unit sphere. In the following lemma we allow the geometric language
afforded by the concept of an affine space. See e.g. [Enc, Article 7A]. For
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computational purposes, ~op, p and ~p are the same but these notations elicit
different ways to think about point p. Recall that ~pp′ = p′ − p. By |~p| we
denote the euclidean norm of p.

Lemma 2.2. Let p and p′ be two points of distance 1 in Euclidean 3-space
(E, 〈, 〉) with origin denoted o. Let ~z be the orthogonal projection of ~pp′ onto

~op. Then |~p′| =
√

1 + |~p|2 + 2〈~p, ~z〉.

o

p

p′

~d
~z

Proof. We may write p′ = p+ ~pp′ = p+ (~z+ ~d) where
~d ⊥ ~z. It follows that
|~p′|2 = 〈~p′, ~p′〉

= 〈~p+ ~z + ~d, ~p+ ~z + ~d〉
= |~p|2 + |~z|2 + |~d|2 + 2〈~p, ~z〉+ 2〈~p, ~d〉+ 2〈~z, ~d〉
= |~p|2 + 1 + 2〈~p, ~z〉+ 0 + 0

Here we used Phytagoras’ theorem, and the parallelity
or antiparallelity of ~p with ~z and the perpendicularity
of ~d with respect to the latter two vectors.

Now consider the following situation: a fixed point p, and a sphere of radius
r with origin in o containing the o-centered ball B(o, r). From p a particle
jumps a unit length in a random direction to a point p′ ∈ Sp, the local unit
sphere centered at p. It is assumed that the random unit vector is uniformly
distributed, so that any two patches of same area on the local sphere Sp have
equal probability to receive p′.

The figures show the local sphere Sp from far and near.
By leb’ we shall denote the Lebesgue measure of appropriate dimension.

Lemma 2.3. Under the described condition, the probability that p′ ∈ B(o, r)
is given by

1
2 leb({z ∈ [−1, 1] :

√
1 + |p|2 + 2z|p| ≤ r}).
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Proof. The hypothesis on the random direction implies by Archimedes’
theorem that any two spherical rings of Sp of equal height receive the particle
with the same probability. This in turn implies that the projections of the
points p′ onto the local z-axis (the axis through o and p ) are uniform, when
suitably constrained: any two given intervals of equal length on the z-axis
and contained within Sp have the same chance to receive the projection of
a point p′. This projection is given by ~p + ~z in the previous figure. Since
~z has constant orientation in space, we have that 〈~p, ~z〉 = |~p|〈 ~p|~p| , ~z〉 =: |~p|t
is uniformly distributed, hence t is uniformly distributed in [−1, 1]. Since
[−1, 1] has Lebesgue measure 2, the probability that p′ ∈ B(o, r) is found by
Lemma 1 to be the normalized Lebesgue measure of all t ∈ [−1, 1] such that√

1 + |~p|2 + 2t|~p| ≤ r happens. This can evidently be written as done in the
statement of the lemma.

Using above formulas and the two examples below, lead us in a natural
manner to a first formalization of our problem.

The distance that the particle has from the origin after n random jumps is
a random variable which we denote Rn. It is clear that R1 is trivial: R1 = 1
and its distribution function is singular; for Prob(R1 ≤ r) is 0 or 1 according
to if r < 1 or r ≥ 1, respectively.

Example. What is prob(R2 ≤ r), that is, what is the probability that a
particle doing two random jumps of unit length will remain within distance
r of the starting place?

Solution: Since after one jump our particle has distance exactly 1 from the
starting place, it has after two jumps by above considerations the distance
R2(z2) =

√
1 + 1 + 2z21 =

√
2 + 2z2 and therefore by Lemma 2, we find

prob(R2 ≤ r) = 1
2 leb({z ∈ [−1, 1] :

√
2 + 2z ≤ r})

= 1
2 leb({z ∈ [−1, 1] : z ≤ r2−2

2 })
= 1

2 leb([−1, 1]∩]−∞, r2−2
2 ])

=

{
r2/4 if 0 ≤ r ≤ 2

1 if r > 2
Example. The same question as in the previous example but for three

random jumps: find prob(R3 ≤ r).
In our temporary solution we reduce the problem again to the calculation of

measure. If the particle is after two random jumps at a distance R2 = R2(z2)
from the start, then it is after three random jumps at one of the distances
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R3(z2, z3) =
√

1 +R2(z2)2 + 2z3R2(z2)

=
√

3 + 2z2 + 2z3

√
2 + 2z2

Now since z2, z3 can be seen as random variables which are uniformly dis-
tributed on [−1, 1] (and 0 outside), and since [−1, 1]× [−1, 1] has twodimen-
sional Lebesgue measure equal to 4, we find that

prob(R3 ≤ r) = 1
4 leb({(z2, z3) ∈ [−1, 1]2 :

√
3 + 2z2 + 2z3

√
2 + 2z2 ≤ r}).

This is evidently a more complex problem than before. But it is now clear
where we are headed to: we need to compute for any natural n the n − 1-
dimensional Lebesgue measure of a set which has a complex definition in
view of the nested square roots which define Rn = Rn(z2, ..., zn):

Letting
Rn(r) = {(z2, ..., zn) ∈ [−1, 1]n−1 : Rn(z2, ..., zn) ≤ r},

we have to compute the n− 1 dimensional volume of Rn(r), since

prob(Rn ≤ r) =
1

2n−1
vol(Rn(r)).

This is the aim of the next sections. After the second author had deter-
mined by arduous computations the volumes of these sets for n up to 4, the
first author made the quite surprising discovery that it is possible to reduce
the computation of these volumes to the computation of integrals of a simple
function over a polytope.

3. Reduction of the computation of vol(Rn(r)) to an in-
tegral of a simple function over a polytope

From the considerations of the previous section we get that the quantities
R1, R2, ..., Ri, ... can be defined inductively as follows:

R1 = 1;

Ri+1 =
√

1 +R2
i + 2zi+1Ri,

where we admit for z2, z3, z4, ... only reals in the interval [−1, 1]. One sees
that the Ri will satisfy the inequalities |1−Ri| ≤ Ri+1 ≤ 1 +Ri, i = 1, 2, ....
Explicitly, the first few Ri have the following aspect:

R1 = 1
R2 =

√
2 + 2z2

R3 =
√

3 + 2z2 + 2z3

√
2 + 2z2

R4 =

√
4 + 2z2 + 2z3

√
2 + 2z2 + 2z4

√
3 + 2z2 + 2z3

√
2 + 2z2

...
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It is clear that Ri = Ri(z2, z3, ..., zi) for i = 2, 3, 4, .... . If n is given from
context, we define z = (z2, ...., zn) for brevity. Then Ri = Ri(z) but it does
not depend on zi+1, ..., zn. The next two propositions give a first hint how to
compute vol(Rn(r)) in practice.

Let n ∈ Z≥1, and 0 ≤ a < b ≤ n+ 1. Consider the set

Pn(a, b) = {x = (x1, x2, ..., xn) : x satisfies the system S of inequalities below }.
System S:

|1− x2| ≤ x1 ≤ min{1 + x2, 2}
|1− x3| ≤ x2 ≤ min{1 + x3, 3}

...
|1− xn−1| ≤ xn−2 ≤ min{1 + xn−1, n− 1}
|1− xn| ≤ xn−1 ≤ min{1 + xn, n}

a ≤ xn ≤ b.

Proposition 3.1. The set Pn(a, b) is a nonempty polytope and one has for
any continuous function f : Pn(a, b)→ R, that∫
Pn(a,b)

fdx1:n =

b∫
a

min{1+xn,n}∫
|1−xn|

min{1+xn−1,n−1}∫
|1−xn−1|

· · ·
min{1+x2,2}∫
|1−x2|

f(x) dx1 · · · dxn−2dxn−1dxn.

Proof. Note that an inequality of the form |1− x| ≤ x′ is equivalent to the
conjunction of inequalities −x−x′ ≤ −1 & x−x′ ≤ 1 and x′ ≤ min{1+x, a}
is equivalent to x′ − x ≤ 1 & x′ ≤ a. It follows that the whole system S is
equivalent to some matrix inequalitiy of the form Ax ≤ b where A is a real
matrix, x = (x1, x2, ..., xn)

> an n− 1-uple of variables and b real column. It
is obvious that Pn(a, b) is a bounded and closed set. Thus Pn(a, b) satisfies
the defining criteria for a polytope.

Next note that the last inequality of S guarantees 0 ≤ xn ≤ 1 + n and
this guarantees that the inequality |1−xn| ≤ min{1 +xn, n} will hold. Thus
there will exist xn−1 satisfying the penultimate inequality of S and we will
have 0 ≤ xn−1 ≤ n. This in turn implies that there will exist xn−2 satisfying
the pen-penultimate inequality of S and we will have 0 ≤ xn−2 ≤ −1 + n.
Continuing this reasoning, we see that Pn(a, b) will be nonempty.

Turning now to the second part of the theorem, we note that the integration
over a polytope is usually not a trivial task; see Schechter [Sch]. But in our
case, the system S determines bounds for xn, and given xn, bounds for xn−1,
etc. in such a happy way that integration of f over Pn(a, b) can be directly
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translated into a multiple integral of the form given in the theorem. To
eliminate any doubts, we give a proof by induction over n.:

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

3.0

The polytope P2(a, b) is defined by the last two inequal-
ities of S with indices 1,2 instead of n− 1, n:

|1− x2| ≤ x1 ≤ min{1 + x2, 2}
a ≤ x2 ≤ b

A picture of this polytope for the case a = 0, b = 3
is shown at the left. If we have general a, b at heights
0 < a < b < 3 these would yield a truncated polytope
as indicated by the dashed lines. It is evident that in

this case
∫
P2(a,b) f(x)dx1:2 =

b∫
a

min{1+x2,2}∫
|1−x2|

fdx1dx2.

This starts the induction. Now assume the theorem already shown for n−1
in place of n. By the general recursive formula for computation of multiple
integrals (a version of Fubini’s theorem),∫

Pn(a,b)

fdx =
b∫
a

∫
Pn(a,b)∩(Rn−1×{xn})

f(x1:n−1, xn)dx1:n−1dxn.

Now we know 0 < xn < 1 + n for any xn here involved; and if we put for a
fixed such xn, a

′ := |1 − xn|, b′ := min{1 + xn, n} we have 0 ≤ a′ < b′ ≤ n.
Therefore, Pn(a, b) ∩ (Rn−1 × {xn}) is defined by the first n − 2 inequalities
of system R together with the inequality a′ ≤ xn−1 ≤ b′, ; i.o.w. this inter-
section is Pn−1(a

′, b′). By the induction hypothesis,∫
Pn−1(a′,b′)

f(x1:n, xn)dx1:n−1 =

b′∫
a′

min{1+xn−1,n−1}∫
|1−xn−1|

min{1+xn−2,n−2}∫
|1−xn−2|

· · ·
min{1+x3,3}∫
|1−x3|

min{1+x2,2}∫
|1−x2|

f(x) dx1dx2 · · · dxn−3dxn−2dxn−1.

The theorem follows by substituting this expression in the displayed formula
before; and substituting a′, b′ by their definitions.

Proposition 3.2. For any real number 0 < r < n, one has that
P (r) := {(R2(z), R3(z), . . . , Rn(z)) : −1 ≤ z2, z3, ..., zn ≤ 1, Rn(z) ≤ r}
equals the n− 1-dimensional polytope Pn−1(0, r) of the previous proposition.

Proof. Fix an r with 0 < r < n and define
P ′ = P ′(r) =
{(x2, ..., xn) : 0 ≤ x2 ≤ 2, |1 − x2| ≤ x3 ≤ 1 + x2, ..., |1 − xn−1| ≤ xn ≤
1+xn−1, xn ≤ r}. We have already observed that the inequalities 0 ≤ R2 ≤ 2
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and |1 − Ri| ≤ Ri+1 ≤ 1 + Ri, i = 1, 2, ... hold so that it is clear that
P (r) ⊆ P ′(r). At the other hand, if (x2, ..., xn) ∈ P ′(r), then it is easy to
see that we can find inductively z2, z3, ..., zn ∈ [−1, 1] so as to satisfy x2 =
R2(z2), x3 = R2(z2, z3), ..., xn = Rn(z2, z3, ..., zn). Hence P ′(r) ⊆ P (r). So
P ′(r) = P (r) and P (r) is a polyhedron. Now note the following equivalences:

|1− u| ≤ v ≤ 1 + u⇔
1− u ≤ v
u− 1 ≤ v
v ≤ 1 + u

⇔
1− v ≤ u
u ≤ 1 + v
v − 1 ≤ u

⇔ |1− v| ≤ u ≤ 1 + v.

0 ≤ x2 ≤ 2
|1− x3| ≤ x2 ≤ 1 + x3

...
|1− xn−1| ≤ xn−2 ≤ 1 + xn−1

|1− xn| ≤ xn−1 ≤ 1 + xn
0 ≤ xn ≤ r

These imply we can describe P ′(r) alterna-
tively by the inequalities at the left. But by
the original inequalities for P ′(r) we see that
xi ≤ i, so that we can substitute each 1+xi+1

at the right hand side of the new system by
min{1 + xi+1, i}. Done this, we can cancel
the first of the inequalities, 0 ≤ x2 ≤ 2.

Finally we make the system in x2, ..., xn so obtained into a system in
x1, ..., xn−1 simply by subtracting 1 one from each index i in xi. Then emerges
precisely Pn−1(0, r).

At this point we recall the
Multivariate Change of Variables Rule. Let M ⊆ Rn be a measurable
subset of Rn and let g be defined on an open subset containing the closure
of M so that g is invertible of class C1 on M and for the determinant of
the Jacobian we have det dg

dx 6= 0 on M. Then for any continuous function
f : g(M)→ R there holds∫
g(M)

f(x)dx =
∫
M

f(g(x))
∣∣∣det dg

dx

∣∣∣ dx; in particular vol(g(M)) =
∫
M

∣∣∣det dg
dx

∣∣∣ dx.
We show next that there is a bijective differentiable map between P (r) =

Pn−1(0, r) and Rn(r). To this we will apply the substitution rule.
Since R2

j = 1 +R2
j−1 + 2zjRj−1 we get

zj = 1
2

(
−Rj−1 +

R2
j−1

Rj−1

)
for j = 2, 3, 4, ....
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defining the n− 1-dimensional map

P (r) 3


R2

R3
...
Rn

 g7→


1
2

(
−R1 + R2

2−1
R1

)
1
2

(
−R2 + R2

3−1
R2

)
...

1
2

(
−Rn−1 + R2

n−1
Rn−1

)

 =:


g2(R)
g3(R)

...
gn(R)

 =


z2

z3
...
zn

 ∈ Rn(r).

The ij-entry of the Jacobian dg
dR = ( ∂gi∂Rj

)i,j=2,...,n is given by ∂
∂Rj

(1
2(−Ri−1 +

R2
i−1
Ri−1

)), showing that row i of the Jacobian may have nontrivial entries only

for j = i− 1, i. Indeed row i of the Jacobian will be

[0, 0, ..., 0,
−R2

i−1−2R2
i +2

2R2
i−1

, Ri

Ri−1
, 0, ..., 0],

where the first and last zeros are counted as at positions 2 and n respec-
tively, and Ri/Ri−1 is at position i. The determinant of this n× n matrix is
hence the product of its diagonal entries, i.e. R2/R1 ·R3/R2 · · · · ·Rn/Rn−1 =
Rn, for, recall, R1 = 1.

It follows from these considerations that
vol(Rn(r)) = vol(g(P (r))) =

∫
P (r)RndR.

Corollary 3.3. The volume of Rn(r) is given by

vol(Rn(r)) =

r∫
0

xn−1

min{1+xn−1,n−1}∫
|1−xn−1|

min{1+xn−2,n−2}∫
|1−xn−2|

· · ·
min{1+x2,2}∫
|1−x2|

dx1 · · · dxn−3dxn−2dxn−1.

Proof. It is sufficient to remind that P (r) = Pn−1(0, r); that in the language
of propositions 1,2, Rn goes over into xn−1, and that the function f(x1:n−1) =
xn−1 depends only on xn−1. Thus we can pull it out of from all but the first
integral sign in Proposition 1 and get the formula claimed above.

We will wish to use such expressions for different n. So in the next section,
we determine the functions

fn(xn) :=

min{1+xn,n}∫
|1−xn|

min{1+xn−1,n−1}∫
|1−xn−1|

· · ·
min{1+x2,2}∫
|1−x2|

dx1 · · · dxn−2dxn−1

in general and we will see they are piecewise polynomial. The computation
of integrals as in the Corollary 4 then boils down to integrals of the form
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0 xfn−1(x)dx which are of course easy to compute. We thus get explicit ex-

pressions for the function r 7→ vol(Rn(r)) or, equivalently, for the probability
that our particle after n unit jumps lies within a sphere of radius r.

4. Determination of the functions fn(x).
To understand the problem of the determination of the functions fn(x)

better, note first that in consequence of the fact Rn ≤ n, vol(Rn(r)) reaches
its maximum at the point r = n and stays from thereon constant. Our
problem to find r 7→ vol(Rn(r)) or equivalently to find r 7→

∫ r
0 xfn−1(x)dx is

of interest to us only for 0 ≤ r ≤ n and we will treat it only in this context.

The innermost integral
∫ min{1+x2,2}
|1−x2| 1 dx1 is a function of variable x2, which we

write f2(x2); the two innermost integrations,
∫ min{1+x3,3}
|1−x3|

∫ min{1+x2,2}
|1−x2| 1 dx1dx2

can thus be written as
∫ min{1+x3,3}
|1−x3| f2(x2)dx2 and yield a function of x3 which

we write f3(x3), etc. In this terminology we are interested to find for every
n ≥ 2 the function fn = fn(xn), and the fact that we fix in the volume
computation for Rn+1(r) r to be in [0, n + 1] will imply that within the
integrations we always will have that the bounds at the lower end of the
integral sign are not larger than those at the upper end. In fact it might be
useful to remark that for i = 2, 3, ... one can easily prove that {x : |1− x| ≤
min{1 + x, i}} = [0, 1 + i].

Also, for 0 ≤ x ≤ 1 + i and i ≥ 2, we have for any continuous f that,

in dependence of the value of x, the integral
∫ min{1+x,i}
|1−x| f(t)dt is

∫ 1+x

1−x f(t)dt,

or
∫ 1+x

x−1 f(t)dt, or
∫ i
x−1 f(t)dt, according to the cases where 0 ≤ x < 1 or

1 ≤ x ≤ i− 1 or i− 1 ≤ x ≤ 1 + i respectively. Thus the functions f1, f2, ....
can be defined alternatively by induction as follows:

f1(t) =

{
1 if 0 ≤ t ≤ 2
0 if 2 < t

;

and if fi is already defined, for i ≥ 1, define

fi+1(x) =


for 0 ≤ x < 1 by:

∫ 1+x

1−x fi(t)dt;

for 1 ≤ x < i by:
∫ 1+x

x−1 fi(t)dt;

for i ≤ x ≤ 2 + i by:
∫ 1+i

x−1 fi(t)dt;
for x 6∈ [0, 2 + i] by: 0.
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From these definitions one proves readily that the functions fi, i ≥ 2 are all
continuous on R and nonnegative on ]0, 1+i[. We give now the fine description
of these functions.

Theorem 4.1. The functions fn are piecewise polynomial. For n = 1, 2, 3, ...
and m = 0, 1, 2, ...., dn−1

2 e the restriction of fn to interval [n − 1 − 2m,n +
1− 2m] is given by

fn|[n−1−2m,n+1−2m]
(x) =

(−1)n+1

(n− 1)!

m∑
ν=0

(−1)ν
(
n+ 1

ν

)
(−n− 1 + 2ν + x)n−1,

where in case that n even, the interval [−1, 1] (occurring when m = dn−1
2 e)

has to be understood as [0, 1].

Proof. For n = 1 the only possibility admitted for m is m = 0. In this case
the formula says we should have

f1|[0,2] = (−1)2

(1−1)!

∑0
ν=0(−1)ν

(
1+1
ν

)
(−2 + 2ν + x)1−1 = 1,

and this is indeed the case, by the definition of f1.
In the case n = 2, we have by putting in our inductive definition of the fs,

i = 1, that
f2|[0,1](x) =

∫ 1+x

1−x f1(t)dt =
∫ 1+x

1−x 1dt = t|1+x
1−x = 2x

and
f2|[1,3](x) =

∫ 1+i

x−1 f1(t) =
∫ 1+1

x−1 1dt = t|2x−1 = 3− x.
At the other hand the theorem admits m = 0, 1 and claims for m = 0 that

f2|[1,3] = (−1)3

(2−1)!

0∑
ν=0

(−1)ν
(

2+1
ν

)
(−2− 1 + 2ν + x)2−1 = −

(
3
0

)
(−3 + x)1 = (3− x),

while for m = 1 the formula yields

f2|[0,1] = −
1∑

ν=0
(−1)ν

(
2+1
ν

)
(−2− 1 + 2ν + x)2−1

= −(
(

3
0

)
(−3 + x)1 + (−1)1

(
3
1

)
(−3 + 2 + x)1)

= (3− x) + 3(−1 + x)
= 2x.

So again the formula yields the directly computed results.
Having won this way some confidence into the formula we are going to

prove it in general. So we assume the claim valid for a given n and m =
0, 1, ...., dn−1

2 e as above and prove the corresponding claim for n+ 1 in place
of n. In the case m = 0, we need to find the representation of fn+1|[n,n+2]

. Now
if n ≤ x ≤ 2 + n then, by definition,
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fn+1(x) =
∫ 1+n

x−1 fn(t)dt. Noting that x− 1 ∈ [n− 1, 1 + n], the integration
parameter t ranges in a subset of [n − 1, n + 1], and for such t we know by

induction assumption that fn(t) = (−1)n+1

(n−1)! (−n− 1 + t)n−1.

Hence

fn+1(x) = (−1)n+1

(n−1)!

∫ 1+n

x−1 (−n− 1 + t)n−1dt

= (−1)n+1

(n−1)! ·
1
n(−n− 1 + t)n|1+n

x−1

= (−1)n+1

n! · (0n − (−n− 1 + x− 1)n)

= (−1)n+2

n! · (−n− 2 + x)n,

and this is precisely the result the formula of the theorem also gives for n+ 1
in place of n and m = 0.

We next show the formula for fn+1 in the the case that m ≥ 1 and 1 ≤
n− 2m; or, equivalently, m = 1, ..., dn2e − 1.

To find fn+1|[n−2m,n+2−2m]
note that for x ∈ [n − 2m,n + 2 − 2m], we then

have 1 ≤ x ≤ n and n− 2m− 1 ≤ x− 1 ≤ n− 2m+ 1 ≤ 1 +x ≤ n+ 3− 2m.
Consequently by the definition of fn+1 for this case,

fn+1(x) =
x+1∫
x−1

fndt =
n+1−2m∫
x−1

fndt+
1+x∫

n+1−2m

fndt

and fn(t) in the first of these integrals equals by induction hypothesis

fn|[n−1−2m,n+1−2m]
(t) = (−1)n+1

(n−1)!

m∑
ν=0

(−1)ν
(
n+1
ν

)
(−n− 1 + 2ν + t)n−1;

while fn(t) in the second of the integrals equals by induction hypothesis

fn|[n+1−2m,n+3−2m]
(t) = (−1)n+1

(n−1)!

m−1∑
ν=0

(−1)ν
(
n+1
ν

)
(−n− 1 + 2ν + t)n−1.

Using that
∫

(−n− 1 + 2ν+ t)n−1dt = 1
n(−n− 1 + 2ν+ t)n +C, for the first

and the second of the integrals above we get

n+1−2m∫
x−1

fndt = (−1)n+1

n!

m∑
ν=0

(−1)ν
(
n+1
ν

)
(−n− 1 + 2ν + t)n|n+1−2m

x−1

= (−1)n+1

n!

m∑
ν=0

(−1)ν
(
n+1
ν

)
((2ν − 2m)n − (−n− 2 + 2ν + x)n),

1+x∫
n+1−2m

fndt = (−1)n+1

n!

m−1∑
ν=0

(−1)ν
(
n+1
ν

)
(−n− 1 + 2ν + t)n|1+x

n+1−2m

= (−1)n+1

n!

m−1∑
ν=0

(−1)ν
(
n+1
ν

)
((−n+ 2ν + x)n − (2ν − 2m)n).
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By adding these expressions we get isolating in the sum
∑m

ν=0 ... the term
associated to ν = m,

fn+1(x) = (−1)n+1

n!

m−1∑
ν=0

(−1)ν
(
n+ 1

ν

)
((−n+ 2ν + x)n − (−n− 2 + 2ν + x)n)︸ ︷︷ ︸

I

+ (−1)n+1

n! (−1)m
(
n+1
m

)
(0− (−n− 2 + 2m+ x)n).

Now changing the summation-index,

I =
m∑
ν=1

(−1)ν−1
(
n+1
ν−1

)
(−n− 2 + 2ν + x)n +

m−1∑
ν=0

(−1)ν−1
(
n+1
ν

)
(−n− 2 + 2ν + x)n

=
m−1∑
ν=1

(−1)ν−1(
(
n+1
ν−1

)
+
(
n+1
ν

)
)(−n− 2 + 2ν + x)n

+(−1)m−1
(
n+1
m−1

)
(−n− 2 + 2m+ x)n + (−1)0−1

(
n+1

0

)
(−n− 2 + x)n

=
m−1∑
ν=1

(−1)ν−1
(
n+2
ν

)
(−n− 2 + 2ν + x)n + (−1)m−1

(
n+1
m−1

)
(−n− 2 + 2m+ x)n

−(−n− 2 + x)n

=
m−1∑
ν=0

(−1)ν−1
(
n+2
ν

)
(−n− 2 + 2ν + x)n + (−1)m−1

(
n+1
m−1

)
(−n− 2 + 2m+ x)n.

Thus
fn+1(x) = (−1)n+1

n! I + (−1)n+1

n! (−1)m−1
(
n+1
m

)
(−n− 2 + 2m+ x)n

= (−1)n+1

n!

m∑
ν=0

(−1)ν−1
(
n+2
ν

)
(−n− 2 + 2ν + x)n.

Now the right hand side of the latter expression is precisely what is claimed
in the theorem when n is replaced by n+ 1.

Finally there remains to show that the formula for fn+1 (obtained from
the theorem when n is replaced by n + 1) is also correct in the case that

m = m̄ :=
⌈

(n+1)−1
2

⌉
= dn2e. Then the interval to be considered for fn+1 is

[(n + 1) − 1 − 2m̄, (n + 1) + 1 − 2m̄] = [n − 2m̄, n + 2 − 2m̄] and this is in
case n odd equal to [−1, 1] to be read as [0, 1]; in case n even equal to [0, 2].

Unfortunately a detailed treatment of these rather special cases takes more
space than we would like to allow. We will make use of the following

Fact. If p =
∑n

k=0 akx
k is a real polynomial, then

n∑
k=0

(−1)k
(
n

k

)
p(k) = (−1)nn!an.

For a proof of this, see [GKP, Section 5.3].
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Case n odd. In this case m̄ = n+1
2 , 2m̄ = n + 1. As mentioned we have

to show the formula of the theorem for fn+1(x) with 0 ≤ x ≤ 1 and by

definition then fn+1(x) =
∫ 1+x

1−x fn(t)dt. We note [1 − x, 1 + x] ⊆ [0, 2] =
[n− 1− 2(m̄− 1), n+ 1− 2(m̄− 1)] and so we know by induction hypothesis

fn|[0,2](t) = (−1)n+1

(n−1)!

∑m̄−1
ν=0 (−1)ν

(
n+1
ν

)
(−n− 1 + 2ν + t)n−1 and

fn+1|[0,1](x)

=
1+x∫

1−x
fn|[0,2](t)dt

= (−1)n+1

n!

m̄−1∑
ν=0

(−1)ν
(
n+1
ν

)
(−n− 1 + 2ν + t)n|1+x

1−x

= 1
(2m̄−1)!

m̄−1∑
ν=0

(−1)ν
(

2m̄
ν

)
((−2m̄+ 1 + 2ν + x)2m̄−1 − (−2m̄+ 1 + 2ν − x)2m̄−1),

while the formula of the theorem claims on the interval [0, 1] that

fn+1|[0,1](x) = (−1)n+2

n!

m̄∑
ν=0

(−1)ν
(
n+2
ν

)
(−(n+ 1)− 1 + 2ν + x)n

= −1
(2m̄−1)!

m̄∑
ν=0

(−1)ν
(

2m̄+1
ν

)
(−2m̄− 1 + 2ν + x)2m̄−1.

To show that the two formulas for fn+1|[0,1] agree it is sufficient to check the
following calculation which after multiplication with −(2m̄ − 1)! computes
the second of the formulas minus the first of the formulas and transforms the
result gradually into a form to which we can apply the fact mentioned above.
m̄∑
ν=0

(−1)ν
(

2m̄+1
ν

)
(−2m̄−1+2ν+x)2m̄−1 +

m̄−1∑
ν=0

(−1)ν
(

2m̄
ν

)
(−2m̄+1+2ν+x)2m̄−1

−
m̄−1∑
ν=0

(−1)ν
(

2m̄
ν

)
(−2m̄+ 1 + 2ν − x)2m̄−1

= (−2m̄− 1 + x)2m̄−1 +
m̄∑
ν=1

(−1)ν
(

2m̄+1
ν

)
(−2m̄− 1 + 2ν + x)2m̄−1

+
m̄∑
ν=1

(−1)ν−1
(

2m̄
ν−1

)
(−2m̄− 1 + 2ν + x)2m̄−1

−
2m̄∑

ν=m̄+1
(−1)ν

(
2m̄

2m̄−ν
)
(2m̄+ 1− 2ν − x)2m̄−1

=
m̄∑
ν=0

(−1)ν
(

2m̄
ν

)
(−2m̄− 1 + 2ν + x)2m̄−1

−
2m̄∑

ν=m̄+1
(−1)ν

(
2m̄

2m̄−ν
)
(2m̄+ 1− 2ν − x)2m̄−1
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=
2m̄∑
ν=0

(−1)ν
(

2m̄
ν

)
(−2m̄− 1 + 2ν + x)2m̄−1

= 0.
Here the first equality is obtained by isolating in the first sum the case

ν = 0; by incrementing in the second sum the summation index ν by 1 and
by replacing in the third sum ν by 2m̄−ν. The second equality is justified by
using

(
2m̄+1
ν

)
−
(

2m̄
ν−1

)
=
(

2m̄
ν

)
and reincorporating the isolated leftmost term

as the case ν = 0 in the first sum at the right of the equality sign. The third
equality follows from multiplying 2m̄+ 1− 2ν − x by −1, taking oddness of
2m̄− 1 into account and then joining the sums. That this is said to be zero
in the fourth inequality is a consequence of the displayed fact above noting
that (−2m̄− 1 + 2ν + x)2m̄−1 is a polynomial in ν of degree less than 2m̄.

Case n even: In this case m̄ = n
2 , 2m̄ = n. We have to show the formula of

the theorem for fn+1(x) with 0 ≤ x ≤ 2. We begin with the case 0 ≤ x ≤ 1.

Then by definiton fn+1(x) =
∫ 1+x

1−x fn(t)dt and 0 ≤ 1 − x ≤ 1 ≤ 1 + x ≤ 2.
Unfortunately for the current case, the induction hypothesis tells us that fn
has polynomial representations in [−1, 1] and [1, 3] which differ. Therefore
we compute fn+1|[0,1] according to the following first line and then continue
with methods we have exercised above:

fn+1(x) =
∫ 1

1−x fn|[0,1](t)dt+
∫ 1+x

1 fn|[1,3](t)dt

= −1
(2m̄)!

(
m̄∑
ν=0

(−1)ν
(

2m̄+1
ν

)
((−2m̄+ 2ν)2m̄ − (−2m̄+ 2ν − x)2m̄)

+
m̄−1∑
ν=0

(−1)ν
(

2m̄+1
ν

)
((−2m̄+ 2ν + x)2m̄ − (−2m̄+ 2ν)2m̄)

)
= −1

(2m̄)!

(
m̄−1∑
ν=0

(−1)ν
(

2m̄+1
ν

)
((−2m̄+ 2ν + x)2m̄

−(−2m̄+ 2ν − x)2m̄) + (−1)m̄+1
(

2m̄+1
m̄

)
x2m̄
)

At the other hand the theorem claims

fn+1(x) = 1
(2m̄)!

m̄∑
ν=0

(−1)ν
(

2m̄+2
ν

)
(−2m̄− 2 + 2ν + x)2m̄

The equality of the two expressions is similarly as in the previous case
shown by multiplying both expressions by (2m̄)! and computing the second
expression minus the first one:
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m̄∑
ν=0

(−1)ν
(

2m̄+2
ν

)
(−2m̄− 2 + 2ν + x)2m̄ +

m̄−1∑
ν=0

(−1)ν
(

2m̄+1
ν

)
(−2m̄+ 2ν + x)2m̄

+
m̄∑
ν=0

(−1)ν−1
(

2m̄+1
ν

)
(−2m̄+ 2ν − x)2m̄

=
m̄∑
ν=0

(−1)ν(
(

2m̄+2
ν

)
−
(

2m̄+1
ν−1

)
)(−2m̄− 2 + 2ν − x)2m̄

+
m̄∑
ν=0

(−1)ν−1
(

2m̄+1
ν

)
(−2m̄+ 2ν − x)2m̄

=
m̄∑
ν=0

(−1)ν
(

2m̄+1
ν

)
(2m̄+ 2− 2ν − x)2m̄

+
2m̄+1∑
ν=m̄+1

(−1)ν
(

2m̄+1
ν

)
(2m̄+ 2− 2ν − x)2m̄

=
2m̄+1∑
ν=0

(−1)ν
(

2m̄+1
ν

)
(2m̄+ 2− 2ν − x)2m̄

= 0
In view of similar previous justifications it will be sufficient to note that the

second equality is justified by replacing the summation index in the second
sum by 2m̄+ 1− ν.

To show that fn+1|[1,2] has the same polynomial representation as fn+1|[0,1]

we prove the following
Claim. If n is even, then fn|[0,1] is a polynomial with only odd degree

monomials.
d> We know by direct computation that f2|[0,1](t) = 2t. Now for 0 ≤ x ≤ 1,

there holds 0 ≤ 1 − x ≤ 1 ≤ 1 + x ≤ 2 and so by the inductive definitions,
fn(x) =

∫ 1+x

1−x fn−1|[0,2](t)dt. Now since n − 1 is odd the function fn−1|[0,2] is

polynomial. Thus the associated stem function F (t) :=
∫
fn−1|[0,2]dt is a

polynomial, and we see fn(x) = F (1 + x) − F (1 − x) is an antisymmetric
polynomial. Hence it has only monomials of odd degree. c<

Now by definition for x ∈ [1, 2], fn+1(x) =
∫ 1

x−1 fn|[0,1](t)dt+
∫ 1+x

1 fn|[1,3](t)dt

but by the claim just proved the stem function
∫
fn|[0,1](t)dt is a polynomial in

t with monomials of only even degree. Hence
∫ 1

x−1 fn|[0,1](t)dt =
∫ 1

1−x fn|[0,1](t)dt
and it follows by comparing with the sum-of-integrals representation defin-
ing fn+1|[0,1], we gave before that indeed fn+1|[1,2] and fn+1|[0,1] have the same
polynomial representations. This concludes the proof of the theorem



RANDOM FLIGHTS 17

5. Solution of the problem: a formula for prob(Rn ≤ r).
We know from the ends of sections 1 and 2 that

prob(Rn ≤ r) = 2−(n−1)
r∫

0

xfn−1(x)

and since max{Rn(z2:n) : z2:n ∈ [−1, 1]n−1} = n, we get prob(Rn ≤ n) = 1,

so that for any 0 ≤ r ≤ n, we will have
r∫

0

xfn−1(x)dx = 2n−1−
n∫
r

xfn−1(x)dx.

In this section we use the piecewise polynomial representations of fn given in
Theorem 4.1 to compute the integral at the right explicitly and to illustrate
the theory we give the distribution function r 7→ prob(R4 ≤ r).

Given any 0 < r < 1 + n, we have
r ∈]n−1−2m,n+1−2m[ ⇔ n−1−2m < r < n+1−2m ⇔ n−1−r <

2m < n+ 1− r
from which it follows that m̄ := m(r) := dn−1−r

2 e is the parameter value of
m defining the interval containing r.

It is direct to check that∫
x(a+ x)n−1dx = (n(n+ 1))−1(a+ x)n(nx− a) + C

so that, defining

t(ν,m) := (2ν − 2m)n(n2 + 2n+ 1− 2ν − 2nm), and a = −n− 1 + 2ν,
we find

n+1−2m∫
n−1−2m

x(−n− 1 + 2ν + x)dx = (n(n+ 1))−1(t(ν,m)− t(ν,m+ 1)),

and therefore by Theorem 3.1 for m = 0, 1, 2, ..., dn−1
2 e,

n+1−2m∫
n−1−2m

xfn|[n−1−2m,n+1−2m](x)dx

=
(−1)n+1

(n− 1)!

m∑
ν=0

(−1)ν
(
n+ 1

ν

) n+1−2m∫
n−1−2m

x(−n− 1 + 2ν + x)dx

=
(−1)n+1

(n+ 1)!

m∑
ν=0

(−1)ν
(
n+ 1

ν

)
(t(ν,m)− t(ν,m+ 1)),

and so
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m̄−1∑
m=0

n+1−2m∫
n−1−2m

xfn(x)dx

=
(−1)n+1

(n+ 1)!

m̄−1∑
m=0

m∑
ν=0

(−1)ν
(
n+ 1

ν

)
(t(ν,m)− t(ν,m+ 1))

=
(−1)n+1

(n+ 1)!

m̄−1∑
ν=0

(−1)ν
(
n+ 1

ν

) m̄−1∑
m=ν

(t(ν,m)− t(ν,m+ 1))

=
(−1)n+1

(n+ 1)!

m̄−1∑
ν=0

(−1)ν
(
n+ 1

ν

)
· −t(ν, m̄),

because the inner sum is telescoping and t(ν, ν) = 0.
A small adaption of the pen-penultimate computation also yields
n+1−2m̄∫
r

xfn|[n−1−2m̄,n+1−2m̄](x)dx

= (−1)n+1

(n+1)!

m̄∑
ν=0

(−1)ν
(
n+1
ν

)
(t(ν, m̄)− (−n− 1 + 2ν + r)n(n+ 1− 2ν + nr)).

Now we find, summing the terms of
∑m̄−1

m=0 ... in reverse order,

n+1∫
r

xfn(x)dx

=

n+1−2m̄∫
r

xfn|[n−1−2m̄,n+1−2m̄](x)dx+
m̄−1∑
m=0

n+1−2m∫
n−1−2m

xfn|[n−1−2m,n+1−2m](x)dx

=
(−1)n+1

(n+ 1)!

(
m̄∑
ν=0

(−1)ν
(
n+ 1

ν

)
(t(ν, m̄)− (−n− 1 + 2ν + r)n(n+ 1− 2ν + nr))+

m̄−1∑
ν=0

(−1)ν
(
n+ 1

ν

)
· −t(ν, m̄)

)

= −(−1)n+1

(n+ 1)!

m̄∑
ν=0

(−1)ν
(
n+ 1

ν

)
(−n− 1 + 2ν + r)n(n+ 1− 2ν + nr).

We have now all tools at hand for finding specific distribution functions
r 7→ prob(Rn ≤ r).
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Example. Compute r 7→ vol(R4(r)); or equivalently r 7→ prob(R4 ≤ r)!
Solution: By the above formula one finds after a little computation

∫ 4

r

xf3(x)dx

= − 1

24

d1− r
2e∑

ν=0

(−1)ν
(

4

ν

)
(−4 + 2ν + r)3(4− 2ν + 3r)

=

{
8− 4

3r
3 + 3

8r
4 if 0 ≤ r ≤ 2

32
3 − 4r2 + 4

3r
3 − 1

8r
4 if 2 ≤ r ≤ 4.

Consequently

8 prob(R4 ≤ r) = 8−
∫ 4

r

xf3(x)dx =

{
4
3r

3 − 3
8r

4 if 0 ≤ r ≤ 2
−8

3 + 4r2 − 4
3r

3 + 1
8r

4 if 2 ≤ r ≤ 4.

The graphics shows the functions f3 (dotted) and r 7→ vol(R4(r)) on [0, 4].
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6. Report on L. R. G. Treloar’s elementary solution
There exists one other solution for the Random flight problem in three

dimensions which remains entirely within the realm of real analysis and el-
ementary probability theory. After the well-known physicist Lord Rayleigh
had given a solution for polygons of up to ca 6 links of equal length, Treloar
in 1945 came up with a formula which works for all n and which coincides
with our formula for 2−(n−1)xfn−1(x) for the density of the distances of the
end-points of polygons to the origin. His solution was worked out for the
British rubber industry and formulated in terms of the end-to-end distances
of long chain molecules.
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We explain the main ideas of his solution (and those of a paper he uses) at
certain points in some detail. We hope this will smooth the way to under-
standing the papers of Treloar and the respective pages in [KS] for readers
interested in them.

Treloar begins by observing that in a previous paper of his, which he cites
as I, he had found that the probability that a single randomly oriented link
of length l, fixed with one end at the origin has an x-component between x
and x + dx given by p1(x)dx = dx

2l for |x| < l. As we would say nowadays,
the density function of the projection is rectangular of height 1/2l spread
over the interval [−l, l]. This observation corresponds to our application of
Archimedes’ theorem in Lemma 2. It follows that the x-component of the
endpoint of a random polygon of n links of lengths l will be distributed just
in the same manner as the random variable

Z = X1 +X2 + · · ·+Xn

will be, if random variables X1, ..., Xn are independent and have the rectan-
gular distribution function p1(x) just explained. After his paper had been
published, Treloar says, he learned from a colleague that a 1927 paper of P.
Hall [Ha] should be of help. In Kendall and Stuart [KS] an account of Hall’s
paper is given which we will now explain in somewhat different notation and
by invoking general principles.

It is easy to see that if X1, ..., Xn are independent random variables that
all are uniformly distributed over the interval [0, 1], then the variable Z =
X1 + · · · + Xn will follow a probability law that is essentially given by the
Lebesgue measure (leb) of the region that the hyperplane z =

∑n
i=1 xi defines

when intersecting it with the hypercube [0, 1]n. More precisely, define

H = H(z) = {x ∈ Rn
≥0 : z =

n∑
i=1

xi}.

Note that this is a simplex imbedded into the said hyperplane. Then the
function z 7→ leb(H(z) ∩ [0, 1]n) will up to normalization follow the law
of Z. Let e1, ..., en be the standard vectors in Rn and more generally for
I ⊆ {1, 2, ..., n} let eI be the 01-n-tuple which has 1s exactly in the positions
i ∈ I. Using translation invariance of Lebesgue measure one has

leb({x ∈ H(z) : x ≥ eI}) = leb(H(z)− eI) = leb(H(z − |I|)).
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Now one can compute by means of the principle of inclusion exclusion as
follows:

leb(H(z) ∩ [0, 1]n)
= leb(H(z))− leb({x ∈ H(z) : x ≥ e1 or x ≥ e2 or ... or x ≥ en})

= leb(H(z))− leb(
n⋃
i=1

{x ∈ H(z) : x ≥ ei})

= leb(H(z))−
n∑
i=1

(−1)i−1(
∑

I⊆{1,...,n},|I|=i

leb(
⋂
i∈I

{x ∈ H(z) : x ≥ ei}))

= leb(H(z))−
n∑
i=1

(−1)i−1(
∑

I⊆{1,...,n},|I|=i

leb({x ∈ H(z) : x ≥ eI})

= leb(H(z))−
n∑
i=1

(−1)i−1

(
n

i

)
leb(H(z − i))

=
n∑
i=0

(−1)i
(
n

i

)
leb(H(z − i)).

Using that H(z) = conv{ze1, ..., zen} is an (n − 1)-dimensional simplex
in n-dimensional space, Kendall and Stuart (following probably Hall) go on
to compute leb(H(z)). This can be computed using that the volume of a
simplex is the measure of its base (itself a simplex) times the height rela-
tively to that base times 1 over the dimension of the simplex. The reader
who wishes to fill the details in [KS]’s account may check that the center
of the ‘base’ of H(z) which is defined by the plane conv{ze1, ..., zen−1} is
c = 1

n−1

∑n−1
i=1 zei and check that the vectors c zen

> and ~c 0 are perpendicular
to that base and hence can be used as the heights of H(z) and the simplex
conv{ze1, ..., zen−1, 0} with respect to the same base. Since the euclidean
norms of the mentioned vectors stand in the relation |c zen>| : | ~c 0| =

√
n : 1,

the volumes of the mentioned simplexes stand in the same relation. Now for
the simplex conv{ze1, ..., zen−1, 0} we considered conv{ze1, ..., zen−1} also as
the base and thus have diminished the problem by one dimension. This gives

a recursive formula from which leb(Hn(z)) =
√
n

(n−1)!z
n−1 can be derived.

It follows that the function z
f7→ leb(H(z) ∩ [0, 1]n) is given by

f(z) =

√
n

(n− 1)!

bzc∑
i=0

(−1)i
(
n

i

)
(z − i)n−i.
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To meet the requirement that the integral over a density function be 1, one
needs now to normalize this function by a positive multiplicative constant c
so that the integral

∫ n
0 cf(z)dz = 1. This is one more detail missing in the

arguments: it is claimed but not proved that c = 1/
√
n. To prove this we

may compute as follows∫ n

0

f(z)
dz√
n

=
n−1∑
µ=0

∫ 1+µ

µ

f(z)√
n

=
n−1∑
µ=0

∫ 1+µ

µ

1

(n− 1)!

µ∑
ν=0

(−1)ν
(
n

ν

)
(z − ν)n−1dz

=
1

(n− 1)!

n−1∑
µ=0

µ∑
ν=0

(−1)ν
(
n

ν

)∫ 1+µ

µ

(z − ν)n−1dz

=
−1

n!

n−1∑
µ=0

µ∑
ν=0

(−1)ν
(
n

ν

)
((1 + µ− ν)n − (µ− ν)n)

=
1

n!

n−1∑
ν=0

(−1)ν
(
n

ν

) n−1∑
µ=ν

((1 + µ− ν)n − (µ− ν)n)

=
1

n!

n−1∑
ν=0

(−1)ν
(
n

ν

)
(n− ν)n,

because the inner sum telescopes.
Now since (n− x)n is a polynomial in x of degree n and we can evidently

replace
∑n−1

ν=0 ... by
∑n

ν=0 ... the fact we mentioned in the second part of the
proof of Theorem 1 allows us to say that the above sum is 1. Therefore the
variable Z follows the law (has the density function ) z 7→ f(z)/

√
n.

Consequently the density for the variable Z/n (the mean) is obtained by
squeezing the latter function by a factor n in the direction of z and multi-
plying by n to maintain the integral equal to 1. Explicitly, thus, the mean
follows the law

t 7→
√
nf(nt) =

nn

(n− 1)!

bntc∑
i=0

(−1)i
(
n

i

)
(t− i

n
)n−1

The mean has, hence, as is also intuitively to be expected, a density func-
tion symmetric with respect to 1/2, and support [0, 1].

Treloar starts from this formula. To adapt it to a distribution which covers
the interval [−nl, nl] as is the case with our polygons with n links of length l



RANDOM FLIGHTS 23

one has to shift the previous function by 1/2 to the left, that is substitute t
by t+ 1

2 (having now support [−1/2, 1/2]) yielding
√
nf(n2 + nt) and now to

stretch this function by the factor 2nl to get support [−nl, nl] and, finally, to
maintain the value 1 of the integral divide it by 2nl. Treloar opts to exploit
also the symmetry of the function and obtains (in his notation) the function

x
p7→ 1

2l

nn−1

(n− 1)!

bn2 (1− x
nl )c∑

s=0

(−1)s
(
n

s

)
(
1

2
− x

nl
− s

n
)n−1

for the distribution (density) of the x-component of end points of random
polygons with n links of length l emanating from 0.

The question however is: what is the density of the end point distances
(from the origin) of the random polygons? In one more step difficult to
comprehend from the few words Treloar dedicates to it, he says that the
density P (r) of the end point distances is related to the distribution function
above by the formula

∗: −dp
dx
|x=r =

1

2r
P (r).

Here is our justification: Analogously to the case for a single link, a polygon
with endpoint distance r projects its endpoint onto the interval [−r, r] of

length 2r and the endpoints E of the polygons with |OE>| = r will be found
with equal probability on any patch of the O-centered sphere of radius r.
Thus again analogously to the case of a single link, the projections of these
Es to the x-axis will induce a uniform distribution over the interval [−r, r]
on the x-axis.

O x

E

The density of these points on the x axis
is hence found to be constant 1

2rP (r)

in [−r, r] and 0 outside. So 1
2rP (r)dr

is precisely the increment of density of
points that the shell defined by radii r
and r+dr contributes to the cumulative
density p (which is the ‘sum’ of all such
densities) on the x-axis.

The figure shows just two shells (of many) of thickness dr of one half of
a ball. Since a shell intersects the x-axis along an interval of length dr, we
may write dx = dr. At the outer fringes of length dr of the interval obtained
by projecting the outer shell, only the outer shell contributes to p. It follows
that on the x-axis at distance r from the origin we have dp = − 1

2rP (r)dr =

− 1
2rP (r)dx and hence the above differential equation.
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From ∗ then, Treloar gets his final equation

P (r) =
r

2l2
nn−2

(n− 2)!

bn2 (1− r
nl )c∑

s=0

(−1)s
(
n

s

)
(
1

2
− r

nl
− s

n
)n−2.

It is now elementary to see that this, written by replacing letter r by x and
putting l = 1 is precisely equal to our function 2−(n−1)fn−1(x).

7. More on the history of the random flight problem
and related results

Many variations of the problem we treated make sense and an article by
Dutka [Dt] surveys probably much of what was done till about 1985. Influ-
enced by this article we mention the facts most relevant with respect to our
article essentially in chronological order. We looked furthermore in depth
into the original sources mentioned in the final paragraph below. The rest
of the story we tell here is told as we understand it and hence might not be
completely correct.

Formally, the problem of random flights began with a 1905 question by
the later famous statistician K. Pearson who inquired about the analogue to
our problem in 2 dimension. Mathematically speaking he asked the following
question for the special case that l1 = · · · = ln = l.

Consider in the plane a random walk obtained by adding vectors of length
l1, l2, ..., ln in random directions. What is the probability density of the prop-
erty that the sum of these vectors has a norm < r.?

However, already in 1880, Lord Rayleigh, interested in acoustics, was inter-
ested in finding ‘the resultant of isoperimetric vibrations of equal amplitude’
when the phases are chosen randomly. More precisely he was interested in
the relative frequency with which the amplitude of sums

∑n
j=1 exp(

√
−1θj)

falls within a given interval when the θj are chosen randomly. Identifying
the exponentials with unit vectors in the plane, this question is mathemat-
ically the same as Pearson’s original question. Rayleigh also inquires about
this problem in three dimensions. In §42a of his book [Ra2] he shows that
in the 2-dimensional case the probability of a resultant amplitude between
r and r + dr for large n is given approximately by the formula 2

ne
−r2/nrdr

and in the 3-dimensional case this probability is 3
√

6
πn3e

−r2
/

(2/3n)r2dr. The

relevance or existence of Rayleigh’s results was apparently unknown to Pear-
son and Kluyver (below). Rayleigh argued statistically with difference and
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differential equations and here his method does not give precise results for
given n.

It was a year after Pearson’s question that the Belgian mathematician J.C.
Kluyver provided an answer for the associated distribution function via an
integral representation using Bessel functions J0, J1.

Theorem 7.1. (Kluyver, 1906). Given fixed positive numbers li and r and
real random variables θi independently and uniformly distributed in the in-
terval ] − π, π], i = 1, ..., n. Define associated vector random vectors Xi =
li(cos θi, sin θi) and their sum Sn = X1 + · · ·+Xn.
a. Then

prob(|Sn| ≤ r) =
∫∞

0 rJ1(rt)
∏n

m=1 J0(lmt)dt.
b. In particular, if l1 = · · · = ln = l

prob(|Sn| ≤ r) =
∫∞

0 rJ1(rt)J0(lt)
ndt.

Kluyver’s ingenious solution is based on Weber’s discontinuous factor ex-
pressing the indicator function 1[0,r] via an integral of an expression involving
Bessel functions and another sophisticated formula for Bessel functions due
to C.G. Neumann. To this day not even for the special case (b) an ‘elemen-
tary’ solution is known and for the evaluation of the integrals in the decades
after Kluyver, big efforts where expended. It is shown in [Dt, p.11] that
Kluyver’s theorem can also be deduced from the method of characteristic
functions.

In 1919 Rayleigh [Ra3] came back to his problem and it was he that called
the problem of Pearson the problem of Random Flights. Chandrasekhar [Ch]
tells us that he got essentially the results we announce below.

In view of the non-elementaricity of the 2-dimensional random flight prob-
lem, it is interesting that the three-dimensional case admits an elementary
solution and such was Treloar’s found in 1946 and related in the section
before.

The potential of the method of discontinuous factors was recognized by
Dirichlet in 1839 for the evaluation of multiple integrals and publicized in
1912 by A. Markoff in his book on probability theory. It was shown to have
much potential in other problems of this sort.

In 1943 Chandrasekhar generalized Markoff’s method to dimensions higher
than 2 and solved various problems on random flights - all for three dimen-
sional space - in the first chapter of his long paper [Ch]: One finds in that
paper the following
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Theorem 7.2. The probability WN(R)dR that the position R of the particle
will be found in the interval [R,R + dR] after n displacements in 3-space is
given by (his notation)

WN(R) =
1

2π2|R|

∫ ∞
0

sin(|ρ||R|)
N∏
j=1

sin(|ρ|lj)
|ρ|lj

|ρ|d|ρ|

This, Chandrasekhar says, is a formula of Rayleigh [Ra3] (at least in the
case that all lj = l) and he follows Rayleigh in explicitly giving WN(R) for
N = 3, 4, 5, 6 as piecewise polynomial functions.

In a 1947 paper of mere two pages, putting R = |R|, Quenouille took
Chandrasekhar’s formula in the form

WN(R) =
1

2π2R

∫ ∞
0

sin(Rx)

(
sin(lx)

lx

)N
xdx

and proved for the quantities IN(R) = 2N+1πlNΓ(N−1)RWN(R) a recursive
differential equation from which he gets explicit piecewise polynomial expres-
sions for IN(R) for all N. Evidently this result must be equivalent to Treloar’s
1946 result but Quenouille does not mention Treloar, just as Treloar didn’t
know of Chandrasekhar and after all was in error (as Quenouille shows) of
saying that ‘Rayleigh’s method is impracticable for large n’. Chandrasekhar
relied on Fourier transforms and discontinuous factors, and we understand
that Rayleigh’s method was similar.

In 2012 apparently the first really new result concerning elementary rep-
resentability of the density functions in dimensions higher than three was
found. Garćıa-Pelayo [G-P] writes sd for the isotropic probability density
whose support is the d − 1 dimensional surface of the sphere of radius R.
From the known surface area of spheres it follows that via Dirac’s δ this can

be expressed as sd(r) = Γ(d/2)δ(r−R)
2πd/2rd−1

. In this language the probability density
for the n-step random flight problem in dimension d is given by the n-fold con-
volution of sd, that is by s⊗nd . The convolution theorem for Fourier transforms
allows to say that s⊗nd = F−1((F(sd))

n). Using a 1963 result of Kingman ac-
cording to which convolution and certain projections of the sphere onto lower
dimensional disks commute, and developing a higher dimensional version of
the Abel transform, [G-P] gets in case that d is odd that

s⊗nd (r) =
(

1
2(d−1)/2

(d−2)···1
(d−3)···2

1
Rd−2

)n
(− 1

2πr
d
dr)

d−1
2

(
(R
√
R2 − r2)d−3

)⊗n
.
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Now r 7→ R
√
R2 − r2 is just the function which is

√
R2 − r2 when |r| <

R and 0 otherwise. It follows that r 7→ (R
√
R2 − r2)d−3 is a truncated

polynomial of degree d− 3 and from this one sees easily the following

Theorem 7.3. (Garćıa-Pelayo) The convolution r 7→ s⊗nd (r) is in case of
odd dimension d a piecewise polynomial with support [−nR, nR] of degree
nd− 2n− d.

Readers of this paper might wish to estimate how much they can trust its
authors concerning novelty of their ideas and historical correctness. Thus
it might be useful to mention the present authors absorbed in considerable
detail in [Ch], [Dt], [G-P], [KS], [Qu], [Sch], [Trl], [Ra2] the parts related to
their problem. They did not see [Kl] but constructed complete arguments
from what they read about his solution in [Dt]. [KS] reports about [Ha]. We
assume what [Ra2] writes in §42a is the essence of what can be found in [Ra1].
Where our ‘story’ touches on [Ra3], we rely on [Ch] and [Dt]. In [La] authors
learned important facts about Fourier Transforms and convolutions. [KS]
teaches examples on characteristic functions. From wikipedia they learned a
version of the Abel transform for understanding relevant parts of [G-P].

References
[Ch] S. Chandrasekhar, Stochastic Problems in Physics and Astronomy, Rev. of Modern Physics

Vol. 15, 1 January 1943.
[Dt] J.C. Dutka, On the problem of Random Flights, Arch. History of Exact Sciences 32, n.3-4,

p.351-375, 1985.
[Enc] Encyclopaedic Dictionary of Mathematics, Second Edition, MIT Press 1980.
[GKP] R. Graham, D. Knuth, O. Patashnik, Concrete Mathematics, Addison Wesley 1989.
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