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1. Introduction
For a purely jump Lévy process, originated in a bounded domain Ω ⊂ Rn,

the expected value of the function at the first exit point solves the non-local
Dirichlet problem driven by the fractional Laplacian, for a prescribed (out-
side of the domain) “boundary data”. The non-local nature of the operator
requires the “boundary data” to be defined in the whole complement of Ω
since, when exiting the domain, the jump can end up at any point of Ωc.

When we minimize the corresponding energy functional, among functions
that dictate a certain behavior of the process inside the domain, within an
“insulation material” of a certain volume, we have to deal with an optimal
design problem which is driven by a non-local operator. Such problems arise,
for instance, in the study of best insulation devices.

If, instead of jump processes, one considers continuous processes, then
optimal design problems actually arise from local operators, a variant of
which can be stated as follows (see [10, 11]): with heating sources inside of a
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room, and with a fixed volume of an insulation material outside of the room,
minimize the associated energy functional while keeping the temperature in
the room above a given non-negative function (see the picture below).

In this work, we are interested in the non-local counterpart of such problems
– minimizing the fractional energy under a volume constraint and a lower
bound condition. More precisely, given a bounded domain Ω ⊂ Rn with
smooth boundary, a smooth non-negative function φ : R −→ R which is
compactly supported in Ω, and numbers α ∈ (0, 1) and γ > 0, we search for
a function u : Rn → R that minimizes the fractional energy functional

J(u) :=

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2α
dx dy (P)

in the set K of functions u ∈ Hα(Rn) for which

u ≥ φ,

(−∆)αu ≤ 0 in Ω,

(−∆)αu = 0 in {u > 0} \ Ω,
|{u > 0} \ Ω| = γ.

Here, |E| denotes the n-dimensional Lebesgue measure of E ⊂ Rn and
(−∆)αu is the fractional Laplacian, defined as follows:

(−∆)αu(x) := cn,α PV
∫
Rn

u(x)− u(y)

|x− y|n+2α
dy,

where PV is short for the Cauchy principal value of the integral, cn,α is a
normalization constant, and α ∈ (0, 1).
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Ω

u > φu > 0

supp φ

Interior and exterior free boundaries.

We prove that solutions are locally non-degenerate and α-Hölder continuous
(optimal regularity), and that the exterior free boundary, that is, the set
∂ ({u > 0}), has finite (n−1)-dimensional Hausforff measure. Unlike the local
case, we cannot infer a regularity information of the interior free boundary,
that is, of the set ∂ ({u > φ} ∩ Ω), since, in Ω, the solution u cannot be
interpreted as a solution of the usual fractional obstacle problem. This is
due to the non-local nature of the fractional Laplacian. Nonetheless, in Ω,
we obtain an interior Harnack inequality.

The study of best insulation devices was boosted by the seminal work [1] of
Alt and Caffarelli, later followed by many others, relatively recent examples
of which include [3, 4, 7, 8], for functionals generated by divergence type
operators and [9] for the fractional Laplacian. In these model problems, the
temperature along the walls of the room is often prescribed. If, instead, we
consider a minimal temperature profile in the interior of the room, we change
from a boundary value problem in the bounded set Ω into a problem in the
entire space Rn. Then, new challenges arise mainly from the fact that the
operator changes the sign. To handle the case for the Laplacian operator,
in [11], several perturbed problems were studied. The rough idea is that
these perturbed problems have regular enough solutions which converge to
a solution of the original problem. This approach was later used in [10] to
study the problem for the infinity Laplacian operator (as a limit of solutions
from the divergence structured p-Laplacian operator). Here, in order to treat
the problem (P), we follow this idea of penalization, and we consider three
perturbed problems. However, since we are dealing with a non-local operator,
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we cannot expect higher regularity, which forces some adjustments. Also, due
to the non-local nature of the fractional Laplacian, unlike [10, 11], solutions
of (P) inside the domain cannot solve the obstacle problem. This fact, in
turn, does not allow to conclude the corresponding regularity result for the
interior free boundary, as in [10, 11]. Nevertheless, we obtain an interior
Harnack inequality.

The paper is organized as follows: we start, in Section 2, with the mathe-
matical set-up of a three parameter penalization problem and prove existence
and boundedness of its minimizers (Proposition 2.1). In Section 3, we prove
uniform, in one of the parameters, estimates, which allow to reduce the prob-
lem to the study of a two parameter penalization functional (Corollary 3.1).
In Section 4, we prove uniform Hölder estimates in one of the remaining two
parameters (Theorem 4.1) - reducing the problem to the study of a single pa-
rameter minimization problem, which is studied in Section 5. We show that
when this last parameter is small enough (but fixed), then solutions of the
penalized problem turn into solutions of the original problem (Theorem 5.2).
This, in turn, implies α-Hölder regularity, which is optimal, non-degeneracy,
and positive density results (Theorem 5.3). We conclude the paper with
an interior Harnack inequality (Theorem 5.4) and an exterior free boundary
regularity result (Theorem 5.5).

2. Preliminaries
Recall the definition of the functional J from (P) and let Hα(Rn) be the

fractional Sobolev space of order α ∈ (0, 1) with usual norm

∥u∥Hα(Rn) =
(
∥u∥2L2(Rn) + J(u)

) 1
2

.

For three parameters σ, δ, ε ∈ (0, 1), we introduce the following penalized
functional

Iσ,δ,ε(u) = J(u) + gσ(u− φ) + fε

(∫
Ωc

hδ(u(x)) dx

)
, (2.1)

where
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(i) the function gσ : R → R is smooth, non-negative, decreasing, convex,
and such that

gσ(t) =


− 1

σ(t+
σ
2 ), t ≤ −σ,

smooth, −σ ≤ t ≤ 0,

0, t ≥ 0.

(ii) the function hδ : R → R is continuous and vanishes on (−∞, 0], it is
linear on [0, δ], and it equals 1 on [δ,+∞);

(iii) the function fε : R → R is given by

fε(t) =

{
1
ε(t− γ) for t ≥ γ,

ε(t− γ) for t ≤ γ.

The term gσ(v − φ) penalizes functions that do not lie above φ, the term
hδ regularizes the map u 7→ |{u > 0} \ Ω|, and fε penalizes functions whose
positivity set does not have the desired volume γ (see [10, 11]).

We start by the following existence result.

Proposition 2.1. The functional Iσ,δ,ε : Hα(Rn) −→ R, given by (2.1), has
a minimizer. Moreover, if u is a minimizer, then

0 ≤ u ≤ ∥φ∥∞. (2.2)

Proof : First, we show the existence of solutions. Observe that φ itself is an
admissible function, and so we have

Iσ,δ,ε(φ) ≤ J(φ) =: M < ∞,

where the constant M is independent of the parameters σ, δ, ε. Let {uk} be a
minimizing sequence such that Iσ,δ,ε(uk) ≤ M . As Iσ,δ,ε ≥ −εγ, the sequence
{uk} is bounded in Hα(Rn). Thus, we can extract a weakly converging
subsequence in Hα(Rn), which we still denote by {uk}. If u is the weak
limit, by the lower semicontinuity of J and the definitions of the auxiliary
functions, we have

J(u) ≤ J(uk),

gσ(u− φ) = lim
k→∞

gσ(uk − φ),

fε

(∫
Ωc

hδ(u(x)) dx

)
= lim

k→∞
fε

(∫
Ωc

hδ(uk(x)) dx

)
.
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Hence,
Iσ,δ,ε(u) ≤ lim inf

k→∞
Iσ,δ,ε(uk) = inf

w∈Hα(Rn)
Iσ,δ,ε(w).

Therefore, u is a minimizer of Iσ,δ,ε.
Next, we prove (2.2). In order to prove the upper bound, we define v ∈

Hα(Rn) by

v :=

{
u if u > ∥φ∥∞
1
2 (u+ ∥φ∥∞) if u ≤ ∥φ∥∞.

Clearly, v ≥ u. In particular, v − φ ≥ u− φ and, since gσ is decreasing,
gσ(v − φ) ≤ gσ(u− φ).

On the other hand, as hδ is non-decreasing, then
hδ(v) ≤ hδ(u).

Since u is a minimizer, we can estimate
0 ≤ Iσ,δ,ε(v)− Iσ,δ,ε(u) ≤ J(v)− J(u)

=

∫
u>∥φ∥∞

∫
u>∥φ∥∞

|v(x)− v(y)|2 − |u(x)− u(y)|2

|x− y|n+2α
dx dy

=−3

4

∫
u>∥φ∥∞

∫
u>∥φ∥∞

|u(x)− u(y)|2

|x− y|n+2α
dx dy.

Then, |{u > ∥φ∥∞}| = 0, that is, u ≤ ∥φ∥∞ almost everywhere.
It remains to show that u ≥ 0. For this purpose, we set

w :=

{
u if u ≥ 0
u
2 if u < 0

.

As before, we have w ≥ u so that gσ(w−φ) ≤ gσ(u−φ) and hδ(w) ≤ hδ(u).
Thus, estimating as above, we have

0 ≤ −3

4

∫
u<0

∫
u<0

|u(x)− u(y)|2

|x− y|n+2α
dx dy,

which implies u ≥ 0 almost everywhere.

Remark 2.1. Clearly, a minimizer u of Iσ,δ,ε satisfies the following Euler-
Lagrange equation

2 (−∆)α u = g′σ(u− φ) + f ′
ε

(∫
Ωc

hδ(u(x)) dx

)
h′
δ(u)χΩc,
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where χE is the characteristic function of the set E.
We end this section by recalling the following result [5, Proposition 2.9] for

future reference (see also [6]).
Proposition 2.2. Let u ∈ L∞(Rn) be such that w := (−∆)αu ∈ L∞(Rn).

• If 2α ≤ 1, then, for any λ < 2α,
∥u∥C0,λ(Rn) ≤ C (∥u∥∞ + ∥w∥∞) .

• If 2α > 1, then, for any λ < 2α− 1,
∥u∥C1,λ(Rn) ≤ C (∥u∥∞ + ∥w∥∞) .

In both cases, the constant C > 0 depends only on n, λ, and α.

3. Uniform estimates
In this section, we prove estimates for minimizers of Iσ,δ,ε that are uniform

in the parameter σ. These allow us to pass to the limit as σ → 0.
Lemma 3.1. If uσ,δ,ε is a minimizer of Iσ,δ,ε, then

∥g′σ(uσ,δ,ε − φ)∥∞ ≤ C

(
C(φ) +

1

εδ

)
, (3.1)

where C(φ) > 0 is a constant depending only on φ, and C > 0 is a constant
independent of δ, σ, and ε.
Proof : This follows from the Euler-Lagrange equation, taking into account
Proposition 2.1, and by the fact that |f ′

ε| ≤ 1
ε and |h′

δ| ≤ 1
δ . More precisely,

if u = uσ,δ,ε is a minimizer of Iσ,δ,ε, then from (2.1) one has

2 (−∆)α u = g′σ(u− φ) + f ′
ε

(∫
Ωc

hδ(u(x)) dx

)
h′
δ(u)χΩc. (3.2)

Set ũ = u − φ. Since φ is supported in Ω, then u = ũ in Ωc, and (3.2) can
be rewritten as

2 (−∆)α (ũ+ φ) = g′σ(ũ) + f ′
ε

(∫
Ωc

hδ(ũ) dx

)
h′
δ(ũ)χΩc. (3.3)

Taking [g′σ(ũ)]
k as a test function in (3.3), we obtain∫

2 (−∆)α (ũ+ φ)[g′σ(ũ)]
k + [g′σ(ũ)]

k+1

+f ′
ε

(∫
Ωc

hδ(ũ)

)
h′
δ(ũ)χΩc[g′σ(ũ)]

k = 0. (3.4)
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Recall that ∫
Rn

ζ(x) (−∆)α ζ(x) dx = ∥ζ∥2
Ḣs ≥ 0, ∀ ζ ∈ S,

where S is the Schwartz space or space of rapidly decreasing functions on
Rn. By linearity,∫

Rn

(ξ − η) [(−∆)α ξ − (−∆)α η] dx ≥ 0, ∀ξ, η ∈ S.

From (3.4), using the last inequality, we have∫
2 (−∆)α φ[g′σ(ũ)]

k + [g′σ(ũ)]
k+1 + f ′

ε

(∫
Ωc

hδ(ũ)

)
h′
δ(ũ)χΩc[g′σ(ũ)]

k ≥ 0.

or

−
∫

[g′σ(ũ)]
k+1 ≤

∫
f ′
ε

(∫
Ωc

hδ(ũ)

)
h′
δ(ũ)χΩc[g′σ(ũ)]

k − 2[g′σ(ũ)]
k (−∆)α φ.

Note that u ≥ φ implies that g′σ(ũ) is supported in Ω, and hence the last
inequality leads to∫

Ω

|g′σ(ũ)|k+1 ≤
∫
Ω

[
f ′
ε

(∫
Ωc

hδ(ũ)

)
h′
δ(ũ)χΩc[g′σ(ũ)]

k − [g′σ(ũ)]
k (−∆)α φ

]

≤

[∫
Ω

∣∣∣∣f ′
ε

(∫
Ωc

hδ(ũ)

)
h′
δ(ũ)χΩc + (−∆)α φ

∣∣∣∣k
] 1

k [∫
Ω

|g′σ(ũ)|k+1

] k
k+1

.

Therefore,

∥g′σ(ũ)∥Lk+1(Ω) ≤
(
C(φ) +

1

εδ

)
|Ω|

1
k . (3.5)

Here, we used the fact that if a function is smooth, then its fractional Lapla-
cian is also smooth (see [5]). Since φ is compactly supported, then (−∆)α φ
is a smooth compactly supported function, thus bounded, and

|(−∆)α φ| ≤ C(φ),

for a constant C(φ) > 0 depending only on φ. Letting k → +∞ in (3.5), we
obtain (3.1).

As a consequence of Lemma 3.1, we have the following result.

Theorem 3.1. Let uσ,δ,ε be a minimizer of Iσ,δ,ε.
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• If 2α ≤ 1, then, for any λ < 2α,

∥uσ,δ,ε∥C0,λ(Rn) ≤ C

(
C(φ) +

1

εδ

)
.

• If 2α > 1, then, for any λ < 2α− 1,

∥uσ,δ,ε∥C1,λ(Rn) ≤ C

(
C(φ) +

1

εδ

)
.

In both cases, the constant C > 0 depends only on n, λ, and α.

Proof : Using (3.1), the right hand side in the Euler-Lagrange equation (see
Remark 2.1) can be estimated uniformly in σ, that is,

|(−∆)α uσ,δ,ε| ≤ C

(
C(φ) +

1

εδ

)
.

By Proposition 2.2, if 2α ≤ 1 and λ < 2α, one has

∥uσ,δ,ε∥C0,λ ≤ C

(
∥uσ,δ,ε∥∞ + C(φ) +

1

εδ

)
.

By taking into account (2.2), we obtain the first statement of the theorem.
Similarly, the second part of the theorem again follows from Proposition
2.2.

Corollary 3.1. Up to a subsequence, as σ → 0, the function uσ,δ,ε converges
to a function uδ,ε locally uniformly on Rn and weakly in Hα(Rn). Moreover,
uδ,ε ≥ φ.

Proof : The convergence follows immediately from the boundedness of uσ,δ,ε
in Hα(Rn), Theorem 3.1, and the Arzelà-Ascoli Theorem. To show that
uδ,ε ≥ φ, take any c > 0 and any compact set K ⊂ Rn. Then

{uδ,ε − φ < −c} ∩K ⊂ {uσ,δ,ε − φ < −c/2} ∩K (3.6)
for sufficiently small σ > 0. On the other hand, by the construction of gσ
and inequality Iσ,δ,ε(uσ,δ,ε) ≤ M (see Step 1 of the proof of Proposition 2.1),
we have

c

2σ
|{uσ,δ,ε − φ < −c/2} ∩K| ≤

∫
Rn

gσ(uσ,δ,ε − φ) ≤ M < ∞.

This, together with (3.6), yields |{uδ,ε−φ < −c}∩K| = 0, since otherwise we
would have a contradiction in the last inequality once σ > 0 is small enough.
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As the number c > 0 and the compact K ⊂ Rn are arbitrary, we conclude
that uδ,ε ≥ φ.

4. Uniform Hölder regularity of solutions
The aim of this section is to pass to the limit as δ → 0, and derive uniform

Hölder estimates for solutions. For this purpose, we need the following.

Lemma 4.1. If w ∈ Hα(Rn), w ≥ φ and uδ,ε is as in Corollary 3.1, then

2J(w) + 2

∫
Rn

∫
Rn

[w(x)− w(y)][uδ,ε(y)− uδ,ε(x)]

|x− y|n+2α
dx dy

+ f ′
ε

(∫
Ωc

hδ(uδ,ε)

)∫
Ωc

h′
δ(uδ,ε)(w − uδ,ε) ≥ 0.

(4.1)

Proof : Since uσ,δ,ε is a minimizer of Iσ,δ,ε, the function

F (t) := Iσ,δ,ε(uσ,δ,ε + t(w − uσ,δ,ε))

has a minimum at t = 0 and so F ′(t) ≥ 0. Thus,

2

∫
Rn

∫
Rn

(uσ,δ,ε(x)− uσ,δ,ε(y)) ([w(x)− w(y)]− [uσ,δ,ε(x)− uσ,δ,ε(y)])

|x− y|n+2α

+g′σ(u− φ)(w − uσ,δ,ε) + f ′
ε

(∫
Ωc

hδ(uσ,δ,ε)

)∫
Ωc

h′
δ(uσ,δ,ε)(w − uσ,δ,ε) ≥ 0,

which, by the monotonicity of g′σ (recall that gσ is convex) and the elementary
inequality A(B − A) ≤ B(B − A) for any numbers A and B, yields:

2J(w) + 2

∫
Rn

∫
Rn

[w(x)− w(y)][uσ,δ,ε(y)− uσ,δ,ε(x)]

|x− y|n+2α
dx dy

+ g′σ(w − φ)(w − uσ,δ,ε)

+ f ′
ε

(∫
Ωc

hδ(uσ,δ,ε)

)∫
Ωc

h′
δ(uσ,δ,ε)(w − uσ,δ,ε) ≥ 0.

(4.2)

As for w ≥ φ one has g′σ(w− φ) = 0. We can pass to the limit, as σ → 0, in
the last term of (4.2), as in [10, 11, Proof of Lemma 4.1].

Corollary 4.1. The function uδ,ε satisfies

2(−∆)αuδ,ε = f ′
ε

(∫
Ωc

hδ(uδ,ε)

)
h′
δ(uδ,ε)χΩc (4.3)
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in {uδ,ε > φ} and

− C

(
C(φ) +

1

εδ

)
≤ 2(−∆)αuδ,ε ≤ f ′

ε

(∫
Ωc

hδ(uδ,ε)

)
h′
δ(uδ,ε)χΩc. (4.4)

Proof : Remark 2.1 provides (4.3). The first inequality of (4.4) follows from
(3.1); the second, from (4.1).

To pass to the limit, as δ → 0, we need uniform in δ estimates.
Theorem 4.1. There exists a constant C > 0 such that

∥uδ,ε∥C0,α ≤ C

(
(1 + δ)C(φ) +

1

ε

)
.

Proof : We define
v(x) := uδ,ε(δ

1
n−1+2αx)

and notice that
(−∆)αv(x) = δ(−∆)αu(δ

1
n−1+2αx).

Recall f ′
ε ≤ 1/ε and h′

δ ≤ 1/δ. From (4.4), we deduce

−C

(
δC(φ)

2
+

1

2ε

)
≤ (−∆)αv ≤ 1

2ε
,

which together with Proposition 2.2 and Proposition 2.1 provides the desired
result.

As a consequence of Proposition 2.1, the Arzelà-Ascoli Theorem and The-
orem 4.1, we obtain the next result.
Corollary 4.2. If uσ,δ,ε is a minimizer of Jσ,δ,ε, then uσ,δ,ε converges weakly
(up to a subsequence as σ, δ → 0) in Hα(Rn) to a function uε. This con-
vergence is locally uniform. Moreover, there exists a constant C > 0 such
that

∥uε∥C0,α ≤ C

(
C(φ) +

1

ε

)
.

5. Back to the original problem
Here we show that the function uε from Corollary 4.2 is a minimizer for a

certain functional. This, in turn, provides information on the regularity of the
exterior free boundary. Furthermore, we show that for ε > 0 small enough
(but fixed), the desired volume is attained automatically, which means that
solutions of the penalized problems turn into solutions to our original problem
inheriting all the properties.
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Theorem 5.1. The function uε from Corollary 4.2 is a local minimizer of

Jε(u) := J(u) + fε(|{u > 0} \ Ω|)

over the functions in Hα(Rn) which lie above φ.

Proof : We argue by contradiction and assume that inf Jε < Jε(uε). Hence, for
given θ > 0 there exists v ∈ Hα(Rn) with v ≥ φ such that Jε(v) < Jε(uε)−2θ.
Since J(u) and J(v) are finite, then

∫
Bc

r

∫
Bc

r

(
|uε(x)− uε(y)|2

|x− y|n+2α
− |v(x)− v(y)|2

|x− y|n+2α

)
<

θ

2
,

when r > 0 is big enough. Also, we note that both {u > 0}\Ω and {v > 0}\Ω
have finite measure, since otherwise fε would be infinity on the corresponding
function. For r > 0 sufficiently big, the sets {u > 0} ∩ Bc

r \ Ω and {v >
0} ∩Bc

r \ Ω have arbitrarily small volume. The continuity of fε implies

|fε (|{u > 0} ∩Bc
r \ Ω|)− fε (|{v > 0} ∩Bc

r \ Ω|) | <
θ

2
.

Therefore,

∫
Br

∫
Br

|v(x)− v(y)|2

|x− y|n+2α
+ fε

(∫
Ωc∩Br

χ{v>0}

)
<

∫
Br

∫
Br

|uε(x)− uε(y)|2

|x− y|n+2α
+ fε

(∫
Ωc∩Br

χ{uε>0}

)
− θ.

(5.1)

Since hδ(v) → χ{v>0}, as δ → 0, and gσ(v − φ) = 0, then

∫
Br

∫
Br

|v(x)− v(y)|2

|x− y|n+2α
+ fε

(∫
Ωc∩Br

χ{v>0}

)
=

∫
Br

∫
Br

|v(x)− v(y)|2

|x− y|n+2α
+ gσ(v − φ) + lim

δ→0
fε

(∫
Ωc∩Br

hδ(v)

)
.

(5.2)
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Note that if τ > 0 is small, then hδ(uδ) = χ{uδ>0} on {uε > τ} for δ small.
Denoting Γ := Ωc ∩Br ∩ {uε ≥ τ} and using Fatou lemma we then estimate∫

Br

∫
Br

|uε(x)− uε(y)|2

|x− y|n+2α
+ fε

(∫
Ωc∩Br

χ{uε>0}

)
− θ

≤
∫
Br

∫
Br

|uε(x)− uε(y)|2

|x− y|n+2α
+ fε

(∫
Γ

χ{uε>0}

)
− θ

2

≤ lim inf
δ→0

[∫
Br

∫
Br

|uδ,ε(x)− uδ,ε(y)|2

|x− y|n+2α
+ fε

(∫
Γ

χ{uδ,ε>0}

)]
− θ

2

≤ lim inf
δ→0

[∫
Br

∫
Br

|uδ,ε(x)− uδ,ε(y)|2

|x− y|n+2α
+ fε

(∫
Γ

hδ(uδ,ε)

)]
− θ

2

≤ lim inf
σ,δ→0

[∫
Br

∫
Br

|uσ,δ,ε(x)− uσ,δ,ε(y)|2

|x− y|n+2α
+ fε

(∫
Γ

hδ(uσ,δ,ε)

)]
− θ

2

≤ lim inf
σ,δ→0

[∫
Br

∫
Br

|uσ,δ,ε(x)− uσ,δ,ε(y)|2

|x− y|n+2α
+ gσ(uσ,δ,ε − φ)

+ fε

(∫
Ωc∩Br

hδ(uσ,δ,ε)

)]
− θ

2
.

(5.3)

From (5.1)-(5.3), we obtain

Jσ,δ,ε(v) < Jσ,δ,ε(uσ,δ,ε)−
θ

4
< Jσ,δ,ε(uσ,δ,ε),

which is a contradiction, since uσ,δ,ε is a minimizer of Jσ,δ,ε.

Corollary 5.1. The Euler-Lagrange equation for uε is
(−∆)αuε ≤ 0 in Ω,

(−∆)αuε = 0 in Ω ∩ {uε > φ},
(−∆)αuε ≥ 0 in Ωc,

(−∆)αuε = 0 in {uε > 0} \ Ω.

The previous theorem puts us in the framework of [9], where the authors
analyze properties of minimizers of Jε. This leads to our main result, stated
below.

Theorem 5.2. For ε > 0 small, the function uε from Corollary 4.2, solves
the problem (P). Moreover, uε is Hölder continuous with exponent α, and
that regularity is optimal.
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Proof : As observed in [9, Theorem 5.1], when ε > 0 is small (but fixed), then
|{uε > 0} \ Ω| = γ. The latter implies that (see Corollary 5.1) uε ∈ K and
additionally that fε(|{uε > 0} \ Ω|) = 0. Therefore, the function uε solves
(P). In other words, for ε > 0 small enough we have the desired volume,
and minimizers of Jε turn into minimizers of J , i.e., solutions of the original
problem. The α-Hölder regularity of uε is observed in Corollary 4.2, and it
is optimal, [9, Theorem 2.1].

Theorem 5.2 implies non-degeneracy and positive density results for solu-
tions, [9, Lemma 2.2] and [9, Theorem 2.3] respectively, as stated in the next
theorem.

Theorem 5.3. If u is a solution of (P), and x0 ∈ ∂{u > 0} ∩ Ω, then there
exists a constant C > 0 such that

sup
Br(x0)

u ≥ Crα,

for 0 < r < 1
2dist(x0, ∂Ω). Furthermore, there extists a constant c > 0 such

that
|{u = 0} ∩Br(x0)| ≥ crn and |{u > 0} ∩Br(x0)| ≥ crn.

Note that unlike [10, 11], the function uε from Corollary 4.2, which solves
(P), does not solve the obstacle problem in Ω due to the non-local nature
of the fractional Laplacian (see [5]). Hence, we cannot infer interior free
boundary regularity from that of the obstacle problem. Nevertheless, in Ω
we have the following interior Harnack inequality, as well as free boundary
regularity result from [9, Theorem 3.1], concerning the exterior free boundary.

Theorem 5.4. If u is a minimizer of (P) and D′ ⊂⊂ D, where
D := [Ω ∩ {u > φ}] ∪ [{u > 0} \ Ω],

then there exists a C > 0 constant, depending only on D′, D and α, such
that

sup
D′

u ≤ C inf
D′

u.

Proof : From Corollary 5.1 and Theorem 5.2 we conclude that u > 0 is a frac-
tional harmonic function in D. This implies the interior Harnack inequality
(see [6, Theorem 10]).

Theorem 5.5. If u is a minimizer of (P), then
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• Hn−1(K ∩ ∂{u > 0} ∩ Rn) < ∞, for every compact set K ⊂ Ω.
• The reduced free boundary ∂∗{u > 0} ∩ Rn is locally a C1,β surface.

Proof : This follows from Theorem 5.1, since it puts one in the framework of
[9], where the result is true (see [9, Theorem 3.1]).

Remark 5.1. As in [11, Theorem 6.4] (see also [10, Lemma 6.2]), the posi-
tivity set is well localized in a bounded set, meaning that the optimization is
in fact in a big (but bounded) domain rather than the whole space.
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