
Pré-Publicações do Departamento de Matemática
Universidade de Coimbra
Preprint Number 19–39

SYMPLECTIC KEYS AND DEMAZURE ATOMS IN TYPE
C

JOÃO MIGUEL SANTOS

Abstract: We compute, mimicking the Lascoux-Schützenberger type A combina-
torial procedure, left and right keys for a Kashiwara-Nakashima tableau in type
C. These symplectic keys have a similar role as the keys for semistandard Young
tableaux. More precisely, our symplectic keys give a tableau criterion for the Bruhat
order on the hyperoctahedral group and cosets, and describe Demazure atoms and
characters in type C. The right and the left symplectic keys are related through the
Lusztig involution. A type C Schützenberger evacuation is defined to realize that
involution.
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1. Introduction
The irreducible characters of the general linear group GL(n), over C, the

Schur functions, are combinatorially expressed as sums on semistandard
Young tableaux with entries ≤ n [30]. When restricting to the symplectic
group Sp(2n), two different types of symplectic tableaux have been proposed.
King showed that the irreducible symplectic characters, the symplectic Schur
polynomials, can be seen as a sum on a family of tableaux that are known
as King tableaux [14], and De Concini has proposed the ones known as De
Concini tableaux [6]. Kashiwara and Nakashima [12] described symplectic
tableaux, which are just a variation of De Concini tableaux, with a crystal
graph structure. That crystal structure allows a plactic monoid compatible
with insertion and sliding algorithms, and Robinson-Schensted type corre-
spondence, studied by Lecouvey in terms of crystal isomorphisms [18, 19].
The generalization of the notion of plactic monoid for finite Cartan types
was first introduced by Littelmann using his path model [25]. Symplectic
Kashiwara-Nakashima tableaux are the ones that we work with, in the cor-
responding ambient plactic monoid. We however note that very recently Lee
has endowed King tableaux with a crystal structure [22].
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Kashiwara [11] and Littelmann [24] have shown that Demazure characters
[7], for any Weyl group, can be lifted to certain subsets of the crystal Bλ for
a given dominant weight λ, a normal crystal with highest weight λ [5], called
Demazure crystal. That is, a Demazure character (key polynomials) is the
generating function of the weights over a Demazure crystals. In type Cn, we
consider Bλ to be crystal of Cn-Kashiwara-Nakashima tableaux of shape λ,
and Demazure characters are indexed by integer vectors in the orbit of the
partition λ under the action of the Weyl group, the hyperoctahedral group
Bn. They are certain non symmetric Laurent polynomials, with respect to the
action of the Weyl group, which can be seen as partial symplectic characters,
i.e., sums of a certain portion of monomials in a symplectic Schur polynomial.
In type An−1, the Demazure crystals are certain subsets of the crystal

Bλ, the crystal of all semistandard Young tableaux of shape λ, with entries
≤ n. Lascoux and Schützenberger [17] identified the tableaux with nested
columns as keys tableaux, and defined the right key map that sends tableaux
to key tableaux. Their right key map gives a decomposition of Bλ into non
intersecting subsets U(v), each containin a unique key, in bijection with the
vectors v in the orbit of λ, under the action of the Weyl group, Sn [17,
Theorem 3.8]. They have called standard bases to the sum of monomial
weights over U(v), which, after Mason [26], are coined Demazure atoms. The
decomposition describes what tableaux contribute to the Demazure crystal
Bv, as a union of Demazure atoms, over an interval in the Bruhat order, on
the classes modulo the stabilizer of λ. This order, induced on the orbit of λ,
gives Bv =

⊎
λ≤u≤v

U(u).

Our work has been motivated by the questions raised in a presentation by
Azenhas [2], in The 69th Séminaire Lotharingien de Combinatoire. In those
questions, Azenhas identified some type Cn Kashiwara-Nakashima tableaux
as key tableaux, which match our identification, but it lacks a construction
of the right key map, thus lacking a proof of the combinatorial description of
type C Demazure characters. Note also that, during the preparation of this
paper, Jacon and Lecouvey informed us about their paper [10], where they
find the same key in type C, but their approach is different from ours.
Inspired by the Lascoux-Schützenberger’s construction of the left and right

keys of a semistandard Young tableau [17], we give a similar construction
in type Cn. Our construction of the left and right keys of a Kashiwara-
Nakashima tableau, in type Cn, is based on frank words in type C, that we
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introduce in Section 4, and Sheats symplectic jeu de taquin. Our Theorem 17
is the type C analogue of [17, Theorem 3.8]. We also show, in Section 5, that
both keys, left and right, are related via the Schützenberger involution in type
C, or Lusztig involution, realized here in an explicit way, using symplectic
insertion or sliding operations.
In [23], using the model of alcove paths, Lenart defined an initial key and a

final key, for any Lie type, related via the Lusztig involution, which, in type
C, have a similar behaviour to the left and right keys defined here. There
is a crystal isomorphism between the alcove path model and the Kashiwara-
Nakashima tableau model in types A and C [20, 21]. Since right an left
keys in type C are explicitly related through the Schützenberger involution
in type C, or Lusztig involution, the left and right key maps in types A and
C coincide in the aforesaid approaches or models.
The paper is organized as follows. In Section 2, we discuss the Weyl group

of type C, the signed permutation group Bn, the Bruhat order on Bn and
on its cosets, modulo the stabilizer of λ, the Kashiwara-Nakashima tableaux
and the symplectic key tableaux. Those key tableaux are used in Proposition
6 to explicitly construct the minimal length coset representatives. We recall
some results from Bjorner and Brenti’s book [4] and Proctor [27], that lead
to a tableau criterion, in theorems 5 and 7, for the Bruhat order on Bn and
on its cosets, using the symplectic key tableaux. In Section 3, we recall the
Baker-Lecouvey insertion, the Sheats symplectic jeu de taquin and use them
to discuss the plactic and coplactic monoids and the Robinson-Schensted type
C correspondence. These monoids have a natural interpretation in the type C
Kashiwara crystal, for a Uq(sp2n)-module, in terms of connected components
and crystal isomorphic connected components. In Section 4, we extend the
concept of frank word, in type A, to type C and, with the help of symplectic
jeu de taquin, we present, in Theorem 14, our right and left key maps. Using
the right key map, we describe the tableaux that contribute to a Demazure
atom and to a Demazure crystal, which is our main result, Theorem 17. In
Section 5, we develop a type C evacuation within the plactic monoid, an
analogue of the J-operation discussed by Schützenberger for semistandard
Young tableaux in [28]. Proposition 21 shows that the evacuation of the
right key of a Kashiwara-Nakashima tableau is the left key of the evacuation
of the same tableau. This is an explicit realization of Lusztig involution using
insertion and sliding operations in type C.
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2.Weyl group of type C, Bruhat order and symplectic
key tableau

Fix n ∈ N>0. Define the sets [n] = {1, . . . , n} and [±n] = {1, . . . , n, n, . . . , 1}
where i is just another way of writing −i. In the second set we will consider
the following order of its elements: 1 < · · · < n < n < · · · < 1 instead of the
usual order.
Consider the group Bn, with generators si, 1 ≤ i ≤ n, having the following

presentation, regarding the relations among the generators,

Bn := 〈s1, . . . , sn |s2
i = 1, 1 ≤ i ≤ n; (sisi+1)3 = 1, 1 ≤ i ≤ n− 2;

(sn−1sn)4 = 1; (sisj)2 = 1, 1 ≤ i < j ≤ n, |i− j| > 1〉,

known as hyperoctahedral group or signed symmetric group. This group is a
Coxeter group and we consider the (strong) Bruhat order on its elements [4].
The elements of Bn can be seen as odd bijective maps from [±n] to itself,
i.e., for all σ ∈ Bn we have σ(i) = −σ(−i), i ∈ [±n]. The subgroup with the
generators s1, . . . , sn−1 is the symmetric group Sn and its elements can be
seen as bijections from [n] to itself. Both groups can also be seen as groups of
n× n matrices. The elements of the symmetric group can be identified with
the permutation matrices, and if we allow the non-zero entries to be either 1
or −1, we have the elements of Bn. Hence Bn has 2nn! elements. The groups
Sn and Bn are the Weyl groups for the root systems of types An−1 and Cn,
respectively.
Let σ, ρ ∈ Bn. We set that we multiply the elements of Bn, or Sn, from

left to right. Thus the image of i ∈ [±n] under σ ∈ Bn is written (i)σ
to accomplish our convention of composition of maps, left to right, in Bn,
(i)σρ := [(i)σ]ρ. We call to [a1 a2 . . . an], where ai = (i)σ for i ∈ [n], the
window notation of σ, and write σ = [a1 a2 . . . an]. Since we multiply the
elements of Bn, or Sn, from left to right, the elements of Bn act on vector
in Zn on the right. Given a vector v ∈ Zn, we have that si, with i ∈ [n− 1],
acts on v swapping the i-th and the (i + 1)-th entries, and sn acts on v,
vsn, changing the sign of the last entry. Note that the window notation of
siσ is obtained after applying si to the window notation of σ, if we see it as
a vector. Since we multiply the elements of Bn, or Sn, from left to right,
they act on vectors on the right. Ignoring signs, vσ = (v(1)σ−1, . . . , v(n)σ−1),
with v = (v1, . . . , vn). The i-th letter of vσ changes its sign if and only if
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i appears in σ. Hence vσ = (sgn((1)σ−1)v|(1)σ−1|, . . . , sgn((n)σ−1)v|(n)σ−1|),
where sgn(x) = 1 if x is positive and −1 if x is negative, for x ∈ [±n].

Example 1. Consider v = (1, 2, 3) ∈ Z3 and σ = [2 3 1] = s2s3s1 =
[(1)s2s3s1, (2)s2s3s1, (3)s2s3s1] ∈ B3. So

(1, 2, 3)σ = (1, 2, 3)s2s3s1 = (1, 3, 2)s3s1 = (1, 3, 2)s1 = (3, 1, 2)
= (sgn((1)σ−1)v|(1)σ−1|, sgn((2)σ−1)v|(2)σ−1|, sgn((3)σ−1)v|(3)σ−1|)
= (1× 3, 1× 1,−1× 2).

2.1. Bruhat order on Bn. The length of σ ∈ Bn, `(σ), is the least number
of generators of Bn needed to go from [1 2 . . . n], the identity map, to σ. Any
expression of σ as a product of `(σ) generators of Bn is called reduced. We say
that two letters of the window notation of σ form an inversion if the bigger
letter appears first. Next proposition gives a way to compute `(σ) that only
requires to look at the window notation of σ. This is a variation of the length
formula presented on [4, Proposition 8.1.1], where the authors consider the
usual ordering of the alphabet [±n] and the generator that changes the sign
of an entry of the window notation acts on the first entry instead of the last
one.

Proposition 1. Consider σ ∈ Bn. Then

`(σ) = #{inversions of σ}+
∑

i appears in σ
(n+ 1− i).

The (signed) permutation σ = [2 3 1] has two inversions: 2, 1 and 3, 1 and
`(σ) = 3.

Remark.
• If i does not appear in the window presentation of σ, for all i ∈ [n],
we may identify σ, in one-line notation, with (1)σ . . . (n)σ ∈ Sn and
`(σ) = #{inversions of σ} [4, Proposition 1.5.2].
• We have that `(siσ) > `(σ) if i = n and σ(n) is positive, or, i 6= n
and σ(i) < σ(i+ 1).

The Bruhat order on the set of the elements of Bn can be defined in the
following way:
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Definition 1. [4] Let w = σ1 . . . σ`(w), where σi are generators of Bn, and u
be two elements in Bn. Then u ≤ w in the Bruhat order if

∃1 ≤ i1 < i2 · · · < i`(u) ≤ `(w) such that u = σi1σi2 . . . σi`(u).

By definition, if u ≤ w then `(u) ≤ `(w), but the reverse is not true. If
σ(n) is positive and i = n, or, σ(i) < σ(i + 1) and i 6= n, we can also say
that siσ > σ.
The combinatorics of crystal graphs in type C and the Bruhat order combi-

natorics on Bn and cosets are strongly related. In subsections 2.3 and 2.4, we
give a tableau criteria for the Bruhat order on Bn and on cosets, respectively.
For this aim, we recall Kashiwara-Nakashima (KN) tableaux in type C and
define symplectic key tableau.

2.2. Kashiwara-Nakashima tableau in type C. This subsection fo-
cuses on the notion of symplectic tableaux introduced by Kashiwara and
Nakashima to label the vertices of the type C crystal graphs [13], which are
a variation of the De Concini tableaux [6]. (See [29] for more details.)
A vector λ = (λ1, . . . , λn) ∈ Zn is a partition of |λ| =

n∑
i=1

λi if λ1 ≥
λ2 ≥ · · · ≥ λn ≥ 0. The Young diagram of shape λ is an array of boxes,
left justified, in which the i-th row, from top to bottom, has λi boxes. We
identify a partition with its Young diagram. For example, the Young diagram

of shape λ = (2, 2, 1) is .

Given µ and ν two partitions with ν ≤ µ entrywise, we write ν ⊆ µ. The
Young diagram of shape µ/ν is obtained after removing the boxes of the
Young diagram of ν from the Young diagram of µ. For example, the Young

diagram of shape µ/ν = (2, 2, 1)/(1, 0, 0) is .

Definition 2. Let ν ⊆ µ be two partitions and A a completely ordered
alphabet. A semistandard skew tableau of shape µ/ν on the alphabet A is
a filling of the diagram µ/ν with letters from A, such that the entries are
strictly increasing in each column and weakly increasing in each row. When
|ν| = 0 then we obtain a semistandard Young tableau of shape µ.

Denote by SSY T (µ/ν,A) the set of all semistandard Young skew tableaux
T of shape µ/ν, with entries in A. When A = [n] we write SSY T (µ/ν, n).
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When considering tableaux with entries in [±n], it is usual to have some
extra conditions besides being semistandard. We will use a family of tableaux
known asKashiwara-Nakashima tableaux. From now on we consider tableaux
on the alphabet [±n].
A column is a strictly increasing sequence of numbers in [±n] and it is

usually displayed vertically. A column is said to be admissible if the following
one column condition (1CC) holds for that column:
Definition 3 (1CC). Let C be a column. The 1CC holds for C if for all
pairs i and i in C, where i is in the a-th row counting from the top of the
column, and i in the b-th row counting from the bottom, we have a+ b ≤ i.
If a column C satisfies the 1CC then C has at most n letters.
If 1CC doesn’t hold for C we say that C breaks the 1CC at z, where z is

the minimal positive integer such that z and z exist in C and there are more
than z numbers in C with absolute value less or equal than z.

Example 2. The column
1
2
1

breaks the 1CC at 1.

The following definition states conditions to when C can be split:
Definition 4. Let C be a column and let I = {z1 > · · · > zr} be the set of
unbarred letters z such that the pair (z, z) occurs in C. The column C can be
split when there exists a set of r unbarred letters J = {t1 > · · · > tr} ⊆ [n]
such that:

(1) t1 is the greatest letter of [n] satisfying t1 < z1, t1 6∈ C, and t1 6∈ C,
(2) for i = 2, . . . , r, we have that ti is the greatest letter of [n] satisfying

ti < min(ti−1, zi), ti 6∈ C, and ti 6∈ C.
The 1CC holds for a column C if and only if C can be split [29, Lemma

3.1]. If C can be split then we define right column of C, rC, and the left
column of C, `C, as follows:

(1) rC is the column obtained by changing in C, zi into ti for each letter
zi ∈ I and by reordering if necessary,

(2) `C is the column obtained by changing in C, zi into ti for each letter
zi ∈ I and by reordering if necessary.

If C is admissible then `C ≤ C ≤ rC by entrywise comparison. If C
doesn’t have symmetric entries, then C is admissible and `C = C = rC. In
the next definition we give conditions for a column C to be coadmissible.
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Definition 5. We say that a column C is coadmissible if for every pair i and
i on C, where i is on the a-th row counting from the top of the column, and
i on the b-th row counting from the top, then b− a ≤ n− i.

Note that, unlike in Definition 3, in the last definition b is counted from
the top of the column.
Given an admissible column C, consider the function Φ that sends C to the

column of the same size in which the unbarred entries are taken from `C and
the barred entries are taken from rC. The column Φ(C) is a coadmissible
column and the algorithm to form Φ(C) from C is reversible [18, Section 2.2].
In particular, every column on the alphabet [n] is simultaneously admissible
and coadmissible.

Example 3. Let C =
2
3
3

be an admissible column. Then `C =
1
2
3

and

rC =
2
3
1

. So Φ(C) =
1
2
1

is coadmissible.

Let T be a skew tableau with all of its columns admissible. The split form
of a skew tableau T , spl(T ), is the skew tableau obtained after replacing each
column C of T by the two columns `C rC. The tableau spl(T ) has double
the amount of columns of T .

Definition 6. A semistandard skew tableau T is a Kashiwara-Nakashima
(KN) skew tableau if its split form is a semistandard skew tableau. We define
KN (µ/ν, n) to be the set of all KN tableau of shape µ/ν in the alphabet [±n].
When ν = 0 we obtain KN (µ, n).

Example 4. The split of the tableau T =
2 2
3 3
3

is the tableau spl(T ) =

1 2 2 2
2 3 3 3
3 1

. Hence T ∈ KN ((2, 2, 1), 3).

If T is a tableau without symmetric entries in any of its columns, i.e., for
all i ∈ [n] and for all columns C in T , i and i do not appear simultaneously
in the entries of C, then in order to check whether T is a KN tableau it
is enough to check whether T is semistandard in the alphabet [±n]. In
particular SSY T (µ/ν, n) ⊆ KN (µ/ν, n).
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The weight of a word w on the alphabet [±n] is defined to be the vector
wt(w) ∈ Zn where the entry i is obtained by adding the multiplicity of the
letter i and subtracting the multiplicity of the letter i, for i ∈ [n]. If T is a
skew tableau, the column reading of T , cr(T ), is the word read in T in the
Japanese way, column reading top to bottom and right to left. The length
of w is the total number o letters in w. The weight of a KN tableau T is the
vector wtT := wt(cr(T )) = (t1− t1, t2− t2, . . . , tn− tn) ∈ Zn, where tα is the
number of α’s in T , with α ∈ [±n].

Example 5. Let T =
2 2
3 3
3

and n = 3. Then cr(T ) = 23 233 and wt(T ) =

wt(cr(T )) = (0, 2, 1).

In Section 3.2, we recall a way to go from a word in the alphabet [±n] to
a KN tableau, the Baker-Lecouvey insertion.

2.3. Key tableaux in type C and the Bruhat order on Bn.

Definition 7. A key tableau in type Cn is a KN tableau in KN (λ, n), in
which the set of elements of each column is contained in the set of elements
of the previous column and the letters i and i do not appear simultaneously
as entries, for any i ∈ [n].

Example 6. The KN tableau T =
2 2
3 1
1

is a key tableau.

The set of key tableaux in type A is the subset of the key tableaux in
type C consisting of the tableaux having only positive entries, hence they
are SSYT for the alphabet [n].
Every vector v of Zn is in the Bn-orbit of exactly one partition, λv, which

is the one obtained by sorting the absolute values of all entries of v. Given
a partition λ ∈ Zn, the Bn-orbit of λ is the set λBn := {λσ | σ ∈ Bn}. For
instance, the vector v = (1, 3, 0, 3, 2) is in the B5-orbit of λ = (3, 3, 2, 1, 0).

Proposition 2. Let λ be a partition and v ∈ λBn. There is exactly one key
tableau K(v) whose weight is v. In addition, the shape of the key tableau
K(v) is λ. When v = λ, K(λ) is the only KN tableau of weight and shape λ,
also called Yamanouchi tableau of shape λ.
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Proof : Existence: Given v = (v1, . . . , vn) ∈ Zn there exists a key tableau K
of weight v by putting in the first |vi| columns the letter i if vi ≥ 0 or i if
vi ≤ 0, and then sorting the columns properly. Clearly the columns of K are
nested and it is a KN tableau without symmetric entries, hence it is a key
tableau. Also, its shape is λv = λ.
Uniqueness: Since the key tableau doesn’t have symmetric entries then,

for all i ∈ [n], we have that in K the letter sgn(vi)i appears |vi| times in
its entries. In order to the columns of K be nested we have that these |vi|
entries appear in the first |vi| columns, hence we have determined exactly
which letters appear in which column of K and now we just have to order
them correctly. So the key tableau K with weight v is unique. When v = λ,
K(λ) has only i’s in the row i, for i ∈ [n].

Example 7. Let v = (1, 3, 0, 3, 2). Then K(v) =
1 4 4
4 5 2
5 2
2

.

Hence there is a bijection between vectors in λBn and the key tableaux in
type C on the alphabet [±n] with shape λ, given by the map v 7→ K(v).
If σ ∈ Bn we put K(σ) := K(Λ(n))σ), where Λ(n) = (n, n − 1, . . . , 1) is the
staircase partition in Zn. One has a natural bijection between Bn and the
Bn-orbit of Λ(n).

Proposition 3. If σ ∈ Bn has the letter α in the j-th position then α appears
in the first n+ 1− j columns of the corresponding key tableau, K(σ).

Proof : Put Λ := Λ(n). Ignoring signs, Λσ = (Λ(1)σ−1, . . . ,Λ(n)σ−1), with Λ =
(n, . . . , 1) and the i-th letter of Λσ has negative sign if and only if i appears
in σ. If α is positive, then in the position α of Λσ will appear Λj = n+ 1− j.
If α is negative, then in the position −α will appear Λj = n+ 1− j.
We now append 0 to the alphabet [±n], obtaining [±n] ∪ {0}, where n <

0 < n, and, for all σ ∈ Bn, we put (0)σ := 0. Given an element σ ∈ Bn

consider the map
[±n] ∪ {0} × [±n] ∪ {0} → N0

(i, j) 7→ |{a ≤ i : σ(a) ≥ j}| := σ[i, j].
This map, originally defined in [4], produces a table which is related to key

tableaux in type C. See example below:
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Example 8. Let σ = [3 1 2 4]. Then (4, 3, 2, 1)σ = (3, 2, 4, 1) and

K(σ) =
2 2 3 3
4 3 1
3 1
1

The family of numbers σ[i, j] where (i, j) ∈ [±n]∪{0}×[±n]∪{0} originates
the following table, where i indexes the columns, left to right, and j indexes
the rows, top to bottom. We add a row of zeros at the bottom for convenience:

1 2 3 4 0 4 3 2 1
1 1 2 3 4 5 6 7 8 9
2 1 2 3 4 5 6 7 7 8
3 1 2 2 3 4 5 6 6 7
4 1 2 2 3 4 5 6 6 6
0 1 2 2 2 3 4 5 5 5
4 1 2 2 2 2 3 4 4 4
3 1 2 2 2 2 2 3 3 3
2 0 1 1 1 1 1 2 2 2
1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0

To go from the table to the key tableau note that, for i ∈ [n], the i-th column
of the table encodes the (n+ 1− i)-th column of the tableau, in the sense that
if we look to the the i-th column of the table, from bottom to top, if the entry
of the table increases in one unity then the index of the row associated to that
entry exists in the (n+ 1− i)-th column of the tableau. Knowing the entries
in a column of a tableau, its ordering is unique. The columns of the tableau
constructed this way are nested because the indices in which the column i
increases are (j)σ, for j ≤ i. So the tableau taken from the table is the key
tableau K(σ). It is also possible to construct the table from the key tableau
and that we only need the first n columns of the table.
We then have the following result:

Proposition 4. Consider σ, ρ ∈ Bn. K(σ) ≥ K(ρ) entrywise if and only if
σ[i, j] ≥ ρ[i, j], where i ∈ [n], and j ∈ [±n].
In [4, Theorem 8.1.8] it is proved that, for σ, ρ ∈ Bn, σ ≤ ρ in the Bruhat

order if and only if σ[i, j] ≤ ρ[i, j] for all i, j ∈ [±n]. But the result in [4,
Theorem 8.1.7] implies that we only need to compare σ[i, j] and ρ[i, j] for
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i ∈ [n]. Henceforth, we have the following criterion for the Bruhat order on
Bn:

Theorem 5. Consider σ, ρ ∈ Bn. K(σ) ≥ K(ρ) entrywise if and only if
σ ≥ ρ in the Bruhat order.

Remark. In [4, Chapter 8.1] the authors use the same alphabet as here, but
with the usual ordering on the integers. So, to translate the results from
there to here, it is needed to apply the ordering isomorphism defined by:
i 7→ n− i+ 1 if i ∈ [n]; i 7→ n + i + 1 if i ∈ −[n]; 0 7→ 0. Using the
usual ordering, the authors give a tableau criterion for the Bruhat order in
Exercise 6, pp. 287–288, which is effectively the transpose version of the
tableau criterion presented here. Also note that the generators used in [4,
Chapter 8.1] are the same used here, although with different indexation. Our
generator si corresponds to the generator sn−i in [4, Chapter 8.1], for all
i ∈ [n].

2.4. The Bruhat order on cosets of Bn. Consider a partition λ ∈ Zn.
Let Wλ = {ρ ∈ Bn | λρ = λ} be the stabilizer of λ, under the action of
Bn. Since λ is a partition, Wλ is a subgroup of Bn generated by some of the
generators of Bn. Let J ⊆ [n] be the set of the indices of the generators of
Wλ, i.e. Wλ = 〈sj, j ∈ J〉, and J c the complement of this set in [n]. Let
Wλ \Bn = {Wλσ : σ ∈ Bn} be the set of right cosets of Bn determined by the
subgroup Wλ. Each coset Wλσ returns a unique vector v when acting on λ,
and has a unique minimal length element σv, such that v = λσv. Reciprocally,
given a vector v ∈ λBn, there is a unique minimal length element σv ∈ Bn

such that v = λσv. We have then a bijection between the vectors in λBn and
the right cosets of Bn, determined by the subgroup Wλ, given by v 7→ Wλσv.
The set J c detects the minimal length coset representatives of Wλ \ Bn: σ
is a minimal coset representative of Wλ \ Bn if and only if all its reduced
decompositions start with a generator si ∈ J c [4]. However key tableaux,
K(v), v ∈ λBn, may be used to explicitly construct the minimal length coset
representatives of Wλ \ Bn. Given a vector v ∈ λBn, we show that there is
a unique minimal length element σv ∈ Bn such that v = λσv and we show
how to obtain σv explicitly. The next proposition is a generalization of what
Lascoux does in [15] for vectors in Nn (hence σv ∈ Sn).
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Proposition 6. Let v ∈ λBn and T the tableau obtained after adding the

column C =
1
2...
n

to the left of K(v). The minimal length element σ ∈

Bn, modulo Wλ, is given the reading word of T where entries with the same
absolute value are read just once.
Proof : Consider λ = (λ1, . . . , λn). In this proof we will write λ as (λaλ1

1 ,
(λ1−1)aλ1−1, . . . , 1a1, 0a0) where ai is the multiplicity of i in λ, for 0 ≤ i ≤ λ1.
Note that

λ1∑
i=0

ai = n.
Let σ = [α1 . . . αn] ∈ Bn read from T . Let’s prove that αj appears λj times

in K(v): If j = 1 then α1 appears in all columns of K(v), because it was
the first letter read and the columns are nested. Hence it appears λ1 times.
Also, the |α1|-th entry of λσ is sgn(α1)λ1 which is the weight of |α1| in K(v).
For j > 1, proceeding inductively, we have that αj appears in all columns of
K(v) not fully occupied by αi, with i < j, hence it appears λj times. Also,
the |αj|-th entry of λσ is sgn(αj)λj, which is the weight of |αj| in K(v). This
makes sense even if λj = 0. So we have that λσ = v.
We only have to see that σ is the minimal length element of the set {ρ ∈

Bn | λρ = v}. The subset of elements Bn that applied to λ returns v is the
coset Wλσ. Looking at σ, this allows us to swap αi and αj in σ if λi = λj
and to change the sign of αi if λi = 0. Since for each column the reading
to obtain σ is ordered from the least to the biggest, we have that between
these elements of Bn, σ has minimal number of inversions and the letter
αj is unbarred if λj = 0 because αj will only be added to σ when reading
the column C. Hence, by Proposition 1, σ is the minimal length element of
Wλσ.
Given a partition λ ∈ Zn we identify each coset Wλσ with its minimal

length representative σv, where v = λσ ∈ λBn. Under this identification, we
now induce the Bruhat order in the Bn-orbit of λ and in the coset space of
Wλ \Bn.
Definition 8. Consider the vectors v, w ∈ λBn, where λ is a partition. We
say that v ≤ w, in the Bruhat order, if σv ≤ σw.
Let v ∈ λBn. If K := K(v) is the key tableau with weight v, consider the

tableau K̃ obtained from K after erasing the minimal number of columns
in order to have a tableau with no duplicated columns. Call ṽ and λ̃ to the
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weight and the shape of K̃, respectively. If K and K ′ are two key tableaux
with shape λ, we have that K ≥ K ′ (by entrywise comparison) if and only if
K̃ ≥ K̃ ′. Note that to recover K from K̃ we just have to know λ, and that
K̃ = K(ṽ).
It is also possible to obtain ṽ from v without having to look at the key

tableau. If i is positive, i and i do not appear in v but i+ 1 or i+ 1 appears
then change all appearances of i + 1 and i+ 1 to i and i, respectively, and
repeat this as many times as possible, obtaining the vector ṽ. The set of the
absolute values of its entries is a set of consecutive integers starting either in
0 or 1. Hence the key tableau associated to it doesn’t have repeated columns.
Due to Proposition 6 we have that σṽ = σv and ṽ = λ̃vσṽ = λ̃vσv.

Example 9. Consider v = (1, 0, 3, 3, 5) ∈ (5, 3, 3, 1, 0)B5. Hence K(v) =
1 4 4 5 5
4 5 5
5 3 3
3

has shape λ = (5, 3, 3, 1, 0), weight v and σv = [5 4 3 1 2]. Now

note that ṽ = (1, 0, 2, 2, 3), hence K(ṽ) =
1 4 5
4 5
5 3
3

= K̃(v) has shape

(3, 2, 2, 1, 0) = λ̃ and σṽ = [5 4 3 1 2] = σv.

Recall J and J c defined above. Note that the set J is the same for λ and
λ̃. If i ∈ J c and i = n then all entries of λ are different from 0, which implies
K(v) (and K̃(v)) having columns of length n; if i ∈ J c and i < n then
λi > λi+1, hence K(v) will have exactly i rows with length greater then λi+1,
hence K(v) (and K̃(v)) will have columns of length i. Since K̃(v) doesn’t
have repeated columns, J c have exactly the information of what columns
length exist in K̃(v). Theorem 3BC of Proctor’s Ph.D. thesis [27] states that
given a partition λ there is a poset isomorphism between the poset formed by
the key tableaux of shape λ̃ (ordered by entrywise comparison) and the poset
formed by the Bruhat order in the vectors of the orbit λ̃Bn = {λ̃σ : σ ∈ Bn}.
The following theorem gives a tableau criterion for the Bruhat order on

vector the same Bn-orbit and for the corresponding Bn-coset space.

Theorem 7. Let v, u ∈ λBn. Then σv ≤ σu if and only if K(v) ≤ K(u).
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Proof : We have that

σv ≤ σu
(1)⇔ v≤u (2)⇔ ṽ ≤ ũ

(3)⇔ K(ṽ)≤K(ũ)⇔ K̃(v) ≤ K̃(u) (4)⇔ K(v)≤K(u),

where (1) holds by Definition 8. Note that in (2) we also need to record λ,
because it is needed in (4) to recover the shape of K(v) from the shape K̃(v).
Finally the equivalence (3) is an application of Theorem 3BC of Proctor’s
Ph.D. thesis [27].

K(3, 3, 0, 0, 2) =
1 1 1
5 5 2
2 2

≤ K(3, 2, 0, 3, 0) =
2 2 4
4 4 1
1 1

and σv = [12534] ≤

σu = [41235]

3. Type C crystal graphs and symplectic plactic monoid
We recall two equivalence relations of words in the alphabet [±n], the type

C Knuth equivalence, or (symplectic) plactic equivalence, and the (symplec-
tic) coplactic equivalence. On the basis of these two equivalence relations
is the Robinson-Schensted type C correspondence, in which each word is
uniquely parametrized by a KN tableau and an oscillating tableau of the
same final shape. This bijection has a natural interpretation in terms of crys-
tal connectivity and crystal isomorphic connected components in Kashiwara
theory of crystal graphs [5, 12, 18, 19]. For this aim and reader convenience,
we begin to recall the Sheats symplectic jeu de de taquin and Baker-Lecouvey
insertion.

3.1. Sheats symplectic jeu de taquin. The symplectic jeu de taquin
[18, 29] is a procedure that allows us to change the shape of a KN skew
tableau and eventually rectify it.
To explain how the symplectic jeu de taquin behaves, we need to look to

how it works on 2-column KN skew tableaux. Let T be a 2-column KN skew
tableau with splittable columns C1 and C2 such that C1 has an empty cell.
Consider the tableau spl(T ) such that the columns `C1 and rC1 have an

empty cell in the same row as C1. Call α to the entry under the empty cell
of rC1 and β to the entry right of the empty cell of rC1.
If α ≤ β or β does not exist, then the empty cell of T will change its

position with the cell beneath it. This is a vertical slide.
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If the slide is not vertical, then it is horizontal. So we have α > β or α
does not exist. Call C ′1 and C ′2 to the columns after the slide. In this case
we have two subcases, depending on the sign of β:

(1) If β is barred we are moving a barred letter from `C2 to rC1. Remem-
ber that `C2 has the same barred part as C2 and that rC1 has the
same barred part as Φ(C1). So, looking at T , we will have an horizon-
tal slide of the empty cell, C ′2 = C2 \ {β} and C ′1 = Φ−1(Φ(C1)∪{β}).
In a sense, β went from C2 to Φ(C1).

(2) If β is unbarred we have a similar story, but this time β will go from
Φ(C2) to C1, hence C ′1 = C1 ∪ {β} and C ′2 = Φ−1(Φ(C2) \ {β}).
Although in this case it may happen that C ′1 is no longer admissible.
In this case, if the 1CC breaks at i, we erase both i and i from the
column and remove a cell from the bottom and from the top column,
and place all the remaining cells orderly.

Eventually the empty cell will be a cell such that α and β do not exist. In
this case we redefine the shape to not include this cell and the jeu de taquin
ends. An entry of the tableau without cells under it or to the right of it is
called an inner corner.
Given a KN skew tableau T of shape µ/ν, the rectification of T consists in

playing the jeu de taquin until we get a tableau of shape λ, for some partition
λ. The rectification is independent of the order in which the inner corners of
ν are filled [18, Corollary 6.3.9].

Example 10. Consider the KN skew tableau T = 2
31
12

. We want to rectify

it via symplectic jeu taquin. We start by splitting and conclude that the first

two slides are vertical, obtaining
2211
3322
11

. Now we do an horizontal slide in

which we take 1 from the second column of T and adding it to the coadmissible

column of the first column of T , obtaining the tableau
2 2
3 3
3

.

Remark. If the columns C1 and C2 do not have negative entries then the
symplectic jeu de taquin coincides with the jeu de taquin known for SSYT.

3.2. Baker-Lecouvey insertion. The Baker-Lecouvey insertion [3, 18] is
a bumping algorithm that given a word in the alphabet [±n] returns a KN
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tableau. Let w be a word in the alphabet [±n], we call P (w) to the tableau
obtained after inserting w. This insertion is similar to the usual column
insertion for SSYT tableau. In fact both have the same behavior unless one
the following three cases happens:
Suppose that we are inserting the letter α in the column C of the KN

tableau and

(1) y ∈ C is the smallest letter bigger or equal then α and y ∈ C, for
some y ∈ [n]: there is in C a maximal string of consecutive decreasing
integers y, y−1, . . . , u+1 starting in the entry y in the column C. Then
the bump consists of replacing the entry y with α and subtracting 1
to the entries y, y − 1, . . . , u + 1. The entry u is then inserted in the
next column to the right. This is known as the Type I special bump.

(2) if α = x and x ∈ C, for some x ∈ [n]: there is a maximal string of
consecutive decreasing entries x, x+ 1, . . . , v − 1 starting in the entry
x in C. Let β be the next entry above v − 1. Then we have two
subcases:
(a) If v ≤ β ≤ v + 1 then suppose δ is the smallest entry in C which

is bigger or equal than v. Then this bump consists of deleting the
entry x, shifting the entries x+ 1, . . . , v − 1 down one position,
inserting v where v − 1 was, and replacing δ with v. The entry δ
is then bumped into the next column. This is known as the Type
IIa special bump.

(b) If β ≤ v − 1 or β doesn’t exist then there is a maximal string
(possibly empty) of consecutive integers v − 1, . . . , u + 1 above
the entry v − 1. The string is not empty only when β = v − 1,
or else the string is empty and u = v − 1. The bump consists
of deleting the entry x, shifting the entries x+ 1, . . . , u+ 1 down
one position, and inserting an entry u where u + 1 (or v − 1, if
β 6= v−1) was. The entry u is then bumped into the next column.
This is known as the Type IIb special bump.

(3) after adding α in the bottom of the column C, the 1CC breaks at i:
then we will slide out the cells that contain i and i via symplectic jeu
de taquin.

In the case 3 of the Baker-Lecouvey insertion we will be removing a cell
from the tableau instead of adding. Despite the length of cr(P (w)) might
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be less than the length of w, the weight is preserved during Baker-Lecouvey
insertion, wt(w) = wt(P (w)).

Remark. The Baker-Lecouvey insertion is different from what we would have
if we use the SSYT column insertion. However, if the word w doesn’t have
symmetric letters, then the insertion works just like the column insertion for
SSYT. Apart from this case, if we were to use SSYT column insertion, the
final tableau may not even be a KN tableau. For instance, consider the word
w = 211. The Baker-Lecouvey insertion of w creates the sequence of tableaux

2 2
1

2 2
2 = P (211). The SSYT column insertion of w results in the

tableau 1 2
1 , which is not a KN tableau because the first column is not

admissible.

Example 11. Consider the word w = 23231. We now insert all five letters of

w, obtaining the following sequence of tableaux: 2 2
3

2
3
2

1 1
3
3

1 1 1
3
3

=

P (w). Note that the insertion of the fourth letter, 3, causes a type I special
bump on the first column and the insertion of the fifth letter, 1, causes a type
IIb special bump on the second column.

Proposition 8. [18, Corollary 6.3.9] Let T ∈ KN (µ/ν, n). The tableau ob-
tained after rectifying T via symplectic jeu de taquin coincides with P (cr(T )).
Moreover, the insertion of w = w1 . . . wk, P (w), is the rectification of the
tableau with diagonal shape Λ(n)/Λ(n−1) and column reading w.

In particular we have that if we insert cr(T ) we obtain T again. This
implies that during the insertion of cr(T ) the case 3 of the Baker-Lecouvey
insertion cannot happen. In Example 11, we may conclude that P (23231) =
P (cr(P (23231))) = P (11133).

3.3.Robinson-Schensted type C correspondence, plactic and coplac-
tic equivalence. Let [±n]∗ be the free monoid on the alphabet [±n]. The
Robinson-Schensted type C correspondence [18, Theorem 5.2.2] is a combi-
natorial bijection between words w ∈ [±n]∗ and pairs (T,Q) where T is a
KN tableau and Q is an oscillating tableau, a sequence of Young diagrams
that record, by order, the shapes of the tableaux obtained while inserting
w, whose final shape is the same as T . Every two consecutive shapes of the
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oscillating tableau differ in exactly one cell and its length is the same of w.
Since both the symplectic jeu de taquin and the Baker-Lecouvey insertion
are reversible [3, 18], we have that every pair (T,Q), with the same final
shape, is originated by exactly one word. The Robinson-Schensted type C
correspondence is the following map:

[±n]∗ →
⊔
λ

KN (λ, n)×O(λ, n) : w 7→ (P (w), Q(w))

where the union is over all partitions λ with at most n parts, and O(λ, n)
is the set of all oscillating tableau with final shape λ and all shapes of the
sequence have at most n rows.

Example 12. In Example 11, the word w = 23231 is associated to the pair 1 1 1
3
3

,

.
Given w1, w2 ∈ [±n]∗, the relation w1 ∼ w2 ⇔ P (w1) = P (w2) defines

an equivalence relation on [±n]∗ known as Knuth equivalence. The type C
plactic monoid is the quotient [±n]∗/ ∼ where each Knuth (plactic) class is
uniquely identified with a KN tableau [16, 18]. The quotient [±n]∗/ ∼ can
also be described as the quotient of [±n]∗ by the elementary Knuth relations:

K1: γβα ∼ βγα, where γ < α ≤ β and (β, γ) 6= (x, x) for all x ∈ [n].
K2: αβγ ∼ αγβ, where γ ≤ α < β and (β, γ) 6= (x, x) for all x ∈ [n].
K3: y + 1y + 1β ∼ yyβ, where y < β < y and y ∈ [n− 1].
K4: βyy ∼ βy + 1y + 1, where y < β < y and y ∈ [n− 1].
K5: w ∼ w \ {z, z}, where w ∈ [±n]∗ and z ∈ [n] are such that w is a non-

admissible column that the 1CC breaks at z, and any proper factor
of w is an admissible column.

Remark. It can be proved that given a word w ∈ [±n]∗, any proper factor is
admissible if and only if any proper prefix of w is admissible. Thus, in order
to be able to apply the Knuth relation K5 to a subword w′ of w, we only need
to check that all proper prefixes of w′ are admissible, instead of all proper
factors.

When Knuth relations are applied to subwords of a word, the weight is
preserved while the length may not. Knuth relations can be seen as jeu de
taquin moves on words or a diagonally shaped tableau, and each symplectic
jeu de taquin slide preserves the Knuth class of the reading word of a tableau
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[18, Theorem 6.3.8]. In Example 11 the words 23231 and 11133 are Knuth
related: 11133 K2∼ 11313 K2∼ 11331 K3∼ 22331 K1∼ 23231.

3.4. Crystal graphs in type C and coplactic monoid. Crystals were
originally defined in quantum groups. Here we define them axiomatically
associated to a root system Φ and a weight lattice Λ [5]. Let V be an
Euclidean space with inner product 〈·, ·〉. Fix a root system Φ with simple
roots {αi | i ∈ I} where I is an index set and a weight lattice Λ ⊇ Z-span{αi |
i ∈ I}. A Kashiwara crystal of type Φ is a nonempty set B together with
maps [5]:

ei, fi : B→ B t {0} εi, ϕi : B→ Z t {−∞} wt : B→ Λ

where i ∈ I and 0 /∈ B is an auxiliary element, satisfying the following
conditions:

(1) if a, b ∈ B then ei(a) = b ⇔ fi(b) = a. In this case, we also have
wt(b) = wt(a) + αi, εi(b) = εi(a)− 1 and ϕi(b) = ϕi(a) + 1;

(2) for all a ∈ B, we have ϕi(a) = 〈wt(a), 2αi
〈αi,αi〉〉+ εi(a).

The crystals we deal with are the ones of a Uq(sp2n)-module. They are
seminormal [5], and satisfy ϕi(a) = max{k ∈ Z ≥ 0 | fki (a) 6= 0} and
εi(a) = max{k ∈ Z ≥ 0 | eki (a) 6= 0}. An element u ∈ B such that ei(u) = 0
for all i ∈ I is called a highest weight element. A lowest weight element is
an element u ∈ B such that fi(u) = 0 for all i ∈ I. We associate with B a
coloured oriented graph with vertices in B and edges labeled by i ∈ I: b i→ b′

iff b′ = fi(b), i ∈ I, b, b′ ∈ B. This is the crystal graph of B.
If B and C are two seminormal crystals associated to the same root sys-

tem, the tensor product B ⊗ C is also a seminormal crystal. As a set, we
will have the Cartesian product B × C, where its elements are denoted by
b ⊗ c, b ∈ B and c ∈ C, with wt(b ⊗ c) = wt(b) + wt(c), fi(b ⊗ c) =fi(x)⊗ y if ϕi(c) ≤ εi(b)
x⊗ fi(y) if ϕi(c) > εi(b)

, ei(b ⊗ c) =
ei(x)⊗ y if ϕi(c) < εi(b)
x⊗ ei(y) if ϕi(c) ≥ εi(b)

. If B

and C are finite, ϕi(b ⊗ c) = ϕi(x) + max(0, ϕi(c) − εi(x)) and εi(b ⊗ c) =
εi(x) + max(0, εi(x)− ϕi(c)).
In type Cn, we consider {ei}ni=1 the canonical basis of Rn. The root system

is ΦC = {±ei±ej | i < j}∪{±2ei} and the simple roots are αi = ei−ei+1,
if i ∈ [n − 1], αn = 2en. The weight lattice Zn has dominant weights
λ = (λ1 ≥ · · · ≥ λn ≥ 0). In type Cn, the standard crystal is seminormal
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and has the following crystal graph: 1 1−→ 2 2−→ . . .
n−1−−→ n

n−→ n
n−1−−→ . . .

1−→ 1
with set B = [±n], wt( i ) = ei, wt( i ) = −ei. The highest weight element
is the word 1, and the highest weight e1. We denote the crystal by Be1.
For later convenience, (this becomes clear in the next section) the crystal

operators will act, from now on, on the right.
The crystal Be1 is the crystal on the words of [±n]∗ of a sole letter. The

tensor product of crystals allows us to define the crystal Gn = ⊕
k≥0

(Be1)⊗k of
all words in [±n]∗, where the vertex w1⊗ · · ·⊗wk is identified with the word
w1 . . . wk ∈ [±n]∗. The action of the operators ei and fi is easily given by the
signature rule [13, 18, 5]. We substitute each letter wj by + if wj ∈ {i, i+ 1}
or by − if wj ∈ {i + 1, i}, and erase it in any other case. Then successively
erase any pair +− until all the remaining letters form a word that looks like
−a+b. Then ϕi(w) = b and εi(w) = a, ei acts on the letter associated to the
rightmost unbracketed− (i.e., not erased), whereas fi acts on the letter wj as-

sociated to the leftmost unbracketed +, (wj)fi =


i+ 1 if wj = i ∧ i 6= n

i if wj = i+ 1
n if wj = i ∧ i = n

,

and the other letters of w are unchanged, and ei is the inverse map. If b = 0
then (w)fi = 0 and if a = 0 then (w)ei = 0.
The crystal Gn, as a graph, is the union of connected components where

each component has a unique highest weight word. Two connected compo-
nents are isomorphic if and only if they have the same highest weight [12].
Two words in [±n]∗ are said to be crystal connected or coplactic equivalent if
and only if they belong to the same connected component of Gn. This means
that both words are obtained from the same highest weight word, through a
sequence of crystal operators fi, or one is obtained from another by some se-
quence of crystal operators fi and ej, i, j ∈ [n]. The connected components
of Gn are the coplactic classes in the Robinson-Schensted correspondence
that identify words with the same oscillating tableau [18, Proposition 5.2.1].
Also, two words w1, w2 ∈ [±n]∗ are Knuth equivalent if and only if they occur
in the same place in two isomorphic connected components of Gn, that is,
they are obtained from two highest words with the same weight through a
same sequence of crystal operators [18]. Crystal operators are coplactic and
commute with the jeu de taquin. The next proposition identifies all highest
weight words of Gn.
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Proposition 9. Let w be a word in the alphabet [±n]. Then w is a highest
weight word if and only if the weight of all its prefixes (including itself) is a
partition. In this case, one has that P (w) = K(λ) the Yamanouchi tableau
of shape λ, the weight of w
Proof : Part "if": We will prove the contrapositive of the statement. There
is a i such that (w)ei 6= 0. Let k be the position of the leftmost − of the
signature rule of w, and consider the prefix wk with the first k letters. Since
the k-th letter of w had an unbracketed − in the signature rule then the last
letter of wk will also be an unbracketed −. Hence there are more − than +
in the signature rule of wk. Call tα to the number of α in wk. We have that
ti + ti+1 < ti+1 + ti ⇔ ti − ti < ti+1 − ti+1, hence the weight of wk is not a
partition.
Part "only if": We will once again prove the contrapositive of the statement.

Let wk be a prefix such that its weight is not a partition. Hence there is i ∈ [n]
such that ti − ti < ti+1 − ti+1 ⇔ ti + ti+1 < ti+1 + ti, hence for this i there
will be more − than + in the signature rule of wk. So in the first k letters
of w there will be more − than +, so there is an unbracketed − in w, hence
(w)ei 6= 0. Note that the argument works even if i = n. In this case we need
to assume tn+1 = tn+i = 0.
It follows from [18, Proposition 3.2.6] that the insertion of the highest word

w of weight λ is K(λ).
Choose a word w ∈ [±n]∗ such that the shape of P (w) is λ. If we replace

every word of its coplactic class with its insertion tableau we obtain the
crystal of tableaux Bλ that has all KN tableaux of shape λ on the alphabet
[±n]. The crystal Bλ does not depend on the initial choice of word w, as
long as P (w) has shape λ. [18, Theorem 6.3.8].

4. Right and Left Keys and Demazure atoms in type C
In this section, we define type C frank words on the alphabet [±n] and use

them to create the right and left key maps, that send KN tableaux to key
tableaux in type C. The main result of this section is the type C version [17,
Theorem 3.8], due to Lascoux and Schützenberger, which, using the right
key map, gives a combinatorial description of Demazure atoms in type C.

4.1. Frank words in type C. Frank words were introduced in type A by
Lascoux and Schützenberger in [17]. We start by defining frank words in the
alphabet [±n].
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Definition 9. Let w be word on the alphabet [±n]. We say that w is a
type C frank word if the length of its columns form a multiset equal to the
multiset formed by the length of the columns of the tableau P (w).

Example 13. In Example 11 we have that P (23231) = P (11133) =
1 1 1
3
3

.

Since 23231 and 11133 have one column of length 3 and two columns of length
1, they are frank words.
Given a frank word w, the number of letters of w is the same as the number

of cells of P (w), hence the case 3 of the Baker-Lecouvey insertion doesn’t
happen.
Proposition 10. Let w be frank word on the alphabet [±n]. All columns of
w are admissible.
Proof : Suppose that the statement is false. So there is a factor of w that
is a non-admissible column with all of its proper factors admissible. Hence
we can apply the Knuth relation K5, meaning that w is Knuth related to a
smaller word w′. But in this case, the number of letters of w′ is less then the
number of cells of P (w) = P (w′), which is a contradiction.
The following proposition is an extension of [8, Proposition 7] on SSYT to

KN tableaux.
Proposition 11. Let T be a KN tableau of shape λ. Let µ/ν be a skew
diagram with same number of columns of each length as T . Then there is a
unique KN skew tableau S with shape µ/ν that rectifies to T and cr(S) is a
frank word.
Proof : If T is a Yamanouchi tableau K(λ) and S ∈ KN (µ/ν, n) rectifies to
K(λ), then, since S and K(λ) have the same number of cells, all entries of S
are unbarred, hence S is a semistandard skew tableau. So, it follows from [8,
Proposition 7] that S exists and is unique. If T is not a Yamanouchi tableau,
note that T is crystal connected to K(λ) and from [18, Theorem 6.3.8] we
have that the symplectic jeu de taquin slides commutes with the action of
the crystal operators. Consider Y ′λ the only tableau on the skew-shape µ/ν
that rectifies to Yλ, which exists due to [8, Proposition 7]. Since S rectifies to
T , which is crystal connected to K(λ), and Y ′λ rectifies to K(λ), S is crystal
connected to Y ′λ and the path has same sequence of colours as the one from
T to K(λ). Hence S exists and is uniquely defined.
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Corollary 12. Let S be as in the previous proposition. The last column of
S depends only on the length of that column.
Proof : All other skew tableaux with given last column length can be found
from a given one by playing the symplectic jeu de taquin or its reverse in all
columns except the last one. Note that S has the same number of cells of
the tableau obtained after rectifying, hence we can’t lose cells when applying
the symplectic jeu de taquin or its reverse.
Fixed a KN tableau T , consider the set of all possible last columns taken

from skew-tableaux with same number of columns of each length as T . Corol-
lary 12 implies that this set has one element for each distinct column length
of T . For every column C in this set, consider the columns rC, its right col-
umn. The next proposition implies that this set of right columns is nested,
if we see each column as the set formed by its elements.
Proposition 13. Consider T a two-column KN skew tableau C1C2 with an
empty cell in the first column. Slide that cell once via symplectic jeu de
taquin, obtaining a two-column KN skew tableau C ′1C

′
2 with an empty cell.

Then rC ′2 ⊆ rC2.
Proof : If the sliding was vertical then C ′2 = C2, hence rC ′2 = rC2. If the
sliding was horizontal, call β to the number on the cell right of the empty
cell on spl(T ). Call Φ to the function that takes an admissible column to the
associated coadmissible column.
If β = b is unbarred then C ′2 = Φ−1(Φ(C2) \ {b}). In this case Φ(C ′2) =

Φ(C2) \ {b}, hence rC2 and rC ′2 have the same barred part. Consider z1 <
· · · < z` the unbarred letters that appear on C2 and not on Φ(C2). When we
take b from Φ(C2), if b ∈ Φ(C2) our set of letters z1 < · · · < z` will lose an
element, giving the inclusion of the unbarred part of C ′2 in C2; if b 6∈ Φ(C2),
then b ∈ C2 and in C ′2 the least zi > b may reduce to b, and subsequent zj
may reduce to zj−1. Hence we have the inclusion of the unbarred part of C ′2
in C2.
If β = b is barred then C ′2 = C2 \ {b}. In this case rC2 and rC ′2 have the

same unbarred part. Consider t1 > · · · > t` the barred letters that appear
on Φ(C2) and not on C2. When we take b from C2, if b ∈ C2 our set of
t1 > · · · > t` letters will lose an element, giving the inclusion of the barred
part of rC ′2 in rC2; if b 6∈ C2, then b ∈ Φ(C2) and in C ′2 the least zi > b may
reduce to b, and subsequent bigger zj’s may reduce to zj+1. Hence we have
the inclusion of the barred part of Φ(C ′2) in Φ(C2).
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This proposition defines a map that sends a KN tableau to key tableau in
type C, identified as the (symplectic) right key of a given KN tableau.

Theorem 14 (Right key map). Given a KN tableau T , we can replace each
column with a column of the same size taken from the right columns of the
last columns of all skew tableaux associated to it. We call this tableau the
right key tableau of T and denote it by K+(T ).

Proof : The previous proposition implies that the columns of K+(T ) are
nested and do not have symmetric entries. So, it is indeed a KN key
tableau.

Remark. Recall the set up of Proposition 11. If the shape of S, µ/ν, is
such that every two consecutive columns have at least one cell in the same
row, then each column of S is a column of the word cr(S), hence cr(S) is
a frank word. Moreover, the columns of S appear in reverse order in cr(S).
Therefore, given a KN tableau T , the columns of K+(T ) can be also found
as the right columns of the first columns of frank words associated to T .
If T is a SSYT then this right key map coincides with the one defined by

Lascoux and Schützenberger in [17].

Example 14. The tableau T =
1 3 1
3 3
3

ives rise to six KN skew tableaux

with same number of columns of each length as T , each one corresponding to
a permutation of its column lengths, and each one is associated to its column
reading, which is a frank word.

1 3 1
3 3
3

3
3
1 3 1

3

2 2
3
1

1
3

2
1

2
3
3 1

2
1 2 1

3
3

3
31
122

The right key tableau associated to T has as columns r
3
3
1

, r 3
1 and r 1 .

Hence K+(T ) =
3 3 1
2 1
1

.
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In the same spirit of the right key, we define the left key of a KN tableau.
Just like in Proposition 13, we can prove that the slides of the symplectic jeu
de taquin are effectively adding an entry to `C1, i.e. `C1 ⊆ `C ′1, hence the
left columns of the first columns of all skew tableaux with the same number
of columns of each length as T will be nested.
So, if we replace each column of T with a column of the same size taken

from the left columns of the first columns of all skew tableaux associated to
it we obtain the left key K−(T ).

Example 15. In Example 14 we have that the left key of T =
1 3 1
3 3
3

has

as columns

`
1
3
3

, ` 1
2 and ` 2 . Hence K−(T ) =

1 1 2
2 2
3

.

4.2. Demazure crystals and right key tableaux. Let λ ∈ Zn be a
partition and v ∈ λBn. We define U(v) = {T ∈ KN (λ, n) | K+(T ) = K(v)}
the set of KN tableaux of Bλ with right key K(v).
Given a subset X of Bλ, consider the operator Di on X, with i ∈ [n]

defined by XDi = {x ∈ Bλ | (x)eki ∈ X for some k ≥ 0}[5]. If v = λσ where
σ = si1 . . . si`(σ) ∈ Bn is a reduced word, we define the Demazure crystal to
be

Bv = {K(λ)}Di1 . . .Di`(σ). (1)
This definition is independent of the reduced word for σ [5, Theorem 13.5].

In particular, when σ is the longest element of Bn we recover Bλ. Also this
definition is independent of the coset representative of Wλσ, that is, Bλσ =
Bλσv . From [4, Proposition 2.4.4], σ uniquely factorizes as σ′σv where σ′ ∈
Wλ and `(σ) = `(σ′) + `(σv). From the signature rule, Subsection 3.4, if σ′ =
sj1 . . . sj`(σ′) ∈ Wλ is a reduced word, Bλσ′ = Bλ = {K(λ)}Di1 . . .Di`(σ′) =
{K(λ)} and we may write in (1) Bλσ = Bv.
From [4, Proposition 2.5.1], if ρ ≤ σ in Bn then ρu ≤ σv where u = λρ.

Since (x)e0
i = x, if ρ ≤ σ then Bλρ = Bλρu ⊆ Bλσv = Bv. Thus we define

the Demazure atom crystal B̂v to be
B̂v = B̂λσ := Bλσv \

⋃
ρu<σv

Bλρu = Bv \
⋃
u<v

Bu = Bv \
⋃

K(u)<K(v)
Bu, (2)

where the two rightmost identities follow from Theorem 7.
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Lemma 1. Let σ = si be a generator of Bn and C an admissible column such
that (C)fi 6= 0. Then wt(rC) = wt(r((C)fi)) or wt(rC) = wt(r((C)fi))σ.

Proof : Let i = n. We can apply fi to C if and only n ∈ C and n 6∈ C. In this
case n ∈ rC and after applying fi we have n 6∈ C and n ∈ C, hence n ∈ rC.
So wt(rC) = wt(r((C)fn))sn.
Let i < n. We can apply fi to C, so we have 6 cases to study:

(1) i ∈ C, i + 1, i+ 1, i 6∈ C: In this case we have that i + 1 ∈ (C)fi,
i, i+ 1, i 6∈ (C)fi. Note that i /∈ rC and i+ 1 /∈ r((C)fi). If i+ 1 6∈
rC then i 6∈ r((C)fi), hence fi swaps the weight of i and i + 1 from
(1, 0) to (0, 1), respectively. If i+ 1 ∈ rC then i ∈ r((C)fi), hence fi
swaps the weight of i and i+ 1 from (1,−1) to (−1, 1).

(2) i, i+ 1 ∈ C, i + 1, i 6∈ C: In this case we have that i + 1, i+ 1 ∈
(C)fi, i, i 6∈ (C)fi. Note that i, i+ 1 ∈ rC, i + 1, , i 6∈ rC and that
i+ 1, i ∈ r((C)fi), i, i+ 1 6∈ r((C)fi), and all other appearances in rC
are intact. Hence fi swaps the weight of i and i + 1 from (1,−1) to
(−1, 1).

(3) i + 1, i+ 1 ∈ C, i, i 6∈ C: In this case we have that i + 1, i ∈ (C)fi,
i, i+ 1 6∈ (C)fi. Note that i + 1, i ∈ rC, i, i+ 1 6∈ rC and that
i+ 1, i ∈ r((C)fi), i, i+ 1 6∈ r((C)fi), and all other appearances in rC
are intact. Hence fi did nothing to weight of rC.

(4) i, i + 1, i+ 1 ∈ C, i 6∈ C: In this case we have that i, i + 1, i ∈
(C)fi, i+ 1 6∈ (C)fi. Note that i, i + 1 ∈ rC, i+ 1, i 6∈ rC and that
i, i+ 1 ∈ r((C)fi), i+ 1, i 6∈ r((C)fi), and all other appearances in rC
are intact. Hence fi did nothing to weight of rC.

(5) i, i+ 1, i ∈ C, i + 1 6∈ C: In this case we have that i + 1, i+ 1, i ∈
(C)fi, i 6∈ (C)fi. Note that i, i+ 1 ∈ rC, i + 1, i 6∈ rC and that
i+ 1, i ∈ r((C)fi), i, i+ 1 6∈ r((C)fi), and all other appearances in rC
are intact. Hence fi swaps the weight of i and i + 1 from (1,−1) to
(−1, 1).

(6) i+ 1 ∈ C, i, i + 1, i 6∈ C: In this case we have that i ∈ (C)fi, i, i +
1, i+ 1 6∈ (C)fi. Note that i, i+1 6∈ rC and i+ 1 ∈ rC. If i ∈ rC then
we have i, i+ 1 6∈ r((C)fi) and i+ 1, i ∈ r((C)fi), so fi did nothing to
weight of rC. If i 6∈ rC then i+ 1 6∈ r((C)fi) and i ∈ r((C)fi), hence
fi swaps the weight of i and i+ 1 from (0,−1) to (−1, 0).
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Remark. All the cases where the weight is preserved happen to have equal
weight for i or i + 1 in rC or we are in a column C in which we can also
apply ei.
Hence we have the following corollaries:

Corollary 15. Let T be a KN tableau and i ∈ [n]. If K+(T ) = K(v), for
some v = (v1, . . . , vn) ∈ Zn, then K+((T )fi) = K(v) or K+((T )fi) = K(vsi).
Moreover, K+((T )fi) = K(vsi) only if vi > vi+1 (in the usual ordering of real
numbers) and 1 ≤ i < n, or, vi > 0 and i = n.
Proof : Consider a multiset of frank words F such that the multiset of length
of their first columns is the same of the multiset of lengths of columns of T .
If K+((T )fi) = K+(T ) then we are done. Else there are two cases: 1 ≤ i <

n and i = n.
Consider 1 ≤ i < n. There is a column of T whose weight of i is bigger

than its weight for i + 1. Since T is a key tableau, this implies that in all
columns of T weight of i is bigger or equal than the weight of i+ 1.
Let A be the subset of F such that the weight of i and i + 1 in the right

column of its first column is different and does not swap when we apply fi
to the frank word.
Consider (a, b) the sum of weights of i and i + 1, respectively, of all right

columns of first columns of words in A, and (c, d) defined analogously to
F \ A.
The weights of i and i + 1 in K+(T ) is (a, b) + (c, d) = (a + c, b + d) and

the weights of i and i+ 1 in K+((T )fi) is (a, b) + (d, c) = (a+ d, b+ c), and
note that (a+ c, b+d) ∈ (a+d, b+ c)B2, because fi doesn’t change any other
weight (Lemma 1).
Since in all columns of T weight of i is bigger or equal than the weight of

i + 1, a ≥ 0 and b ≤ 0, and they are equal when A = ∅, so (a + c, b + d) ∈
(a+d, b+ c)s1, hence wt(K+((T )fi)) = vsi. Hence we assume a 6= b. If c = d
we have wt(K+((T )fi)) = v, hence K+((T )fi) = K(v) = K+(T ), which is a
contradiction.
This implies that (a+c, b+d) = (a+d, b+c)σ where σ = 12 or σ = 21. The

first case implies that a = −c−d
2 = b and the second case implies c = −a−b

2 = d,
hence there are not more possibilities for the weight of K+((T )fi).
The case i = n is a simpler version of this one.

Corollary 16. Let σ = si be a generator of Bn and C an admissible column.
Then wt(rC) = wt(r((C)ei)) or wt(rC) = wt(r((C)ei))σ.
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Proof : Call C ′ to (C)ei. By Lemma 1 we have that wt(rC ′) = wt(r((C ′)fi))
or wt(C ′) = wt(r((C ′)fi))σ, so we have that wt(r((C)ei)) = wt(rC) or
wt((C)ei) = wt(rC)σ ⇔ wt((C)ei)σ = wt(rC).

Lemma 2. Let i ∈ [n] and C be an admissible column such that one of the
following happens

(1) i < n and the weight of i in rC is less than the weight of i+ 1 in rC;
(2) i = n and weight of i is negative in rC,

then we can apply ei to C (in the sense (C)ei 6= 0).

Proof : If i = n then −n appears on rC and n does not. Since n is the biggest
unbarred letter of the alphabet we have that −n also appears in C and n
does not. Hence we can apply en to C.
If i < n and the weight of i in rC is less than the weight of i+1 in rC then

the weight of both can be one of the following three options: (0, 1), (−1, 1),
(−1, 0). Note that rC does not have symmetric entries. So in the first two
cases we have that i + 1 exists in rC and i does not, hence i + 1 exists in
C and i does not, so we can apply ei to C. In the last case, we have that i
exists in rC and i + 1 and i+ 1 does not. Hence we have that i exists in C
and i or i+ 1 does not, so we can apply ei to C.

The next theorem is the main theorem of this paper. It gives a description
of a Demazure crystal atom in type C using the right key map Theorem
14. Lascoux and Schützenberger, in [17, Theorem 3.8], proved the type A
version of this theorem, which consists in considering the case when v ∈ Nn

and, consequently, σv ∈ Sn. For inductive reasoning, used in what follows,
we recall the chain property on the set of minimal length coset representatives
modulo Wλ [4, Theorem 2.5.5].

Theorem 17. Let v ∈ λBn. Then U(v) = B̂v.

Proof : Let ρ be a minimal length coset representative modulo Wλ such that
v = λρ. We will proceed by induction on `(ρ). If `(ρ) = 0 then ρ = id and
v = λ. In this case we have that B̂λ = {K(λ)} = U(λ).
Let ρ ≥ 0. Consider σ = si a generator of Bn such that ρσ > ρ and

λρσ 6= λρ = v, i.e., ρσρ−1 /∈ Wλ. Recall ei, εi, fi and φi from the definition
of the crystal Bλ. If T ∈ B̂λρσ then T is obtained after applying fi (maybe
more than once) to a tableau in B̂λρ, which by inductive hypothesis exists in
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U(v). By Corollary 15, if (T )fi /∈ U(v) then (T )fi ∈ U(vσ). So it is enough
to prove that given a tableau T ∈ U(v) ∪ U(vσ) then (T )eεi(T )

i ∈ U(v).
We have two different cases to consider: i = n and i < n.
If T ∈ U(vσ) then, if i < n, there exists a frank word of T such that, if V1

is its first column then rV1 has less weight for i than for i + 1 (less in the
usual ordering of real numbers); if i = n, there exists a frank word of T such
that, if V1 is its first column then rV1 has negative weight for i. Since we
are in the column rV1, if i < n, i and i + 1 can have weights (0, 1), (−1, 1)
or (−1, 0) and if i = n then i has weight −1. Note that these are the exact
conditions of Lemma 2. In either case, due to Lemma 2, we can applying
ei enough times to the frank word associated until this no longer happens.
This is true because we only need to look to V1 to see if it changes after
applying ei enough times to the frank word. In the signature rule we have
that successive applications of ei changes the letters of a word from the end
to the beginning, so, from the remark after Lemma 1, the number of times
that we need to apply ei, in order to conditions of Lemma 2 do not hold for
the first column, is εi(T ). So K+

(
(T )eε(T )

i

)
6= K(vσ), hence, from Corollary

16, we have that (T )eεi(T )
i ∈ U(v).

If T ∈ U(v) then (T )eεi(T )
i ∈ U(v) because if not, (T )eεi(T )

i will be in a
Demazure crystal associated to ρ′ ∈ Bn, with ρ′ < ρ such that ρ′σ = ρ. This
cannot happen because in this case ρ′ = ρσ < ρ, which is a contradiction.

4.3. Combinatorial description of type C Demazure characters and
atoms. Given v ∈ λBn define the Demazure character (or key polynomial),
κv, and the Demazure atom in type C, κ̂v, as the generating functions of the
KN tableaux weights in Bv and B̂v, respectively: κv = ∑

T∈Bλσv

xwtT , κ̂v =∑
T∈B̂λσv

xwtT . Theorem 17 detects the KN tableaux in Bλ contributing to the

Demazure atom κ̂v, κ̂v = ∑
K+(T )=K(v)

T∈Bλ

xwtT .

Proposition 18. Given v ∈ λBn, one has κv = ∑
u≤v

κ̂u.

Proof : It is enough to prove that Bv = ⋃
u≤v

B̂u, because κv and κ̂u are the

generating functions of the tableaux weights in Bv and B̃u, respectively.
Since v = λσ, where σ := σv, we can rewrite the identity as Bλσ = ⋃

ρ≤σ
B̂λρ.
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We will proceed by induction on `(σ). If `(σ) = 0 then the result follows
because Bλ = B̂λ = {K(λ)}. From 2, B̂λσ = Bλσ \

⋃
ρ<σ

Bλρ, and by inductive

hypothesis, we have that Bλρ = ⋃
ρ′≤ρ

B̂λρ′. Hence:

B̂λσ = Bλσ \
⋃
ρ<σ

Bλρ = Bλσ \
⋃
ρ<σ

⋃
ρ′≤ρ

B̂λρ′ = Bλσ \
⋃
ρ′<σ

B̂λρ′

Proposition 18, the equivalence u ≤ v ⇔ K(u) ≤ K(v), and Theorem 17,
allow to detect the KN tableaux contributing to a key polynomial in type C:

κv =
∑
u≤v

κ̂u =
∑
u≤v

T∈U(u)

xwtT =
∑

K(u)≤K(v)
T∈U(u)

xwtT =
∑

K(T )≤K(v)
xwtT .

Example 16. We start by looking to the crystal graph associated to the par-
tition λ = (2, 1):

1 1
21 2

2
1 1
2

1 2
2

1 2
2

2 2
2

2 2
1

2 2
2

2 2
1

2 2
1

1 2
2

1 1
2

1 1
2

2 1
2

2 1
1 2 1

1

The crystal is split into several parts.
Each one of those parts is a Demazure
atom and contains exactly one sym-
plectic key tableau, so we can identify
each part with the weight of that key
tableau, which is a vector in the B2-
orbit of (2, 1). From the previous the-
orem we have that all tableaux in the
same part have the same right key.
One can check that U((1, 2)) ={

1 2
2 , 1 2

2

}
=B̂λs1s2, for example.

Also,
B(1,2)={T∈Bλ |K+(T )≤K((1, 2))} ={

1 1
2 , 1 2

2 , 1 1
2 , 1 2

2 , 1 2
2

}
.
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5. Realizaztion of the Lusztig involution in types A and
C
Let Bλ be the crystal with set KN (λ, n) (respectively SSY T (λ, n)).

Definition 10. The Lusztig involution L : Bλ → Bλ is the only involution
such that for all i ∈ I (I = [n− 1] in type An−1 and I = [n] in type Cn):

(1) wt(L(x)) = (wt(x))ω0, where ω0 is the longest element of the Weyl
group;

(2) (Lx)ei=L((x)fi′) and (Lx)fi = L((x)ei′) where i′ is such that (αi)ω0 =
−αi′;

(3) εi(Lx) = ϕi′(x) and ϕi(Lx) = εi′(x).

For type A we have that ω0 is the reverse permutation and i′ = n− i, and
for type Cn we have ω0 = −Id and i′ = i, where Id is the identity map. In
type Cn the involution can be seen as flipping the crystal upside down.

Definition 11. [5] Let C be a connected component in the type Cn crystal
Gn. The dual crystal C∨ is the crystal obtained from C after reversing the
direction of all arrows. Also, the if x ∈ C, then for its correspondent in C∨,
x∨, we have wt(x) = −wt(x∨).

In type C, since i′ = i and ω0 = −Id, it follows from the definition that C
and C∨, as crystals in Gn, have the same highest weight. Therefore, they are
isomorphic. In the case of Bλ, with set KN (λ, n), the Lusztig involution is
a realization of the dual crystal. Hence the crystal Bλ with set KN (λ, n) is
self-dual. We shall see other realizations of the dual.

5.1. Evacuation algorithms. In type An−1, the Lusztig involution on the
crystal with set SSY T (λ, n) is known as Schützenberger involution or evac-
uation, and takes T ∈ SSY T (λ, n) to TEv ∈ SSY T (λ, n), whose weight is
(wtT )ω0, where ω0 is the longest permutation of Sn, in the Bruhat order.
Note that (wtT )ω0 is the vector wtT in reverse order, i.e., (v1, . . . , vn)ω0 =
(vn, . . . , v1). In type Cn we will work with KN tableaux instead of SSYTs.
Consider T ∈ KN (λ, n). In this case, TEv ∈ KN (λ, n) and wtT = −wtTEv =
(wtTEv)ωC0 , where ωC0 is the longest permutation of Bn. The complement
of a tableau or a word in types An−1 or Cn consists in applying ω0 or ωC0 ,
respectively, to all its entries. In type An−1, it sends i to n + 1 − i for all
i ∈ [n], i.e., (i)w0 = n + 1 − i and in type Cn we have (i)w0 = −i. Given a
SSYT, there are several algorithms, due to Schützenberger, to obtain a SSYT
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with the same shape whose weight is its reverse. We recall some versions of
them for which one is able to find analogues for KN tableaux.

Algorithm 1.
(1) Define w = cr(T ).
(2) Define w? the word obtained by complementing its letters and writing

it backwards.
(3) TEv := P (w?).

Example 17. In type A, the tableau T = 1 1 2 3
2 3 3
4

has reading w = 32313124.

Then w? = 13424232, and the column insertion of this word is TEv =
1 2 2 3
2 4 4
3

.

In type C, consider the KN tableau T =
1 3 1
3 3
3

. Then, w = cr(T ) =

133133 and w? = 3313331. So now we insert w?, obtaining the following

sequence of tableaux: 3 3
3

3
3
1

2 2
3
1

2 2
3 1
3

1 2 2
3 1
3

= P (w?).

Algorithm 2.
(1) Define T 0 := complement(π-rotate(T )).
(2) TEv := rectification of T 0.

Example 18. In type A, consider the tableau T = 1 1 2 3
2 3 3
4

. After π-

rotation and complement we have the skew tableau T 0 = 1
322
4432

which,

after rectification, gives the tableau TEv = 1 2 2 3
2 4 4
3

.

In type C, consider the KN tableau T =
1 3 1
3 3
3

. Then, T0 =
3
33
131

.

So now we have to rectify this skew tableau obtaining TEv =
1 2 2
3 1
3

.
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Given a KN (SSYT) tableau T , the algorithm characterize TEv as the
unique KN tableau Knuth equivalent to wt(T )? and coplactic equivalent do
T .
In both Cartan types we have that algorithms 1 and 2 produce the same

tableau since the column reading of T 0 is w?, P (w?) = rect(T 0) = rect(w?),
assuming that, in type Cn, T 0 is admissible. This can be concluded using
the following lemma.
Lemma 3. For type Cn, the split of a column C, (`C, rC) is the rotation
and complement of the split of the column C0 = Complement(π-rotate(C)),
(`C0, rC0).

Proof : Let’s say that (`C, rC) = A′A
BB′

where C = A
B

, `C = A′
B

and

rC = A
B′

, where A and A′ are the unbarred letters of the columns C
and `C, respectively, and B and rB are the barred letters of C and rC,
respectively. Note that `C and C share the barred part and C and rC share
the unbarred part.

We have that C0 = B0
A0 and its split (`C0, rC0) = B0′B0

A0A0′ . Ignoring

bars and counting multiplicities, the letters that appear in C and C0 are
the same. Hence B0′ has the same letters as B′, but they appear unbarred,
hence B0′ = B′0. The same happens with A0′ and A′0. Now it is easy to see
that (`C0, rC0) is obtained from (`C, rC) rotating and complementing. In
particular (rC)0 = `C0 and (`C)0 = rC0.
We now set the Cartan type to be C. Given a word w ∈ [±n]∗, we define

the w? like in the Algorithm 1 and show that the map ? preserves Knuth
equivalence.
Theorem 19. Let v, w ∈ [±n]∗. Then v ∼ w if and only if v? ∼ w?.
Proof : It is enough to consider v and w only one Knuth relation apart, be-
cause all other cases are obtained by composing multiple Knuth relations. It
is enough to consider each transformation applied in one direction, since the
other direction is the same case, after swapping the roles of v and w.

K1 Consider v = vpγβαvs, with γ < α ≤ β and (β, γ) 6= (x, x), where
vp is a prefix of v, vs is a suffix of v, and γβα are three consecutive
letters of v. Then, v K1∼ w = vpβγαvs. Note that v? = v?sαβγv

?
p and
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w? = v?sαγβv
?
p, with (γ, β) 6= (x, x) and β ≤ α < γ. Hence v? K2∼ w?,

so they are Knuth related.
K2 Consider v = vpαβγvs, with γ ≤ α < β and (β, γ) 6= (x, x), where

vp is a prefix of v, vs is a suffix of v, and αβγ are three consecutive
letters of v. Then, v K2∼ w = vpαγβvs. Note that v? = v?sγβαv

?
p and

w? = v?sβγαv
?
p, with (γ, β) 6= (x, x) and β < α ≤ γ. Hence v? K1∼ w?,

so they are Knuth related.
K3 Consider v = vp(y + 1)y + 1βvs, with y < β < y, where vp is a prefix

of v, vs is a suffix of v, and (y+ 1)y + 1β are three consecutive letters
of v. Then, v K3∼ w = vpyyβvs. Note that v? = v?sβ(y + 1)y + 1v?p and
w? = v?sβyyv

?
p, with y < β < y. Hence v? K4∼ w?, so they are Knuth

related.
K4 Consider v = vpαxxvs, with x < α < x, where vp is a prefix of v,

vs is a suffix of v, and αxx are three consecutive letters of v. Then,
v

K4∼ w = vpα(x + 1)x+ 1vs. Note that v? = v?sxxαv
?
p and w? =

v?s(x + 1)x+ 1αv?p, with x < α < x. Hence v? K3∼ w?, so they are
Knuth related.

K5 Consider w and {z, z} ∈ w such that w K5∼ w \ {z, z}. It is clear to see
that a word v breaks the 1CC at z if and only if v? breaks the 1CC at
z. So, if w is non admissible and all its factors are admissible then the
same will happen to w?, because all of its factors are obtained after
applying ? to a factor of w. So we have that w? K5∼ w? \ {z, z}.

Hence the word operator ? preserves Knuth equivalence.

Consider a KN tableau T with column reading w. The column reading of
the tableau obtained after applying Algorithm 1 to T is Knuth-related to
w?, because both give the same tableau if inserted. Since ? is an involution
((w?)? = w), if we apply the algorithm again we will get a tableau whose
column reading, by the last theorem, is Knuth equivalent to (w?)? = w, hence
we will have T again. So Algorithm 1 is an involution. Next we conclude
that algorithms 1 and 2 is a realization of the Lusztig involution for type C.

Theorem 20. Let w ∈ [±n]∗. The connected component of the crystal Gn

that contains the word w is isomorphic to the one that contains the word
w?. Therefore P (w) and P (w?) have the same shape and weights of opposite
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sign. Moreover, the two crystals are dual of each other and the ? map is a
realization of the dual crystal.

Proof : Remember the crystal operators ei and fi from the definition of crys-
tal. Note that ((w)fi)? = (w?)ei, because in the signature rule applied to w
and w?, the distance of the leftmost unbracketed + of w to the beginning
of the word is equal to the distance of the rightmost unbracketed − of w?

to the end of this word. Hence, the letter that changes when applying fi to
w is the complement of the letter that changes when applying ei to w?, and
the letter obtained on their position after applying the crystal operators are
also complement of each other. Hence the crystal that contains the word w?

is the dual to the one that contains w. But the crystal that contains w is
self-dual, hence the crystals that contains any of the words are isomorphic.
From [18, Theorem 3.2.8] P (w) and P (w?) have the same shape.

5.2. Right and left keys and Lusztig involution. The next result shows
that the right and left key maps defined for KN tableaux anticommutes with
the Lusztig involution. The evacuation of the right key of a tableau is the
left key of the evacuation of the same tableau.

Proposition 21. Let T be a KN tableau and Ev the type C Lusztig involution.
Then

K+(T )Ev = K−(TEv).

Proof : Since the tableaux K+(T ) and K−(TEv) are a key tableaux, they are
completely determined by their weights. Then we just need to prove that
their weights are symmetric.
Fix a column C of K+(T ). There is a frank word w, Knuth related to

cr(T ), such that C is the right column of the first column of w. Let’s say
the wk is the first column of w. From Proposition 19, w? is Knuth related
to cr(T )?, hence P (w?) = TEv. Also note that the w? has the same number
of columns of each length as w, hence it is a frank word, and its last column
is w?

k. Note that Lemma 3 implies that if v is an admissible column, then
l(v?) = (rv)?. So we have that l(w?

k) = (rwk)? is a column of K−(TEv).
Therefore, for each column C of K+(T ) there is a column of K−(TEv) whose
weight is (C)ω0, hence K+(T ) and K−(TEv) have symmetric weights.
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6. Final Remarks
In [26], Mason showed that Demazure atoms are specializations of non-

symmetric Macdonald polynomials of type A with q = t = 0. This allowed
to use the shapes of semi-skyline augmented fillings, in the combinatorial
formula of non-symmetric Macdonald polynomials [9], which are in bijection
with semi standard Young tableaux, to detect the right keys. It would be
interesting to obtain a similar object for a KN tableau in type C. For ex-
ample, semi-skyline augmented fillings have been instrumental to obtain a
RSK type bijective proof [1] for the Lascoux non-symmetric Cauchy identity
in type A [15].
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