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1. Introduction
A Sasakian manifold M is a contact metric manifold that satisfies a nor-

mality condition, encoding the integrability of a canonical almost complex
structure on the product M ×R. Several equivalent characterizations of this
class of manifolds, in terms of Riemannian cone, or transversal structure, or
curvature, are also known. In particular one can show that an almost contact
metric structure (g, φ, ξ, η) is Sasakian if and only if the covariant derivative
of the endomorphism φ satisfies

(∇Xφ)Y − g(X, Y )ξ + η(Y )X = 0, (1)

for all vector fields X, Y ∈ Γ(TM). A relaxation of this notion was intro-
duced by Blair, Showers and Yano in [2], under the name of nearly Sasakian
manifolds, by requiring that just the symmetric part of (1) vanishes. Later
on, several important properties of nearly Sasakian manifolds were discovered
by Olszak ([6]). Nearly Sasakian manifolds may be considered as an odd-
dimensional analogue of nearly Kähler manifolds. In fact, the prototypical
example of nearly Sasakian manifold is the 5-sphere as totally umbilical hy-
persurface of S6, endowed with the almost contact metric structure induced
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by the well-known nearly Kähler structure of S6. Nevertheless, in recent years
several differences between nearly Sasakian and nearly Kähler geometry were
pointed out. In particular, in [3] it was proved that the 1-form η of any nearly
Sasakian manifold is necessarily a contact form, while the fundamental 2-
form of a nearly Kähler manifold is never symplectic unless the manifold is
Kähler. A peculiarity of nearly Sasakian five dimensional manifolds which
are not Sasakian is that upon rescaling the metric one can define a Sasaki-
Einstein structure on them. In fact one has an SU(2)-reduction of the frame
bundle. Conversely, starting with a five dimensional manifold with a Sasaki-
Einstein SU(2)-structure it is possible to construct a one-parameter family of
nearly Sasakian non-Sasakian manifolds. Thus the theory of nearly Sasakian
non-Sasakian manifolds is essentially equivalent to the one of Sasaki-Einstein
manifolds.

Concerning other dimensions, there have been many attempts of finding
explicit examples of nearly Sasakian non-Sasakian manifolds until the recent
result obtained in [4] showing that every nearly Sasakian structure of dimen-
sion greater than five is always Sasakian. This result depends on the early
work [3] by the first and third authors, which in turn draws many properties
proved in [6]. This makes the proof to be spread over several different texts
with different notation.

The aim of this note is to provide a complete and streamlined proof of
the aforementioned dimensional restriction on nearly Sasakian non-Sasakian
manifolds. We will also pinpoint where the positivity of the Riemannian
metric is used. For this purpose we work in the more general setting of
pseudo-Riemannian geometry. We will always assume that the metric is
non-degenerate.

This paper was written on occasion of the conference RIEMain in Contact,
held in Cagliari (Italy), 18–22 June 2018.

2. Preliminaries
2.1. Tensor calculus notation. In this section we review the notation for
the tensor calculus we use throughout the paper.

Given a permutation σ ∈ Σq, we will denote by the same symbol the (q, q)-
tensor TM⊗q → TM⊗q defined by σ(X1⊗· · ·⊗Xq) = Xσ−1(1)⊗· · ·⊗Xσ−1(q).



NEARLY SASAKIAN MANIFOLDS REVISITED 3

Let ∇ be a covariant derivative. It is easy to show that ∇σ = 0. If T is an
arbitrary (p, q)-tensor, then ∇T can be considered as a (p, q+ 1)-tensor. We
define recursively the (p, q + k)-tensors ∇kT by ∇k+1T := ∇(∇kT ).

We will use the following convention regarding the arguments of ∇kT

(∇kT )(X1 ⊗ · · · ⊗Xq+k) := (∇k
X1,...,Xk

T )(Xk+1 ⊗ · · · ⊗Xq+k).

Given T1 and T2 of valencies (p1, q1), (p2, q2), respectively, and such that
q1 ≥ p2, we define the tensor T1 ◦ T2 of type (p1, q1 − p2 + q2) by

(T1 ◦ T2)(X1, . . . Xq1−p2, Y1, . . . Yq2) = T1(X1, . . . , Xq1−p2, T2(Y1, . . . , Yq2)).

Note that with our convention for ∇T , if T1 and T2 are tensors of valencies
(p1, q1) and (p2, q2) respectively, then

∇(T1 ⊗ T2) = ∇T1 ⊗ T2 + (T1 ⊗∇T2) ◦ (q1 + 1, . . . , 2, 1),

where we used the cycle notation for permutations, as we will do throughout
the paper. Moverover, one has

∇(T1 ◦ T2) = ∇T1 ◦ T2 + T1 ◦ ∇T2 ◦ (q1 − p2 + 1, . . . , 2, 1). (2)

Of course if q1 = p2, then we get just ∇(T1 ◦ T2) = (∇T1) ◦ T2 + T1 ◦ (∇T2).
Suppose T2 = σ is a permutation in Σq1. Then (2) should be used with
caution since in the term ∇T1 ◦ σ, we have to consider σ as an element
of Σq1, not as an element of Σq1+1. Let us denote by s the inclusion Σq1

into Σq1+1 defined by s(σ)(i) = σ(i − 1) + 1, i ≥ 2, s (σ) (1) = 1. Then
∇(T ◦ σ) = ∇T ◦ s(σ). In the computations below, we will always substitute
σ with s(σ) when needed, so that if in the composition chain the tensor T of
type (p, q) is followed by a permutation σ then σ is always in Σq.

2.2. Nearly Sasakian manifolds. The definition of Sasakian manifolds
was motivated by study of local properties of Kähler manifolds. Namely, a
Sasakian manifold is an odd dimensional Riemannian manifold (M, g) such
that the metric cone (M × R+, tg + dt2) is Kähler. Sasakian manifolds can
also be characterized as a subclass of almost contact metric manifolds.

Definition 2.1. An almost contact metric manifold is a tuple (M 2n+1, g, φ, ξ, η),
where

1) g is a Riemannian metric;
2) φ is a (1, 1)-tensor;
3) ξ is a vector field on M ;
4) η is a 1-form on M
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such that

i) φ2 = −Id + ξ ⊗ η
ii) η(X) = g(X, ξ), g(ξ, ξ) = 1;
iii) φ is skew symmetric, i.e. g ◦ (φ⊗ Id) = −g ◦ (Id⊗ φ).

From the definition it follows that φξ = 0 and η ◦ φ = 0.
By [1, Theorem 6.3] the following can be used as an alternative definition

of Sasakian manifolds.

Definition 2.2. A Sasakian manifold is an almost contact metric manifold
(M, g, φ, ξ, η) such that

(∇Xφ)Y = g(X, Y )ξ − η(Y )X. (3)

Nearly Sasakian manifolds where introduced in [2] as a generalization of
Sasakian manifolds by relaxing the condition (3).

Definition 2.3. A nearly Sasakian manifold is an almost contact metric
manifold (M, g, φ, ξ, η) such that

(∇Xφ)X = g(X,X)ξ − η(X)X. (4)

By polarizing at X the condition (4) can be restated in the form

(∇φ− ξ ⊗ g + η ⊗ Id)(1 + (1, 2)) = 0. (5)

As explained in the introduction, we will work in the more general setting
of pseudo-Riemannian geometry. The definitions of nearly pseudo-Sasakian
and pseudo-Sasakian manifolds are the same as above with only distinction
that now g is a pseudo-Riemannian metric.

We start with establishing some simple properties of nearly pseudo-Sasakian
manifolds. In the case of nearly Sasakian manifolds they were proved in [2].

Proposition 2.4. If (M, g, φ, ξ, η) is a nearly pseudo-Sasakian manifold then

i) for any vector field X, the vector field ∇Xξ is orthogonal to ξ, equiva-
lently η ◦ ∇ξ = 0;

ii) ∇ξξ = 0 and ∇ξη = 0;
iii) the operators ∇ξφ and φ ◦ ∇ξφ are skew-symmetric and anticommute

with φ;
iv) ∇ξφ = φ(φ+∇ξ) and φ+∇ξ + φ ◦ ∇ξφ = 0.
v) (∇ξ)2 + Id− ξ ⊗ η = (∇ξφ)2 = (φ∇ξφ)2, in particular, (∇ξ)2 commutes

with φ;
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vi) ξ is a Killing vector field or, equivalently, ∇ξ is a skew-symmetric oper-
ator;

vii) dη = 2∇η = −2g ◦ ∇ξ.

Proof : Applying ∇X to 1 = g(ξ, ξ), we get

0 = g(∇Xξ, ξ) + g(ξ,∇Xξ) = 2g(∇Xξ, ξ) = 2(η ◦ ∇ξ)(X),

which is equivalent to ∇Xξ ⊥ ξ.
To show that ∇ξξ = 0, we proceed as follows. First we substitute X = ξ

in (∇Xφ)X = g(X,X)ξ − η(X)X and obtain (∇ξφ)ξ = 0. As φξ = 0, this
implies φ(∇ξξ) = 0. Therefore

0 = φ2(∇ξξ) = −∇ξξ + η(∇ξξ)ξ.

Since η ◦ ∇ξ = 0, the above equation implies

∇ξξ = η(∇ξξ)ξ = 0, ∇ξη = ∇ξ(g ◦ (ξ ⊗ Id)) = g ◦ (∇ξξ ⊗ Id) = 0. (6)

To see that ∇ξφ is skew-symmetric it is enough to apply ∇ξ to the equation
g ◦ (φ⊗ Id + Id⊗ φ) = 0. To show that ∇ξφ anticommutes with φ we apply
∇ξ to the equation φ2 = −Id + ξ ⊗ η and use ∇ξξ = 0, ∇ξη = 0. Now, that
φ∇ξφ is skew-symmetric and anticommutes with φ follows from the following
computation

g(φ(∇ξφ)X, Y ) = −g((∇ξφ)X,φY ) = g(X, (∇ξφ)φY ) = −g(X, (φ∇ξφ)Y )

φ(φ∇ξφ) = −φ((∇ξφ)φ) = −(φ∇ξφ)φ.

Next we show that∇ξφ = φ(φ+∇ξ). First we polarize (∇Xφ)X = g(X,X)ξ−
η(X)X with respect to X, and get that for any two vector fields X and Y

(∇Xφ)Y + (∇Y φ)X = 2g(X, Y )ξ − η(X)Y − η(Y )X. (7)

Taking Y = ξ in the above equation, we obtain

(∇Xφ)ξ + (∇ξφ)X = η(X)ξ −X = φ2X. (8)

As φξ = 0, we have (∇Xφ)ξ = ∇X(φξ)−φ(∇Xξ) = −φ(∇Xξ) = −(φ◦∇ξ)X.
Thus (8) can be rewritten as ∇ξφ = φ(φ + ∇ξ). Now since η ◦ φ = 0 and
η ◦ ∇ξ = 0, we get

φ ◦ ∇ξφ = φ2(φ+∇ξ) = −φ+ ξ ⊗ (η ◦ φ)−∇ξ + ξ ⊗ (η ◦ ∇ξ) = −φ−∇ξ.
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Next we show that (∇ξφ)2 = (∇ξ)2 + Id− ξ⊗ η. Since φ anticommutes with
∇ξφ, we get

(∇ξ)2 = (−φ− φ ◦ ∇ξφ)2 = φ2 + φ2 ◦ ∇ξφ+ φ ◦ ∇ξφ ◦ φ+ φ ◦ ∇ξφ ◦ φ ◦ ∇ξφ

= −Id + η ⊗ ξ + (∇ξφ)2 − (∇ξφ)2ξ ⊗ η = −Id + η ⊗ ξ + (∇ξφ)2,

where in the last step we used (∇ξφ)ξ = ∇ξ(φξ) − φ(∇ξξ) = 0. Since φ
anticommutes with ∇ξφ, we get

(φ∇ξφ)2 = −(∇ξφ)2φ2 = (∇ξφ)2 + (∇ξφ)ξ ⊗ η = (∇ξφ)2,

where we used in the last step φξ = 0 and ∇ξξ = 0.
Next we show that φ commutes with (∇ξ)2. Since φ anticommutes with
∇ξφ, it commutes with (∇ξφ)2. Thus to show that (∇ξ)2 commutes with φ,
we only have to check that φ commutes with ξ ⊗ η. But, as we saw, φξ = 0
and η ◦ φ = 0. Thus φ ◦ (ξ ⊗ η) = 0 = (ξ ⊗ η) ◦ φ.

Next we prove that ξ is a Killing vector field, which, in view of

Lξg = g ◦ (∇ξ ⊗ Id + Id⊗∇ξ),
is equivalent to the claim that ∇ξ is skew-symmetric. But ∇ξ = −φ−φ◦∇ξφ
is a sum of two skew-symmetric operators, and therefore is skew-symmetric.

Since ∇ξ is skew-symmetric, we get

dη(X, Y ) = (∇Xη)(Y )− (∇Y η)(X) = g(Y,∇Xξ)− g(X,∇Y ξ)

= −2(g ◦ ∇ξ)(X, Y )

= 2g(Y,∇Xξ) = 2(∇X(g ◦ ξ))(Y ) = 2(∇Xη)(Y ).

Next we establish that the 1-form η of any nearly Sasakian manifold is
contact. We use in this proposition that the metric g is positively defined,
since this permits to conclude that the square of g-skew-symmetric operator
has non-positive spectrum. This is not true for a general pseudo-Riemannian
metric.

Theorem 2.5 ([3]). Let (M 2n+1, g, φ, ξ, η) be a nearly Sasakian manifold.
Then

i) the eigenvalues of (∇ξ)2 are non-positive and 0 has multiplicity one in
the spectrum of (∇ξ)2;

ii) the operator (∇ξ) has rank 2n;
iii) η is a contact form.
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Proof : By Proposition 2.4, the operator ∇ξφ is skew-symmetric, and there-
fore the eigenvalues of (∇ξφ)2 − Id are negative. By the same proposition
(∇ξ)2 − ξ ⊗ η = (∇ξφ)2 − Id. This shows that the spectrum of A :=
(∇ξ)2 − ξ ⊗ η is negative and A has rank 2n + 1. Since rk(ξ ⊗ η) = 1
and for any two operators rk(B + C) ≤ rk(B) + rk(C), we conclude that
2n + 1 = rk(A) ≤ rk((∇ξ)2) + 1, i.e. the rank of (∇ξ)2 is at least 2n.
This shows also that multiplicity of 0 in the spectrum of (∇ξ)2 cannot be
greater than one. Since ξ is in the kernel of ∇ξ we get that the spectrum of
(∇ξ)2 contains 0, it has multiplicity one, and (∇ξ)2 has rank 2n. As ∇ξ is
skew-symmetric by Proposition 2.4, the rank of ∇ξ coincides with the rank
of (∇ξ)2. Therefore rk(∇ξ) = 2n. Thus at every point of M , there exists
an adapted basis of TxM of the form ξ, X1, . . . , Xn, Y1, . . . , Yn, with the
property that ∇Xk

ξ = λkYk and ∇Ykξ = −λkXk for some λk > 0. Then

(η ∧ (dη)n)(ξ,X1, Y1, . . . , Xn, Yn) = n! · 2n ·
n∏
k=1

λk 6= 0.

3. Curvature properties of nearly Sasakian manifolds
In this section we reestablish curvature properties of nearly Sasakian man-

ifolds obtained by Olszak in [6]. The main consequence of these properties,
used in the rest of the paper, is an explicit formula for ∇2ξ in terms of ∇ξ.

We will use the following notation for curvature tensors

RX,Y := ∇2
X,Y −∇2

Y,X , i.e. R = ∇2 ◦ (1− (1, 2))

R̃(X, Y, Z,W ) := g (RX,YZ , W ) .

In particular Rξ denotes the (1, 2)-tensor on M given by (Rξ)(X, Y ) =
RX,Y ξ. Also

(R̃ ◦ (1, 4, 3, 2))(X, Y, Z,W ) = R̃(Y, Z,W,X) = g(RY,ZW,X) = g(X,RY,ZW )

= (g ◦R)(X, Y, Z,W ),

that is
R̃ ◦ (1, 4, 3, 2) = g ◦R. (9)

For every covariant tensor T ∈ Γ(TM⊗k) and endomorphism φ, we define
iφT ∈ Γ(TM⊗k) by

iφT = T ◦ (φ⊗ Id⊗(k−1) + Id⊗ φ⊗ Id⊗(k−2) + · · ·+ Id⊗(k−1) ⊗ φ).
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In the following series of propositions we show that iφR vanishes on every
nearly pseudo-Sasakian manifold. This generalizes the Olszak’s result ob-
tained in [6] for nearly Sasakian manifolds.

Proposition 3.1. Let (M, g) be a pseudo-Riemannian manifold and φ a lin-

ear endomorphism of TM . Then the tensor iφR̃ has the following symmetries

(iφR̃)(1 + (1, 2)) = 0

(iφR̃)(1− (1, 3)(2, 4)) = 0

(iφR̃)(1 + (1, 2, 3) + (1, 3, 2)) = 0.

(10)

Proof : Since φ⊗Id⊗3 +Id⊗φ⊗Id⊗2 +Id⊗2⊗φ⊗Id+Id⊗3⊗φ commutes with
every element of Σ4, the result follows from the corresponding symmetries of
the curvature tensor R̃.

The following proposition lists a well-known property of tensors with cer-
tain symmetries (see e.g. [5, page 198]).

Proposition 3.2. Let M be a manifold and T a (0, 4)-tensor on M such
that

T (1 + (1, 2)) = 0, T (1− (1, 3)(2, 4)) = 0, T (1 + (1, 2, 3) + (1, 3, 2)) = 0.

If T (X, Y,X, Y ) = 0 for any pair of vector fields X, Y then T = 0.

In the next proposition we relate the tensors iφR̃ and Rφ.

Proposition 3.3. Let (M, g) be a pseudo-Riemannian manifold. If φ : TM →
TM is skew-symmetric with respect g then iφR̃ = g◦(Rφ⊗Id)(1+(1, 3)(2, 4)).

Proof : The result follows from

g((RX,Y φ)Z,W ) = g(RX,Y (φZ),W )− g(φ(RX,YZ),W )

= R̃(X, Y, φZ,W ) + R̃(X, Y, Z, φW )

and symmetries of R̃.

Proposition 3.4. If (M, g, φ, ξ, η) is a nearly pseudo-Sasakian manifold then

iφR̃ = 0. Equivalently, g ◦ (Rφ⊗ Id)(1 + (1, 3)(2, 4)) = 0.

Proof : By Proposition 3.1 the tensor iφR̃ has the symmetries which permit to

apply Proposition 3.2. Thus it is enough to show that (iφR̃)(X, Y,X, Y ) = 0



NEARLY SASAKIAN MANIFOLDS REVISITED 9

for all X, Y ∈ Γ(TM). By Proposition 3.3, we have iφR̃ = g ◦ (Rφ ⊗
Id)(1 + (1, 3)(2, 4)). Thus (iφR̃)(X, Y,X, Y ) = 2g((RX,Y φ)X, Y ). By defini-
tion RX,Y φ = ∇2

X,Y φ − ∇2
Y,Xφ. Since ∇2

Y,Xφ is a skew-symmetric operator,
we get

(iφR̃)(X, Y,X, Y ) = −2(g((∇2
X,Y φ)Y,X) + g((∇2

Y,Xφ)X, Y )).

From the above expression it follows that (iφR̃)(X, Y,X, Y ) = 0 if and only if
the form Q(X, Y ) := g((∇2

Y,Xφ)X, Y ) satisfies Q(X, Y ) = −Q(Y,X). In the
remaining part of the proof we will show thatQ(X, Y ) = (1/2)dη(X, Y )g(X, Y ).
Then the result follows since dη is skew-symmetric and g is symmetric.

Applying ∇ to the defining condition for nearly pseudo-Sasakian structure

(∇φ− ξ ⊗ g + η ⊗ Id)(1 + (1, 2)) = 0,

we get

(∇2φ−∇ξ ⊗ g +∇η ⊗ Id)(1 + (2, 3)) = 0. (11)

Substituting (Y,X,X) in (11) and then applying g(−, Y ) to the result, we
get

2(Q(X, Y )− g(∇Y ξ, Y )g(X,X) + (∇Y η)(X)g(X, Y )) = 0.

By Proposition 2.4, (∇Y η)(X) = (1/2)dη(Y,X) and ∇ξ is skew-symmetric,
which implies that g(∇Y ξ, Y ) = 0. Hence Q(X, Y ) = (1/2)dη(X, Y )g(X, Y )
as promised.

Proposition 3.5. Let (M, g, φ, ξ, η) be a nearly pseudo-Sasakian manifold.

Then R̃ ◦ ξ|ξ⊥ = 0.

Proof : LetX, Y , Z ∈ ξ⊥. We evaluate iφR̃ = 0 on the quadruples (φX, Y, Z, ξ),
(X,φY, Z, ξ), (X, Y, φZ, ξ), and (φX, φY, φZ, ξ). As φ2|ξ⊥ = −Id and, by
Proposition 2.4, φξ = 0, this gives the relations

−(R̃ ◦ ξ)( X, Y, Z) + (R̃ ◦ ξ)(φX, φY, Z) + (R̃ ◦ ξ)(φX, Y, φZ) = 0

(R̃ ◦ ξ)(φX, φY, Z)− (R̃ ◦ ξ)( X, Y, Z) + (R̃ ◦ ξ)( X,φY, φZ) = 0

(R̃ ◦ ξ)(φX, Y, φZ) + (R̃ ◦ ξ)( X,φY, φZ)− (R̃ ◦ ξ)( X, Y, Z) = 0

−(R̃ ◦ ξ)( X,φY, φZ)− (R̃ ◦ ξ)(φX, Y, φZ)− (R̃ ◦ ξ)(φX, φY, Z) = 0

Summing up the first three equations with the last one taken twice, we obtain
that −3(R̃ ◦ ξ)(X, Y, Z) = 0, and thus R̃ ◦ ξ|ξ⊥ = 0.
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Proposition 3.6. Let (M, g) be a pseudo-Riemannian manifold and ξ a
Killing vector field on M . Then ∇2ξ can be determined from Rξ, namely

g ◦ ∇2ξ = g ◦Rξ ◦ (1, 2).

Proof : Since ξ is Killing, the operator ∇ξ is skew-symmetric, i.e. g ◦ (∇ξ ⊗
Id + Id⊗∇ξ) = 0. Applying ∇ to this equation we get g ◦ (∇2ξ ⊗ Id + Id⊗
∇2ξ ◦ (1, 2))) = 0. Since g ◦ (∇2ξ ⊗ Id) = g ◦ ∇2ξ ◦ (1, 2, 3), we get

0 = g ◦ ∇2ξ ◦ ((1, 2, 3) + (1, 2)) = g ◦ ∇2ξ ◦ ((1, 3) + 1)(1, 2).

Thus

g ◦ ∇2ξ = −g ◦ ∇2ξ ◦ (1, 3). (12)

Next denote g ◦ ξ by η. Since ξ is Killing, by repeating the computation in
the last step of the proof of Proposition 2.4, we get dη = −2g ◦ ∇ξ. This
implies

0 = d2η = (∇dη)(1 + (1, 2, 3) + (1, 3, 2))

= −2(g ◦ ∇2ξ ◦ (1, 2)))(1 + (1, 2, 3) + (1, 3, 2))

= −2g ◦ ∇2ξ ◦ (1 + (1, 2, 3) + (1, 3, 2))(1, 2).

(13)

Now from (12) and (13), we get

g ◦Rξ = g ◦ ∇2ξ ◦ (1− (2, 3)) = −g ◦ ∇2ξ ◦ ((1, 3) + (2, 3))

= −g ◦ ∇2ξ ◦ (1 + (1, 2, 3))(1, 3) = g ◦ ∇2ξ ◦ (1, 3, 2)(1, 3)

= g ◦ ∇2ξ ◦ (1, 2).

In the next proposition we collect several partial results on the curvature
tensor of a nearly pseudo-Sasakian manifold.

Proposition 3.7. Let (M, g, φ, ξ, η) be a nearly pseudo-Sasakian manifold.
Then

Rξ = η ∧ (∇ξ)2, ∇2ξ = −(∇ξ)2 ⊗ η + (g ◦ (∇ξ)2)⊗ ξ

Rξ = (∇ξ)2 ⊗ η − ξ ⊗ g ◦ (∇ξ)2

(Rφ)ξ = −η ∧ φ(∇ξ)2, Rξφ = −(∇ξ)2φ⊗ η − (g ◦ φ(∇ξ)2)⊗ ξ.
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Proof : From Proposition 3.5, we know that R̃(X, Y, Z, ξ) = 0 for any X, Y ,

Z ∈ ξ⊥. As R̃ is skew-symmetric on the last two arguments, we conclude that
g(RX,Y ξ, Z) = R̃(X, Y, ξ, Z) = 0. Thus RX,Y ξ is proportional to ξ. Hence

RX,Y ξ = η(RX,Y ξ)ξ = R̃(X, Y, ξ, ξ)ξ = 0 for X, Y ∈ ξ⊥. This implies

RX,Y ξ = η(X)Rξ,Y ξ − η(Y )Rξ,Xξ. (14)

Thus it is enough to compute Rξ,Xξ or, equivalently, R̃(ξ,X, ξ, Y ). Since

R̃(ξ,X, ξ, Y ) is symmetric with respect to the swap of X and Y , it suffices

to find formula for R̃(ξ,X, ξ,X). By Proposition 2.4 the operator ∇ξ is
skew-symmetric, and thus also ∇2

ξξ is skew-symmetric. This implies

R̃(ξ,X, ξ,X) = g(∇2
ξ,Xξ,X)− g(∇2

X,ξξ,X)

= 0− g(∇X(∇ξξ), X) + g(∇∇Xξξ,X)

= g((∇ξ)2X,X).

Polarizing at X, we get R̃(ξ,X, ξ, Y ) = g((∇ξ)2X, Y ). Therefore Rξ,Xξ =
(∇ξ)2X. Now (14) can be written in the form

Rξ = η ∧ (∇ξ)2.

To compute ∇2ξ, we use the expression g ◦ ∇2ξ = (g ◦ Rξ) ◦ (1, 2) obtained
in Proposition 3.6. We get that for any X, Y , Z ∈ Γ(TM)

g(X,∇2
Y,Zξ) = g(Y,RX,Zξ) = η(X)g(Y, (∇ξ)2Z)− η(Z)g(Y, (∇ξ)2X)

= g(Y, (∇ξ)2Z)g(X, ξ)− g(X, (∇ξ)2Y )η(Z).

The above formula is equivalent to the formula for ∇2ξ in the statement of
the proposition since g is non-degenerate.

Now let X, Y , Z be arbitrary vector fields on M . Then

g(Rξ,XY, Z) = R̃(ξ,X, Y, Z) = R̃(Y, Z, ξ,X)

= g(RY,Zξ,X) = η(Y )g((∇ξ)2Z,X)− η(Z)g((∇ξ)2Y,X).

Since (∇ξ)2 is self-adjoint and g is non-degenerate, we get

Rξ,XY = η(Y )(∇ξ)2X − g(X, (∇ξ)2Y )ξ

which is equivalent to the formula in the statement.
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To compute (Rφ)ξ we use the already established formula for Rξ

(RX,Y φ)ξ = RX,Y (φξ)− φ(RX,Y ξ) = −(η ∧ φ(∇ξ)2)(X, Y ).

To find Rξφ we use the symmetry property of g ◦ (Rφ⊗ Id) that was proved
in Proposition 3.4. We get

g((Rξ,Xφ)Y, Z) = −g((RY,Zφ)ξ,X)

= g(η(Y )φ(∇ξ)2Z,X)− g(η(Z)φ(∇ξ)2Y,X)

= −g((∇ξ)2φX,Z)η(Y )− g(ξ, Z)g(X,φ(∇ξ)2Y ).

Since g is non-degenerate it is equivalent to Rξφ = −(∇ξ)2φ ⊗ η − ξ ⊗ (g ◦
φ(∇ξ)2).

Theorem 3.8. Suppose (M, g, φ, ξ, η) is a nearly pseudo-Sasakian manifold.
Then the characteristic polynomial of (∇ξ)2 has constant coefficients.

Proof : Throughout the proof we use that ∇ξ and ∇2
Y ξ are skew-symmetric

operators. The first fact was proved in Proposition 2.4, and the second is its
consequence.

The coefficients of the characteristic polynomial of (∇ξ)2 are constant if and
only if the traces of the operators (∇ξ)2s for 0 ≤ s ≤ 2n+ 1 are constant. In
fact, if at some point p of M the spectrum (over C) of (∇ξ)2 is (λ1, . . . , λ2n+1)
then the s-th coefficient of the characteristic polynomial of (∇ξ)2 is up to
the sign an elementary symmetric polynomial

es =
∑

j1<···<js

λj1 · λj2 . . . λjs

and the trace of (∇ξ)2s is the power sum symmetric polynomial ps = λs1 +
· · ·+ λs2n+1. Now the claim follows from the Newton identities

e1 = p1, ses =
s∑
j=1

(−1)j−1es−jpj, s ≥ 2.

Next, we show that the traces tr((∇ξ)2s) are constant functions for all
s ≥ 1. Since ∇ commutes with contraction, we get that for any vector field
Y on M

Y (tr (∇ξ)2s) = tr(∇Y (∇ξ)2s) =
∑

k+`=2s−1

tr
(

(∇ξ)k(∇2
Y ξ)(∇ξ)`

)
.
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By Proposition 3.7 we know that ∇2ξ = −(∇ξ)2⊗ η+ ξ⊗ (g ◦ (∇ξ)2). Since
∇ξξ = 0 and η ◦ ∇ξ = 0 by Proposition 2.4, we get (∇ξ) ◦ (∇2

Y ξ) ◦ ∇ξ = 0.
Thus

Y (tr (∇ξ)2s) = tr
(

(∇2
Y ξ)(∇ξ)2s−1

)
+ tr

(
(∇ξ)2s−1(∇2

Y ξ)
)
. (15)

Since the trace of a nilpotent operator is always zero and(
(∇2

Y ξ)(∇ξ)2s−1
)2

= (∇2
Y ξ)(∇ξ)2s−1(∇2

Y ξ)(∇ξ)2s−1 = 0(
(∇ξ)2s−1(∇2

Y ξ)
)2

= (∇ξ)2s−1(∇2
Y ξ)(∇ξ)2s−1(∇2

Y ξ) = 0,

we conclude that the both traces in (15) are zero and therefore tr(∇ξ)2s is a
constant function for all s.

In the case of nearly Sasakian manifolds, Theorem 3.8 implies the exis-
tence of a tangent bundle decomposition into a direct sum of subbundles.
This decomposition will be crucial in our proof of Theorem 4.6, which gives
an explicit formula for ∇φ on a nearly Sasakian manifold. Recall that by
Theorem 2.5 the spectrum of (∇ξ)2 on a nearly Sasakian manifold is non-
positive.

Proposition 3.9. Let (M, g, φ, ξ, η) be a nearly Sasakian manifold. Suppose
0 = λ0 > −λ1 > · · · > −λ` are the roots of the characteristic polynomial
of (∇ξ)2. Then TM can be written as a direct sum of pair-wise orthogonal
subbundles Vk ⊂ TM such that, for every 0 ≤ k ≤ `, the restriction of (∇ξ)2

to Vk equals −λk · Id.

Proof : By Proposition 2.4 the operator ∇ξ is skew-symmetric, and therefore
(∇ξ)2 is symmetric. As g is positively defined this implies that (∇ξ)2 is
diagonalizable. Denote by ak the multiplicity of −λk in the characteristic
polynomial of (∇ξ)2. Then, by examining the diagonal form of (∇ξ)2, one
can see that rk((∇ξ)2 +λk · Id) = 2n+1−ak and that TM can be written as
a direct sum of the subbundles Vk = ker((∇ξ)2 +λk · Id). It is a standard fact
that these subbundles are mutually orthogonal and clearly the restriction of
(∇ξ)2 to Vk equals −λk · Id.

4. Covariant derivative of φ
In this section we derive a rather explicit formula for ∇Xφ on a nearly

pseudo-Sasakian manifold. We achieve this by computing separately ∇Xφ
on subspaces 〈ξ〉, Im(∇ξφ), and Im(∇ξφ)⊥∩ξ⊥. Then, we will use the formula
to prove Theorem 4.9.
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Proposition 4.1. Let (M, g, φ, ξ, η) be a nearly pseudo-Sasakian manifold.
Then

∇2
ξφ = η ∧ (∇ξφ ◦ ∇ξ)− ξ ⊗

(
g ◦ (∇ξφ ◦ ∇ξ)

)
.

Proof : Applying ∇ to the defining relation of nearly pseudo-Sasakian struc-
ture (∇φ− ξ ⊗ g + η ⊗ Id)(1 + (1, 2)) = 0 we get

(∇2φ−∇ξ ⊗ g +∇η ⊗ Id)(1 + (2, 3)) = 0. (16)

Denote (∇ξ ⊗ g −∇η ⊗ Id)(1 + (2, 3)) by T . Then (16) becomes (∇2φ)(1 +
(2, 3)) = T . By definition of R we have (∇2φ)(1− (1, 2)) = Rφ. We have the
following equality in RΣ3

2 · id = (1− (1, 2))(1+(1, 2, 3)− (1, 3, 2))+(1+(2, 3))(1− (1, 2, 3)+(1, 3, 2)).
(17)

Therefore

2∇2φ = Rφ(1 + (1, 2, 3)− (1, 3, 2)) + T (1− (1, 2, 3) + (1, 3, 2)). (18)

Now we substitute (ξ,X, Y ) in (18)

2(∇2
ξ,Xφ)Y =(Rξ,Xφ)Y + (RY,ξφ)X − (RX,Y φ)ξ

+ T (ξ,X, Y )− T (Y, ξ,X) + T (X, Y, ξ).
(19)

By Proposition 3.7, we have Rξφ = −(∇ξ)2φ ⊗ η − (g ◦ φ(∇ξ)2) ⊗ ξ and
(Rφ)ξ = −η ∧ φ(∇ξ)2. Therefore the R-part of (19) evaluates to

−g(X,φ(∇ξ)2Y )ξ − η(Y )(∇ξ)2φX

+ g(Y, φ(∇ξ)2X)ξ + η(X)(∇ξ)2φY

+ η(X)φ(∇ξ)2Y − η(Y )φ(∇ξ)2X

= 2
(
− g(X, (∇ξ)2φY )ξ − η(Y )φ(∇ξ)2X + η(X)φ(∇ξ)2Y

)
,

where we use that φ and (∇ξ)2 commute by Proposition 2.4. Next,

T (ξ,X, Y ) = 0

T (Y, ξ,X) = 2(∇ξ)(Y )η(X)− (∇Y η)(ξ)X − (∇Y η)(X)ξ

= −g(X, (∇ξ)Y )ξ + 2η(X)(∇ξ)Y

T (X, Y, ξ) = T (X, ξ, Y ) = −g(Y, (∇ξ)X)ξ + 2η(Y )(∇ξ)X.
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Thus the T -part of the right side of (19) is

2g(X, (∇ξ)Y )ξ + 2η(Y )(∇ξ)X − 2η(X)(∇ξ)Y.
As a result we get

∇2
ξφ = ξ ⊗ g ◦ (∇ξ)(Id− (∇ξ)φ)− η ∧ (∇ξ)(Id− (∇ξ)φ). (20)

By Proposition 2.4 the operator (∇ξ)2 commutes with φ, η ◦ ∇ξ vanishes,
and φ(φ+∇ξ) = ∇ξφ. Therefore

(∇ξ)(Id− (∇ξ)φ) = (Id− φ∇ξ)∇ξ = (−φ2 + ξ ⊗ η − φ∇ξ)∇ξ

= −φ(φ+∇ξ)∇ξ = −∇ξφ ◦ ∇ξ.
(21)

Substituting (21) in (20), we get the claim of the proposition.

Given two tensor fields T1 and T2 on a manifold M such that both products
T1 ◦ T2 and T2 ◦ T1 make sense, we define commutator and anticommutator
of T1 and T2 by

[
T1, T2

]
= T1 ◦T2−T2 ◦T1 and

{
T1, T2

}
= T1 ◦T2 +T2 ◦T1,

respectively. The aim of the next three propositions is to find (∇Xφ)Y on a
nearly pseudo-Sasakian manifold in the case Y is in the image of ∇ξφ. For
this we compute (∇φ)(∇ξφ). The later tensor can be written as a half-sum
of
{
∇φ,∇ξφ

}
and

[
∇φ,∇ξφ

]
.

Proposition 4.2. Let (M, g, φ, ξ, η) be a nearly pseudo-Sasakian manifold.
Then {

∇φ,∇ξφ
}

=2η ⊗ (∇ξφ)2 − (∇ξφ)(Id +∇ξφ)⊗ η

+ ξ ⊗
(
g ◦ (∇ξφ)(Id−∇ξφ)

)
.

Proof : Recall that by Proposition 2.4 we have ∇ξξ = 0 and ∇ξη = 0. Ap-
plying ∇2

ξ to the almost contact structure condition φ2 + Id− ξ ⊗ η = 0 we
get

(∇2
ξφ)◦φ+(∇ξφ)◦(∇φ)+(∇φ)◦(∇ξφ)+φ(∇2

ξφ)−(∇2
ξξ)⊗η−ξ⊗g◦(∇2

ξξ) = 0.

Applying the formula ∇2ξ = −(∇ξ)2 ⊗ η + (g ◦ (∇ξ)2) ⊗ ξ obtained in
Proposition 3.7, we get

(∇2
ξ,Y ξ) = −(∇ξ)2ξ · η(Y ) + g(Y, (∇ξ)2ξ)ξ = 0.

Therefore

(∇ξφ) ◦ (∇φ) + (∇φ) ◦ (∇ξφ) = −(∇2
ξφ) ◦ φ− φ ◦ (∇2

ξφ). (22)
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We showed in Proposition 4.1 that

∇2
ξφ = η ∧ (∇ξφ ◦ ∇ξ)− ξ ⊗

(
g ◦ (∇ξφ ◦ ∇ξ)

)
.

Since φξ = 0 and η ◦ φ = 0, we conclude

∇2
ξφ ◦ φ = η ⊗ (∇ξφ ◦ ∇ξ ◦ φ)− ξ ⊗

(
g ◦ (∇ξφ ◦ ∇ξ ◦ φ)

)
φ ◦ ∇2

ξφ = η ∧ (φ ◦ ∇ξφ ◦ ∇ξ).
(23)

Next, we use that by Proposition 2.4 the operators φ and (∇ξφ) anticommute,
and ∇ξ = −φ(Id +∇ξφ) to get

∇ξφ ◦ ∇ξ ◦ φ = −∇ξφ ◦ φ(Id +∇ξφ) ◦ φ = −∇ξφ ◦ φ2(Id−∇ξφ)

= ∇ξφ(Id−∇ξφ)

φ ◦ ∇ξφ ◦ ∇ξ = −φ ◦ ∇ξφ ◦ φ(Id +∇ξφ) = ∇ξφ ◦ φ2(Id +∇ξφ)

= −∇ξφ(Id +∇ξφ).

(24)

Combining (22), (23), and (24) we get the statement of the proposition.

Proposition 4.3. Let (M, g, φ, ξ, η) be a nearly pseudo-Sasakian manifold.
Then[

∇φ,∇ξφ
]

= (∇ξφ)(Id +∇ξφ)⊗ η + ξ ⊗
(
g ◦ (∇ξφ)(Id−∇ξφ)

)
.

Proof : By Proposition 2.4, we know that ∇ξφ = φ(φ + ∇ξ). Notice that
for any three tensors A, B, and C, such that all pair-wise compositions are
defined, we have

[A,B◦C] = (A◦B+B◦A)◦C−B◦(A◦C+C◦A) = {A,B}◦C−B◦{A,C} .
Thus to find the commutator of ∇φ with ∇ξφ, we only have to compute the
anti-commutators of ∇φ with φ and ∇ξ.

We start with the anticommutator between ∇φ and φ. For this we apply
∇ to the almost contact metric condition φ2 = −Id + ξ ⊗ η, which gives{

∇φ, φ
}

= (∇φ)φ+ φ(∇φ) = (∇ξ)⊗ η − ξ ⊗ (g ◦ ∇ξ), (25)

where we are using ∇η = −g ◦ ∇ξ from Proposition 2.4.
To find the anticommutator between ∇φ and ∇ξ, we first compute the

anticommutator between φ and ∇ξ and then apply ∇ to the resulting for-
mula. By Proposition 2.4, we know that ∇ξ = −φ − φ ◦ ∇ξφ and that φ
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anticommutes with φ ◦ ∇ξφ. Therefore,

φ ◦ ∇ξ +∇ξ ◦ φ = −2 · φ2 = 2 · Id− 2 · ξ ⊗ η

and hence

(∇φ)◦(∇ξ)+φ◦∇2ξ+∇2ξ◦φ+(∇ξ)◦(∇φ) = −2∇ξ⊗η+2ξ⊗(g◦∇ξ). (26)

By Proposition 3.7, we know that ∇2ξ = −(∇ξ)2⊗ η+ ξ⊗ (g ◦ (∇ξ)2). Since
φξ = 0 and η ◦ φ = 0, we get

φ ◦ ∇2ξ = −φ(∇ξ)2 ⊗ η
∇2ξ ◦ φ = ξ ⊗

(
g ◦ (∇ξ)2 ◦ φ

)
.

(27)

Combining (26) with (27) and then adding the result to (25), we get{
∇φ, φ+∇ξ

}
= (φ(∇ξ)2 −∇ξ)⊗ η + ξ ⊗

(
g ◦ (∇ξ − (∇ξ)2φ)

)
.

Thus[
∇φ, φ(φ+∇ξ)

]
=
{
∇φ, φ

}
◦ (φ+∇ξ)− φ ◦

{
∇φ, φ+∇ξ

}
= −ξ ⊗

(
g ◦ ∇ξ ◦ (φ+∇ξ)

)
− (φ2(∇ξ)2 − φ∇ξ)⊗ η.

Next we use that ∇ξ + φ + φ ◦ ∇ξφ = 0 and (∇ξ)2 = (∇ξφ)2 − Id + ξ ⊗ η
established in Proposition 2.4 to bring the above expression to the form of
the proposition statement

∇ξ ◦ (φ+∇ξ) = φ ◦ (Id +∇ξφ) ◦ φ ◦ (∇ξφ) = φ2(∇ξφ)(Id−∇ξφ)

= −(∇ξφ)(Id−∇ξφ)

φ2(∇ξ)2 − φ∇ξ = φ2((∇ξφ)2 − Id + ξ ⊗ η) + φ2(Id +∇ξφ)

= −(∇ξφ)(Id +∇ξφ).

This completes the proof.

Proposition 4.4. Let (M, g, φ, ξ, η) be a nearly pseudo-Sasakian manifold.
Then for any Y in the image of ∇ξφ, the following equation holds

(∇φ) ◦ Y = η ⊗ ((∇ξφ)Y ) + ξ ⊗ (g ◦ (Id−∇ξφ)Y ).

Proof : Let Z be such that (∇ξφ)Z = Y . Since (∇ξφ)ξ = 0 we can assume
that η(Z) = 0 by replacing Z with Z−η(Z)ξ if necessary. By Proposition 4.2,
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we get{
∇φ,∇ξφ

}
◦ Z = 2η ⊗ ((∇ξφ)2Z) + ξ ⊗

(
g ◦ (∇ξφ) ◦ (Id−∇ξφ) ◦ Z

)
= 2η ⊗ ((∇ξφ)Y ) + ξ ⊗

(
g ◦ (Id−∇ξφ) ◦ Y

)
.

Next, by Proposition 4.3, we have[
∇φ,∇ξφ

]
◦ Z = ξ ⊗

(
g ◦ (∇ξφ) ◦ (Id−∇ξφ) ◦ Z

)
= ξ ⊗

(
g ◦ (Id−∇ξφ) ◦ Y

)
.

Thus
(∇φ) ◦ Y = (∇φ) ◦ (∇ξφ) ◦ Z

= (1/2)
({
∇φ,∇ξφ

}
◦ Z +

[
∇φ,∇ξφ

]
◦ Z

)
= η ⊗ ((∇ξφ)Y ) + ξ ⊗

(
g ◦ (Id−∇ξφ) ◦ Y

)
.

This finishes the proof.

In the next proposition we use that g is positively defined to conclude that
(∇ξφ)2Y = 0 implies (∇ξφ)Y = 0. This can be false for a general nearly
pseudo-Sasakian manifold.

Proposition 4.5. Let (M, g, φ, ξ, η) be a nearly Sasakian manifold. Then
for any Y ∈ Γ(ker((∇ξ)2 + Id)), one has (∇φ) ◦ Y = ξ ⊗ (g ◦ Y ).

Proof : Throughout the proof we will use that by Proposition 3.7, we have

∇2ξ = −(∇ξ)2 ⊗ η + ξ ⊗ (g ◦ (∇ξ)2). (28)

First we show that Im(∇Y ) ⊂ ker(φ∇ξφ). Since (∇ξ)2Y = −Y , we have

∇Y = −∇((∇ξ)2Y ) = −∇2ξ ◦ ∇ξ ◦ Y −∇ξ ◦ ∇2ξ ◦ Y − (∇ξ)2 ◦ ∇Y.
Since η ◦ ∇ξ = 0 and (∇ξ)ξ = 0 by Proposition 2.4, using (28), we get

∇Y = −ξ ⊗
(
g ◦ (∇ξ)3 ◦ Y

)
+ η(Y )⊗ (∇ξ)3 − (∇ξ)2 ◦ ∇Y.

Notice that

η(Y ) = g(ξ, Y ) = −g(ξ, (∇ξ)2Y ) = 0

thus, taking into account (∇ξ)2Y = −Y , we get

∇Y = ξ ⊗ (g ◦ (∇ξ)Y )− (∇ξ)2 ◦ ∇Y.
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Applying ∇ to 0 = η(Y ) = g◦(ξ⊗Y ), we get g◦(∇ξ⊗Y )+g◦(ξ⊗∇Y ) = 0.
Since ∇ξ is skew-symmetric, this implies that g ◦ (∇ξ)Y = η ◦ ∇Y . Thus

∇Y = (ξ ⊗ η) ◦ (∇Y )− (∇ξ)2 ◦ ∇Y.
The above equation means that the image of ∇Y is a subset of the kernel
of the operator (∇ξ)2 − ξ ⊗ η + Id. By Proposition 2.4 this operator equals
to (φ∇ξφ)2. Since φ∇ξφ is skew-symmetric by the same proposition and g
is positively defined by assumption, we get that Im(∇Y ) ⊂ ker(φ∇ξφ) =
ker(φ+∇ξ). Thus (φ+∇ξ) ◦ ∇Y = 0.

Next, we claim that (φ∇ξφ)Y = 0. For this we compute

(φ∇ξφ)2Y =
(
(∇ξ)2 + Id− ξ ⊗ η

)
Y = −Y + Y − 0 = 0.

Therefore, arguing as before, we have (φ + ∇ξ)Y = 0. Applying ∇ to this
equation, we get

0 = (∇φ+∇2ξ) ◦ Y + (φ+∇ξ) ◦ ∇Y = (∇φ) ◦ Y + ξ ⊗
(
g ◦ (∇ξ)2Y

)
= (∇φ) ◦ Y − ξ ⊗ (g ◦ Y ).

This concludes the proof.

Theorem 4.6 ([4]). On every nearly Sasakian manifold (M, g, φ, ξ, η)

(∇Xφ)Y = g(X, Y )ξ − η(Y )X

+ η(X)(∇ξφ)Y − η(Y )(∇ξφ)X − g (X, (∇ξφ)Y ) ξ.
(29)

Equivalently

∇φ = ξ ⊗ g − Id⊗ η + η ⊗ (∇ξφ)− (∇ξφ)⊗ η − ξ ⊗
(
g ◦ (∇ξφ)

)
.

Proof : By Proposition 2.5 the spectrum of (∇ξ)2 is non-positive and the
multiplicity of 0 is one. Let 0 < λ1 < · · · < λ` be such that (0,−λ1, . . . ,−λ`)
is the spectrum of (∇ξ)2. By Proposition 3.9 the vector bundle TM can be
written as a direct orthogonal sum of the subbundles V0, V1,. . . , V` such that
(∇ξ)2|V0 = 0 and (∇ξ)2|Vk = −λk · Id with positive λk’s. Thus every vector

field Y on M can be written as a sum η(Y )ξ +
∑`

k=1 Yk, where Yk are such
that (∇ξ)2Yk = −λkYk and η(Yk) = 0.

Since both sides of (29) are linear over C∞(M) with respect to Y , we have
to check the validity of (29) only for ξ and Yk’s such that (∇ξ)2Yk = −λkYk
and η(Yk) = 0.

For Y = ξ the formula (29) reduces to

(∇Xφ)ξ = η(X)ξ −X − (∇ξφ)X.
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We can see that it holds on every nearly Sasakian manifold by substituting
(ξ,X) into the defining relation (∇φ− ξ ⊗ g + η ⊗ Id)(1 + (1, 2)) = 0.

Now suppose Y is such that (∇ξ)2Y = −Y and η(Y ) = 0. By Proposi-
tion 4.5 we know that (∇Xφ)Y = g(X, Y )ξ. Next, from the equality

(∇ξ)2 − ξ ⊗ η + Id = (∇ξφ)2 (30)

proved in Proposition 2.4, we get that (∇ξφ)2Y = 0. Since ∇ξφ is skew-
symmetric and g is positively defined, we conclude that (∇ξφ)Y = 0. Thus
evaluating the right side of (29) we also get g(X, Y )ξ.

Now assume Y is such that η(Y ) = 0 and (∇ξ)2Y = −λY with λ 6∈ {0, 1}.
Then from (30), we get (∇ξφ)2Y = (1 − λ)Y and (1 − λ) 6= 0. This shows
that Y is in the image of ∇ξφ and we can apply Proposition 4.4 to compute
(∇Xφ)Y . We get

(∇Xφ)Y = η(X)(∇ξφ)Y + g(X, Y − (∇ξφ)Y )ξ.

Since η(Y ) = 0 the right side of (29) evaluates to the same expression. This
concludes the proof.

Remark 4.7. It follows from (29) that a nearly Sasakian manifold is Sasakian
if and only if ∇ξφ = 0. In fact, if ∇ξφ = 0, then (29) implies

(∇Xφ)Y = g(X, Y )ξ − η(Y )X, (31)

which is the defining condition of Sasakian structures. In the opposite di-
rection, if M is a Sasakian manifold, then computing ∇ξφ by (31) we get
zero.

Proposition 4.8. Let (M, g, φ, ξ, η) be a nearly Sasakian manifold. Denote
g ◦ (φ ⊗ Id) by Φ and g ◦ (∇ξφ ⊗ Id) by Ψ. Then Φ and Ψ are differential
forms and

dΦ = 3η ∧Ψ, η ∧ dΨ = 0, dη ∧Ψ = 0.

Proof : The operator φ is skew-symmetric by definition of an almost contact
metric structure, and∇ξφ is skew-symmetric by Proposition 2.4. This implies
that both Φ and Ψ are two forms.

By definition of the exterior differential we have

dΦ = g ◦ (∇φ⊗ Id) ◦ (1 + (1, 2, 3) + (1, 3, 2)).

By Theorem 4.6, we have

∇φ = ξ ⊗ g − Id⊗ η + η ⊗ (∇ξφ)− (∇ξφ)⊗ η − ξ ⊗
(
g ◦ (∇ξφ)

)
. (32)
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Notice that

g ◦ (ξ ⊗ g ⊗ Id) = g ⊗ η
g ◦ (−Id⊗ η ⊗ Id) = −(g ⊗ η)(2, 3)

g ◦ (η ⊗ (∇ξφ)⊗ Id) = η ⊗Ψ

g ◦ (−(∇ξφ)⊗ η ⊗ Id) = −(η ⊗Ψ)(1, 2)

g ◦ (−ξ ⊗
(
g ◦ (∇ξφ))⊗ Id

)
= −(η ⊗Ψ)(1, 3).

Next observe that for every σ ∈ {(1, 2), (2, 3), (1, 3)} we have σ(1+(1, 2, 3)+
(1, 3, 2)) = (1, 2) + (2, 3) + (1, 3). Hence

(g ⊗ η)(1− (2, 3))(1 + (1, 2, 3) + (1, 3, 2))

= (g ⊗ η)(1− (1, 2))(1 + (1, 2, 3) + (1, 3, 2))

vanishes, since g is symmetric. Therefore

dΦ = (η ⊗Ψ)(1− (1, 2)− (1, 3))(1 + (1, 2, 3) + (1, 3, 2))

= (η ⊗Ψ)(1− 2 · (2, 3))(1 + (1, 2, 3) + (1, 3, 2))

= 3(η ⊗Ψ)(1 + (1, 2, 3) + (1, 3, 2)) = 3η ∧Ψ,

where we used (η ⊗Ψ)(2, 3) = −η ⊗Ψ. Now 0 = d2Φ = 3(dη ∧Ψ + η ∧ dΨ)
implies that dη∧Ψ = −η∧dΨ. Thus it is enough to show only η∧dΨ = 0. For
this we have to check that for any X, Y , Z ∈ ker(η) one has dΨ(X, Y, Z) =
0. In fact we will show that (∇X(∇ξφ))Y is proportional to ξ for any X,
Y ∈ ker(η). Then the result will follow from the definitions of Ψ and the
exterior derivative d. We have

∇(∇ξφ) = ∇((∇φ) ◦ (ξ ⊗ Id)) = ∇2φ ◦ (ξ ⊗ Id) + (∇φ) ◦ (∇ξ ⊗ Id).

Applying (32), we get

(∇φ) ◦ (∇ξ ⊗ Id) =ξ ⊗ (g ◦ (∇ξ ⊗ Id))− (∇ξ)⊗ η − (∇ξφ)(∇ξ)⊗ η

− ξ ⊗ (g ◦ (∇ξ ⊗∇ξφ)).

Evaluating the right side of the above equation on (X, Y ) with Y ∈ ker(η)
we get a vector field proportional to ξ. Thus it is left to show that (∇2

X,ξφ)Y
is proportional to ξ. We have

(∇2
X,ξφ)Y = −(Rξ,Xφ)Y + (∇2

ξ,Xφ)Y,

and therefore we can use the expressions for Rξφ and ∇2
ξφ obtained in Propo-

sition 3.7 and in Proposition 4.1, respectively. Namely, we have Rξφ =
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−(∇ξ)2φ⊗ η− (g ◦φ(∇ξ)2)⊗ ξ, which implies that (Rξ,Xφ)Y is proportional

to ξ for Y ∈ ker(η). Further, ∇2
ξφ = η ∧ (∇ξφ ◦ ∇ξ)− ξ ⊗

(
g ◦ (∇ξφ ◦ ∇ξ)

)
implies that (∇2

ξ,Xφ)Y is proportional to ξ for X, Y ∈ ker(η). This concludes
the proof.

Notice that we did not use dimM ≥ 7 in the above proposition.

Theorem 4.9. Let (M, g, φ, ξ, η) be a nearly Sasakian manifold of dimension
greater or equal to 7. Then M is a Sasakian manifold.

Proof : In view of Remark 4.7 it is enough to show ∇ξφ = 0. As g is non-
degenerate this is equivalent to Ψ = 0. By Proposition 2.5 η is a contact
form on M . Therefore dη is a symplectic form on the distribution ker(η).
The dimension of this distribution is greater than or equal to six. Thus the
wedge product by dη induces an injective map

∧2 ker(η) →
∧4 ker(η). By

Proposition 4.8 we know that dη ∧ Ψ = 0. Therefore the restriction of Ψ
to
∧2 ker(η) is zero. It is left to show that iξΨ = 0. This follows from the

definition of Ψ and (∇ξφ)ξ = 0, which in turn follows from Proposition 2.4.
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