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Borel-Schur algebras occur as subalgebras of Schur algebras. They were
introduced by J. A. Green in [13]. A main result, or even the motivation,
of that work, is that the Schur algebra has a triangular decomposition with
factors an upper and a lower Borel-Schur algebra.

Borel-Schur algebras have shown to be a powerful tool for the study of pro-
jective resolutions of Weyl modules for the general linear group [22, 23]. More
recently they played a crucial role in the work of the last two authors [20]
on this problem. Also, in the same paper, Borel-Schur algebras were used
to prove the Boltje-Hartmann conjecture [2] on permutational resolutions of
(co-)Specht modules.

We fix an infinite field K. The Schur algebra S(n, r) is the K-algebra whose
module category is equivalent to the category of r-homogeneous polynomial
representations of the general linear group GLn(K). This Schur algebra is
finite-dimensional, and it has an explicit subalgebra S+(n, r), the (upper)
Borel-Schur algebra, whose module category is equivalent to the category of
r-homogeneous polynomial representations of B+, the group of upper trian-
gular matrices in GLn(K). The parameters of S+(n, r) which we have to take
into account are n, r, and, in addition, the characteristic of the field K.

Borel-Schur algebras are basic. They have finite global dimension and a
highest weight theory. There is an explicit formula for the multiplication,
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but except for small cases, this is not easy to use. In [19], the second author
determined the Ext quiver of a Borel-Schur algebra. She also proved some
results useful for the construction of almost split sequences of simple modules.
More recently this was continued in [8], where it was also determined precisely
which Borel-Schur algebras are of finite representation type. The answer is:

Theorem 0.1 ([8]). Consider the Borel-Schur algebra S+(n, r) over an al-
gebraically closed field K. Then S+(n, r) has finite representation type if and
only if

1) n = 2 and one of the following alternatives holds:
(a) char(K) = 0;
(b) char(K) = 2 and r ≤ 3;
(c) char(K) = 3 and r ≤ 4;
(d) char(K) = p ≥ 5 and r ≤ p;

2) n ≥ 3 and r = 1.

This leaves to identify when a Borel-Schur algebra has tame representation
type, and this is answered completely in this paper. Our main result is as
follows.

Theorem 0.2. Consider the Borel-Schur algebra S+(n, r) over an algebraically
closed field K. Suppose that S+(n, r) is of infinite type. Then S+(n, r) is tame
if

(a) n = 2, charK = 3, and r = 5;
(b) n = 3 and r = 2.

Otherwise S+(n, r) is wild.

The above results can be visualized as follows:
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To prove Theorem 0.2, we reduce the problem by idempotent methods: one
has to show that only few algebras are wild, and that the algebras listed
in the theorem are tame. To prove that an algebra is wild can be done by
relating its module category to that of some known wild algebra. Our main
method is based on coverings (see Section 2).

This leaves to prove that the two remaining algebras are tame. We show
that S+(3, 2) degenerates to a special biserial algebra, which is known to be
tame. Then a result from [12] implies that the algebra S+(3, 2) is tame. Our
proof works for arbitrary characteristic, although the algebra structure for
characteristic 2 is different.

Our proof that S+(2, 5) in characteristic 3 is tame is very different from
the proof of the previous case. This is done by exploiting representation
theory of posets, and using the fact that the representation type of posets is
completely understood. To follow this route, it is crucial that S+(2, r) is a
one-point extension of S+(2, r − 1) (see Section 6 for details).

In general, given a one-point extension A[M ] =

(
A M
0 K

)
, if A has finite

type and M is suitable, one can construct a finite poset from the Auslander-
Reiten quiver of A. Moreover, the representation type of this poset is the
same as the representation type of the algebra A[M ]. We use this when
A = S+(2, 4), A[M ] = S+(2, 5), and the characteristic of the base field is
3. It was proved in [8] that the algebra S+(2, 4) has finite type by explicitly
computing its Auslander-Reiten quiver. Now we take this quiver, compute
the relevant poset, and then prove that it has tame type (see Section 6).

We note that the representation type of Schur algebras S(n, r) (and also
of their q-analogs) has been classified, but the methods used are different
(see [3] and [7]), and also as far as we can see there is no connection with
the techniques we use in the present article. This makes the problem we
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describe next rather intriguing. Besides Borel-Schur algebras, Green defined
in [13] a subalgebra S(G, r) of S(n, r) for every subgroup G of GLn(K).
This subalgebra coincides with S+(n, r) if G = B+ and with S(n, r) if G =
GLn(K). Of course, B+ and GLn(K) are extremal elements of the family of
parabolic subgroups Pλ in GLn(K). It would be interesting to determine the
representation type of the algebras S(Pλ, r) with arbitrary Pλ.

The paper is organized as follows. In Section 2 we introduce the techniques
we will use on the study of wild type. Section 3 is dedicated to Borel-
Schur algebras. We introduce basic facts and prove that for every positive
integer m ≤ n and s ≤ r there is an idempotent e in S+(n, r) such that
eS+(n, r)e ∼= S+(m, s) . This result will be crucial for our classification. In
Section 4 we classify the Borel-Schur algebras of wild representation type
using the covering techniques described in Section 2. Using degeneration
techniques due to Gabriel [10] and Geiss [12], we prove in Section 5 that
S+(3, 2) is tame. Section 6 contains the proof that S+(2, 5) is tame over fields
of characteristic 3. As was mentioned above this is done using representation
theory of posets.

For background on Schur algebras and Borel-Schur algebras we refer to [14]
and [13]. Background on representation theory of algebras can be found in
[18], or other text books.

We assume throughout that the field K is algebraically closed, and that all
quivers are finite.

1. Preliminaries on wild representation type
Let A be a finite dimensional algebra over K. We will write A-mod for

the category of finite dimensional left A-modules. The algebra A is said to
have finite representation type if there are only finitely many isomorphism
classes of finite dimensional indecomposable modules. Otherwise A has in-
finite representation type. The famous Drozd Dichotomy Theorem, proved
in [4], divides algebras of infinite representation type into two mutually exclu-
sive classes: algebras of tame type and algebras of wild type. The algebra A
is tame if it has infinite type and, for every dimension d ≥ 0, all, but a finite
number of, isomorphism classes of indecomposable A-modules of dimension
d can be parametrised by a finite number of 1-parameter families.

To define wild we need a further notion.
Given another K-algebra B, a functor F : B-mod → A-mod is called a

representation embedding if it preserves indecomposability and isomorphism
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classes. More formally, F is a representation embedding if for every indecom-
posable object X ∈ B-mod the object F (X) is indecomposable in A-mod,
and if F (Y ) ∼= F (Z) for some Y and Z in B-mod, then Y ∼= Z.

An algebra A is wild if there is an A-K 〈u, v〉-bimodule Z, free of finite rank
as a right K 〈u, v〉-module, such that the functor Z⊗K〈u,v〉− : K 〈u, v〉 -mod→
A-mod is a representation embedding.

It is shown in [1, Proposition 22.4] that to prove that A is wild it is enough
to see that the functor Z ⊗K〈u,v〉 − preserves isomorphism classes. As an
immediate corollary we get that if B is a wild algebra and there is an isomor-
phisms preserving functor B-mod→ A-mod, then A has wild representation
type.

Since full and faithful functors preserve isomorphism classes the following
result is obvious.

Proposition 1.1. Let A be a finite dimensional algebra over K. Suppose
there is an ideal I of A such that A/I has wild representation type. Then A
is a wild algebra.

It is not in general true that if B is a wild subalgebra of an algebra A, then
A is also wild. Nevertheless, the following partial result in this direction
holds.

Proposition 1.2. Let A be a finite dimensional algebra. Suppose there is
an idempotent e in A such that eAe is wild. Then A has wild representation
type.

Proof : The induction functor M 7→ Ae ⊗eAe M from eAe-mod to A-mod
preserves isomorphism classes. In fact, suppose Ae⊗eAeM ∼= Ae⊗eAe N for
some M , N ∈ eAe-mod. Then

M ∼= eAe⊗eAeM = e(Ae⊗eAeM) ∼= e(Ae⊗eAe N) ∼= N.

We will now describe further sufficiency criteria for wildness of basic alge-
bras in terms of their quivers. For this we need some notation.

For a (finite) quiver Q and a K-algebra B, we denote by Q-repB the cat-
egory of representations ((Vx)x∈Q0

, (Vα)α∈Q1
) such that Vx is a finitely gener-

ated free B-module for every x ∈ Q0. Given a collection P of paths in Q
with common source and target, we say that

∑
p∈P bpp, with bp ∈ B, is a

relation defined over B. For a collection R of relations defined over B, we
write (Q, R)-repB for the full subcategory of Q-repB whose objects are the
representations on which every relation in R vanishes. We suppress B when
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it coincides with the base field K. The objects of (Q, R)-rep are of course just
finite dimensional representations of (Q, R). Evidently (Q, R)-rep is equiv-
alent to the category of finite dimensional modules over KQ/ 〈R〉, where KQ
is the path algebra of Q and 〈R〉 the ideal generated by R in this algebra.

The algebra KQ/ 〈R〉 is wild if and only if there exists Z ∈ (Q, R)-repK〈u,v〉
such that the functor

Z ⊗K〈u,v〉 − : K 〈u, v〉-mod→ (Q, R)-rep

defined by(
Z ⊗K〈u,v〉 V

)
x

= Zx⊗K〈u,v〉V,
(
Z ⊗K〈u,v〉 V

)
a

= Za⊗K〈u,v〉V, all x ∈ Q0, α ∈ Q1,

is a representation embedding. We say that (Q, R) is wild if the correspond-
ing path algebra is wild.

Let (Q, R) be a quiver with relations defined over B and Q′ a subquiver
of Q. Suppose r =

∑
p app is a relation in Q. We define the restriction

r|Q′ of r to Q′ by r|Q′ =
∑

p in Q′
app. In particular, if the initial or the

final vertex of r is not in Q′ then r|Q′ = 0. Denote by R|Q′ the collec-

tion
{
r|Q′ : r ∈ R, r|Q′ 6= 0

}
of relations in Q′. If V is a representation of

(Q′, R|Q′) over B then, following [6], we define the extension-by-zero repre-

sentation Ṽ of (Q, R) over B by

Ṽx =

{
Vx, x ∈ Q′
0, otherwise

Ṽa =

{
Vα, α ∈ Q′
0, otherwise

for every vertex x and every arrow α inQ. It is not difficult to see that the cor-
respondence V 7→ Ṽ defines a full and faithful functor from (Q′, R|Q′)-repB
to (Q, R)-repB. This implies the following result.

Theorem 1.3. Let Q be a quiver and R a set of relations defined over K in
Q. Suppose Q′ is a subquiver of Q such that (Q′, R|Q′) is wild. Then (Q, R)
is wild.

Given V ∈ Q-repB, we define supp(V ) to be the subquiver of Q contain-
ing all the vertices x ∈ Q0 and all the arrows α ∈ Q1 such that Vx 6= 0
and Vα 6= 0. Then the essential image of the extension-by-zero functor from
(Q′, R|Q′)-repB to (Q, R)-repB coincides with the class of those represen-
tations V such that supp(V ) ⊂ Q′. We will use this fact in the proof of
Theorem 1.5.



REPRESENTATION TYPE OF BOREL-SCHUR ALGEBRAS 7

Next we discuss the behaviour of representation type under coverings of
quivers. Let Q be a quiver equipped with an action of a finite group G.
Denote by φ the canonical projection Q → Q/G. In that situation one says
that Q is a regular covering of Q/G. Given a representation V of Q we define
the representation φ∗V of Q/G by

φ∗(V )xG :=
⊕
g∈G

Vxg, φ∗(V )αG =
∑
g∈G

εyg ◦ Vαg ◦ πxg,

for every xG ∈ Q/G and every arrow x
α−→ y in Q, where πz and εz are,

respectively, the canonical projections and inclusions associated with the
direct sum decomposition.

The group G induces an action on the category of finite dimensional rep-
resentations of Q as follows. Given such a representation V and g ∈ G we
define

(g∗V )x = Vxg−1, (g∗V )α = Vαg−1 : (g∗V )x = Vxg−1 → (g∗V )y = Vyg−1.

For the convenience of the reader we restate [11, Lemma 3.5]

Theorem 1.4 ([11]). Let Q be a quiver and G a group acting freely on
Q. Suppose that V is a finite dimensional indecomposable representation
of Q over K such that g∗V 6∼= V , for every g ∈ G, g 6= 1G. Then φ∗V
is indecomposable. Moreover, if U 6∼= V is a representation of Q such that
φ∗U ∼= φ∗V , then there is g ∈ G, g 6= 1G, such that g∗V ∼= U .

Let G be a finite group acting freely on Q. Then for every vertices x,
y ∈ Q, path p : xG → yG in Q/G, and g ∈ G there is a unique element
g′ ∈ G such that there is a (unique) path pg : xg → yg′ in Q that lifts p.
Notice that the correspondence g 7→ g′ defines a bijective map σp : G → G.
For each relation r =

∑
p∈J

app in Q/G we define the set of relations rG in Q
by

rG :=
{ ∑

p∈J
appg

∣∣∣ g ∈ G}.
It is not difficult to see that if V is a representation of (Q, rG) then φ∗V is a
representation of (Q/G, r). More generally, if R is a set of relations in Q/G
and we define RG =

⋃
r∈R

rG, then for every representation V of (Q, RG), the

representation φ∗V of Q/G satisfies the relations in R.
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The next theorem will be used to prove wildness of some quivers with
relations. We say that a wild quiver with relations (Q, S) is minimal wild if
(Q′, S|Q′) is not wild for every proper subquiver Q′ of Q.

Theorem 1.5. Let Q be a finite quiver, G a group acting freely on Q, and
S a set of relations in Q/G. Suppose there is a subquiver Q′ of Q such that

• (Q′, SG|Q′) is minimal wild;
• there is no non-trivial g ∈ G that fixes Q′;
Then the quiver (Q/G, S) has wild representation type.

Proof : Let Z be a representation of (Q′, SG|Q′) over K 〈u, v〉 such that the
functor Z ⊗K〈u,v〉− is a representation embedding. Recall that we denote by

·̃ the extension-by-zero functor. It is clear that the functors φ∗◦(Z̃⊗K〈u,v〉−)

and (φ∗Z̃)⊗K〈u,v〉− are naturally isomorphic. Thus to show that (Q/G, S) is

wild it is enough to check that φ∗◦(Z̃⊗K〈u,v〉−) is a representation embedding.
Since (Q′, SG|Q′) is minimal wild, the support of Z, and thus also the

support of Z̃, coincides with Q′.
Let X be an indecomposable K 〈u, v〉-module. Denote Z̃ ⊗K〈u,v〉 X by

X. Then supp
(
X
)

= supp
(
Z̃
)

= Q′ and so supp(g∗X) = supp(X)g−1 6=
supp(X) unless g = eG. In particular, g∗X 6∼= X. Thus, by Theorem 1.4, the
representation φ∗X of (Q/G, S) is indecomposable.

Now let Y be another indecomposable K 〈u, v〉-module not isomorphic to

X. We write Y for Z̃ ⊗K〈u,v〉 Y . Then X 6∼= Y since Z̃ ⊗K〈u,v〉 − is a repre-

sentation embedding. Therefore, by Theorem 1.4, the representations φ∗X
and φ∗Y of (Q/G, S) are isomorphic if and only if there is g 6= eG such that
g∗X ∼= Y . But then

supp(Z̃) = supp(Y ) = supp(g∗X) = supp(X)g−1 = supp(Z̃)g−1,

which contradicts the already proved assertion that supp(Z̃)g 6= supp(Z̃) for
g 6= eG. This finishes the proof of the theorem.

Let (Q, R) be a quiver with relations and A the corresponding basic algebra.
Suppose Q′ is a subquiver of Q. Denote by e the idempotent of A given by∑

x∈Q′ ex. Then eAe is a basic algebra. It is not true in general that the
quiver of eAe is Q′. We say that Q′ is convex if every path in Q connecting
two vertices in Q′ completely lies in Q′. Notice, that a convex subquiver is
always full.
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Proposition 1.6. Let (Q, R) be a quiver with relations defined over K, and
Q′ a convex subquiver of Q. Then Q′ is the quiver of the basic algebra eAe,
where A = KQ/ 〈R〉 and e =

∑
x∈Q′ ex.

Proof : The algebra eAe is K-spanned by the paths in Q that start and end
in Q′. As Q′ is convex all these paths lie inside Q′. Thus eAe is generated
as a ring by arrows in Q′. Every arrow of Q′ lies in the radical of A and so
is nilpotent. Hence it also lies in the radical of eAe. Similarly every path of
length no less than two with start and end in Q′ lies in the rad2(eAe). This
shows that rad(eAe)/ rad2(eAe) is generated by the arrows in Q′, i.e. that
Q′ is the quiver of the basic algebra eAe.

2. Borel-Schur algebras
In this section we introduce Schur and Borel-Schur algebras and establish

some basic facts about these algebras.
Let n and r be arbitrary fixed positive integers. Consider the general linear

group GLn(K) and denote by B+ the Borel subgroup of GLn(K) consisting
of all upper triangular invertible matrices. The general linear group GLn(K)
acts on Kn by multiplication. So GLn(K) acts on the r-fold tensor product
(Kn)⊗r by the rule g(v1 ⊗ · · · ⊗ vr) = gv1 ⊗ · · · ⊗ gvr, all g ∈ GLn(K),
v1, . . . , vr ∈ Kn. Let

ρn,r : KGLn(K)→ EndK((Kn)⊗r)

be the representation afforded by (Kn)⊗r as a KGLn(K)-module. Then
ρn,r(KGLn(K)) is a subalgebra of EndK((Kn)⊗r).

Definition 2.1. The algebra ρn,r(KGLn(K)) is called the Schur algebra for
n, r and K and is denoted by SK(n, r), or simply S(n, r). The Borel-Schur
algebra S+(n, r) = S+

K(n, r) is the subalgebra ρn,r(KB+) of the Schur algebra.

To describe a standard basis for S(n, r) we need some combinatorics. We
start by summarizing the terms we use.

• Σr is the symmetric group on { 1, . . . , r }.
• I(n, r) = { i = (i1, . . . , ir) | is ∈ Z, 1 ≤ is ≤ n, for all s }. The ele-

ments of I(n, r) are called multi-indices.
• Λ(n, r) = {λ = (λ1, . . . , λn) | λt ∈ Z, 0 ≤ λt (t = 1, . . . , n),

∑n
t=1 λt = r}

is the set of all compositions of r into n parts.
• i ∈ I(n, r) has weight λ ∈ Λ(n, r) if λt = # { 1 ≤ s ≤ r | is = t},
t = 1, . . . , n.
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• E denotes the dominance order on Λ(n, r), that is α E β if
∑s

t=1 αt ≤∑s
t=1 βt, for all 1 ≤ s ≤ n.

• For i, j ∈ I(n, r), i ≤ j means is ≤ js, s = 1, . . . , r, and i < j means
i ≤ j and i 6= j. Obviously, if i has weight µ and j has weight λ, then
i ≤ j implies λ E µ.

The symmetric group Σr acts on the right of I(n, r) and of I(n, r)×I(n, r),
respectively, by

iσ = (iσ(1), . . . , iσ(r)) and (i, j)σ = (iσ, jσ), all i, j ∈ I(n, r), σ ∈ Σr.

Note that i, j ∈ I(n, r) are in the same Σr-orbit if and only if they have
the same weight. Therefore the Σr-orbits on I(n, r) are identified with the
elements of Λ(n, r). We denote by Σi the stabilizer of i in Σr, that is Σi =
{σ ∈ Σr | iσ = i }. We write Σi,j = Σi ∩ Σj, all i, j ∈ I(n, r).

To each pair (i, j) ∈ I(n, r) × I(n, r) one can associate an element ξi,j of
S(n, r) (see [14]). These elements satisfy ξi,j = ξk,` if and only if (i, j) and
(k, `) are in the same Σr-orbit of I(n, r) × I(n, r). Fix a transversal Ω(n, r)
for the action of Σr on I(n, r)× I(n, r). Then the set { ξi,j | (i, j) ∈ Ω(n, r)}
is a basis of S(n, r) over K. It is also well known (see [13]) that S+(n, r) =
K { ξi,j | i ≤ j, (i, j) ∈ Ω(n, r)}.

A formula for the product of two basis elements is the following (see [13]):
ξi,jξk,h = 0, unless j and k are in the same Σr-orbit, and

ξi,jξj,h =
∑
σ

[Σiσ,h : Σiσ,j,h] ξiσ,h (2.1)

where the sum is over a transversal {σ} of the set of all double cosets Σi,jσΣj,h

in Σj, and Σiσ,j,h = Σiσ,h ∩ Σj.
If i has weight λ ∈ Λ(n, r), we write ξi,i = ξλ. Then 1S(n,r) =

∑
λ∈Λ(n,r) ξλ

is an orthogonal idempotent decomposition of 1S(n,r).
It was shown in [19] that the algebra S+(n, r) is a basic algebra. The

idempotents ξλ , λ ∈ Λ(n, r), are primitive in S+(n, r). The quiver Q of
S+(n, r) was de facto determined in [19, Theorem 5.4]. The vertices of Q
correspond to the primitive idempotents ξλ, and so Q0 can be identified with
Λ(n, r). If charK = 0, the quiver Q contains an arrow from the vertex λ to
the vertex µ if and only if, for some positive integer s, we have µ − λ = γs,
where γs = (0, . . . , 1,−1, . . . , 0) with 1 at the sth position. If charK = p,
such an arrow exists if and only if there are integers s ≥ 1 and d ≥ 0 such that
µ− λ = pdγs. Notice that for such λ and µ the vector space ξµS

+(n, r)ξλ is
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one-dimensional and is spanned by the element ξ`(λ(s,pd)),`(λ), where `(λ) and

`(λ(s, pd)) ∈ I(n, r) are the standard elements

`(λ) = (1, . . . , 1︸ ︷︷ ︸
λ1

, . . . , n, . . . , n︸ ︷︷ ︸
λn

),

`(λ(s, pd)) = (1, . . . , 1︸ ︷︷ ︸
λ1

, . . . , s, . . . , s︸ ︷︷ ︸
λs+pd

, s+ 1, . . . , s+ 1︸ ︷︷ ︸
λs+1−pd

, . . . , n, . . . , n︸ ︷︷ ︸
λn

).

A similar result holds in characteristic 0, with pd replaced by 1. It should
also be mentioned that the sets{

ξ`(λ(s,1)),`(λ)

∣∣ 1 ≤ s ≤ n− 1
}
, if charK = 0,

{
ξ`(λ(s,pd)),`(λ)

∣∣ 1 ≤ s ≤ n− 1; 1 ≤ pd ≤ λs+1

}
, if charK = p,

(2.2)

are minimal sets of S+(n, r)-generators of rad S+(n, r)ξλ (see [19, Theo-
rem 4.5]). In [8] we determined the relations for the quiver Q of S+(2, r).
If charK = 0, Q is of type Ar+1 and KQ ' S+(2, r). Suppose now that
charK = p. For every λ, µ ∈ Λ(2, r) such that µ− λ = (pd,−pd), we denote
by αd,λ the arrow from λ to µ in Q. We say that αd,λ is of type αd. Notice
that every vertex in Q has at most one incoming and at most one outgoing
arrow of type αd. This implies that to specify a path in Q it is enough to
indicate the starting vertex and the types of arrows in the path. For ex-
ample (α0α1)(a,b) will denote the path α0,(a+p,b−p)α1,(a,b). It is also natural
to abbreviate the repeated types with the usual power notation. With these
conventions, the relations for S+(2, r) as quotient algebra of the path algebra
of Q can be written as

(αsαt)λ = (αtαs)λ, λ2 ≥ ps + pt, s 6= t

(αps)λ =0, λ2 ≥ ps+1.

Proposition 2.2. For every m ≤ n and s ≤ t there is an idempotent e in
S+(n, t) such that

eS+(n, t)e ∼= S+(m, s).

Proof : It is enough to consider the cases n = m + 1, t = s and n = m,
t = s + 1. The case n = m + 1, t = s was treated in Section 5 of [8]. For
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n = m and t = s+ 1, we define

e =
∑

λ∈Λ(n,s+1): λ1≥1

ξλ.

For each i = (i1, . . . , is) ∈ I(n, s), write ı̄ = (1, i1, . . . , is) ∈ I(n, s+ 1). Note
that, for i, j, k, ` ∈ I(n, s), we have that (i, j) and (k, `) are in the same
Σs-orbit of I(n, s) × I(n, s) if and only if (̄ı, ̄) and (k̄, ¯̀) are in the same
Σs+1-orbit of I(n, s+ 1) × I(n, s + 1). So there is an injective linear map
φ : S+(n, s)→ S+(n, s+ 1) defined by φ(ξij) = ξı̄,̄. It is easy to see that the
image of φ coincides with eS+(n, s+ 1)e, and that φ(1) = φ(

∑
λ∈Λ(n,s) ξλ) =

e. Next we verify that φ preserves products.
If j, k ∈ I(n, s) are not in the same Σs-orbit, then ̄ and k̄ are not in the

same Σs+1-orbit. Therefore ξi,jξk,` = 0 and ξı̄,̄ξk̄,¯̀ = 0 . Now fix multi-
indices i ≤ j ≤ ` in I(n, s), and consider the products ξi,jξj,` and ξı̄,̄ξ̄,¯̀ .
For each multi-index h, let h(t) = {u | hu = t }, t = 1, . . . , n. Then the
stabilizer of h is Σh(1) × · · · × Σh(n). Since we know that i ≤ j ≤ `, we
have `(1) ⊆ j(1) ⊆ i(1), and Σi,j = Σj(1) × . . . . Therefore, we can choose
a transversal {σ} of the set of double cosets Σi,jσΣj,` in Σj so that the
restriction of σ to Σj(1) is the identity. Now that we have such a transversal,
we construct from it a transversal σ̄ of the set of double cosets Σı̄,̄σ̄Σ̄,¯̀ in
Σ̄ in the following way: σ 7→ σ̄, where σ̄|̄(t) = σ|j(t)

, for t 6= 1, and σ̄|̄(1)
= id.

This can be done because j(t) = ̄(t), for t 6= 1, and Σı̄,̄ = Σ̄(1) × . . . . Now
we have

φ (ξi,jξj,`) =
∑
σ

[Σiσ,` : Σiσ,j,`] ξıσ,¯̀ , and φ (ξi,j)φ (ξj,`) =
∑
σ

[
Σı̄ σ̄,¯̀ : Σı̄ σ̄,̄,¯̀

]
ξı̄ σ̄,¯̀.

But ı̄σ̄ = (1, iσ(1), . . . , iσ(s)) = ıσ. Also, if we write Σiσ,` = Σ`(1) × X and
Σiσ,j,` = Σ`(1) × Y , then Σı̄σ̄,¯̀ = Σ¯̀(1) ×X and Σı̄σ̄,̄,¯̀ = Σ¯̀(1) × Y . Therefore

[Σiσ,` : Σiσ,j,`] =
[
Σı̄σ̄,¯̀ : Σı̄σ̄,̄,¯̀

]
for all σ in the transversal.

3. Borel-Schur algebras of wild representation type
In this section we will show that all the Borel-Schur algebras of infinite

type, excluding the algebras S+(2, 5) over fields of characteristic 3 and the
algebras S+(3, 2) over fields of arbitrary characteristic, are indeed wild.
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3.1. The algebra S+(3, 3). In this subsection we prove that the algebra
S+(3, 3) has wild representation type. By Propositions 1.2 and 2.2, this
implies that the algebras S+(n, r) are wild for all n ≥ 3 and r ≥ 3.

Consider the subset X of Λ(3, 3) marked by the black dots below

030• 120• 210◦ 300◦
021• 111• 201•

012◦ 102◦
003◦

Let Q denote the quiver of S+(3, 3) and write Q′ for the subquiver of Q
spanned by X. Since existence of an arrow α : λ → µ in Q implies that µ
dominates λ, we get that the subquiver Q′ is convex. Hence by Proposi-
tion 1.6, Q′ is the quiver of the basic algebra eS+(3, 3)e for e =

∑
λ∈X ξλ.

If charK = 2, Q′ has the form

030 120ξ122,222
// ]]

ξ122,123

111 ξ113,123 201// ,//
ξ123,223

021

ξ222,223

]]

ξ113,223

33

(3.1)
where we labelled arrows by the corresponding basis elements of eS+(3, 3)e.
Notice that (3.1) does not contain any path of length greater than or equal
to 3 . By direct computation we have that ξ122,123ξ123,223 6= ξ122,222ξ222,223

and ξ113,123ξ123,223 = 0 in S+(3, 3), and so also in eS+(3, 3)e. Therefore the
category eS+(3, 3)e-mod is equivalent to the category (Q′, ξ113,123ξ123,223)-rep.
Denote by Q′′ the quiver obtained from Q′ by removing the arrow ξ113,123.
Since the path ξ113,123ξ123,223 does not belong to Q′′, we get that Q′′-rep
embeds into (Q′, ξ113,123ξ123,223)-rep. Now Q′′ is a quiver without relations
and oriented cycles. Moreover it is neither a Dynkin nor an extended Dynkin
diagram. Therefore Q′′ is wild. Hence also (Q′, ξ113,123ξ123,223) and eS+(3, 3)e
are wild. This shows that S+(3, 3) is wild when charK = 2.
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When charK ≥ 3 the quiver Q′ defined above has the form

030 120ξ122,222
//]]

ξ122,123

111 ξ113,123 201// .//
ξ123,223

021

ξ222,223

]]

(3.2)
We have again ξ122,123ξ123,223 6= ξ122,222ξ222,223 in S+(3, 3). Therefore eS+(3, 3)e
is hereditary in this case. As (3.2) is not of Dynkin type we conclude that
eS+(3, 3)e and, hence, also S+(3, 3) have wild representation type.

3.2. The algebra S+(4, 2). We consider now the algebra S+(4, 2) and show
that it has wild representation type if the characteristic of the base field K
is p ≥ 3. In view of Proposition 1.2 and Proposition 2.2, this will imply that
the algebras S+(n, r) are wild for all n ≥ 4, r ≥ 2, and charK ≥ 3.

We consider the idempotent

e = ξ24,24 + ξ23,23 + ξ12,12

in S+(4, 2), and write A = eS+(4, 2)e. We are going to compute the quiver
of A. It has three vertices corresponding to the primitive idempotents ξ12,12,
ξ23,23, ξ24,24. Now, to obtain a basis of rad A, note that

ξ23,23Aξ24,24 = Kξ23,24, ξ12,12Aξ24,24 = Kξ12,24 ⊕Kξ12,42,

ξ12,12Aξ23,23 = Kξ12,23 ⊕Kξ12,32.

So { ξ23,24, ξ12,24, ξ12,42, ξ12,23, ξ12,32 } is a basis of rad A. On the other hand,

ξ12,23ξ23,24 = ξ12,24, ξ12,32ξ23,24 = ξ12,42,

which implies that rad2A has basis {ξ12,24, ξ12,42 }. Thus A is the path algebra
of the quiver

oo__��

(3.3)

without relations. Since (3.3) is neither a Dynkin nor an extended Dynkin
diagram, it has wild representation type. Hence the algebra S+(4, 2) is wild.
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3.3. The algebras S+(2, r). Let p be the characteristic of the base field. In
this section we show that S+(2, p+ 1) has wild representation type if p ≥ 5,
and that the same result holds for S+(2, 4) if p = 2, and for S+(2, 6) if p = 3.
In Section 5 we will prove that S+(2, 5) has tame representation type if p = 3.
By Propositions 1.2 and 2.2, this completes the classification of all algebras
S+(2, r) of infinite representation type.

We change slightly the notation introduced in Section 2, namely we write
α for α0, β for α1, and γ for α2, for the types of arrows in the quiver of
S+(2, r). This is convenient since the types αs with s ≥ 3 will not appear
in this section. Further, we will identify compositions λ = (λ1, λ2) ∈ Λ(2, r)
with λ2. This will not create an ambiguity, since r will be fixed in each
particular case and λ1 = r − λ2.

3.3.1. The algebra S+(2, p + 1) over a field of characteristic p ≥ 7. We
described the quiver Q of S+(2, p+ 1) and the corresponding relations R in
Section 2. Denote by Q′ the subquiver

4
•αoo

32

αoo
1

αoo
0

αoo

p+1p

α
oo

p−1

α
oo

p−2

α
oo

β

��

β

��

(3.4)
of Q. We used here the fact that charK ≥ 7, as otherwise different vertices
in (3.4) would have the same labels in Λ(2, p+1), and so (3.4) would not be a
subquiver of Q. Now, charK ≥ 7 implies that the sets of relations (α)pλ|Q′ and
(β)pλ|Q′ are empty for all λ ∈ Q′0. Hence R|Q′ = {(βα)p+1 − (αβ)p+1}. The
pair (Q′, R|Q′) is isomorphic to the XXVIIIth quiver in Ringel’s list in [17]
of minimal wild quivers with one relation. By Proposition 1.3, we get that
S+(2, p+ 1) is wild over a field of characteristic no less than 7.
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3.3.2. The algebra S+(2, 6) over a field of characteristic 5. The quiver Q of
the algebra S+(2, 6) over a field of characteristic 5 is given by

5

α 6oo
α

4oo
α

3oo
α

2ooα1 oo
α0

oo

β

ii

β

uu

(3.5)
and the corresponding relations areR =

{
(α5)6 , (α5)5 , (αβ − βα)6

}
. Next

we consider the quiver Q̃

3′′2′′

α
oo1′′

α
oo

0′′

α
�� ��β

5′′4′′

α
oo3′

α
oo2′

α
oo1′

α
oo

0′

α
����β

5′4′

α
oo

α

OO��

6′′

βα

����

6′

βα

�� (3.6)

with a free action of the symmetric group Σ2 given by interchanging ′ with ′′.
The quiver (3.5) is the quotient of (3.6) under this action when we identify
the orbit {s′, s′′} with the vertex s of the quiver (3.5). As the quotient map
preserves the types of arrows, we get that

RΣ2
=
{

(α5)6′ , (α
5)6′′ , (α

5)5′ , (α
5)5′′ , (αβ − βα)6′ , (αβ − βα)6′′

}
.

Denote by Q̃′ the subquiver

4′

α
oo3
′′2′′

α
oo1′′

α
oo

0′′

α
�� ��β

5′′4′′

α
oo3′

α
oo ��

6′′

βα

�� (3.7)

of Q̃. As Q̃′ does not contain paths of type α5 and 6′ 6∈ Q̃′0, we get that

RΣ2
|
Q̃′

= { (αβ − βα)6′′} .
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The pair (Q̃′, RΣ2
|
Q̃′

) is isomorphic to the XVIIIth quiver in Ringel’s list

in [17] of minimal wild quivers with one relation. By Theorem 1.5, the
quiver (Q, R) is wild. This shows that S+(2, 6) has wild representation type
over fields of characteristic 5.

3.3.3. The algebra S+(2, 6) over a field of characteristic 3. In this section
we show that if the base field has characteristic 3 then the algebra S+(2, 6)
is wild. The quiver Q of S+(2, 6) is

α

6oo
α

54oo
α

3oo
α

2oo
α

1oo
α

0oo

β

��

β

ZZ

β

��

β

ZZ

(3.8)

and the corresponding relations are

R :=
{

(α3)6 , (α3)5 , (α3)4 , (α3)3 ,

(αβ − βα)6 , (αβ − βα)5 , (αβ − βα)4 } .

Let us consider the quiver Q̃

α

5′′4′′oo
α

3′′ooα

2′
ooα

1′
ooα

0′
oo��

β

α

ooα

2′′1′′
ooα

0′′
oo ��

β β

��

β

��

��

β

α 5′4′oo
α

3′oo

β

�� oo α

6′′

β
�� oo α 6′

β

��

(3.9)

with the action of Σ2 given by swapping ′ and ′′. The quotient Q̃/Σ2 is
isomorphic to the quiver (3.8) and the canonical projection preserves the
types of arrows. Therefore

RΣ2
=
{

(α3)s′ , (α3)s′′ , (αβ − βα)t′ , (αβ − βα)t′′
∣∣ 3 ≤ s ≤ 6, 4 ≤ t ≤ 6

}
.
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We consider the following subquiver Q̃′ of (3.9)

��

β
0′

α 3′

2′′
ooα

1′′
oo ��

β

α 4′′

3′′
ooα

2′
oo��

β

α 5′4′oo oo α 6′

β

��

(3.10)

As Q̃′ does not contain any path of type α3 and contains only one square with
the border paths of types αβ and βα, we get that R|

Q̃′
= { (αβ − βα)6′ }.

The quiver with relations (Q̃′, R|
Q̃′

) is isomorphic to the XXIXth quiver in

Ringel’s list of minimal wild quivers with one relation provided in [17]. From
Theorem 1.5, we conclude that (Q, R) is wild. This implies that S+(2, 6) is
wild over a field of characteristic 3.

3.3.4. The algebra S+(2, 4) over a field of characteristic 2. The last algebra
to be analyzed in this section is S+(2, 4) over a base field of characteristic 2.
We will show that this algebra is wild.

Given a quiver Q, the associated separated quiver sp(Q) is the quiver with
the set of vertices { v′, v′′ | v ∈ Q0} and arrows ε̄ : v′ → w′′ for every ε : v → w
in Q. Let R be any set of relations for Q. According to Gabriel (see [9])
the category of representations of sp(Q) is equivalent to the category of
representations of (Q, R) whose Loewy length does not exceed 2. From this
and from the classification of tame hereditary quivers it follows that if (Q, R)
is tame then sp(Q) is a union of Dynkin and extended Dynkin diagrams.

The quiver of the algebra S+(2, 4) over a base field of characteristic 2 is

α 4.3oo
α2

oo
α

1ooα0 oo��

β

��

β

γ

ZZ ZZ

β



REPRESENTATION TYPE OF BOREL-SCHUR ALGEBRAS 19

The corresponding separated quiver has three connected components: two
isolated vertices 0′, 4′′, and

1′

0′′
&& xx

2′

1′′&& OO

3′.

2′′
xx&&4′

OO

3′′ xx

Since the above quiver is neither Dynkin nor extended Dynkin diagram, we
conclude that S+(2, 4) is wild if the characteristic of the base field is 2.

4. Tame representation type: the degeneration technique
and S+(3, 2).

We proved in [8] that the Borel-Schur algebra S+(3, 2) has infinite repre-
sentation type (independently of the characteristic of the ground field K).
The aim of this section is to show that S+(3, 2) is tame. For this we will use
degeneration techniques developed by Gabriel in [10] and by Geiss in [12].

Given a vector space V , denote by alg(V ) the variety of associative algebra
structures with identity on V . Each such structure is determined by the
multiplication map µ : V ⊗V → V . Hence we can consider alg(V ) as a subset
of the affine space HomK(V ⊗ V, V ). The group GL(V ) acts on HomK(V ⊗
V, V ) by gµ = g ◦ µ ◦ (g−1 ⊗ g−1), all g ∈ GL(V ). This action preserves
alg(V ).

A product µ0 ∈ alg(V ) is called a degeneration of µ ∈ alg(V ) if µ0 lies in
the Zariski closure of the GL(V )-orbit of µ.

We will use the following result proved in [12].

Theorem 4.1 ([12]). Let µ0 be a degeneration of µ in alg(V ). If µ0 is not
wild, then the same holds for µ.

One way to construct a degeneration of µ ∈ alg(V ) is as follows. Fix a
basis { v1, . . . , vm } of V , such that v1 is the identity element for µ. Then µ
determines the multiplication constants γkhl by

µ(vh ⊗ vl) =
m∑
k=1

γkhlvk.

Suppose we have a function φ : {1, . . . ,m} → N such that φ(k) − φ(h) −
φ(l) ≥ 0, for every triple (h, l, k) satisfying γkhl 6= 0. We also assume that
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φ(1) = 0. For each t ∈ K∗, define the linear isomorphism gt : V → V by
gt(vh) = tφ(h)vh, h = 1, . . . ,m. Then we obtain another algebra with the
product µt := gtµ satisfying

(µt)(vh ⊗ vl) = gt
(
µ(g−1

t vh ⊗ g−1
t vl)

)
=

m∑
k=1

tφ(k)−φ(h)−φ(l)γkhlvk.

Since φ(k) − φ(h) − φ(l) ≥ 0 if γkhl 6= 0, we can substitute t by 0 in this
formula. We obtain a new product µ0 which is well defined. It follows from
the associativity of the products µt for t 6= 0 that µ0 is associative. Since
φ(1) = 0, it is easy to check that v1 is the identity for µ0. Let G be the
subgroup {gt|t ∈ K∗} of GL(V ). Then µ0 is in the Zariski closure of Gµ.
Henceforth it is also in the Zariski closure of GL(V )µ.

Now we apply this technique to the algebra S+(3, 2). Its quiver depends
on the characteristic of the base field:

(a) charK = 2 (b) charK 6= 2

002

011
ξ23,33

]]

ξ22,23

]]020 110ξ12,22
// 200ξ11,12

//

101

ξ13,23
//

ξ12,13

]]

ξ22,33

LL

ξ11,22

""

002

011

ξ23,33

]]
ξ22,23

]]020 110ξ12,22
// 200ξ11,12

//

101

ξ13,23
//

ξ12,13

]]

(4.1)

Next we compute the multiplication table for S+(3, 2) with respect to the
ξ-basis
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Multiplication at (1, 0, 1) Multiplication at (0, 1, 1)

ξ13,23 ξ13,33 ξ23,33

ξ11,13 ξ11,23 2ξ11,33 ξ11,23 2 ξ11,33

ξ12,13 ξ12,23 ξ12,33 ξ12,32 ξ12,33

ξ12,23 ξ12,33

Multiplication at (0, 2, 0) ξ13,23 ξ13,33

ξ22,33 ξ22,23 ξ22,23 2 ξ22,33

ξ11,22 ξ11,33 ξ11,23

ξ12,22 ξ12,33 ξ12,23 + ξ12,32

Multiplication at (1, 1, 0)

ξ12,23 ξ12,33 ξ12,13 ξ12,22 ξ12,32

ξ11,12 ξ11,23 2ξ11,33 ξ11,13 2ξ11,22 ξ11,23

Note that we do not list the trivial products ξi,jξi′,j′ = 0 in case j and i′ are
not in the same Σr-orbit, and ξi,iξi,j = ξi,j = ξi,jξj,j. Given t ∈ K∗, we define
the diagonal automorphism gt of S+(3, 2) by multiplying

ξ11,22, ξ22,33, ξ11,13, ξ12,13, ξ13,23, ξ13,33,

with t,

ξ11,33, ξ11,23, ξ12,23, ξ12,33

with t2, and by fixing all the other basis elements. The induced product
∗t coincides with the original product for all pairs of elements, except the
following ones:

ξ12,32 ∗t ξ23,33 = t2ξ12,33, ξ22,23 ∗t ξ23,33 = 2tξ22,33,

ξ11,22 ∗t ξ22,23 = tξ11,23, ξ12,22 ∗t ξ22,33 = tξ12,33

ξ11,12 ∗t ξ12,22 = 2tξ11,22, ξ11,12 ∗t ξ12,32 = t2ξ11,23

and

ξ12,22 ∗t ξ22,23 = ξ12,32 + t2ξ12,23. (4.2)

We shaded the corresponding cells in the multiplication table for S+(3, 2).
Now, by setting t = 0, we get a new product ∗0 on the vector space S+(3, 2).
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Denote the resulting algebra by B. We can identify from the multiplication
table for S+(3, 2) a basis of rad2B. Namely, every non-shaded cell in which
the basis element has coefficient 1 give an element of rad2B independently
of the characteristic of K, i.e.

ξ11,23, ξ12,23, ξ12,33, ξ13,33, ξ11,33, ξ11,13 (4.3)

are in rad2B. Now, the non-shaded cells in which the basis element has
coefficient 2 could give extra elements of rad2B if charK 6= 2. But only ξ11,33

appears in these cells and it is already in the list (4.3). One more element
of rad2B comes from (4.2), namely ξ12,32. We obtain in this way a basis of
rad2B. Taking the complement of the computed basis of rad2B inside the
basis of radB, we get that the images of

ξ11,12, ξ11,22, ξ12,22, ξ12,13, ξ22,23, ξ22,33, ξ13,23, ξ23,33

by the canonical epimorphism radB → radB/ rad2B form a basis of radB/ rad2B.
Now, it is easy to verify, that the quiver ofB coincides with the quiver (4.1)(a)
of S+(3, 2) over a field of characteristic 2. From the multiplication table we
know that the following products vanish

ξ22,23 ∗0 ξ23,33, ξ12,22 ∗0 ξ22,33, ξ11,22 ∗0 ξ22,23, ξ11,12 ∗0 ξ12,22.

Therefore, by inspecting the quiver of B, we see that B is a special biserial
algebra. By a classification result of Wald and Waschbüsch [21], we get that
the representation type of B is either finite or tame. In other words B is not
wild. Hence by Proposition 4.1, the Borel-Schur algebra S+(3, 2) does not
have wild representation type. We proved in [8] that S+(3, 2) has infinite
representation type, hence S+(3, 2) is tame.

5. Tame representation type: the algebra S+(2, 5) over a
field of characteristic 3.

To finish classifying the representation type of Borel-Schur algebras, we
need to study S+(2, 5) over a field K of characteristic 3. In this section
we show that this algebra has tame representation type. We will use a
combination of Auslander-Reiten theory and poset representation theory as
described by Ringel in [17].

Given a finite dimensional algebra A and an A-module M , the one-point ex-
tension algebra A[M ] is the matrix algebra ( A M

0 K ). This is relevant since any
Borel-Schur algebra S+(2, r) is a one-point extension algebra A[M ], where
A is isomorphic to S+(2, r − 1). To see this, let S := S+(2, r). Take the
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idempotent e = ξ(0,r) of S, and let e = 1 − e. From the relations for S (see
also [8, Lemma 6.2]), it is immediate that eSe ∼= S+(2, r − 1). As a left
S-module S can be decomposed into the direct sum Se⊕ Se. Note that, for
any (0, r) 6= λ ∈ Λ(2, r), λ dominates (0, r). Therefore eSē = 0 and hence
Se = eSe, and Se = M ⊕ Ke, where M = radSe = eSe. With this, the
product of two elements in S has precisely the form of the product in A[M ]
with A = eSe.

The representation theory of a one-point extension algebra is often closely
related to representations of a certain poset. Given a poset (P ,≤), a P-space
(V, Vp) is a vector space V together with subspaces Vp, p ∈ P , such that p ≤ q
implies Vp ⊂ Vq. A homomorphism between P-spaces (V, Vp) and (W,Wp) is
a linear map f : V → W such that f(Vp) ⊂ Wp for all p ∈ P .

Given a natural number k, we also denote by k the ordinal with k elements.
Given posets P1, . . . , Ps, we write (P1, . . . ,Ps) for their disjoint union. We
denote by N the poset consisting of four elements t1, t2 , b1, b2 with relations
t1 < bi, ti < b2 for i = 1, 2. This poset can be visualized as follows

t1

��   

t2

��

b1 b2.

Like for algebras, it is possible to define the representation type of a poset P ,
with the category of P-spaces taking the place of the category of modules. It
was proved by Nazarova in [15] that every poset has either finite, or tame, or
wild representation type, and that these possibilities are mutually exclusive.
Moreover, she characterized the wild posets.

Theorem 5.1 (Nazarova, [15]). The poset P is of wild representation type
if and only if P contains as a full subposet one of the sets (1, 1, 1, 1, 1),
(1, 1, 1, 2), (2, 2, 3), (1, 3, 4), (1, 2, 6), or (N, 5).

We call the six posets listed in this theorem Nazarova posets.
For a finite dimensional algebra A, denote by ΓA the Auslander-Reiten

quiver of A. Now consider a finite dimensional A-module M , and the functor
hM := HomA(M,−). Define ΓM to be the subquiver of ΓA whose vertices are
given by the indecomposable A-modules N with hM(N) 6= 0, and arrows are
given by the irreducible morphisms f in ΓA such that hM(f) 6= 0.
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Proposition 5.2. Let A be a finite dimensional algebra of finite represen-
tation type and M an indecomposable A-module. If dimhM(N) ≤ 1 for all
indecomposable A-modules N , then ΓM is the Hasse diagram of a poset PM .
In this case, the representation type of A[M ] coincides with the representation
type of PM .

For a proof we refer to Section 2 of [17], see also Section 2 of [18], which
discusses this in more detail. The underlying set of PM consists of the iso-
morphism classes [U ] of indecomposable A-modules U such that hM(U) 6= 0.
The partial order is defined by [U ] ≤ [V ] provided there is an irreducible
map f : U → V such that hM(f) is non-zero. With our assumptions, for ΓA
without multiple arrows, hM(f) 6= 0 if and only if hM induces an injective
map hM(U) → hM(V ). To minimize the number of symbols we write U
instead of [U ] for an element of the poset.

We apply these results to S = S+(2, 5) for K of characteristic 3. We have
seen that this is the one-point extension A[M ] with A = S+(2, 4) and where
M is the radical of Se, as described above. We have proved in [8] that
A = S+(2, 4) has finite representation type, and computed its Auslander-
Reiten quiver. We reproduce it in Figure 1. It is 90◦ clockwise rotated
for typographical reasons. The module M is framed with a circle. We also
labelled the modules in ΓM with encircled numbers for future reference, and
we will write Mt for the module in ΓM labelled with t. In Subsection 5.1 we
will prove the following:

• The modules not in ΓM are framed with dots.
• The arrows in ΓM are solid and all other arrows are dotted.

The right side of the quiver is glued to the left side along the dashed line.
The resulting poset is redrawn in Figure 2. Later we will show that this poset
has tame representation type.

Now we explain the notation we use for modules in Figure 1 as much as we
need. Once more we will write α for α0, β for α1, and λ2 for (λ1, λ2) ∈ Λ(2, 4).
As proved in [8], the quiver Q of A is of the form

α 4.3oo
α2

ooα1oo
α

0 oo��

β

``

β
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Figure 1. AR-quiver for S+(2, 4), p = 3.
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(5.1)

Figure 2. Poset PM

and A is defined by the relations α3 = 0, (βα)4 = (αβ)4. Consider the
factor algebra Ā := A/(βα)4. Note that the Ā-modules are precisely those
A-modules on which (βα)4 (hence (αβ)4) acts as zero. The algebra Ā is a
special biserial algebra, of finite type. Thus indecomposable Ā-modules (and
the corresponding A-modules) are string modules and can be described by

quivers as in [16] or in [5, Chapter II]. Consider for example
3

4 2 0
1

. This

stands for the 5-dimensional module with basis {v1, . . . , v5}. The canonical
idempotents of A act as ξ(4−t,t)vt = vt, t = 1, . . . , 4, the arrows act as follows

β4v4 = v1, α2v2 = v1, α3v3 = v2, β3v3 = v0,

and anything else acts as zero. This module has minimal generators v4, v3,
and its largest semisimple submodule is spanned by v1 and v0.
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The above string modules account for most vertices in Figure 1. We do

not need explicit descriptions of the other modules, except the module
4

3 1
0

.

It has a basis { vi | 0 ≤ i ≤ 4}, the canonical idempotents of A act again as
ξ(4−t,t)vt = vt, the arrows act as follows

β4v4 = v1, α4v4 = v3, α1v1 = v0, β3v3 = v0,

and anything else acts as zero.

5.1. Computing ΓM . To compute ΓM we use the following reduction that
simplifies calculations. Let L0 denote the (simple) socle of M and write
M̄ = M/L0. Notice that M̄ ∼= M2. We claim that the canonical projection
π : M � M̄ induces an isomorphism HomA(M̄,X) ∼= HomA(M,X), for every
indecomposable A-module X which is not isomorphic to M . Since M → M̄
is an epimorphism, the map

HomA(M̄,X)→ HomA(M,X)

f 7→ f ◦ π

is an inclusion, and its image can be identified with those θ : M → X such
that θ(L0) = 0. Suppose this map is not surjective. Then there is θ : M → X
such that θ(L0) 6= 0. As L0 is the socle of M , the map θ is injective, and
it splits, since M is injective as an A-module. As we assumed that X is
indecomposable, we must have X ∼= M , which contradicts our assumption
that X 6∼= M .

On the part of ΓA with Ā-modules one can compute h := HomA(M̄,−)
using the string module presentation (recall that Ā = A/(βα)4). We deal
now with the part involving non-string modules. For convenience, we draw
the relevant part of ΓA (recall that the labelling refers to Figure 1). It is also
convenient to include several string modules, in particular, M13, M16, M19,
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and M28.
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!!
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!!
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3 1

0

==

2
1
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(1) We exploit Auslander-Reiten sequences which have terms U , where
U is a string module and h(U) = 0. In each case, isomorphisms are
given by h(f) for a relevant irreducible map, using the fact that h is
a functor.

We start with the path from M20 via M24 to M28. Applying h to
the Auslander-Reiten sequence ending in M22 gives h(M20) ∼= h(M22),
and applying it to the Auslander-Reiten sequence ending in M24 shows
that h(M22) ∼= h(M24). The same type of argument shows that

h(M24) ∼= h(M26) ∼= h(M27).

We claim that h(M27) ∼= h(M28). Consider the Auslander-Reiten se-
quence 0 → U → Z → V → 0 ending in the module V = 2

1 . Note
that Z ∼= τ(M28). Then h(U) = 0, as the (simple) socle of U is not
a composition factor of M̄ . As well, h(V ) = 0, and hence h(Z) = 0.
This implies that h(M27) ∼= h(M28), by applying h to the Auslander-
Reiten sequence ending in M28. Using the fact that M28 is a string
module, we check that h(M28) ∼= K.

(2) Considering the Auslander-Reiten sequence starting with M19 = 3
2

gives K ∼= h(M19) ∼= h(M21). The Auslander-Reiten sequence starting
withM21 gives h(M21) ∼= h(M23), which therefore also is 1-dimensional.

(3) The Auslander-Reiten sequence ending withM25 has middle termM23.
Since h takes the end term to zero we get h(M23) ∼= h(M25). Similarly
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the Auslander-Reiten sequence starting with M17 has indecomposable
middle term M20, and h maps the end term to zero. Hence h(M17) ∼=
h(M20) ∼= K.

(4) Considering the Auslander-Reiten sequence ending in M̄ , we conclude
that h(M) ∼= h(M̄) ∼= K.

In total, for each non-string module W which is not framed, we have that
h(W ) is one-dimensional and most of the irreducible maps are taken to iso-
morphisms.

The remaining irreducible maps can be dealt with, either they are injective
between modules which are taken to K by h, or one can use the mesh relations
to deduce that h takes them to isomorphisms.

5.2. ΓM is tame. From now, we only work with the poset ΓM , and we use
the labels for elements as shown in Figure 2. Note that, since S+(2, 5) has
infinite representation type by Theorem 0.1, we know by Proposition 5.2 that
the poset ΓM is not of finite type.

Now we prove that ΓM is not wild. By Theorem 5.1, we must show that
it does not contain a Nazarova subposet. We can see directly that ΓM does
not contain five incomparable points, that is, (1, 1, 1, 1, 1) does not occur. To
exclude the other five Nazarova subposets we use some reductions.

We describe first the strategy. More generally, let P be any poset. We
wish to show that some disjoint unions (Y, Z), with Z of width no less than
2, are not full subposets of P .

For any subposet W of P , we write

CW := {s ∈ P | s is not comparable with any w ∈ W}.

If (Y, Z) is a full subposet of P , then Z is contained in CY . Denote by U
the convex hull of Y , then CY = CU . So we get that Z ⊂ CU . Moreover,
if X is any subposet of U then CU ⊆ CX and therefore CX should contain
the subposet Z. Thus if Z is of width no less than 2, we get that the same
property holds for CX . This suggests to have a list of test subsets X with
CX of width no less than 2.

So let P = ΓM . We will determine all subposets X of size 3 of the form
X = {x, y, z} with x < y < z where x, y, z are neighbours with respect to
<, and we will use this list for the strategy as above. We refer to these as
minimal triples.



30 KARIN ERDMANN, ANA PAULA SANTANA AND IVAN YUDIN

Take such X. Then, referring to the diagram, X is either “vertical”, or X
is “diagonal”, or X is at the edge, by this we mean one of the posets

{10, 13, 17}, {17, 20, 22}, {21, 23, 25},

or X is not convex and its convex hull is a set V = X ∪{w} with x < w < z.
We list now all such posets X and the corresponding CX for which CX has
width no less than 2.

(1) There are six such X which are vertical:

5
��

6
��

7
��

8
��

9
��

10
��

8
��

9
��

10
��

11
��

12
��

13
��

11 12 13 14 15 16

The corresponding subsets CX are

4

  ��
6

  

7
��

10

,

11

��
7

14

,

8
##��

11
�� ##

12
��

14
##

15
��

18

,

4
""��

6
�� ""

7
��

9
""

10
��

13
##
17

,

7

��
14

10

,

11
""��

14
""

15
��

18

(2) There are four such X which are diagonal:

15
""

16
""

20
""

19
""

19
""

20
""

22
""

21
""

21 22 24 23

The corresponding subsets CX are

22

��
14

24

,

11
""��

14
""

15
��

18

,

11
""��

14
""

15
�� ""

18 19

,

14

��
24

18
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(3) There are three posets X at the edge of P with CX of width 2:

10
��

17
��

21
""

13
""

20
""

23
��

17 22 25

The corresponding subsets CX are

8
""��

11
""��

12
��

14
""

15
��

18

,

11
""��

14
""

15
�� ""

18 19

,

14

��
24

18

(4) There are three sets Vt = Xt ∪ {wt}, for t = 1, 2, 3, for which CXt
(= CVt)

has width no less than 2:

V1 =

11
""��

14
""

15
��

18

, V2 =

13
""��

16
""

17
��

20

, V3 =

12
""��

15
""

16
��

19

For these, the corresponding subsets CVt are, respectively,

7
��

10
��

13
""��

16
""

17
��

20
""
22

""
24

,

11
""��

14
""

15
��

18

, 14 17 .

With this preparation, we can exclude Nazarova posets.
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(I) We claim that P does not have a subposet isomorphic to (1, 3, 4). Assume
for a contradiction there is a subposet (Y, Z) where Y ∼= (3) and Z ∼= (1, 4).
Let U be the convex hull of Y , so CU = CY and Z ⊆ CU . Then U contains
a minimal triple X and then CU ⊆ CX . Therefore CX contains a subposet
isomorphic to (1, 4). The only sets X in our list such that CX contains a
subposet (4) are X = {8, 11, 14}, X = {7, 10, 13}, X = {10, 13, 17}, and
X ⊂ V1, but then CX does not contain a subposet (1, 4), a contradiction.

(II) We claim that P does not have a subposet isomorphic to (2, 2, 3). Sup-
pose there is a subposet (Y, Z) with Y ∼= (3) and Z ∼= (2, 2). Let U be the
convex hull of Y , so CU = CY and Z ⊆ CU . Then U contains a minimal
triple X and then CU ⊆ CX and Z ⊆ CX so that CX contains a subposet
isomorphic to (2, 2). Our list does not contain such a minimal triple, a con-
tradiction.

(III) We claim that P does not have a subposet isomorphic to (N, 5). Assume
for a contradiction that there is a subposet (Y, Z) with Y isomorphic to (5)
and Z isomorphic to N . Let U be the convex hull of Y , so that CU = CY .
Then Y (and U) contains at least three different minimal triples X, and
CU ⊆ CX . Each of these CX must contain the same copy of N as a subposet.
From our list, the only subposets isomorphic to N which occur as subsets of
more than one of such CX are

N1 :=
14

""

15
�� ""

18 19
N2 :=

11
�� ##

12
��

14 15.

We see CN1
= {17, 20, 22, 24} and CN2

= {7, 10, 13, 17}, which are too small
to contain the subposet (5), and we have a contradiction.

(IV) We claim that P does not contain a subposet isomorphic to (1, 2, 6).
Suppose we have a subposet (Y, Z) with Y ∼= (6) and Z ∼= (1, 2). Let U be
the convex hull of Y , so that CY = CU . Assume first that U has a subposet
V of size four which is the union of two minimal triples x < y < z and
x < w < z. Then Z ⊆ CU ⊆ CV . Now, from part (4) of the list, CV has
width ≥ 2 for V1, V2 and V3 but in each case CV does not contain (1, 2), a
contradiction. This shows that U (and Y ) does not contain such a V . This
implies that Y is either “vertical” or “diagonal” (using that Y has size 6).
If Y is vertical then it can only be {4 < 6 < . . . < 18} but then CY = ∅. If
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Y is diagonal then its smallest element is 8 or 11, and then CY = ∅ as well.
This shows that no subposet isomorphic to (1, 2, 6) exists.

(V) We claim that P does not contain a subposet Y isomorphic to (1, 1, 1, 2).
If so then this contains the unique subposet of P isomorphic to (1, 1, 1, 1),
which is Z = {14, 15, 16, 17}. Then Y is the union of Z together with pre-
cisely one element s not in this set. In each case there are two distinct
elements of Z comparable with s, so that Y is not the disjoint union of (2)
with (1, 1, 1), a contradiction. �

We proved that ΓM does not contain any Nazarova subposet. So, by The-
orem 5.1, we have that ΓM is not wild. Since, by Proposition 5.2 and Theo-
rem 0.1, we know that it is not of finite type, we conclude that ΓM is tame.
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