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Abstract: We study ad-nilpotent elements in Lie algebras arising from semiprime
rings R without 2-torsion. In order to keep under control the torsion of R we in-
troduce a more restrictive notion of ad-nilpotence, pure ad-nilpotence, which is a
technical condition since every ad-nilpotent element can be expressed as an orthogo-
nal sum of pure ad-nilpotent elements of decreasing indices. This allows the torsion
inside the ring R to be more accurate. If R is a semiprime ring and a ∈ R is a pure
ad-nilpotent element of R of index n with R free of t and

(
n
t

)
-torsion for t := [n+1

2 ],
then n is odd and there exists λ ∈ C(R) such that a − λ is nilpotent of index t.
If R is a semiprime ring with involution ∗ and a is a pure ad-nilpotent element of
Skew(R, ∗) free of t and

(
n
t

)
-torsion for t := [n+1

2 ], then either a is an ad-nilpotent
element of R of the same index n (this may occur if n ≡ 1, 3 (mod 4)) or a is a
nilpotent element of index t+ 1 and R satis�es a nontrivial GPI (this may occur if
n ≡ 0, 3 (mod 4)). The case n ≡ 2 (mod 4) is not possible.

Keywords: semiprime rings, rings with involution, Lie algebras, ad-nilpotent ele-
ments.
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1. Introduction

Nilpotent derivations have been a topic of interest since the 1960's. In 1963,
Herstein showed that any ad-nilpotent element a of index n in a simple ring of
characteristic zero or greater than n gives rise to a nilpotent element a− λ for
some λ in the center of R. Moreover, he showed that the index of nilpotence of
such element is not greater than [n+1

2 ], see [12, Theorem page 84]. This result
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of Herstein was generalized by Martindale and Miers in 1983 ([17, Corollary 1])
to prime rings of characteristic greater than n. This time the nilpotent element
has the form a − λ for an element λ in the extended centroid of R. In 1978,
Kharchenko obtained in [14] an important result: all algebraic derivations of
prime rings of characteristic zero are inner for certain elements in an overring;
he extended this result to torsion-free semiprime rings in 1979, see [15]. In 1983,
Chung and Luh stated that the index of nilpotence of a nilpotent derivation
on a semiprime ring of zero characteristic is always odd (see [6] and [7]), and
in 1984 Chung, Kobayashi and Luh ([8]) proved that if R is semiprime and
charR = p > 2 then the index of nilpotence of a nilpotent derivation is of the
form n = asp

s + as+1p
s+1 + · · ·+ alp

l where 0 ≤ s ≤ l, the ai are nonnegative
integers less than p, as is odd, and as+1, . . . , al are even. Moreover, Chung in
1985 proved, for prime rings R of characteristic zero, that a nilpotent derivation
is inner and induced by a nilpotent element of an overring, see [5]. In 1992,
with di�erent techniques, Grzeszczuk showed that any nilpotent derivation in
a semiprime ring with minimal restrictions on its characteristic is an inner
derivation in a semiprime subring of the right Martindale ring of quotients of
R and is induced by a nilpotent element in such subring, see [11, Corollary 8]
and its generalization by Chuang and Lee in [4, �3].

On the other hand, when dealing with rings with involution ∗, it is natural
to study the Lie algebra of skew-symmetric elements K := Skew(R, ∗) and
the derived Lie algebra [K,K]/([K,K] ∩ Z(R)). The nilpotent derivations of
the skew-symmetric elements of prime rings with involution were studied in
the 1990's by Martindale and Miers, who showed that if R is a prime ring
with involution of zero characteristic which is not an order in a 4-dimensional
central simple Lie algebra and has some inner derivation ada with adna = 0,
then there exists an element λ in the extended centroid of R such that either
(a − λ)[n+1

2 ] = 0 or the involution is of the �rst kind and a[n+1
2 ]+1 = 0, see

[18, Main Theorem]. This result was partially extended to semiprime rings
by Lee in 2018. In his main result he proved that if R is semiprime with
involution and has no n!-torsion, then for any a ∈ K with adna(K) = 0 there
exist λ and a symmetric idempotent e in the extended centroid of R such that
(ea− λ)[n+1

2 ]+1 = 0, see [16, Theorem 1.5].

The main goal of this paper is to deepen into the description of ad-nilpotent
elements of K for semiprime rings. In the spirit of Martindale and Miers'
result [18, Main Theorem], we will obtain di�erent results about the form of



DESCRIPTION OF AD-NILPOTENT ELEMENTS IN SEMIPRIME RINGS 3

an ad-nilpotent element of K of index n depending on the equivalence class
of n modulo 4. To get such results in the semiprime context we introduce a
new concept, that of pure ad-nilpotence. We say that an ad-nilpotent element
a of index n in L := R− or K is pure if λa remains ad-nilpotent of the same
index for every λ in the extended centroid such that λa 6= 0. This is just a
technical condition, since every ad-nilpotent element of R− can be expressed
as an orthogonal sum of pure ad-nilpotent elements of decreasing indices.

As a �rst step we focus on ad-nilpotent elements of R. In this case, under
the hypothesis of pure ad-nilpotence, the condition on the torsion of the ring
can be weakened when compared with the result of Lee in [16, Theorem 1.3]:

Theorem 4.4 Let R be a centrally closed semiprime ring with no 2-torsion,
and let a ∈ R be a pure ad-nilpotent element of R of index n. Let t := [n+1

2 ]

and suppose that R is free of
(
n
t

)
-torsion and t-torsion. Then n is odd and

there exists λ ∈ C(R) such that a− λ is nilpotent of index n+1
2 .

When dealing with ad-nilpotent elements of K, we can again split them into
orthogonal sums of pure ad-nilpotent elements of decreasing indices. We study
each of these pure pieces and get precise descriptions of them depending on the
equivalence class of their indices of ad-nilpotence modulo 4.

Theorem 5.6 Let R be a centrally closed semiprime ring with involution ∗
and no 2-torsion, and let a ∈ K be a pure ad-nilpotent element of K of index
n > 1. If R is free of

(
n
t

)
-torsion and t-torsion for t := [n+1

2 ] then:

(1) If n ≡ 0 (mod 4) then at+1 = 0, at 6= 0 and atKat = 0. Moreover,
there exists an idempotent e ∈ H(C(R), ∗) such that ea = a and the
ideal generated by at is essential in eR. In addition eR satis�es the GPI
atxatyat = atyatxat for every x, y ∈ eR.

(2) If n ≡ 1 (mod 4) then there exists λ ∈ Skew(C(R), ∗) such that (a −
λ)t = 0 (a is an ad-nilpotent element of R of index n).

(3) It is not possible that n ≡ 2 (mod 4).
(4) If n ≡ 3 (mod 4) then there exists an idempotent e ∈ H(C(R), ∗) mak-

ing a = ea+ (1− e)a such that:
(4.1) If ea 6= 0 then eat+1 = 0, eat 6= 0 and eatkeat−1 = eat−1keat for

every k ∈ K. The ideal generated by eat is essential in eR and eR
satis�es the GPI atxatyat = atyatxat for every x, y ∈ eR.
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(4.2) If (1 − e)a 6= 0 then there exists λ ∈ Skew(C(R), ∗) such that
((1 − e)a − λ)t = 0 ((1 − e)a is a pure ad-nilpotent element of R
of index n).

In particular, for all n > 1 there exists λ ∈ Skew(C(R), ∗) such that (a −
λ)t+1 = 0, (a− λ)t−1 6= 0.

From these two results describing pure ad-nilpotent elements of R and of K
we easily recover Lee's results [16, Theorem 1.3 and Theorem 1.5]. Furthermore,
we also describe ad-nilpotent elements of Lie algebras of the form R/Z(R) and
K/(K ∩ Z(R)), and of their derived Lie algebras [R,R]/([R,R] ∩ Z(R)) and
[K,K]/([K,K] ∩ Z(R)).

2. Preliminaries

In this paper we will be dealing with rings R with or without involution ∗, free
of 2-torsion. When R has an involution ∗ we will consider the subsets of skew-
symmetric elements K := Skew(R, ∗) and symmetric elements H := H(R, ∗).
We will also be dealing with Lie algebras. As usual, a Lie algebra L over a
ring of scalars Φ is a Φ-module with an anticommutative bilinear product [ , ]
satisfying the Jacobi identity. Recall that the adjoint map determined by any
x ∈ L is adx(y) := [x, y] for every y ∈ L. Typical examples of Lie algebras
come from the associative setting: if R is an associative algebra over a ring of
scalars Φ, then R with product [x, y] := xy − yx is a Lie algebra denoted by
R−, and if R has an involution ∗ then K is a Lie subalgebra of R−.

2.1. A ring R is semiprime (resp. ∗-semiprime) if for every nonzero ideal (resp.
∗-ideal) I of R, I2 := {

∑
i xiyi | xi, yi ∈ I} 6= 0, and it is prime (resp. ∗-prime)

if IJ := {
∑

i xiyi | xi ∈ I, yi ∈ J} 6= 0 for every pair of nonzero ideals (resp.
∗-ideals) I, J of R. It is well known that a ring R is prime if and only if aRb 6= 0
for arbitrary nonzero elements a, b ∈ R, and it is semiprime if and only if it is
nondegenerate, i.e., aRa 6= 0 for every nonzero element a ∈ R. Moreover, if R
has an involution, the notions of semiprimeness and ∗-semiprimeness coincide.

An ideal Iα of a ring R (resp. with involution ∗) is prime (resp. ∗-prime) if
R/Iα is a prime (resp. ∗-prime) ring. If R is a semiprime ring then there exists
a family of prime ideals {Iα}α∈∆ such that

⋂
α∈∆ Iα = {0} and therefore R can

be seen as a subdirect product of prime rings. Similarly, if R is a semiprime
ring with involution ∗ there exists a family of ∗-prime ideals {Iα}α∈∆ such that
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α∈∆ Iα = {0} and therefore R can be seen as a subdirect product of ∗-prime

rings.

Moreover, if R is semiprime and free of n-torsion then the intersection of
all prime ideals Iα such that R/Iα is free of n-torsion is zero (notice that the
intersection of all the prime ideals Jα such that R/Jα has n-torsion is zero since
it contains the essential ideal nR of R). With the same argument we also have
that semiprime rings without m and n-torsion are subdirect products of prime
rings with no m nor n-torsion.

2.2. Given an ideal I of R, the annihilator of I in R is the set AnnR(I) :=
{z ∈ R | zI = Iz = 0}. The annihilator of an ideal I of R is an ideal of R.
Moreover, when R is semiprime AnnR(I) = {z ∈ R | zIz = 0} and an ideal
I of R is essential (for every nonzero ideal J of R, I ∩ J 6= 0) if and only if
AnnR(I) = 0.

2.3. Recall that the elements of the symmetric Martindale ring of quotients
Qs
m(R) can be seen as pairs q = [λ, I] where I is an essential ideal of R and

λ : I → R is a monomorphism of right R-modules (if R has an involution one
can assume that I is an essential ∗-ideal). When R has an involution ∗, this
involution can be extended to Qs

m(R) as follows: for any q = [λ, I] ∈ Qs
m(R),

q∗ := [λ∗, I] where λ∗(y) := (λ(y∗))∗ for any y in the essential ∗-ideal I.

The extended centroid C(R) of a semiprime ring R is de�ned as the center
of Qs

m(R). The extended centroid of a prime ring is a �eld (see [2, page 70]),
the set of symmetric elements of the extended centroid of a ∗-prime ring is
again a �eld (see [1, Theorem 4(a)]), and the extended centroid of a semiprime
ring is a commutative and unital von Neumann regular ring (see [2, Theorem
2.3.9(iii)]). In particular, if R is semiprime, C(R) is a semiprime ring without
nilpotent elements.

The central closure of R, denoted by R̂, is de�ned as the subring of Qs
m(R)

generated by R and C(R), i.e., R̂ := C(R)R + C(R), and can be seen as a

C(R)-algebra. Therefore we can consider R contained in R̂. Moreover, since R̂

contains R and is contained in Qs
m(R), if R is semiprime then R̂ is semiprime.

The ring R̂ is centrally closed, i.e., it coincides with its central closure. In
particular its center equals its extended centroid, Z(R̂) = C(R̂).
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If R is a centrally closed semiprime ring then R− is a Lie algebra over the
ring of scalars C(R); if in addition R has an involution ∗, then K is a Lie
algebra over H(C(R), ∗).
If R is centrally closed without 2-torsion and Skew(C(R), ∗) 6= 0 (for ex-

ample, this occurs when R is ∗-prime but not prime), then for any 0 6= λ ∈
Skew(C(R), ∗) we have R = H + K = λ2H + K ⊆ λK + K ⊆ R because
0 6= λ2 is invertible, so R = λK +K for every 0 6= λ ∈ Skew(C(R), ∗).

2.4. Since the extended centroid C(R) of a semiprime ring R is von Neumann
regular, given an element λ ∈ C(R) there exists λ′ ∈ C(R) such λλ′λ = λ
and λ′ = λ′λλ′. Let us de�ne eλ := λλ′. Then eλ is an idempotent of C(R)
satisfying eλλ = λ. If R has no k-torsion for some k ∈ N, then for k = k · 1 ∈
C(R) there exists a unique k′ ∈ C(R) such that kk′k = k, so k(k′k−1) = 0 and
k′k = 1, i.e, k′ = 1

k ∈ C(R). In particular, throughout this paper 1
2 ∈ C(R)

because R will always be a semiprime ring without 2-torsion.

Moreover, if R is a semiprime ring without 2-torsion with involution ∗ and
λ ∈ Skew(C(R), ∗), then −λ = λ∗ = (λλ′λ)∗ = λλ′∗λ, which implies that λ′

can be taken in Skew(C(R), ∗) (indeed, replace λ′ by 1
2(λ′−λ′∗)). In this case,

eλ = λλ′ ∈ H(C(R), ∗) is a symmetric idempotent of C(R).

Lemma 2.5. Let (R, ∗) be a semiprime ring with involution free of 2-torsion
and let a ∈ R. If there exist λ and µ ∈ C(R) such that a − λ and a − µ are
nilpotent then λ = µ. Moreover, if a ∈ K and λ ∈ C(R) is such that a− λ is
nilpotent, then λ ∈ Skew(C(R), ∗).

Proof : If a− λ and a− µ are nilpotent elements of the central closure R̂ of R,
a− λ− (a− µ) = µ− λ is a nilpotent element in the semiprime commutative
ring C(R). Therefore λ = µ. Now, if a ∈ K and a − λ is nilpotent then
(a − λ)∗ = −(a + λ∗) is nilpotent and therefore a + λ∗ is nilpotent, which
implies that λ = −λ∗ ∈ Skew(C(R), ∗).

We will use the following two results due to Beidar, Martindale and Mikhalev.

Theorem 2.6. ([19, Theorem 2(a)]) Let R be a prime ring. Let ai, bi ∈ R for
i = 1, 2, . . . , n with b1 6= 0 be such that

∑n
i=1 aixbi = 0 for every x ∈ R. Then

there exist λi ∈ C(R) for i = 2, . . . , n such that a1 =
∑n

i=2 λiai in R̂.

Theorem 2.7. ([2, Theorem 2.3.3]) Let R be a semiprime ring and let

a1, a2, . . . , an ∈ R. If a1 6∈
∑n

i=2C(R)ai in R̂ then there exist rj, sj ∈ R
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for j = 1, 2, . . . ,m such that
∑m

j=1 rja1sj 6= 0 and
∑m

j=1 rjaksj = 0 for
k = 2, . . . , n.

The next corollary can be found in [3]. For the sake of completeness we
include its proof here.

Corollary 2.8. Let R be a semiprime ring. Let ai, bi ∈ R for i = 1, 2, . . . , n
be such that IdR(a1) ⊂ IdR(b1) and

∑n
i=1 aixbi = 0 for every x ∈ R. Then

there exist λi ∈ C(R) for i = 2, . . . , n such that a1 =
∑n

i=2 λiai in R̂.

Proof : By Theorem 2.7, if a1 6∈
∑n

i=2C(R)ai there exist rj, sj ∈ R, j =
1, . . . ,m, such that

∑m
j=1 rja1sj 6= 0 and

∑m
j=1 rjaksj = 0 for k = 2, 3, . . . , n.

Replace x by sjx and multiply
∑n

i=1 aixbi = 0 on the left by rj. We have

0 =
n∑
i=1

m∑
j=1

rjaisjxbi =
m∑
j=1

rja1sjxb1,

which implies that the ideal generated by
∑m

j=1 rja1sj is orthogonal to the ideal
generated by b1 and therefore, since IdR(a1) ⊂ IdR(b1), the ideal generated by∑m

j=1 rja1sj has zero square, a contradiction because R is semiprime.

The following proposition is an easy generalization of [2, Theorem 2.3.9(i)].

Proposition 2.9. Let R be a centrally closed semiprime ring free of 2-torsion.
For any subset V ⊂ R there exists a unique idempotent e ∈ C(R) such that
ev = v for all v ∈ V , the annihilator in C(R) of V is AnnC(R)(V ) = (1 −
e)C(R), the annihilator in R of the ideal generated by V is AnnR(IdR(V )) =
(1− e)R, and the ideal generated by V is essential in eR. Moreover, when R
has an involution ∗ and V ⊂ H or V ⊂ K, then e ∈ H(C(R), ∗).

Proof : The �rst part of the proof follows as in [2, Theorem 2.3.9(i)] with
the obvious changes. Let V ⊂ H ∪ K and consider the unique idempotent
e ∈ C(R) such that ev = v for all v ∈ V , the annihilator in C(R) of V is
AnnC(R)(V ) = (1− e)C(R) and the annihilator in R of the ideal generated by
V is AnnR(IdR(V )) = (1− e)R. When R has an involution we can decompose
e = ek+eh with ek ∈ Skew(C(R), ∗) and eh ∈ H(C(R), ∗). We have that ev =
v implies ekv = 0. Therefore, ek ∈ AnnC(R)(V ) = (1 − e)C(R), i.e., eke = 0
and e2

k = ekeh = 0 and therefore e = e2 = (ek + eh)
2 = e2

h ∈ H(C(R), ∗).
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Lemma 2.10. Let R be a centrally closed semiprime algebra and let {ui}i∈I be
a family of idempotent elements in C(R). Suppose there exists a family {λi}i∈I
of elements in C(R) such that for every i, j ∈ I, λiuiuj = λjuiuj. Then there
exists λ ∈ C(R) such that λui = λiui for every i ∈ I. Moreover, if the ideal
generated by the family {ui}i∈I is essential in R, such λ is unique.

Proof : Let us consider the ideal S =
∑
Rui generated by the family of idem-

potents {ui}i∈I and the essential ideal T = S ⊕ AnnR(S). De�ne λ : T → R
by

λ(
∑

xiui + z) :=
∑

λixiui.

Let us prove that λ is well de�ned and an element in C(R). If
∑
xiui + z = 0

then
∑
xiui = 0 = z and for every uk we have(∑

λixiui

)
uk =

∑
λkxiuiuk = λk

(∑
xiui

)
uk = 0.

Therefore
∑
λixiui ∈ S ∩ AnnR(S) = 0 which proves that λ is well de�ned.

By construction [λ, S ⊕AnnR(S)] ∈ C(R). Moreover, if the ideal S generated
by the family {ui}i∈I is essential, AnnR(S) = 0 and [λ, S] ∈ C(R) is uniquely
de�ned.

3. Pure ad-nilpotent elements

Recall that an element a in a Lie algebra L is ad-nilpotent of index n if
adna(L) = 0 and adn−1

a (L) 6= 0.

3.1. In the particular case of L = R− (resp. L = K for a ring R with involution
∗), we say that an element a is a pure ad-nilpotent element of L of index n
if for every λ ∈ C(R) (resp., λ ∈ H(C(R)), ∗)) with λa 6= 0, λa is again

ad-nilpotent of the same index n in R̂− where R̂ is the central closure of R.

Lemma 3.2. If R is a semiprime ring and a is an ad-nilpotent element of R
of index n, the following conditions are equivalent:

(i) a is a pure ad-nilpotent element of R−.
(ii) IdR(adn−1

a (R)) is an essential ideal of IdR(a).
(iii) AnnR(IdR(adn−1

a (R))) = AnnR(IdR(a)).

Proof : Suppose that R is semiprime and centrally closed (otherwise, substitute

R by its central closure R̂).
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(i) ⇒ (ii). Let us consider V = {adn−1
a x | x ∈ R}. By Proposition 2.9

there exists e ∈ C(R) such that ev = v for every v ∈ V and AnnR(IdR(V )) =
(1 − e)R. Suppose that (1 − e)a 6= 0. By hypothesis (1 − e)a is ad-nilpotent
of index n, hence 0 6= adn−1

(1−e)a(R) = (1− e) adn−1
a (R) = 0, a contradiction. So

ea = a and AnnIdR(ea)(IdR(adn−1
a (R))) ⊂ AnnR(IdR(adn−1

a (R))) = (1 − e)R
must be zero, i.e., IdR(adn−1

a (R)) is essential in IdR(ea).

(ii)⇒ (iii). This holds in general if I and J are ideals of R with I essential
in J : 0 = AnnJ(I) = AnnR(I) ∩ J implies AnnR(I)J = 0, so AnnR(I) ⊂
AnnR(J).

(iii) ⇒ (i). Let λ ∈ C(R) be such that λa 6= 0. Clearly adnλa(R) = 0.
Suppose that adn−1

λa (R) = 0: then λn−1 adn−1
a (R) = 0, so

λn−1 ∈ AnnR(IdR(adn−1
a (R))) = AnnR(IdR(a)),

which is not possible because R is semiprime and λa 6= 0.

Lemma 3.3. Let R be a centrally closed semiprime ring with involution ∗ and
no 2-torsion, and let a ∈ K be a pure ad-nilpotent element of K of index n. If
there exists λ ∈ H(C(R), ∗) such that λa is ad-nilpotent of R of index n, then
λa is a pure ad-nilpotent element of R of index n.

Proof : Suppose on the contrary that there exists

µ ∈ H(C(R), ∗)
⋃

Skew(C(R), ∗)

such that adn−1
µλa R = 0. Then adn−1

µµλaR = 0 implies adn−1
µµλaK = 0, a contradic-

tion.

The next proposition shows that every ad-nilpotent of R− and of K can be
expressed as an orthogonal sum of pure ad-nilpotent elements of decreasing
indices.

Proposition 3.4. Let R be a centrally closed semiprime ring and let a ∈ R be
an ad-nilpotent element of R− of index n. There exists a family of orthogonal
idempotents {ei}ki=1 ⊂ C(R) such that a =

∑k
i=1 eiai with eia a pure ad-

nilpotent element of index ni in eiR for n = n1 > n2 > · · · > nk.

Similarly, if R has an involution ∗ and a is an ad-nilpotent element of K
of index n, then there exists a family of orthogonal idempotents {ei}ki=1 ⊂
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H(C(R), ∗) such that a =
∑k

i=1 eiai with eia a pure ad-nilpotent element of
index ni in Skew(eiR, ∗) for n = n1 > n2 > · · · > nk.

Proof : Let us prove the result for Lie algebras of skew-symmetric elements.
We will proceed by induction on n. If n = 2 there is nothing to prove. Let us
suppose that the result is true for every ad-nilpotent element of index less than
n and let a ∈ K be an ad-nilpotent element of index n ≥ 3. Let us consider
V = {adn−1

a x | x ∈ K}. By Proposition 2.9 there exists e ∈ H(C(R), ∗)
such that ev = v for every v ∈ V and AnnR(IdR(V )) = (1 − e)R. Then
a = ea+ (1− e)a.
Clearly, by construction (1 − e)a is ad-nilpotent of index less than n in K:

for every x ∈ K, adn−1
(1−e)a x = (1− e) adn−1

a x = adn−1
a x− e adn−1

a x = 0.

Let us prove that ea is pure ad-nilpotent of index n in Skew(eR, ∗). For
any λ ∈ H(C(R), ∗) such that λea 6= 0, λea is ad-nilpotent of index n:
clearly adnλea(Skew(eR, ∗)) = 0 and if adn−1

λea (Skew(eR, ∗)) = 0 then λn−1e ∈
AnnR(IdR(V )) = (1 − e)R, which leads to a nilpotent ideal generated by the
nonzero element λea, a contradiction with the semiprimeness of R.

Apply now the induction hypothesis to (1− e)a and the Lie algebra of skew-
symmetric elements Skew((1− e)R, ∗).

4. Ad-nilpotent elements of R

In this section we are going to prove that every nilpotent inner derivation
is induced by a nilpotent element, generalizing to semiprime rings Herstein's
result [12, Theorem page 84] for simple rings. This result was already proved
by Grzeszczuk ([11, Corollary 8]). Our techniques are rather elementary and,
by adding the hypothesis of pure ad-nilpotence, we can describe such elements
with less restrictions on the torsion of the ring.

Lemma 4.1. Let R be a semiprime ring and let a ∈ R be a nilpotent element.
Suppose that there exist some λi ∈ Z, i = 0, . . . , n, such that

n∑
i=0

λia
i[x, y]an−i = 0

for all x, y ∈ R. Then for every i = 0, . . . , n we have λia
max(i,n−i) = 0. In

particular, each term in the identity above is zero.
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Proof : First, let us suppose that R is prime and suppose that a 6= 0 has
index of nilpotence s. If the lemma is not satis�ed, there exists some k with
λka

max(k,n−k) 6= 0. In particular, max(k, n − k) < s. Let us multiply the
expression

∑n
i=0 λia

i[x, y]an−i by as−1−k on the left and by as−1−(n−k) on the
right, so that

0 = as−1−k

(
n∑
i=0

λia
i[x, y]an−i

)
as−1−(n−k) = λka

s−1[x, y]as−1

for every x, y ∈ R. Hence λka
s−1xyas−1 = λka

s−1yxas−1 for every x, y ∈ R.
Since as−1 6= 0 for every x ∈ R we have by Theorem 2.6 that there exists
αx ∈ C(R) such that λka

s−1x = αxλka
s−1. Multiplying this last expression by

a on the right we get λka
s−1xa = 0 for every x ∈ R. By primeness of R we get

that either as−1 = 0 or λka = 0, leading to a contradiction.

If R is semiprime then R is a subdirect product of prime quotients R/Iα
with

⋂
α Iα = 0. For any α and any i, by the prime case λia

max(i,n−i) ∈ Iα, so
λia

max(i,n−i) = 0.

Lemma 4.2. Every nilpotent element of a ring R is ad-nilpotent. If a has
index of nilpotence s and index of ad-nilpotence n then n ≤ 2s − 1. If R is
semiprime then n ≥ s, and if in addition R is free of

(
2s−2
s−1

)
-torsion, then the

index of ad-nilpotence of a is n = 2s− 1.

Proof : Since as = 0, for every x ∈ R we have

ad2s−1
a x =

2s−1∑
i=0

(
2s− 1

i

)
(−1)2s−1−iaixa2s−1−i = 0

because if i < s then 2s− 1− i ≥ s. Therefore n ≤ 2s− 1.

Suppose now that R is semiprime and let us see that n ≥ s: if on the contrary

ads−1
a x =

s−1∑
i=0

(
s− 1

i

)
(−1)s−1−iaixas−1−i = 0

for every x ∈ R, focusing on the �rst summand of this expression ((−1)s−1xas−1)
we get that as−1 = 0 by Lemma 4.1, a contradiction.
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Now suppose thatR is semiprime and free of
(

2s−2
s−1

)
-torsion. If ad2s−2

a (R) = 0,
then for every x ∈ R

0 = ad2s−2
a x =

(
2s− 2

s− 1

)
(−1)s−1as−1xas−1

since as = 0. By semiprimeness of R we get
(

2s−2
s−1

)
as−1 = 0 and hence as−1 =

0 by the lack of
(

2s−2
s−1

)
-torsion, a contradiction. Therefore the index of ad-

nilpotence of a is n = 2s− 1.

The next example shows that all possible cases in the lemma above can be
realized: Let p be an odd prime number and R a prime ring with characteristic
p. If a ∈ R is a nilpotent element of index s ∈ {p+1

2 , . . . , p} then a is ad-
nilpotent of index p. In particular there are no ad-nilpotent elements of index
between p + 1 and 2p − 1, and a nilpotent element of index p is ad-nilpotent
of the same index p.

Proposition 4.3. Let R be a prime ring and let a ∈ R be an ad-nilpotent
element of R− of index n. Then:

(1) If F denotes the algebraic closure of the �eld F = C(R), there exists
µ ∈ F such that a− µ is a nilpotent element.

(2) If R is free of
(
n
t

)
-torsion for t := [n+1

2 ] then n is odd and the index
of nilpotence of a − µ is n+1

2 . If in addition R is free of t-torsion then
µ ∈ C(R).

Proof : (1) Since R is prime, F = C(R) is a �eld. From

0 = adna x =
n∑
i=0

(
n

i

)
(−1)n−iaixan−i

for every x ∈ R we have, by Theorem 2.6, that a is an algebraic element of R
over F. Let us consider the minimal polynomial p(X) ∈ F(X) of a. Let F be
the algebraic closure of F and let µ1, . . . , µt ∈ F be the roots of p(X) in F, i.e.,
p(X) = (X − µ1)

k1 · · · (X − µt)kt ∈ F[X].

Let us prove that p(X) has only one root in F and therefore p(x) = (x−µ)k ∈
F[X], whence a− µ is nilpotent in F: Suppose on the contrary that p(X) has
di�erent roots µ1, . . . , µt, t > 1, and de�ne qi(X) := p(X)/(X − µi) for every
i. Since p(X) is the minimal polynomial of a, qi(a) 6= 0 in R ⊗ F. Note that
(a − µi)qi(a) = p(a) = 0 and therefore aqi(a) = µiqi(a). Now, since we are
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in the prime case, there exists y ∈ R such that q1(a)yq2(a) 6= 0 and therefore
ada(q1(a)yq2(a)) = aq1(a)yq2(a) − q1(a)yq2(a)a = (µ1 − µ2)q1(a)yq2(a) 6= 0.
This means that q1(a)yq2(a) is an eigenvector of the linear map ada associated
to the eigenvalue µ1− µ2, hence it is an eigenvector of ad2

a associated to (µ1−
µ2)

2, etc. This is a contradiction because both q1(a)yq2(a) and each power
of (µ1 − µ2) are nonzero, while ada is nilpotent. Therefore t = 1, p(X) =
(X − µ)k ∈ F[X] and (a− µ)k = 0.

(2) Let us consider b := a−µ ∈ R⊗F, which is ad-nilpotent of index n. Let
us see that n is odd: Suppose on the contrary that n = 2m. Then

0 = adna x = adnb x =
n∑
i=0

(
n

i

)
(−1)n−ibixbn−i

implies by Lemma 4.1 that
(
n
m

)
bm = 0 and, since R⊗ F is free of

(
n
m

)
-torsion,

that bm = 0. Substituting in adn−1
b x =

∑n−1
i=0

(
n−1
i

)
(−1)n−1−ibixbn−1−i we get

that adn−1
b x = 0 for every x ∈ R, a contradiction.

Therefore n is odd and a − µ is nilpotent of index t = n+1
2 by Lemma 4.2.

Moreover, since the coe�cient of degree t − 1 of p(X) = (X − µ)t ∈ F[X] is
−tµ ∈ F, if R is free of t-torsion then µ ∈ F, i.e., there exists µ ∈ C(R) such
that a− µ is nilpotent of index t = n+1

2 .

In the following theorem we get the description of the pure ad-nilpotent
elements of R−. In its proof, Proposition 4.3 is primarily used to �nd that any
ad-nilpotent element a ∈ R of index n forces [a, [adn−1

a x, [adn−1
a x, y]]] = 0 for

every x, y ∈ R. If 2, 3, . . . , r were invertible in R for r ≥ n + [n2 ] + 1, this
identity would directly follow from the proof of [10, Theorem 2.3].

Theorem 4.4. Let R be a centrally closed semiprime ring with no 2-torsion
and let a ∈ R be a pure ad-nilpotent element of R− of index n. Put t := [n+1

2 ],
and suppose that R is free of

(
n
t

)
-torsion and t-torsion. Then n is odd and

there exists λ ∈ C(R) such that a− λ is nilpotent of index n+1
2 .

Proof : Let us suppose that R is a prime ring and consider µ ∈ C(R) as given
by Proposition 4.3. Putting b := a−µ, we know that bt = 0 for t = n+1

2 , hence
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for every x, y ∈ R we have

(adn−1
a x)(adn−1

a x) = (adn−1
b x)(adn−1

b x) = 0, and

[a, [adn−1
a x, [adn−1

a x, y]]] = [b, [adn−1
b x, [adn−1

b x, y]]]

= −2

(
n− 1

t− 1

)(
n− 1

t− 1

)
[b, bt−1xbt−1ybt−1xbt−1] = 0.

If R is semiprime, R is a subdirect product of prime rings (without
(
n
t

)
and

t-torsion) and in any of these prime quotients

(adn−1
a x)(adn−1

a x) = 0 and [a, [adn−1
a x, [adn−1

a x, y]]] = 0,

which imply that

(adn−1
a x)(adn−1

a x) = 0, and [a, [adn−1
a x, [adn−1

a x, y]]] = 0

for every x, y ∈ R. For every x ∈ R, let zx := adn−1
a x. By the identity above,

0 =
1

2
[a, [zx, [zx, y]]] = −azxyzx + zxyzxa.

Therefore, since IdR(zxa) ⊂ IdR(zx), by Corollary 2.8 there exists λx ∈ C(R)
such that zxa = λxzx and by Proposition 2.9 there exists ex ∈ H(C(R), ∗)
such that exzx = zx and AnnR(IdR(zx)) = (1− ex)R. Therefore

0 = zx adna y = zx

(
n∑
i=0

(
n

i

)
(−1)n−iaiyan−i

)
=

n∑
i=0

(
n

i

)
(−1)n−izxa

iyan−i

=
n∑
i=0

(
n

i

)
(−1)n−izxλ

i
xya

n−i = zxy

(
n∑
i=0

(
n

i

)
(−1)n−iλixa

n−i

)
= zxy(a− λx)n

for every y ∈ R, whence (a − λx)
n ∈ AnnR(IdR(zx)). So ex(a − λx)

n =
0. Now, for every x, x′ ∈ R there exist λx, λx′ ∈ C(R) and idempotents
ex, ex′ ∈ H(C(R), ∗) such that 0 = (exex′a−exex′λx)n = (exex′a−exex′λx′)n, so
exex′λx = exex′λx′ by Lemma 2.5. By Lemma 2.10 there exists λ ∈ C(R) such
that exλ = exλx for every x ∈ R. Then for every x ∈ R we have zx(a− λ)n =
exzx(a − λx)n = 0, so (a − λ)n ∈

⋂
x∈R AnnR(zx) = AnnR(IdR(adn−1

a (R))) =
AnnR(IdR(a)), because a is pure. Finally, let e ∈ C(R) be such that ea = a
and AnnR(IdR(a)) = (1− e)R. Then e(a− λ)n = (a− eλ)n = 0 because it is
contained in (1− e)R.
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Hence a − eλ is nilpotent in addition to being ad-nilpotent of index n. Put
t := [n+1

2 ] and take any prime quotient without t and
(
n
t

)
-torsion in which

a− eλ is still ad-nilpotent of index n. By Proposition 4.3(2) we get that n
must be odd and a− eλ is nilpotent of index t. Since in any prime quotient
(a− eλ)t = 0̄ by Proposition 4.3(2), we have that t is the index of nilpotence
of a− eλ.

Lee's description of ad-nilpotent elements of R− is recovered when the hy-
pothesis of being pure is removed.

Corollary 4.5. ([16, Theorem 1.3]) Let R be a centrally closed semiprime ring,
let a ∈ R be an ad-nilpotent element of R− of index n, and suppose that R is
free of n!-torsion. Then n is odd and there exists λ ∈ C(R) such that a− λ is
nilpotent of index n+1

2 .

Proof : By Proposition 3.4 there exists a family of orthogonal idempotents
{ei}ki=1 ⊂ C(R) such that a =

∑k
i=1 eia with eia a pure ad-nilpotent element

of index ni (n = n1 > n2 > · · · ) of Rei. Then by Theorem 4.4 there exists
a family of scalars {λi}ki=1 ⊂ C(R) such that (eia − λi)ti = 0 for ti := [ni+1

2 ].
Hence λ =

∑n
i=1 λi satis�es the claim.

Interesting Lie algebras associated to simple rings R are the quotient alge-
bras [R,R]/([R,R] ∩ Z(R)), which are simple unless R has 2-torsion and is
4-dimensional over its center ([13, Theorem 1.13]). Let us study ad-nilpotent
elements in these algebras.

Lemma 4.6. Let R be a semiprime ring and let a ∈ R be such that adna(R) ⊂
Z(R). Then adna(R) = 0.

Proof : For every x ∈ R we have

0 = [adna(xa), x] = [(adna x)a, x] = (adna x)[a, x].

Therefore 0 = adn−1
a ((adna x)[a, x]) = (adna x)2 which implies, since R is semi-

prime and adna x ∈ Z(R), that adna x = 0.

Lemma 4.7. Let R be a centrally closed semiprime associative ring, let L :=
[R,R]/([R,R]∩Z(R)) and let a := a+([R,R]∩Z(R)) ∈ L be an ad-nilpotent
element of L of index n. Then a is an ad-nilpotent element of index n in R−.
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Proof : For every x ∈ R, adn+1
a x = adna([a, x]) ∈ adna([R,R]) ⊂ Z(R) so, by

Lemma 4.6, adn+1
a x = 0 for every x ∈ R, i.e., a is ad-nilpotent in R− of index

n or n+ 1.

Let us suppose that R is prime. Then, by Proposition 4.3, there exists µ ∈ F,
the algebraic closure of F := C(R), such that a − µ is nilpotent in R ⊗ F of
some index s. Moreover, by Lemma 4.2, s ≤ n+ 1. Put b := a− µ. Then

0 = adna([x, y]) = adnb ([x, y]) =
n∑
i=0

(
n

i

)
(−1)n−ibi[x, y]bn−i

for every x, y ∈ R. By Lemma 4.1, for every k ∈ {0, 1, . . . , [n+1
2 ]} we have(

n
k

)
bmax(k,n−k) = 0, so

adna x = adnb x =
n∑
i=0

(
n

i

)
(−1)n−ibixbn−i = 0,

i.e., a is an ad-nilpotent element of R− of index n.

Finally, since a is ad-nilpotent of index not greater than n in any prime
quotient, a is an ad-nilpotent element of R− of index n when R is semiprime.

In particular, from these last two lemmas we get that if R is semiprime then
[R,R]/([R,R] ∩ Z(R)) and R/Z(R) are nondegenerate Lie algebras.

Corollary 4.8. Let R be a centrally closed semiprime associative ring and let
L := [R,R]/([R,R] ∩ Z(R)) or L := R/Z(R). If a ∈ L is an ad-nilpotent
element of L of index n and R is free of n!-torsion, then n is odd and there
exists λ ∈ C(R) such that a− λ is nilpotent of index n+1

2 .

Proof : If L = [R,R]/([R,R] ∩ Z(R)) the result follows by Lemma 4.7 and
Theorem 4.5. If L = R/Z(R) the result follows by Lemma 4.6 and Theorem
4.5.

5. Ad-nilpotent elements of K

In this section we focus on semiprime rings R with involution ∗ and their
set of skew-symmetric elements K. As in the previous section, we will �rst
describe the pure ad-nilpotent elements of K, and then remove the hypothesis
of being pure by decomposing each ad-nilpotent element into a sum of pure
ad-nilpotent elements of decreasing indices.
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The following lemma collects some results about ∗-identities. Item (1) is
[13, Remark on page 43] (with a di�erent proof), item (2) is a generalization
of [18, Lemma 5], and item (3) is a generalization of [3, Lemma 5.2].

Lemma 5.1. Let R be a centrally closed semiprime ring with involution ∗ and
free of 2-torsion. Let k ∈ K and h ∈ H. Then:

(1) kKk = 0 implies k = 0.
(2) hKh = 0 implies hRh ⊂ H(C(R), ∗)h. In particular, R satis�es

hxhyh = hyhxh for every x, y ∈ R,
and if IdR(h) is essential then Skew(C(R), ∗) = 0.

(3) hKh = 0 and hKk = 0 imply hRk = 0. In particular, if IdR(h)
is essential then k = 0, while if h ∈ IdR(k) then h = 0 (resp. if
k ∈ IdR(h) then k = 0).

Proof : (1) Take x ∈ R. Note that k(x− x∗)k = 0, so that kxk = kx∗k. Then

k(xkx)k = k(xkx)∗k = −kx∗kx∗k = −(kx∗k)x∗k = −kxkx∗k
= −kx(kx∗k) = −kxkxk

and so we have kxkxk = 0 since R is free of 2-torsion. Therefore kxkxkyk = 0
for every y ∈ R, hence

0 = −kxk(xky)k = −kxk(xky)∗k = kxky∗kx∗k = kxkykxk,

so (kxk)R(kxk) = 0 and kxk = 0 since R is semiprime. Now kRk = 0 implies,
again by semiprimeness, that k = 0.

(2) If h = 0 then the claim is trivially ful�lled, so assume h 6= 0. Take
x, y ∈ R. Note that h(x− x∗)h = 0 and therefore hxh = hx∗h. Then

0 = h(xhy − (xhy)∗)h = hxhyh− hy∗hx∗h = hxhyh− (hy∗h)x∗h =

= hxhyh− hy(hx∗h) = hxhyh− hyhxh = (hxh)yh− hy(hxh),

i.e., hxhyh = hyhxh. By Corollary 2.8, since h 6= 0 and IdR(hxh) ⊆ IdR(h),
for each x ∈ R there exists µx ∈ C(R) such that hxh = µxh. Hence 0 6= hRh ⊂
C(R)h. Moreover, since hx∗h = hxh, 2hxh = hxh + hx∗h = (µx + µ∗x)h ∈
H(C(R), ∗)h, so hRh ⊆ H(C(R), ∗)h.
Let us suppose that IdR(h) is essential inR and let us show that Skew(C(R), ∗)

is zero: Take λ ∈ Skew(C(R), ∗) and y ∈ R. Then (λh)y(λh) = λh(yλ)h =
λµλyh ∈ K for some µλy ∈ H(C(R), ∗). On the other hand (λh)y(λh) =
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λ2hyh = λ2µyh ∈ H for some µy ∈ H(C(R), ∗). Therefore (λh)y(λh) = 0 for
every y ∈ R, and by semiprimeness of R, λh = 0, so λ = 0 because IdR(h) is
essential.

(3) Suppose �rst that R is prime, and let h ∈ H := H(R, ∗) and k ∈ K be
elements such that hKh = 0 and hKk = 0. Since R = H + K we only need
to show that hHk = 0. Let x ∈ H and y ∈ R. Then

0 = h(xky − (xky)∗)h = hxkyh+ hy∗kxh = hxkyh+ hykxh

since h(y∗ − y)k = 0 for every y ∈ R. By Corollary 2.8, since IdR(hxk) ⊂
IdR(h), for each x ∈ R there exists µx ∈ C(R) such that hxk = µxh. If µx = 0
then hxk = 0 and we are done. Otherwise, 0 = hxkxk = µxhxk = µ2

xh, hence
h = 0 and we are also done.

Suppose now that R is semiprime. Then there exists a family of prime
ideals {Iα}α∈∆ such that

⋂
α∈∆ Iα = 0. In each prime quotient R/Iα we have

h̄R/Iαk̄ = 0̄, so hRk ⊂ Iα for all α, hence hRk = 0.

Remark 5.2. Let R be a centrally closed ring with involution and free of 2-
torsion. Recall that R = H+K, so every x ∈ R can be expressed as x = xh+xk
with xh ∈ H and xk ∈ K. If a ∈ K is an ad-nilpotent element of K of index
n, then for every x ∈ R

adna(ax+ xa) = adna(axk + xka) + adna(axh + xha)

= a adna(xk) + adna(xk)a+ adna(axh + xha) = 0,

since axh + xha ∈ K. On the other hand, expanding this expression,

0 = adna(ax+ xa) =

= (−1)nxan+1 +
n∑
i=1

((
n

i

)
−
(

n

i− 1

))
(−1)n−iaixan+1−i + an+1x.

Observe that a nilpotent element in K is ad-nilpotent of both K and R, but
its index of ad-nilpotence in R may be higher than the one found in K. In the
following proposition we describe the ad-nilpotent elements of K of index n
that are already nilpotent of certain index s. The description depends on the
equivalence class of the index of ad-nilpotence modulo 4 and relates the index
of nilpotence to the index of ad-nilpotence.
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Proposition 5.3. Let R be a centrally closed semiprime ring with involution ∗
and free of 2-torsion, and let a ∈ K be a nilpotent element of index of nilpotence
s. Then a is ad-nilpotent both of K and R. If the index of ad-nilpotence of a
in K is n and R is free of

(
n
t

)
-torsion for t := [n+1

2 ], then:

(1) If n ≡ 0 (mod 4) then s = t+ 1 and atKat = 0.
(2) If n ≡ 1 (mod 4) then s = t and the index of ad-nilpotence of a in R is

also n.
(3) The case n ≡ 2 (mod 4) is not possible.
(4) If n ≡ 3 (mod 4) then there exists an idempotent e ∈ C(R) such that

eat = at. Moreover, when we write a = ea+ (1− e)a, we have:
(4.1) If ea 6= 0 then ea is nilpotent of index t+ 1, eat = at generates an

essential ideal in eR and (ea)t−1k(ea)t = (ea)tk(ea)t−1 for every
k ∈ K.

(4.2) If (1− e)a 6= 0, then the index of ad-nilpotence of (1− e)a in R is
also n, and (1− e)at = 0.

Furthermore, if a is a pure ad-nilpotent element of K then in (2) and in (4.2)
we obtain pure ad-nilpotent elements of R of index n.

Proof : Let a ∈ K be a nilpotent element of index of nilpotence s. Then a is
ad-nilpotent of K of a certain index n. If we apply Lemma 4.1 to the second
formula obtained in Remark 5.2 we get that all the monomials appearing in it
are zero. We will now focus on certain monomials depending on the parity of
n.

• If n is even, n = 2t. Let us see that s = t + 1: on the one hand, for any
x ∈ R we know that((

n

t

)
−
(

n

t− 1

))
(−1)tatxat+1 = 0

and, since (
n

t

)
−
(

n

t− 1

)
is a divisor of 2

(
n
t

)
and R is free of 2

(
n
t

)
-torsion, we have that atxat+1 = 0 for

all x. Therefore at+1 = 0 by semiprimeness, hence s ≤ t + 1. On the other
hand, if s = t then at = 0 and ad2t−1

a (R) = 0, a contradiction.
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Let us see that n ≡ 0 (mod 4): For any k ∈ K,

0 = ad2t
a (k) =

2t∑
i=1

(
2t

i

)
(−1)2t−iaika2t−i =

(
2t

t

)
(−1)tatkat,

so atkat = 0 for every k ∈ K, which implies that t has to be even, since oth-
erwise at ∈ K and atKat = 0 imply at = 0 by Lemma 5.1(1), a contradiction.
We have shown that, if n is even, n ≡ 2 (mod 4) is not possible.

• If n is odd, n = 2t− 1, and for any x ∈ R,((
n

t− 1

)
−
(

n

t− 2

))
at−1xat+1 = 0.

Since
(
n
t−1

)
−
(
n
t−2

)
is a divisor of 2

(
n
t

)
and R is free of 2

(
n
t

)
-torsion, we have that

at−1xat+1 = 0 for all x. Therefore at+1 = 0 by semiprimeness, hence s ≤ t+ 1.
On the other hand s > t− 1 since otherwise ad2t−2

a (R) = 0, a contradiction.

If at = 0 then a is already an ad-nilpotent element of R of index n. In this
case n ≡ 1 (mod 4) or n ≡ 3 (mod 4) by Proposition 4.3(2). Furthermore, if a
is pure in K then a is pure in R by Lemma 3.3.

Suppose from now on that at 6= 0. Let us show that n ≡ 3 (mod 4). By
Proposition 2.9 there exists an idempotent e ∈ H(C(R), ∗) such that eat = at

and AnnR(IdR(at)) = (1−e)R (so at = eat generates an essential ideal in eR).
Notice that ea 6= 0 (otherwise 0 = (ea)t = eat = at, a contradiction). For
every k ∈ K we have

0 = adnea k =
n∑
i=1

(
n

i

)
(−1)n−ieaikan−i =

=

(
n

t− 1

)
(−1)teat−1kat +

(
n

t

)
(−1)t−1eatkat−1 =

=

(
n

t

)
(−1)t−1(−eat−1kat + eatkat−1).

Since R has no
(
n
t

)
-torsion, eat−1kat = eatkat−1 for every k ∈ K. Moreover,

multiplying by a on the right we get eatkat = atkat = 0, so atKat = 0, which
by Lemma 5.1(1) is only possible if at 6= 0 is symmetric, hence t is even and
n ≡ 3 (mod 4).
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If (1− e)a 6= 0 then ad2t−1
(1−e)a(R) = 0 and (1− e)a is an ad-nilpotent element

of R of index n = 2t−1. If a is pure in K then (1−e)a is pure in R by Lemma
3.3.

Remark 5.4. Let a ∈ K be a nilpotent element of index s. If we denote its
index of ad-nilpotence in K by n, we obtain from Proposition 5.3 that, under
the right torsion hypothesis,

2s− 3 ≤ n ≤ 2s− 1 and
n+ 1

2
≤ s ≤ n+ 3

2
.

Proposition 5.5. Let R be a centrally closed semiprime ring with involution
∗ and free of 2-torsion, and let a ∈ K be an ad-nilpotent element of K of index
n > 1. Then:

(1) There exists an idempotent e ∈ H(C(R), ∗) such that (1− e)a is an ad-
nilpotent element of R of index ≤ n and ea is nilpotent with adnµea(R) 6=
0 for every µ ∈ C(R) such that µea 6= 0.

(2) Moreover, if a is pure ad-nilpotent in K and R is free of
(
n
t

)
-torsion

and t-torsion for t := [n+1
2 ], when we write a = ea+ (1− e)a we have:

(2.1) If ea 6= 0 then ea is nilpotent of index t+ 1.
(2.2) If (1− e)a 6= 0 then (1− e)a is pure ad-nilpotent in R of index n.

In this case n is odd and there exists λ ∈ Skew(C(R), ∗) such that
((1− e)a− λ)t = 0.

Proof : Notice that n ≥ 3 since ad2
a(K) = 0 implies a ∈ Z(R) by [9, Corollary

4.8] and so ada(K) = 0, which is not possible because n > 1 by hypothesis.
(1) Let us suppose �rst that R is a prime ring. Either adna(R) = 0 or adna(R) 6=
0. Suppose from now on that adna(R) 6= 0; in particular there are no nonzero
skew elements λ in C(R), since otherwise by 2.3 R = K + λK would imply
adna(R) = 0.

Since adna(K) = 0, by the second formula of Remark 5.2 and Corollary 2.8,
a is an algebraic element of R over the �eld F := C(R). Let us consider the
minimal polynomial p(X) ∈ F(X) of a. Let F be the algebraic closure of C(R)
and let µ1, . . . , µt ∈ F such that

p(X) = (X − µ1)
k1 · · · (X − µt)kt.

Let

q1(X) := p(X)/(X − µ1),
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so q1(a)a = µ1q1(a). Now, for any x ∈ R⊗ F,
0 = adna(ax+ xa)q1(a)

= a
n∑
i=0

(
n

i

)
(−1)n−iaixan−iq1(a) +

n∑
i=0

(
n

i

)
(−1)n−iaixan−iaq1(a)

= a
n∑
i=0

(
n

i

)
(−1)n−iaixµn−i1 q1(a) +

n∑
i=0

(
n

i

)
(−1)n−iaixµn−i1 µ1q1(a)

= a
n∑
i=0

(
n

i

)
(−1)n−iaiµn−i1 xq1(a) +

n∑
i=0

(
n

i

)
(−1)n−iaiµn−i1 µ1xq1(a)

= a(a− µ1)
nxq1(a) + (a− µ1)

nµ1xq1(a) = (a− µ1)
n(a+ µ1)xq1(a)

and therefore, since R ⊗ F is a prime ring, (a − µ1)
n(a + µ1) = 0. If µ1 = 0

then a is nilpotent of index at most n + 1. If µ1 6= 0, since the involution
is of the �rst kind on R, it extends to R ⊗ F via (r ⊗ λ)∗ := r∗ ⊗ λ, hence
0 = ((a − µ1)

n)∗(a + µ1)
∗ = (a∗ − µ1)

n(a∗ + µ1) = (−a − µ1)
n(−a + µ1)

implies (a+ µ1)
n(a− µ1) = 0. From the conditions (a− µ1)

n(a+ µ1) = 0 and
(a + µ1)

n(a − µ1) = 0 we obtain p(X) = (X − µ1)(X + µ1). Thus a2 = µ2
1,

but then ad3
a(k) = 4µ2

1[a, k] for every k ∈ K, a contradiction with n ≥ 3.

Let us study the semiprime case: If a is already ad-nilpotent in R of index
n, take e = 0 and the claim holds. Suppose from now on that adna(R) 6= 0.
By Proposition 2.9 let e ∈ H(C(R), ∗) be an idempotent such that e adna(x) =
adna(x) for every x ∈ R, AnnR(IdR(adna(R))) = (1−e)R and AnnC(R)(adna(R)) =
(1− e)C(R). Then adn(1−e)a(R) = (1− e) adna(R) = 0.
Let us study the element ea: First notice that adnµeaR 6= 0 for every µ
such that µea 6= 0, since otherwise µe adna(R) = adnµeaR = 0 implies µe ∈
AnnC(R)(adna(R)) = (1 − e)C(R) and hence µe = 0, a contradiction. Let
us see that ea is nilpotent. Since R is semiprime, the intersection of all ∗-
prime ideals of R is zero. Consider the essential ∗-ideal S := IdR(adna(R)) ⊕
AnnR(IdR(adna(R))) = IdR(adna(R))⊕ (1− e)R. Let us consider the families

∆1 := {I /∗ R | R/I is ∗-prime and S 6⊂ I}
and

∆2 := {I /∗ R | R/I is ∗-prime and S ⊂ I}.
Since S ⊂

⋂
I∈∆2

I and S is essential,
⋂
I∈∆1

I = 0 and R is a subdirect product
of R/I with I ∈ ∆1. Let us see that in any ∗-prime quotient ea is nilpotent of
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index not greater than t + 1. Take I ∈ ∆1 and consider R̄ := R/I. We may
have two cases:

• If e = 0 then ea = 0.
• If e 6= 0 then e = 1 ∈ R/I and 1− e = 0, so (1 − e)R ⊂ I. Moreover,

adnea(R/I) 6= 0 since otherwise adnea(R/I) = 0 would imply S ⊂ I, a
contradiction. Let us see that R/I is prime: if R/I is ∗-prime and
not prime there would exist a nonzero skew element λ in C(R/I),
which implies that R/I = Skew(R/I, ∗) ⊕ λ Skew(R/I, ∗) (see 2.3),
so adnea(R/I) = adnea(Skew(R/I, ∗)⊕λ Skew(R/I, ∗)) = 0, a contradic-
tion. So R/I is a prime ring with involution and adnea(R/I)) 6= 0 which
implies that ea is nilpotent of index not greater than n+ 1.

In conclusion, for any I ∈ ∆1 we have ean+1 ∈ I and therefore ean+1 = 0.
(2) Suppose now that a is a pure element of K of index n and R is free of
2
(
n
t

)
-torsion and free of t-torsion for t = [n+1

2 ]. If a is already ad-nilpotent of
R of index n then a is pure in R by Lemma 3.3 and we can use Theorem 4.4 to
�nd that n is odd and there exists λ ∈ Skew(C(R), ∗) such that (a− λ)t = 0.
Otherwise write a = ea + (1 − e)a as before. Since ea is nilpotent and ad-
nilpotent of K of index n (because we are assuming that a is pure in K),
ea is nilpotent of index t + 1 (it has index t or t + 1 by Proposition 5.3, but
adnea(R) 6= 0). Moreover, (1−e)a is a pure ad-nilpotent element of R of index n
(if it is nonzero, its index of ad-nilpotence cannot be lower than n since (1−e)a
is ad-nilpotent in K of index n), and we can apply Theorem 4.4 to get that n
is odd and there exists λ ∈ Skew(C(R), ∗) such that ((1− e)a− λ)t = 0.

Theorem 5.6. Let R be a centrally closed semiprime ring with involution ∗
and free of 2-torsion, and let a ∈ K be a pure ad-nilpotent element of K of
index n > 1. If R is free of

(
n
t

)
-torsion and t-torsion for t := [n+1

2 ] then:

(1) If n ≡ 0 (mod 4) then at+1 = 0, at 6= 0 and atKat = 0. Moreover,
there exists an idempotent e ∈ H(C(R), ∗) such that ea = a and the
ideal generated by at is essential in eR. In addition eR satis�es the GPI
atxatyat = atyatxat for every x, y ∈ eR.

(2) If n ≡ 1 (mod 4) then there exists λ ∈ Skew(C(R), ∗) such that (a −
λ)t = 0 (a is an ad-nilpotent element of R of index n).

(3) It is not possible that n ≡ 2 (mod 4).
(4) If n ≡ 3 (mod 4) then there exists an idempotent e ∈ H(C(R), ∗) mak-

ing a = ea+ (1− e)a such that:
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(4.1) If ea 6= 0 then eat+1 = 0, eat 6= 0 and eatkeat−1 = eat−1keat for
every k ∈ K. The ideal generated by eat is essential in eR and eR
satis�es the GPI atxatyat = atyatxat for every x, y ∈ eR.

(4.2) If (1 − e)a 6= 0 then there exists λ ∈ Skew(C(R), ∗) such that
((1 − e)a − λ)t = 0 ((1 − e)a is a pure ad-nilpotent element of R
of index n).

In particular, for all n > 1 there exists λ ∈ Skew(C(R), ∗) such that (a −
λ)t+1 = 0, (a− λ)t−1 6= 0.

Proof : By Proposition 5.5 there exists an idempotent e ∈ H(C(R), ∗) such
that e adna x = adna x for every x ∈ R and AnnR(IdR(adna(R))) = (1− e)R, and
moreover:

• If ea 6= 0, it is nilpotent of index t+ 1 and ad-nilpotent of K of index n.
By Proposition 5.3 this may happen if either n ≡ 0 (mod 4), in which
case at+1 = 0, at 6= 0, atKat = 0 and (1− e)a = 0 (because (1− e)a is
ad-nilpotent of R and its index cannot be even), or n ≡ 3 (mod 4). The
case n ≡ 1 (mod 4) is not possible because eat 6= 0.
• If (1 − e)a 6= 0 then (1 − e)a is a pure ad-nilpotent element of R, n
is odd and there exists λ ∈ Skew(R, ∗) with ((1 − e)a − λ)t = 0. By
Proposition 5.3 this may happen if either n ≡ 1 (mod 4) (in this case
ea = 0) or n ≡ 3 (mod 4). The decomposition (1 − e)a − λ = a1 + a2

given by Proposition 5.3(4) occurs with a1 = 0 since otherwise the index
t+ 1 of a1 would contradict ((1− e)a− λ)t = 0.

In the particular case of n ≡ 3 (mod 4) with ea 6= 0, the idempotent e1 pro-
duced in Proposition 5.3(4) for the nilpotent element ea satis�es e1ea

t = eat,
so (1 − e1)e ∈ AnnR(IdR(adna(R))) = (1 − e)R, thus e1e = e and eat = e1ea

t

generates an essential ideal in eR. On the other hand, we know from Propo-
sition 5.5 that (ea)t−1k(ea)t = (ea)tk(ea)t−1 for every k ∈ K; in particular
(ea)tK(ea)t = 0. Therefore, by Lemma 5.1(2) the identity

atxatyat = atyatxat

holds in eR.

In the particular case of n ≡ 0 (mod 4) the idempotent e produced in Proposi-
tion 5.5 satis�es eatxat = eat for every x ∈ R and AnnR IdR(atRat) = (1−e)R.
On the other hand, (1 − e)a must be zero because adn(1−e)a(R) = 0 and a is
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a pure ad-nilpotent element (so a = ea). Therefore, the ideal generated by at

in eR is essential in eR and the identity atxatyat = atyatxat holds in eR by
Lemma 5.1(2).

In the next corollary we recover Lee's main result by taking into account
that every ad-nilpotent element can be expressed as a sum of pure ad-nilpotent
elements of decreasing indices.

Corollary 5.7. ([16, Theorem 1.5]) Let R be a centrally closed semiprime ring
with involution ∗ and free of n!-torsion, and let a ∈ K be an ad-nilpotent ele-
ment of K of index n. Then there exist λ ∈ Skew(C(R), ∗) and an idempotent
e ∈ H(C(R), ∗) such that (ea− λ)t+1 = 0 and (ea− λ)t−1 6= 0 for t := [n+1

2 ],
and (1− e)R is a PI-algebra satisfying the standard identity S4.

Proof : By Proposition 3.4 there exists a family of orthogonal symmetric idem-
potents {ei}ki=1 of the extended centroid such that a =

∑k
i=1 eia, with eia a

pure ad-nilpotent element of index ni (n = n1 > n2 > . . . ) of eiR. If nk = 1
then eka can be decomposed as eka = ek1a+(1−ek1)a, where ek1a ∈ Z(R) and
(1 − ek1)R is a PI-algebra satisfying the standard identity S4 by [3, Theorem
4.2(i),(ii) and (*)]. The claim follows now from Theorem 5.6.

Let us extend this last result to Lie algebras of the form K/(K ∩Z(R)) and
[K,K]/([K,K] ∩ Z(R)).

Corollary 5.8. Let R be a centrally closed semiprime ring with involution free
of n!-torsion and consider the Lie algebra L := K/(K ∩Z(R)). If ā is an ad-
nilpotent element of L of index n then there exist λ ∈ Skew(C(R), ∗) and an
idempotent e ∈ H(C(R), ∗) such that (ea− λ)t+1 = 0 and (ea− λ)t−1 6= 0 for
t := [n+1

2 ], and (1 − e)R is a PI-algebra that satisfying the standard identity
S4.

Proof : Notice that adna(K) ⊂ Z(R) implies adna(K) = 0: if not, there would
exist 0 6= λ ∈ adna(K) ∩ Z(R), so R = K + λK by 2.3 and hence adna(R) ⊂
Z(R), which implies by Lemma 4.6 that adna(R) = 0, a contradiction. The
claim follows now from Corollary 5.7.

Now we turn to Lie algebras of the form [K,K]/([K,K] ∩ Z(R)). We �rst
need a technical lemma.
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Lemma 5.9. Let R be a centrally closed semiprime ring with involution ∗ and
free of 2-torsion. Let a ∈ K be such that adna([K,K]) ⊂ Z(R). If R is free of(
n+1
t

)
-torsion for t := [n+2

2 ] then adna(K) = 0.

Proof : Let us �rst suppose that R is a ∗-prime ring. If Skew(C(R), ∗) 6= 0 then
R = K + λK for any 0 6= λ ∈ Skew(C(R), ∗) (see 2.3); thus adna([R,R]) ⊂
Z(R), and by Lemma 4.7 a is an ad-nilpotent element of R of index n. Other-
wise Skew(C(R), ∗) = 0, in which case R must be prime and K∩Z(R) = 0, so
adna([K,K]) = 0. From adn+1

a K ⊂ adna([K,K]) = 0 and Skew(C(R), ∗) = 0
we get from Proposition 5.5 that a is a nilpotent element of R. Let s be its
index of nilpotence. If adna K = 0 we are done; suppose it is not and let us
compare the index of ad-nilpotence of a in K with its index of nilpotence s
(see Proposition 5.3) to get a contradiction:
(a) If n+1 ≡ 0 (mod 4) then s = n+3

2 and as−1Kas−1 = 0. From
(
n
s−2

)
=
(
n
s−1

)
we get, for every x ∈ R, that adna x = (−1)s−1

(
n
s−2

) (
as−2xas−1 − as−1xas−2

)
.

Then, for every k, k′ ∈ K,

2(adna k)k′(adna k) =

= 2

(
n

s− 2

)(
n

s− 2

)(
as−2kas−1k′as−2kas−1 + as−1kas−2k′as−1kas−2

)
= 2

(
n

s− 2

)(
n

s− 2

)
as−2k(as−1k′as−2 − as−2k′as−1)kas−1+

+ 2

(
n

s− 2

)(
n

s− 2

)
as−1k(as−2k′as−1 − as−1k′as−2)kas−2 =

= 2(−1)s−2

(
n

s− 2

)
(as−2k(adna k

′)kas−1 − as−1k(adna k
′)kas−2) =

= (−1)s−2

(
n

s− 2

)
(as−2 ad2

k(adna k
′)as−1 − as−1 ad2

k(adna k
′)as−2) =

= adna(ad2
k(adna k

′)) ∈ adna([K,K]) = 0

because a adna k = 0 = (adna k)a, as−1Kas−1 = 0 and s ≥ 3 implies as−1as−2 =
0. Therefore (adna k)K(adna k) = 0 and hence adna k = 0 for every k ∈ K by
Lemma 5.1(1).
(b) If n + 1 ≡ 1 (mod 4) then s = n

2 + 1. For every x ∈ R, adna x =
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(−1)s−1
(
n
s−1

)
as−1xas−1. Then, for every k, k′ ∈ K,

2(adna k)k′(adna k) = 2

(
n

s− 1

)(
n

s− 1

)
as−1kas−1k′as−1kas−1 =

=

(
n

s− 1

)(
n

s− 1

)
as−1 ad2

k(a
s−1k′as−1)as−1 =

= adna(ad2
k(adna k

′)) ∈ adna([K,K]) = 0

because as−1as−1 = 0. Therefore (adna k)K(adna k) = 0 and hence adna k = 0 for
every k ∈ K by Lemma 5.1(1).
(c) The case n+ 1 ≡ 2 (mod 4) is not possible.
(d) If n+ 1 ≡ 3 (mod 4) we are in case (a) or (b) by the primeness of R.
In any case adna(K) = 0. Finally, the semiprime case follows because R is a
subdirect product of ∗-prime rings.

From this lemma and Corollary 5.7 we get:

Corollary 5.10. Let R be a centrally closed semiprime ring with involution ∗
and free of (n+1)!-torsion, and consider the Lie algebra L := [K,K]/(Z(R)∩
[K,K]). If ā is an ad-nilpotent element of L of index n then there exist λ ∈
Skew(C(R), ∗) and an idempotent e ∈ H(C(R), ∗) such that (ea − λ)t+1 = 0
and (ea− λ)t−1 6= 0 for t := [n+1

2 ], and (1− e)R is a PI-algebra satisfying the
standard identity S4.
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