
Pré-Publicações do Departamento de Matemática
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TRUST-REGION METHODS FOR THE

DERIVATIVE-FREE OPTIMIZATION OF

NONSMOOTH BLACK-BOX FUNCTIONS

G. LIUZZI, S. LUCIDI, F. RINALDI AND L. N. VICENTE

Abstract: In this paper we study the minimization of a nonsmooth black-box type
function, without assuming any access to derivatives or generalized derivatives and
without any knowledge about the analytical origin of the function nonsmoothness.
Directional methods have been derived for such problems but to our knowledge no
model-based method like a trust-region one has yet been proposed.

Our main contribution is thus the derivation of derivative-free trust-region meth-
ods for black-box type functions. We propose a trust-region model that is the sum
of a max-linear term with a quadratic one so that the function nonsmoothness can
be properly captured, but at the same time the curvature of the function in smooth
subdomains is not neglected. Our trust-region methods enjoy global convergence
properties similar to the ones of the directional methods, provided the vectors ran-
domly generated for the max-linear term are asymptotically dense in the unit sphere.
The numerical results reported demonstrate that our approach is both efficient and
robust for a large class of nonsmooth unconstrained optimization problems. Our
software is made available under request.

Keywords: Nonsmooth optimization, derivative-free optimization, trust-region-
methods, black-box functions.

1. Introduction
We develop a trust-region methodology for the derivative-free optimization

of a possibly nonsmooth function without any knowledge about the source
or form of its nonsmoothness. The objective function to be minimized is
thus treated as a pure black box in the sense of only returning function val-
ues. Our goal is to develop an algorithm that is both efficient (in terms
of the number of function evaluations taken to reach a meaningful stopping
criterion) and rigorous (in terms of offering reasonable convergence proper-
ties). The derivative-free trust-region approach is a step towards efficiency as
we know that it works well for smooth problems or even mildly nonsmooth
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ones, and we want to take advantage in our implementation of what are
some of the best existing numerical practices known for these methods, since
most nonsmooth problems, even the harder ones, exhibit large subdomains
of smoothness.

However, the theory and practice of derivative-free trust-region methods
have been developed for either smooth functions [10, 11] or for the sum or
composition of a known nonsmooth function with a smooth, possibly vecto-
rial black-box one [16, 18, 25, 30]1. The trust-region models typically used are
smooth, based on quadratic or radial basis functions. However, without any
knowledge about the subdifferential of the function or access to its members,
as it is the case in a pure black-box regime, the use of nonsmooth models
based on a finite number of basis function elements or nonsmooth operators
may not suffice to explore increasingly narrow cones of descent directions
and render a trust-region algorithm convergent. Furthermore, in the the-
ory of directional methods for the derivative-free optimization of black-box
functions [3, 14, 38], it is proved the nonnegativity of generalized directional
derivatives at certain limit points of the sequences of iterates along certain
limiting directions. Such limiting directions cover the unit sphere if the al-
gorithm directions are randomly generated in such a way that their support
is the unit sphere for any subsequence of the iterates2.

Hence, our trust-region models will have built-in the random generation of
their linear terms. In a first, naive but simple approach this can be achieved
by randomly generating the vector defining the linear term of a quadratic.
Such models will however render the trust-region method inefficient as they
are to some extent just adding a quadratic term to a directional-inspired lin-
ear one, without any attempt to explore the nonsmoothness of the function.
We thus go a step further and propose a nonsmooth trust-region model by
collecting a number of those randomly generated linear terms in a max-linear
type model, adding to it the quadratic term for steady progress in the more

1An anonymous Referee has drawn our attention to the recent works [2, 22] (the latter one of
trust-region type). However, both require the calculation of subgradients of approximate or nearby
subdifferentials, therefore only applicable when the nonsmoothness of the objective function is
known through some algebraic or composite form.

2Not all existing converging techniques for nonsmooth derivative-free optimization are based on
random directions, an example being the use of the convex hull of (possibly randomly) sampled ap-
proximate gradients [4, 29, 21]. On the other hand, trust-region methods have also been developed
based on probabilistic random models [6, 19] but for smooth problems.
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smooth function subdomains. Our work is inspired by the bundle methodol-
ogy [35] for nonsmooth optimization. By working with a sample set of points
near the current iterate and appropriately using their function values, one
forms the max-linear model in a way that the new vector randomly generated
at each iteration (for the purpose of adding a new linear term to the model)
will attempt to approximate in a certain way an element of the subdifferential
at one of these sample points. Our numerical experiments have shown that
such a methodology can lead to an efficient and particularly robust solver for
the derivative-free optimization of nonsmooth functions.

In a way similar to the application of direct-search methods to nonsmooth
functions, our convergence results state that the Clarke generalized derivative
is nonnegative at any limit point of a subsequence of unsuccessful iterates,
along any direction in the unit sphere, assuming some form of asymptotic
density of the vectors randomly generated for the linear terms of the models.
The Hessian of the quadratic term added to the max-linear model term does
not have to be positive definite or semidefinite and, interestingly, not even
necessarily bounded (as long as it does not grow faster than a certain negative
power in (−1, 0) of the trust-region radius).

The paper is organized in the following sections: In Section 2 we describe
and analyze the basic version of our trust-region derivative-free algorithmic
approach, based on a quadratic trust-region model with a randomly gener-
ated vector of linear coefficients. Then in Section 3 we introduce our random
nonsmooth max-linear trust-region model and adapt the convergence analy-
sis to this more advanced scenario. Section 4 describes the implementation
of our basic and advanced algorithms and reports the numerical experiments
conducted for a test of nonsmooth problems. Some conclusions and prospects
of future work are outlined in Section 5. In terms of notation, all norms are
Euclidean.

In this paper we consider an unconstrained minimization problem

min
x∈Rn

f(x), (1)

where the objective function, although possibly nonsmooth, will be assumed
locally Lipschitz continuous whenever needed in the theory. Any type of first-
order information (gradients or elements of subdifferentials) is considered
unavailable or impractical to obtain.

Given a point x ∈ Rn, at which the function is Lipschitz continuous in a
neighborhood of, and a direction d ∈ Rn, the Clarke generalized derivative [8]
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of f at x along d can be defined as

f ◦(x; d) = lim sup
y→x,t↓0

f(y + td)− f(y)

t
= lim

ε→0
sup

(y,t):‖y−x‖≤ε,0<t≤ε

f(y + td)− f(y)

t
.

Later in the paper we will use the fact that f ◦(·; ·) is Lipschitz continuous in
its second argument (with Lipschitz constant equal to the one of f). Suppose
again that f is Lipschitz near x. The Clarke generalized subdifferential of f
at x can then be defined by

∂f(x) = {s ∈ Rn : f ◦(x; v) ≥ v>s, ∀v ∈ Rn}.
Moreover, it can be proved that

f ◦(x; d) = max{d>s : s ∈ ∂f(x)}.
A point x∗ ∈ Rn is (first order) Clarke stationary for problem (1) when
f ◦(x∗; d) ≥ 0, for all d ∈ Rn.

2. A basic trust region-type algorithm based on a smooth
random model

We will see in this section that one way of endowing a trust-region method
with the capacity to deal with nonsmooth black-box functions is by randomly
generating the linear coefficients of the quadratic trust-region model. We
suggest to generate the vector gk of the linear coefficients of the quadratic
model randomly in the unit sphere. Such a normalization tries to mimic to
some extent the effect of a step of directional methods [3, 38], in the sense
that a trust-region step of the form ∆kgk, where ∆k is the trust-region radius
and ‖gk‖ = 1, plays a similar role as the step of such directional methods.
However, we consider also a quadratic term in the trust-region model to
better approximate the curvature in smooth subdomains, and this is actually
one of the theoretical challenges in this paper. So, at every iteration k of the
Basic DFO-TRNS Algorithm, sk is the solution of the trust-region subproblem

min f(xk) + g>k s+
1

2
s>Bks

s.t. ‖s‖2 ≤ ∆2
k,

(2)

where Bk ∈ Rn×n is a symmetric matrix built out from interpolation or
regression on a sample set of points.

Algorithm Basic DFO-TRNS is quite simple. The step is accepted/rejected
and the trust-region radius is nondecreased/decreased based on a ratio of
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actual versus predicted reductions. The only nonstandard aspect is the choice
of the predicted reduction θ‖s‖1+p used in place of the reduction achieved in
the quadratic model from s = 0 to s = sk. The reason for our choice lies in a
convergence requirement, as we need the predicted reduction to behave like
o(‖sk‖) in unsuccessful iterations to prove the nonnegativity of the Clarke
generalized derivative along appropriate directions. Such an effect is similar
to the use of a forcing function in directional methods [38]. Note that the use
of a power of the norm of the step to replace the more traditional predicted
reduction has been used before in trust-region methods [12].

Algorithm Basic DFO-TRNS (Basic DFO Trust-Region Algorithm for

Nonsmooth Problems)

Initialization. Select x0 ∈ Rn, η1, θ > 0, 0 < γ1 < 1 ≤ γ2, ∆0 > 0, and
p > 0.
For k = 0, 1 . . .

Generate gk randomly and densely on the unit sphere. Build a symmetric
matrix Bk.

Let
sk ∈ argmin

‖s‖2≤∆2
k

f(xk) + g>k s+
1

2
s>Bks,

ρk =
f(xk)− f(xk + sk)

θ‖s‖1+p
.

If ρk ≥ η1 Then set SUCCESS ← true, xk+1 ← xk + sk, ∆k+1 ← γ2∆k,
Else set SUCCESS ← false, xk+1 ← xk, ∆k+1 ← γ1∆k.
End If

End For

For convergence purposes, we require the model Hessian to satisfy the
assumption below. We point out that such an assumption is weaker than
what is considered in trust-region methods, where an upper bound on the
norm of Bk is traditionally imposed. Our theory allows Bk to be unbounded
as long as it is bounded by a negative power of the trust-region radius (which
in turn will be proved to converge to zero). This negative power must lie
in (−1, 0) for the basic algorithm of this section and in (−1/2, 0) for the
advanced algorithm of the next section.
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Assumption 2.1. There exist q ∈ (0, 1), m,M > 0, such that: The maximal
eigenvalue of Bk satisfies

λmax(Bk) ≤ M∆−qk .

When Bk has negative eigenvalues, its minimal eigenvalue satisfies

−λmin(Bk) ≤ m∆−qk .

We start by proving that the trust-region radius goes to zero. It is typical
to see the step size along directions or the trust-region radius converging to
zero in derivative-free optimization [11].

Lemma 2.1. Assume that f is bounded from below. Let Assumption 2.1
hold. Any sequence {∆k} of trust-region radii produced by Algorithm Basic

DFO-TRNS is such that

lim
k→∞

∆k = 0.

Proof : Suppose, by contradiction, that {∆k} does not converge to zero.
Then, there exists ε > 0 such that #{k : ∆k > ε} = ∞. Because of the
way ∆k is updated we must have

# {k : ∆k > ε, ∆k+1 ≥ ∆k} = ∞,
in other words, there must exist an infinite number of iterations for which
∆k+1 is not decreased, and, for these iterations we have ρk ≥ η1.

If λmin(Bk) ≤ 0, then we know from the well-known properties of trust-
region subproblems that ‖sk‖ = ∆k (see [9]). If not, then either ‖sk‖ =
∆k or sk = −B−1

k gk. In the latter case, from Assumption 2.1, ‖B−1
k gk‖ ≥

λmin(B−1
k )‖gk‖ ≥ (1/M)∆q

k. As a result we obtain

f(xk)− f(xk + sk) ≥ η1θ‖sk‖1+p

≥ η1θmin{‖B−1
k gk‖,∆k}1+p

≥ η1θmin

{
εq

M
, ε

}1+p

.

This means that at each iteration where ∆k is not decreased, f is reduced
by a constant. Since f is bounded from below, the number of such iterations
cannot be infinite, and hence we arrived at a contradiction.

It is known that the solution of a trust-region subproblem with fixed data
and Bk positive definite tends to a step along the negative gradient [13,
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Figure 6.4.2] when the trust-region radius converges to zero. The property
below may be seen as an expression of this behavior.

Property 2.1. Any sequence {(xk, sk,∆k)} generated by Algorithm Basic

DFO-TRNS is such that
sk = −∆kDkgk,

with Dk ∈ Rn×n satisfying
lim
k→∞

Dk = I.

We can show that our simple algorithm exhibits such a property even
when subject to unbounded model Hessians. The result is proved under
exact optimality of the solution of the trust-region subproblem (2) to avoid
an even longer proof. However we could have assumed inexact optimality and
deduce a similar result as long as the norm of the residual of the first-order
necessary conditions of this subproblem is smaller than a certain power of
the trust-region radius.

Proposition 2.1. Let Assumption 2.1 hold. Assume also that all trust-
region subproblems (2) are solved up to optimality. Then Algorithm Basic

DFO-TRNS generates sequences {(xk, sk,∆k)} satisfying Property 2.1 (for k
sufficiently large).

Proof : From the first order necessary conditions for problem (2), we know
that there exists σk ≥ 0 such that

Bksk + 2σksk = −gk, σk(‖sk‖2 −∆2
k) = 0, ‖sk‖2 ≤ ∆2

k. (3)

One can assume that ‖sk‖2 = ∆2
k for k sufficiently large. In fact, as mentioned

before, only when Bk is positive definite and ‖−B−1
k gk‖ < ∆k there is no so-

lution at the boundary. From (3), such cases do render sk = −∆k(∆kBk)
−1gk

(i.e., Dk = (∆kBk)
−1). However, they can only occur a finite number of times

as, from Assumption 2.1, we have ‖B−1
k gk‖ ≥ (∆q−1

k /M)∆k, and ∆k → 0 thus

∆q−1
k /M becomes eventually larger than 1. Hence, from the necessary con-

ditions (3),

σk = − 1

2∆2
k

(
s>kBksk + g>k sk

)
,

and (
Bk −

1

∆2
k

(
s>kBksk + g>k sk

)
I

)
sk = −gk. (4)

The rest of the proof is now divided in two main parts.
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(A) First we provide a lower and an upper bound for ηk = −s>kBksk−g>k sk.
Since sk solves problem (2), it yields a better model value than the step
−∆kgk, which means

1

2
s>kBksk + g>k sk ≤

1

2
∆2
kg
>
k Bkgk −∆kg

>
k gk,

and, recalling that ‖gk‖ = 1, we obtain

1

2
s>kBksk + g>k sk ≤

1

2
∆2
kλmax(Bk)−∆k. (5)

Then, taking into account the fact that ηk = −2(1
2s
>
kBksk +g>k sk)+g>k sk and

using inequality (5), we can derive a lower bound on ηk from Assumption 2.1

ηk ≥ −∆2
kλmax(Bk) + 2∆k + g>k sk

≥ −M∆2−q
k + 2∆k −∆k

≥ −M∆2−q
k + ∆k. (6)

The lower bound (6) guarantees that −ηk = s>kBksk + g>k sk 6= 0 for k suffi-
ciently large, a fact that will later be used.

On the other hand, an upper bound on ηk can be derived also from As-
sumption 2.1 as follows (recall that ‖gk‖ = 1)

ηk = −s>kBksk − g>k sk
≤ max{0,−λmin(Bk)}‖sk‖2 + ‖sk‖
≤ m∆−qk ∆2

k + ∆k. (7)

(B) Knowing that ηk = −s>kBksk − g>k sk is nonzero for k sufficiently large
and using the generalized Sherman-Morrison-Woodbury formula, we obtain(

Bk +
ηk
∆2
k

I

)−1

=
∆2
k

ηk
I − ∆2

k

ηk
Bk

(
I +

∆2
k

ηk
Bk

)−1
∆2
k

ηk
I. (8)

From (4) and (8), we can write

sk = −∆kDkgk

with

Dk =
∆k

ηk
I − ∆2

k

ηk
Bk

(
I +

∆2
k

ηk
Bk

)−1
∆k

ηk
I. (9)
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It remains to prove that Dk → I as k → ∞, and for that we will use the
lower and upper bounds derived in part (A) of the proof. In fact, using (6)
and (7) and dividing by ∆k lead us to

−M∆1−q
k + 1 ≤ ηk

∆k
≤ 1 +m∆1−q

k

and from Lemma 2.1
ηk
∆k
→ 1.

Observe also that from this and Assumption 2.1,
∆2

k

ηk
Bk = ∆k

ηk
(∆kBk) → 0.

Finally, taking into account the formula (9), it results thatDk → I as k →∞,
and the proof is complete.

The next step in the analysis is to show that the Clarke generalized deriva-
tive is nonnegative along some limiting normalized trust-region step. Such a
result corresponds to what has been obtained for directional methods along
the so-called refining directions; see [3].

Lemma 2.2. Assume that f is bounded from below. Let Assumption 2.1 hold.
Let {(xk, sk,∆k)} be a sequence generated by Algorithm Basic DFO-TRNS. Let
L ⊆ K = {k : ∆k+1 < ∆k} be an index set such that

lim
k∈L,k→∞

xk = x∗ and

lim
k∈L,k→∞

sk
‖sk‖

= s∗.

Then f ◦(x∗; s∗) ≥ 0.

Proof : For each k ∈ L we have from ρk < η1 (unsuccess in the algorithm)
that

f(xk + sk)− f(xk) > −η1θ‖sk‖1+p

from which we obtain

f(xk + ‖sk‖[sk/‖sk‖])− f(xk)

‖sk‖
> −η1θ‖sk‖p. (10)

One can introduce s∗ in the quotient of (10) as follows

f(xk + ‖sk‖s∗)− f(xk)

‖sk‖
− f(xk + ‖sk‖s∗)− f(xk + ‖sk‖[sk/‖sk‖])

‖sk‖
(11)
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and see that the second term in (11) is bounded by

f(xk + ‖sk‖s∗)− f(xk + ‖sk‖[sk/‖sk‖])
‖sk‖

≤ L∗f‖[sk/‖sk‖]− s∗‖, (12)

where L∗f is the Lipschitz constant of f near x∗. From (10)–(12) we then
have

f(xk + ‖sk‖s∗)− f(xk)

‖sk‖
> −η1θ‖sk‖p − L∗f‖[sk/‖sk‖]− s∗‖. (13)

Then, using (13) and recalling Lemma 2.1 and the fact that ‖sk‖ → 0 when
∆k → 0, we obtain

f ◦(x∗; s∗) ≥ lim sup
k∈L,k→∞

f(xk + ‖sk‖s∗)− f(xk)

‖sk‖
≥ 0,

which completes the proof.

We can now assemble a final convergence result, which can be classified as
global in the sense of not asking the starting point to be close to a solution.
Essentially we know that the Clarke generalized derivative is nonnegative
along a limiting trust-region step but we also know from Property 2.1 that
trust-region steps tend to a step along the negative of gk, which in turn can
be asked to cover densely the unit sphere in some asymptotic sense.

Theorem 2.3. Assume that f is bounded from below. Let Assumption 2.1
hold. Let Algorithm Basic DFO-TRNS satisfy Property 2.1. Let x∗ be any
limit point of {xk} and K ⊆ {k : ∆k+1 < ∆k} be a subset of indices such that

lim
k∈K,k→∞

xk = x∗.

If the subsequence {gk}K is dense in the unit sphere, then x∗ is stationary
for problem (1).

Proof : We proceed by contradiction and assume that x∗ is not stationary for
problem (1). Then we know that a direction ḡ exists such that ‖ḡ‖ = 1 and

f ◦(x∗;−ḡ) < 0. (14)
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Since {gk}K is dense in the unit sphere, we can extract a subset of iteration
indices, which we call again K, such that

lim
k∈K,k→∞

xk = x∗, (15)

lim
k∈K,k→∞

gk = ḡ, (16)

lim
k∈K,k→∞

∆k = 0. (17)

Property 2.1 assures that sk = −∆kDkgk with Dk → I. Hence, it results
that

lim
k∈K,k→∞

sk
‖sk‖

= −ḡ.

Then, by Lemma 2.2, we have that

f ◦(x∗;−ḡ) ≥ 0,

which contradicts (14), thus concluding the proof.

Remark 2.1. The above result is also true when a step of the form sk =
−∆kgk is taken, totally ignoring the quadratic term of the model.

3. A trust-region algorithm based on a nonsmooth ran-
dom model

3.1.A nonsmooth random model. Now we would like to modify the basic
trust-region algorithm of Section 2 in such a way that the nonsmoothness of
the objective function is better handled. Taking inspiration from bundle
methods3, we will define a new nonsmooth random model to replace the
smooth random one.

3Bundle methods were developed to solve nonsmooth convex problems. The idea behind those
methods is to approximate the objective function by means of a suitable underestimator. The
use of a piecewise linear function (called cutting plane model) to handle the minimization of the
original nonsmooth function was first proposed in [7, 24]. The main drawbacks of the cutting plane
approach are the possible unboundedness of the approximating models and the slow convergence
of the method. In order to overcome those issues, a stabilizing quadratic term is usually included
in the approximation, see, e.g., [17, 26, 28] and references therein. Bundle methods have been
combined with trust-region ones [37]. Other interesting approaches are tilted bundle methods [27],
level bundle methods [32], bundle Newton methods [33], and generalized bundle methods [15].
When dealing with nonconvex problems, the model is not an underestimator anymore. Hence
bundle methods need to be suitably modified in order to handle nonconvexity. Strategies like
subgradient deletion rules and subgradient locality measures are usually implemented in order to
avoid the difficulties caused by nonconvex functions (see, e.g., [35] for further details).
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In a smooth setting, it is well-known that the trust-region model is given
by the sum of a linear term and a quadratic one, namely

m̄k(s) +
1

2
s>Bks = f(xk) +∇f(xk)

>s+
1

2
s>Bks.

A reasonable choice when considering nonsmoothness would be to replace
the linear term m̄k(s) by the following nonsmooth term

m̄k(s) = f(xk) + f ◦(xk; s)

that is

m̄k(s) = max
ξ∈∂f(xk)

{
f(xk) + ξ>s

}
. (18)

Obviously, since the set ∂f(xk) is unknown, the above model cannot be used
in practice.

Bundle methods overcome this difficulty by exploiting the information ob-
tained on a set of points {yj : j ∈ Jk} approaching xk, where Jk is an index
set. In the case of convex optimization (f convex), these methods make
approximations of the model (18) given by

m̄k(s) = max
j∈Jk

{
f(yj) + (ξj)>(xk + s− yj)

}
(19)

where ξj ∈ ∂f(yj), j ∈ Jk. The model (19) is usually rewritten as

m̄k(s) = max
j∈Jk

{
f(xk) + (ξj)>s− βjk

}
where

βjk = f(xk) + (ξj)>(yj − xk)− f(yj)

represents the displacement related to the point yj. This approach can be
adapted to the nonconvex case by suitably modifying the expression of βjk in
the following way:

βjk = max
{

0, f(xk)− f(yj) + (ξj)>(yj − xk) + δ, ‖yj − xk‖2
}
,

where δ > 0 is a parameter to be selected in the algorithm.
In a derivative-free context, we cannot even compute an element ξ ∈ ∂f(y)

for any sample point y. Hence, we need to somehow adapt the bundle ap-
proach to our derivative-free setting. The choice we made in this paper is to
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replace the information given by the subgradients ξj with the one obtained
for a set of randomly generated normalized directions

Gk = {gi : ‖gi‖ = 1, i ∈ Ik},

where Ik is another index set. We first compute for each (i, j) ∈ Ik × Jk, the
displacements

βijk = max
{

0, f(xk)− f(yjk) + (gi)
>(yjk − xk) + δ‖yjk − xk‖

2
}

(20)

Then it is possible to introduce the following model

m̄k(s) = max
i∈Ik

{
f(xk) + (gi)

>s− β̄ik
}

(21)

where

β̄ik = max
j∈Jk
{βijk }. (22)

Hence, while in bundle methods one selects a set of auxiliary points yj and
vectors ξj ∈ ∂f(yj), j ∈ Jk, to linearize the function and to somehow build an
approximation of the subdifferential at xk, in our derivative-free framework,
since the elements of the subdifferential cannot be calculated, we randomly
generate vectors gi (say one per iteration) and build a linear term using a
suitably chosen point yli in our sample set (see (23) below). The rationale
behind this strategy is that a direction gi can be seen as an approximation
of an element in ∂f(yli), with yli the point corresponding to the index giving
the maximum displacement β̄ik:

li ∈ argmax
j∈Jk

{βijk }. (23)

An example can be seen in Figure 1. (For simplicity, in the figures, the
scalar β̄ik is computed by setting δ = 0. Also, in order to depict easily
understandable examples in these figures, we used gi’s with absolute values
different from 1.) Of course, when β̄ik = 0 we might have that the direction gi
is a good approximation of an element of ∂f(xk) (like, e.g., the case of the line
corresponding to g3 in Figure 1). Summarizing, for each direction gi, i ∈ Ik,
we consider a linear term passing through a point yli with ∂f(yli) hopefully
containing a subgradient close to the direction gi. Then, according to (21),
the model m̄k(s) is the maximum of those linear functions over gi, i ∈ Ik, see
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Figure 2. An example for the nonconvex case is shown in Figures 3–4 (and
here we set δ > 0 when calculating the displacements).

In order to give some priority to the role of the new direction (generated at
iteration k) in the proposed local model of the objective function, we perturb
the parameters β̄ik in the following way:

β̃ik = β̄ik + ∆
1/2
k , i ∈ Ik, i 6= k, (24)

β̃kk = β̄kk . (25)

The modified displacements β̃ik, i ∈ Ik, are used to somehow penalize the
linear terms corresponding to the directions {gi : i ∈ Ik, i 6= k} in the max
function of the model (21).

Finally, the complete nonsmooth approximating model that we propose is
the following:

mk(s) = max
i∈Ik

{
f(xk) + (gi)

>s− β̃ik
}

+
1

2
s>Bks, (26)

where β̃ik, i ∈ Ik, are defined according to (24) and (25), andBk is a symmetric
matrix built out from interpolation or regression on a sample set of points.

3.2.A trust-region method. The new trust-region subproblem we propose
to solve at each iteration is then

min mk(s)

s.t. ‖s‖2 ≤ ∆2
k,

(27)

where mk(s) is given by (26), which can then be equivalently stated as

min
s,α

1
2s
>Bks+ α

s.t. (f(xk)− β̃ik) + (gi)
>s ≤ α, ∀ i ∈ Ik,

‖s‖2 ≤ ∆2
k.

(28)
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y1 xk y2

f (xk) + (g1)>(x− xk)

f (xk) + (g1)>(x− xk)− β̄1
k

β̄1
k

y1 xk y2

f (xk) + (g1)>(x− xk)− β̄1
k

y1 xk y2

f (xk) + (g2)>(x− xk)

f (xk) + (g2)>(x− xk)− β̄2
k

f (xk) + (g1)>(x− xk)− β̄1
k

β̄2
k

y1 xk y2

f (xk) + (g2)>(x− xk)− β̄2
k

f (xk) + (g1)>(x− xk)− β̄1
k

y1 xk y2

f (xk) + (g2)>(x− xk)− β̄2
k

f (xk) + (g1)>(x− xk)− β̄1
k

f (xk) + (g3)>(x− xk)

y1 xk y2

f (xk) + (g2)>(x− xk)− β̄2
k

f (xk) + (g1)>(x− xk)− β̄1
k

f (xk) + (g3)>(x− xk)

Figure 1. Construction of the nonsmooth model (convex case).

The first order necessary conditions for problem (28) require the existence of
nonnegative Lagrange multipliers λ and σ such that

0 = Bks+
∑
i∈Ik

λigi + 2σs (29a)

0 = 1−
∑
i∈Ik

λi (29b)

0 = λi

(
(β̃ik − f(xk))− (gi)

>s+ α
)
, ∀ i ∈ Ik (29c)

0 ≤ (β̃ik − f(xk))− (gi)
>s+ α, ∀ i ∈ Ik (29d)

0 = σ(‖s‖2 −∆2
k), ‖s‖2 ≤ ∆2

k. (29e)
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y1 xk y2

f (xk) + (g2)>(x− xk)− β̄2
k

f (xk) + (g1)>(x− xk)− β̄1
k

f (xk) + (g3)>(x− xk)

Figure 2. Nonsmooth model m̄k(s) for the convex case (in green).

y1 xk y2

f (xk) + (g1)>(x− xk)

f (xk) + (g1)>(x− xk)− β̄1
kβ̄1

k

γ‖xk − y2‖2

y1 xk y2

f (xk) + (g1)>(x− xk)− β̄1
k

y1 xk y2

f (xk) + (g2)>(x− xk)
f (xk) + (g2)>(x− xk)− β̄2

k

f (xk) + (g1)>(x− xk)− β̄1
k

β̄2
k

γ‖xk − y1‖2

y1 xk y2

f (xk) + (g2)>(x− xk)− β̄2
k

f (xk) + (g1)>(x− xk)− β̄1
k

Figure 3. Construction of the nonsmooth model (nonconvex case).
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y1 xk y2

f (xk) + (g2)>(x− xk)− β̄2
k

f (xk) + (g1)>(x− xk)− β̄1
k

Figure 4. Nonsmooth model m̄k(s) for the nonconvex case (in
green).

Given a solution sk of problem (28), along with its associated multipliers λ,
we further consider the following auxiliary subproblem

min m̃k(s) = f(xk) + g̃>k s+
1

2
s>Bks

s.t. ‖s‖2 ≤ ∆2
k,

(30)

where

g̃k =
∑
i∈Ik

λigi with
∑
i∈Ik

λi = 1, and λi ≥ 0, ∀i ∈ Ik, (31)

is a convex linear span of the randomly generated vectors. The first order
necessary conditions (29) show that a solution sk of problem (28) satisfies the
first order necessary conditions (3) with gk replaced by g̃k, thus satisfying the
first order necessary conditions for (30). In addition, if sk solves problem (28),
then from the second order necessary conditions, we know that[

ds
dσ

]> [
Bk + 2σ 0

0> 0

] [
ds
dσ

]
≥ 0

for all (ds, dσ) in the cone of these conditions. Furthermore, if we look at
the inequalities or equalities that define this cone and are associated with
the constraints indexed by Ik, they are either of the form (gi)

>ds − dα ≤
0 or (gi)

>ds − dα = 0 which do not constrain ds. Hence, we have that
d>s (Bk + 2σI)ds ≥ 0 for all ds in the cone of the second order necessary
conditions associated only with the constraint ‖s‖2 ≤ ∆2

k. The conclusion
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is that sk also satisfies the second order necessary conditions for (30) with
gk replaced by g̃k. Since the first and second order necessary conditions
are sufficient for any trust-region subproblem with a spherical trust-region
constraint (regardless of the sign of eigenvalues of Bk), we conclude that
a solution of (28) is a solution of (30). This fact has repercussions in our
algorithmic design and convergence analysis.

We now can define a modified version of the Basic DFO-TRNS Algorithm
using this more sophisticated model that will enable us to better handle
nonsmoothness in the objective function. The detailed scheme is reported as
Algorithm Advanced DFO-TRNS. We need to consider that the points in the
sample set {yjk : j ∈ Jk} used to build the linear terms of the model verify

‖yjk − xk‖ ≤ γ∆k, ∀j ∈ Jk, (32)

for all iterations k of our algorithm, and for some suitably chosen γ > 0.
Furthermore, the advanced algorithm reverts to the basic (in the sense of
using a quadratic model) when the norm of the convex linear span vector g̃k
in (31) becomes too small (relative to the trust-region radius). For simplicity

the condition we test is ‖g̃k‖ < ε̄∆
1/2
k but one could use any power of ∆k with

exponent in (0, 1) (see the comment below made before Assumption 3.1).

3.3. Convergence analysis. The convergence analysis of the advanced
algorithm follows the same lines as the basic version. The main difference is
the use of the convex linear span vector g̃k, see (31), instead of the normalized
gk. However, note that from the logic of the algorithm, g̃k can be bounded
below as follows:

‖g̃k‖ ≥ min{1, ε̄∆
1
2

k}. (33)

A similar assumption as in the basic algorithm is imposed in the model
Hessians. In this case the exponent q is restricted to (0, 1/2). This has to do

with the test ‖g̃k‖ < ε̄∆
1/2
k in the advanced algorithm. If we had considered a

parameter r ∈ (0, 1) and asked instead for ‖g̃k‖ < ε̄∆r
k, then the exponent q

in the assumption below would had been restricted to (0, 1− r).

Assumption 3.1. There exist q ∈ (0, 1/2), m,M > 0, such that: The
maximal eigenvalue of Bk satisfies

λmax(Bk) ≤ M∆−qk .
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Algorithm Advanced DFO-TRNS (Advanced DFO Trust-Region Algorithm for

Nonsmooth Problems)

Initialization. Select x0 ∈ Rn, η1, θ, γ > 0, 0 < γ1 < 1 ≤ γ2, ε̄ > 0,
∆0 > 0, and p > 0. Set G0 = ∅.
For k = 0, 1 . . .

Generate gk randomly and densely on the unit sphere. Consider a sample
set of points

satisfying (32). Build a symmetric matrix Bk.
Set Gk = Gk−1 ∪ {gk}.
Let s be a solution for subproblem (28) for this Gk, and λ the associate

multipliers.
Let g̃k =

∑
i∈Ik λigi, where Ik is the index set corresponding to Gk.

If ‖g̃k‖ < ε̄∆
1
2

k Then
Reset Gk = {gk}.
Let s be a solution for subproblem (28) for this reset Gk.

End If
Set sk = s and

ρk =
f(xk)− f(xk + sk)

θ‖sk‖p+1
.

If ρk ≥ η1 Then set SUCCESS ← true, xk+1 ← xk + sk, ∆k+1 ← γ2∆k,
Else set SUCCESS ← false, xk+1 ← xk, ∆k+1 ← γ1∆k.
End If

End For

When Bk has negative eigenvalues, its minimal eigenvalue satisfies

−λmin(Bk) ≤ m∆−qk .

Again, one first proves that the trust-region radius converges to zero.

Lemma 3.1. Assume that f is bounded from below. Let Assumption 3.1 hold.
Any sequence {∆k} of trust-region radii produced by Algorithm Advanced

DFO-TRNS is such that

lim
k→∞

∆k = 0.

Proof : The proof is similar to the one of Lemma 2.1, and the only difference
is the use of g̃k instead of gk. We thus only need to redo the algebraic part
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of the proof:

f(xk)− f(xk + sk) ≥ η1θ‖sk‖1+p

≥ η1θmin{‖B−1
k g̃k‖,∆k}1+p

≥ η1θmin

{
εq

M
‖g̃k‖, ε

}1+p

≥ η1θmin

{
εq

M
min{1, ε̄ε

1
2}, ε

}1+p

,

where the last inequality follows from (33).

Then we show that the algorithm generates steps that tend to a step that
is now along the convex linear span vector g̃k.

Property 3.1. Any sequence {(xk, sk,∆k)} generated by Algorithm Advanced

DFO-TRNS is such that

sk = −∆kDk
g̃k
‖g̃k‖

,

with Dk ∈ Rn×n satisfying
lim
k→∞

Dk = I.

As in Proposition 2.1, the following result is proved under exact optimal-
ity of the solution of the trust-region subproblem (27), but we could have
assumed inexact optimality and deduce a similar result as long as the norm
of the residual of the first-order necessary conditions of this subproblem is
smaller than a certain power of the trust-region radius.

Proposition 3.1. Assume that f is bounded from below. Let Assumption 3.1
hold. Assume also that all trust-region subproblems (27) are solved up to opti-
mality. Then Algorithm Advanced DFO-TRNS generates sequences {(xk, sk,∆k)}
satisfying Property 3.1 (for k sufficiently large).

Proof : The proof follows the line of thought of Proposition 2.1. The main
difference is that the step sk solves now the modified trust-region subprob-
lem (30), where g̃k takes the place of gk. The same calculations take us
to (

Bk +
ηk
∆2
k

I

)
sk = −g̃k, (34)

where now ηk = −s>kBksk− g̃>k sk. As in Proposition 2.1, the rest of the proof
is divided in two main parts.
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(A) When deriving the lower and upper bounds on ηk we can no longer use
the fact that g̃k is normalized but rather that it satisfies the bound (33).

Since sk solves problem (30), it yields a better model value than the step
−∆kg̃k/‖g̃k‖, which means

1

2
s>kBksk + g̃>k sk ≤

1

2
∆2
kg̃
>
k Bkg̃k/‖g̃k‖2 −∆kg̃

>
k g̃k/‖g̃k‖,

and we obtain

1

2
s>kBksk + g̃>k sk ≤

1

2
∆2
kλmax(Bk)−∆k‖g̃k‖. (35)

Then, taking into account the fact that ηk = −2(1
2s
>
kBksk + g̃>k sk)+ g̃>k sk and

using inequality (35), we can derive a lower bound on ηk from Assumption 3.1

ηk ≥ −∆2
kλmax(Bk) + 2∆k‖g̃k‖+ g̃>k sk

≥ −M∆2−q
k + 2∆k‖g̃k‖ −∆k‖g̃k‖

≥ −M∆2−q
k + ∆k‖g̃k‖. (36)

The bound (36) ensures that ηk is nonzero for k sufficiently large.
On the other hand, an upper bound on ηk can be derived also from As-

sumption 3.1 as follows

ηk = −s>kBksk − g̃>k sk
≤ max{0,−λmin(Bk)}‖sk‖2 + ∆k‖g̃k‖
≤ m∆−qk ∆2

k + ∆k‖g̃k‖. (37)

(B) The application of the generalized Sherman-Morrison-Woodbury for-
mula, (

Bk +
ηk
∆2
k

I

)−1

=
∆2
k

ηk
I − ∆2

k

ηk
Bk

(
I +

∆2
k

ηk
Bk

)−1
∆2
k

ηk
I,

and (34) allow us to write

sk = −∆kDk
g̃k
‖g̃k‖

,

with

Dk =
‖g̃k‖∆k

ηk
I − ‖g̃k‖∆k

ηk
Bk

(
I +

∆2
k

ηk
Bk

)−1
∆2
k

ηk
I. (38)
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It remains to prove that Dk → I as k → ∞. Using the bounds (36)
and (37) derived in part (A) of the proof and dividing by ∆k‖g̃k‖ we arrive
at

−
M∆1−q

k

‖g̃k‖
+ 1 ≤ ηk

∆k‖g̃k‖
≤ 1 +

m∆1−q
k

‖g̃k‖
.

From this, Lemma 3.1, (33), and q ∈ (0, 1/2),

ηk
∆k‖g̃k‖

→ 1.

From this and Assumption 3.1, and again using (33) and q ∈ (0, 1/2),

∆2
k

ηk
Bk =

∆k‖g̃k‖
ηk

Bk∆k

‖g̃k‖
→ 0.

Finally taking into account (38), it results that Dk → I as k →∞, and the
proof is complete.

The proof that the Clarke generalized derivative is nonnegative along lim-
iting trust-region steps is verbatim the one of Lemma 2.2.

Lemma 3.2. Assume that f is bounded from below. Let Assumption 3.1 hold.
Let {(xk, sk,∆k)} be a sequence generated by Algorithm Advanced DFO-TRNS.
Let L ⊆ K = {k : ∆k+1 < ∆k} be an index set such that

lim
k∈L,k→∞

xk = x∗ and

lim
k∈L,k→∞

sk
‖sk‖

= s∗.

Then f ◦(x∗; s∗) ≥ 0.

The final global convergence is given below. Its proof follows the main
argument of the proof of Theorem 2.3.

Theorem 3.3. Assume that f is bounded from below. Let Assumption 3.1
hold. Let Algorithm Advanced DFO-TRNS satisfy Property 3.1. Let x∗ be any
limit point of {xk} and K ⊆ {k : ∆k+1 < ∆k} be a subset of indices such that

lim
k∈K,k→∞

xk = x∗.

If the subsequence {gk}K is dense in the unit sphere, then x∗ is stationary
for problem (1).
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Proof : We proceed by contradiction and assume that x∗ is not stationary for
problem (1). Then we know that a direction ḡ exists such that ‖ḡ‖ = 1 and
f ◦(x∗;−ḡ) < 0. Since {gk}K is dense in the unit sphere, we can extract a
subset of iteration indices, which we call again K, such that (15)–(17) hold.
Property 3.1 assures that sk = −∆kDkg̃k/‖g̃k‖ with Dk → I.

Considering the definitions of β̃ik given in (24) and (25), we can write the
expression of the constraints in model (28) as follows:

(gi)
>s− β̄ik −∆

1/2
k ≤ α− f(xk), for all i ∈ Ik, gi 6= gk, (39)

(gk)
>s− β̄kk ≤ α− f(xk). (40)

Now, taking into account (20) and (22), the Lipschitz continuity of function
f , and the inequalities given in (32), we conclude that there exists a constant
c > 0 such that

β̄ik ≤ c∆k, ∀i ∈ Ik.
This inequality, β̄ik ≥ 0, and the constraint ‖s‖ ≤ ∆k allow us to give, for

k sufficiently large, an upper bound to the left hand side of constraints (39)
and a lower bound to the left hand side of constraint (40). In particular, for
k sufficiently large, there exist 0 < θ1 < θ2 < 1 such that (recall that each gi
has norm 1)

(gi)
>s− β̄ik −∆

1/2
k ≤ ∆k −∆

1/2
k ≤ −θ2∆

1/2
k , for all i ∈ Ik, gi 6= gk,

(gk)
>s− β̄kk ≥ −(1 + c)∆k ≥ −θ1∆

1/2
k .

Thus, for k sufficiently large, we conclude that the constraints (39) are not
active and that the only active constraint is the one related to gk, namely
constraint (40). This implies, by taking into account the necessary conditions
in (29), that

λik = 0, for all i ∈ Ik, i 6= k,

λkk = 1.

We have thus g̃k = gk, for k sufficiently large, and Property 3.1 assures
sk = −∆kDkgk with Dk → I, and hence

lim
k∈K,k→∞

sk
‖sk‖

= −ḡ.

Then, by Proposition 3.1, we have that f ◦(x∗;−ḡ) ≥ 0, which is a contradic-
tion, and the proof is concluded.
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Remark 3.1. It becomes evident from the proof of Theorem 3.3 that Prop-
erty 3.1 is not really needed after all, but rather Property 2.1 for k suffi-
ciently large. However, Property 3.1 is the foundational one for the advanced
algorithm, and it allows us to consider scenarios where the density of the
directions can be guaranteed for g̃k instead of for gk.

4. Implementation and numerical results
In this section we report numerical results obtained by our Basic and Ad-

vanced DFO-TRNS algorithms and compare them against the performance of
NOMAD v 3.8.1 [1, 31], a state-of-the-art software for nonsmooth derivative-
free optimization. NOMAD has been run using its default parameter set-
tings. The performance of the different solvers was assessed on 51 well-
known nonsmooth unconstrained problems with dimensions between 10 and
30 variables. The complete problem list with the corresponding references
is reported in Table 1. We notice that our benchmark includes some com-
posite nonsmooth problems with specific structure (e.g., the outer function
is the max operator or the `1 norm) and more general nonsmooth problems
constructed either by chaining and extending existing nonsmooth problems
or by including some nonsmoothness in existing smooth problems (e.g., by
replacing a variable xi with |xi|).

We ran all versions of the tested solvers giving a budget of 10000 function
evaluations. Such a number of function evaluations seems a reasonable choice
in practice given the nonsmoothness and the dimensions of the problems.

Performance of different derivative-free solvers on different problems can
be analyzed using data and performance profiles [36]. Specifically, let S be
a set of solvers and P a set of problems. For each s ∈ S and p ∈ P , let tp,s
be the number of function evaluations required by solver s on problem p to
satisfy the condition

f(xk) ≤ fL + τ(f(x0)− fL),

where 0 < τ < 1 and fL is the best objective function value achieved by any
solver in S on problem p. Then, performance and data profiles of solver s
are the following functions

ρs(α) =
1

|P |

∣∣∣∣{p ∈ P :
tp,s

min{tp,s′ : s′ ∈ S}
≤ α

}∣∣∣∣ ,
ds(κ) =

1

|P |
|{p ∈ P : tp,s ≤ κ(np + 1)}| ,
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name dimension reference
wong2 10 [34]
polak2 10 [34]
maxquad 10 [34]
gill 10 [34]
maxq {10,20,30} [23]
l1hilb {10,20,30} [23]
lq {10,20,30} [23]
cb3 {10,20,30} [23]
cb32 {10,20,30} [23]
af {10,20,30} [23]
brown {10,20,30} [23]
mifflin2 {10,20,30} [23]
crescent {10,20,30} [23]
crescent2 {10,20,30} [23]
polak3 11 [34]
osborne2 11 [34]
steiner2 12 [34]
shelldual 15 [34]
wong3 20 [34]
maxl 20 [34]
maxql 20 [34]
watson 20 [34]
wild1 20 [36]
wild2 20 [36]
wild3 20 [36]
wild19 20 [36]
wild11 20 [36]
wild16 20 [36]
wild20 20 [36]
wild15 20 [36]
wild21 20 [36]

Table 1. Problems used in the numerical experiments.

where np is the dimension of problem p. Comparisons were carried out for
values of the tolerance parameter τ in {10−3, 10−5, 10−6}.

The practical implementation of DFO-TRNS makes use of a quadratic term
1
2s
>Bks. In turn, building Bk requires maintaining a sample set, say Yk. Here

we followed the smooth derivative-free trust-region approach of [5, Section 5],
where Bk is built out of minimum Frobenius norm models using a sample
set that starts by 2n+ 1 points x0, x0 + ∆0ei, x0−∆0ei, where ei is the i-th
column of the identity matrix of order n (even though the approach computes
coefficients for both linear and quadratic basis terms, those ones related to
the linear part are simply thrown away in our case).
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At each iteration, the trial point xk + sk is added to the sample set until
it reaches a cardinality of (n + 1)(n + 2)/2, after which the sample point
farthest away from the new iterate is discarded to give room to the new one.

It is this very same sample set that is normally used to build the max-
linear terms of our nonsmooth trust-region models in the Advanced version
of DFO-TRNS, except for the following modification. If the points in the
sample set Yk are too close to the current best point, more specifically, if the
cardinality of the set{

y ∈ Yk : ‖y − xk‖ ≤ ∆̃k, ‖y − xk‖ > 10−7
}
,

with ∆̃k = min{∆k, 10}, is less than 2, we then define a completely new set

Yk = {yi = xk + di, i = 1, . . . , p} ∪ {xk},

where p = max{3, n/3} and di ∈ Rn are vectors with ‖di‖ = ∆̃k/2 generated
by suitably scaling the vectors of the pseudorandom Halton sequence [20].

Moreover, in the practical implementation of our algorithms, we have in-
cluded a weight 0 ≤ ω ≤ 1 in the quadratic term of the models, that is
we replaced 1

2s
>Bks with ω

2s
>Bks in Problems (2) and (27). In such a way,

the users of our solver can tune it to the degree of nonsmoothness of their
problems. The other parameters of our method were set to the following
values: η1 = 10−8, γ1 = 1/10, γ2 = 10/9, ∆0 = 1, p = 0.1, and θ = 10−3.

Furthermore, in the displacements βijk reported in (20), we used a value of
δ = 10−5.

As a preliminary test, we ran Basic DFO-TRNS using models without the
quadratic term (i.e., ω = 0) and we naturally compared it against NOMAD
with the option disable models. In this way we are comparing a trust-region
approach that uses a linear model with random first-order term against a
directional type direct-search method with random directions in the poll
step (and no search step included). In Figure 5, we report performance
and data profiles related to the comparison between Basic DFO-TRNS with
ω = 0.0 and NOMAD without models. As we can easily see, our Basic
DFO-TRNS solver yields good results when compared to NOMAD without
models, especially when the required tolerance is small enough.

In Figure 6, we report the profiles for Advanced DFO-TRNS when varying
the value of the ω parameter in ω

2s
>Bks. It can be observed that reducing

the value of the parameter does not always improve the performance of the
algorithm. The results are comparable but still the best result seems to
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Figure 5. Comparison between Basic DFO-TRNS with ω = 0.0
in ω

2s
>Bks and NOMAD without models.

be obtained when ω = 1, indicating that the inclusion of a good level of
smoothness in the models could lead to some improvement in performance.

Another experiment is reported to highlight the importance of incorporat-
ing a max-linear term in the trust-region models, i.e., the potential improve-
ment obtained when passing from the Basic to the Advanced DFO-TRNS
algorithm. We report in Figure 7 a comparison of these two versions for
ω = 1 from where this improvement is clearly visible.

Finally, we hence compare, on Figure 8, Advanced DFO-TRNS with ω = 1
and NOMAD when this includes a search step consisting of the minimiza-
tion of quadratic models. The results seem to indicate that our trust-region
approach is again competitive with NOMAD, especially when the required
tolerance is small enough.
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Figure 6. Comparison of Advanced DFO-TRNS versions with
different ω in ω

2s
>Bks.

5. Conclusions
In this paper it was developed for the first time a convergent trust-region

methodology for nonsmooth derivative-free optimization, when no informa-
tion whatsoever is available about the origin of the nonsmoothness of the ob-
jective function. The trust-region models considered are nonsmooth, of the
max-linear type, where each linear term in the max-linear model attempts
to approximate an element of the subdifferential in a nearby sampling point.
A quadratic term can also be considered in the trust-region model for the
purpose of improving numerical performance. Interestingly, we have shown
that the Hessian matrix of this quadratic term can be unbounded as long as
it does not go to infinity faster than the inverse of a negative power of the
trust-region radius.

A number of open future questions deserve attention. The most pressing
issue is the development of a derivative-free trust-region solver capable of
dealing well with large problems. In fact, quadratic interpolation/regression
models or similar require significant storage and linear algebra effort as the
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Figure 7. Comparison between Basic and Advanced DFO-
TRNS with ω = 1 in ω

2s
>Bks.

model Hessians are typically dense. Other generalizations include the ex-
tension to the constrained case, in particular to linear constraints, and to
stochastic objective functions. But there are also some interesting open ques-
tions related to the analysis presented in this paper. It would be pertinent to
study what can be said when the objective function is itself of the max-linear
type. Another question is related to the development of a convergence rate,
which does not seem likely to be observed when the directions are densely
generated in the unit sphere, but still it would be interesting to derive some
quantitative probabilistic argument on the rate of progress.
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35121 Padova, Italy
E-mail address: rinaldi@math.unipd.it

L. N. Vicente
Department of Industrial and Systems Engineering, Lehigh University, 200 West Packer
Avenue, Bethlehem, PA 18015-1582, USA and Centre for Mathematics of the University
of Coimbra (CMUC), Portugal
E-mail address: lnv@mat.uc.pt


