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MODELING HESSIAN-VECTOR PRODUCTS

IN NONLINEAR OPTIMIZATION:

NEW HESSIAN-FREE METHODS

L. SONG AND L. N. VICENTE

Abstract: In this paper, we suggest two ways of calculating interpolation models
for unconstrained smooth nonlinear optimization when Hessian-vector products are
available. The main idea is to interpolate the objective function using a quadratic
on a set of points around the current one and concurrently using the curvature
information from products of the Hessian times appropriate vectors, possibly defined
by the interpolating points. These enriched interpolating conditions form then an
affine space of model Hessians or model Newton directions, from which a particular
one can be computed once an equilibrium or least secant principle is defined.

A first approach consists of recovering the Hessian matrix satisfying the enriched
interpolating conditions, from which then a Newton direction model can be com-
puted. In a second approach we pose the recovery problem directly in the Newton
direction. These techniques can lead to a significant reduction in the overall num-
ber of Hessian-vector products when compared to the inexact or truncated Newton
method, although simple implementations may pay a cost in linear algebra or num-
ber of function evaluations.

Keywords: Nonlinear/Nonconvex Optimization, Hessian-Vector Products, Qua-
dratic Interpolation, Newton Direction, Hessian Recovery.

1. Introduction
Let us consider the minimization of a twice continuously differentiable func-

tion f ,

min
x∈Rn

f(x),

in a context where the following information is available: Given x ∈ Rn, one
can compute f(x), ∇f(x), and ∇2f(x)v for any vector v ∈ Rn.
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1.1. Literature review. Newton-based methods for unconstrained nonlin-
ear optimization require the solution of a linear system at each iteration.
The matrix of this system is the Hessian of f and its right-hand side is
the negative of the gradient. There are instances where the Hessian is not
available for factorization or where that is too expensive but where one can
afford to do Hessian-vector products, in which cases the system should not
be solved directly but by an iterative method. Then it is known that there
is a residual error in the application of the iterative solver and that such a
residual can be made smaller by asking more from the solver. This reasoning
gave rise to the so-called inexact or truncated Newton methods which have
formed an important numerical tool for many decades. It is well known since
the contribution [6] what conditions one should impose on the norm of the
residual of the linear system to obtain linear, superlinear, or quadratic local
convergence in the iterates of the underlying method (see [15]). Global con-
vergence of inexact Newton methods is also well studied [8, 13]. One knows
well also how to deal with negative curvature while solving the linear system
using Krylov-type methods (Conjugate Gradients or Lanczos), either using
a trust-region technique [10, 18] or a line search [14].

When Hessian or Hessian-vector products are not available, estimating the
Hessian can then play an important role, however the existing approaches
are not entirely satisfactory. If the Hessian matrix is sparse and its sparsity
pattern is known, the approach in [9] enforces multiple secant equations in
a least squares sense, solving then a positive semi-definite system of equa-
tions in the nonzero Hessian components. Their approach does not show
a significant improvement compared to the L-LBGS or Newton trust-region
methods. In [17] the Hessian is estimated by finite differences in the gradi-
ent, but by dividing the Hessian columns first into groups. Using symmetry
and the known sparsity of the Hessian, it is possible to find approximations
to different Hessian columns at once. This method is cheap in computer
arithmetic and provided better results when compared to [5]. A more recent
approach [2] imposes the secant equations componentwise, leading to fewer
equations when taking into account the available sparsity pattern. The nu-
merical results show that the algorithm can find the Hessian approximation
fast and accurately when the number of nonzero entries per row is relatively
low.
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1.2. The contribution of the paper. In this paper two techniques are
proposed and analyzed for the Hessian-free scenario where only Hessian-
vector products are available for use. Our goal is to use as few of these
products as possible without losing the ability to converge to a solution or
a stationary point of the original problem. Having this in mind we form a
quadratic model around a point x, using function and gradient values at x
and function values at the interpolating points y`, ` = 1, . . . , p. The matrix H
of this model or some kind of Newton step has then to be recovered.

Our first approach enriches these interpolating conditions with the infor-
mation coming from a single true Hessian-vector product ∇2f(x)(y− x), for
a point y different from any of the y`’s of those conditions. In fact, to avoid
degeneracy in the enriched interpolating conditions (which are affine condi-
tions on H), one has to choose y differently from those y`’s and one cannot
consider more than one of these products. The computation of the model
Hessian is carried out by minimizing its norm or its distance to a previous
model Hessian (say from a previous iteration of the optimization method)
subject to the enriched interpolating conditions. Such a Hessian recovery
can then lead to the computation of an approximate Newton step.

Our second approach allows us to consider more than one Hessian-vector
product in the model formulation. The interpolating conditions are now
enriched by the second-order information coming from the Hessian-vector
products ∇2f(x)(y` − x), ` = 1, . . . , p. Then, avoiding degeneracy and the
inverse of the Hessian model, the recovery is done in the space of the Newton
direction models, using a modified set of enriched interpolating conditions.
Again, the computation of the Newton direction model is carried out by
minimizing its norm or its distance to a previous Newton direction model
subject to the modified enriched interpolating conditions.

In both cases we will provide some theoretical support for the recoveries
by proving that the absolute error (in model Hessian or in model Newton
direction) is decreasing in the case where f is quadratic and the enriched
interpolating conditions are underdetermined. The recovery absolute error
coming from the enriched interpolating conditions (in a determined situation)
will be also analyzed for both cases. We report numerical results to confirm
that both approaches are sound and can lead to a significant reduction in the
number of Hessian-vector products. The dimension of the problems tested
is rather small. The linear algebra is dense, and the number of functions
evaluations used can be relatively high. It is left for future research the
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application to medium/large-scale problems. The second approach based on
a Newton direction model can be easily parallelized (see Section 4).

The paper is organized as follows. In Section 2 we present our first ap-
proach, the one for the recovery of a model Hessian. In Section 3 we describe
our second approach, the one for the recovery of a model Newton direction.
In both cases we report illustrative numerical results for small problems. The
paper is finished in Section 4 with some final remarks and prospects of future
work. The notation O(A) will be used to represent the product of a constant
times A whenever the multiplicative is independent of A. All vector and
matrix norms are Euclidian unless otherwise specified.

2. Hessian recovery from Hessian-vector products
Let x be a given point. Suppose also that we have calculated f and ∇f at

x as well as f at a number of points y1, . . . , yp. We can then use quadratic
interpolation to fit the data by determining a symmetric matrix H such that

f(x) +∇f(x)>(y`− x) +
1

2
(y`− x)>H(y`− x) = f(y`), ` = 1, . . . , p. (1)

Furthermore, given a set of vectors v1, . . . , vm, with m possibly much smaller
than n, suppose that we have calculated wj = ∇2f(x)vj, j = 1, . . . , q. Hence
we could then ask our Hessian model H to satisfy Hvj = wj, j = 1, . . . , q.
However it is important to notice two immediate facts, reported in Re-
mark 2.1.

Remark 2.1. First we cannot have q > 1. Any use of a pair v1, v2 would
make the conditions Hv1 = w1 and Hv2 = w2 degenerate in H, in the
sense that the matrix multiplying the component variables of H would be rank
deficient. This fact can be easily confirmed from multiplying each by the other
vector, i.e., by looking at (v2)>Hv1 = (v2)>w1 and (v1)>Hv2 = (v1)>w2.
Secondly, even when taking q = 1, one cannot consider v1 = y` − x, for any
`, for the exact same reason. In fact, multiplying H(y`− x) = w1 on the left
by (1/2)(y`−x)> would lead us to the same term in H as of the corresponding
interpolating one in (1).

2.1. Hessian recovery. From Remark 2.1, we know that we can only con-
sider one vector v for the Hessian multiplication w = ∇2f(x) v, and that this
vector cannot be any of the interpolation vectors y` − x. Then, in the same
vein as it was done in [4] for derivative-free optimization, a model Hessian H



MODELING HESSIAN-VECTOR PRODUCTS IN NONLINEAR OPTIMIZATION 5

could then be calculated from the solution of the recovery problem

min
H

norm(H) s.t. (1) and Hv = w. (2)

The norm(H) could be taken in a certain `1 sense, leading to a linear pro-
gram (see [1]). It could also be set as the Frobenius norm, norm(H) = ‖H‖F ,
leading to a quadratic program. Alternatively, one can recover a model Hes-
sian in a least secant fashion (as done in [16] for derivative-free optimization
using the Frobenius norm)

min
H

norm(H −Hprev) s.t. (1) and Hv = w, (3)

where Hprev is a previously computed model Hessian (say, from a previous
iteration of an optimization scheme).

2.2. Theoretical motivation. We will now see that when f is quadratic
the error in the difference between the optimal solution H∗ of (3) and the
true Hessian decreases relatively to the previous estimate Hprev. To prove
such a result it is convenient to use the Frobenius norm in (3) and consider:

min
H

1

2
‖H −Hprev‖2

F s.t. (1) and Hv = w, (4)

Let us first write the quadratic f centered at x

f(y) = a+ b>(y − x) +
1

2
(y − x)>C(y − x), (5)

where a = f(x), b = ∇f(x), and C is a symmetric matrix.

Theorem 2.1. Let f be given by (5) and assume that the system of linear
equations defined by (1) and Hv = w is feasible and underdetermined in H.
Let H∗ be the optimal solution of problem (4). Then

‖H∗ − C‖2
F ≤ ‖Hprev − C‖2

F .

Proof : The proof follows the argument in [16]. From (1), we have (y` −
x)>(C −H∗)(y`− x) = 0, ` = 1, . . . , p. We also have (C −H∗)v = 0. Hence,
C − H∗ is a feasible direction for the affine space in H defined by (1) and
Hv = w. It then turns out that the function

m(θ) =
1

2
‖(H∗ −Hprev) + θ(C −H∗)‖2

F

has a minimum at θ = 0. From the trace definition of the Frobenius norm

m′(θ) = [(H∗ −Hprev) + θ(C −H∗)]> (C −H∗).
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Hence,

(H∗ −Hprev)>(C −H∗) = 0,

which then implies (given the symmetry of the matrices and considering only
the diagonal entries of the above matrix product)

n∑
i=1

n∑
j=1

(H∗ij −H
prev
ij )(Cij −H∗ij) = 0.

The rest of the proof requires the following calculations:

‖Hprev − C‖2
F − ‖H∗ −Hprev‖2

F − ‖H∗ − C‖2
F

=
n∑
i=1

n∑
j=1

[(Hprev
ij − Cij)2 − (H∗ij −H

prev
ij )2 − (H∗ij − Cij)2]

=
n∑
i=1

n∑
j=1

[(Hprev
ij − Cij +H∗ij −H

prev
ij )(Hprev

ij − Cij −H∗ij +Hprev
ij )− (H∗ij − Cij)2]

=
n∑
i=1

n∑
j=1

[(H∗ij − Cij)(2H
prev
ij − Cij −H∗ij −H∗ij + Cij)]

= 2
n∑
i=1

n∑
j=1

[(H∗ij − Cij)(H
prev
ij −H∗ij)] = 0.

Hence we have established that

‖H∗ − C‖2
F = ‖Hprev − C‖2

F − ‖H∗ −Hprev‖2
F

≤ ‖Hprev − C‖2
F .

Let α represent the coefficients of H in (1/2)w>Hw in terms of the mono-
mial basis. The quadratic components of this basis are of the form (1/2)w2

i ,
i = 1, . . . , n and wiwj, 1 ≤ i < j ≤ n. So, we have

(1/2)h11w
2
1 = α1[(1/2)w2

1], . . . , (1/2)hnnw
2
n = αn[(1/2)w2

n],

h12w1w2 = αn+1[w1w2]
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and so on. The recovery problem (4) can then be formulated approximately1

as

min
α

1

2
‖α− αprev‖2 s.t. Mα = δ, (6)

where

M =

[
M 1

M 2

]
, δ =

[
δ1

δ2

]
,

M 1α =

 1
2(y1 − x)>H(y1 − x)

...
1
2(yp − x)>H(yp − x)

 , M 2α = Hv,

δ1 =

 f(y1)− f(x)−∇f(x)>(y1 − x)
...

f(yp)− f(x)−∇f(x)>(yp − x)

 , δ2 = w.

Another piece of motivation for this approach comes from the fact that
the enriched interpolating conditions defined by (1) and Hv = w, once de-
termined (i.e. with as many equations as variables), may produce a model
Hessian H that used together with ∇f(x) can give rise to a fully quadratic
model. Such a model has the same orders of accuracy as a Taylor-based
model [3] (see also [4]).

Theorem 2.2. If p is chosen such that p+n = n2+n
2 and if M is nonsingular,

then the model Hessian H resulting from Mα = δ in (6) can give rise to a
fully quadratic model, in other words, one has

‖H −∇2f(x)‖ = O(∆y),

where ∆y = max1≤`≤p
∥∥y` − x∥∥ and the constant multiplying ∆y depends on

the inverse of an appropriate scaled version of M .

Proof : First we follow the argument in [3][Theorem 4.2] and consider that x is
at the origin, without any lost of generality. One can start by making a Taylor
expansion of f around x along all the displacements y` − x, ` = 1, . . . , p,
leading to

M 1(α− αx) = O(∆3
y), (7)

1The norm used in (6) for α is a minor variation of the Frobenius norm of H.
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where αx stores the components of ∇2f(x) and each component of the right-
hand side is bounded by (1/6)L∇2f‖y`−x‖3, with L∇2f the Lipschitz constant
of ∇2f . One also has

M 2(α− αx) = 0.

Now we divide each row of (7) by ∆2
y. The proof is concluded by considering

[M 1/∆2
y;M

2] as the scaled version of M alluded in the statement of the
result.

2.3. Numerical results for the determined case. As we have discussed
in Theorem 2.2, if p is chosen such that p + n = n2+n

2 and if the matrix M
is nonsingular and well conditioned, the model Hessian H resulting from
Mα = δ in (6) becomes fully quadratic. The error between the Hessian
model H and ∇2f(x) is then of the O(∆y), where

∆y = max
1≤`≤p

‖y` − x‖.

In this section we will report some illustrative numerical results to confirm
that an approach built on such an Hessian model can lead to an economy of
Hessian-vector products. Our term of comparison will be the inexact Newton
method (as described in [15, Section 7.1]), where the system

∇2f(x)dIN = −∇f(x)

is solved by applying a truncated linear conjugate (CG) method (stopping
once a direction of negative curvature is found or a relative error criterion
is met). In our case, after computing H from solving Mα = δ in (6), to
compute our search direction dMH , we apply the exact same truncated CG
method to

HdMH = −∇f(x)

as in the inexact Newton method. The computed directions dIN or dMH are
necessarily descent in the sense of making an acute angle with −∇f(x).

For both the inexact Newton method and our model Hessian approach, a
new iterate is of the form x+αd, where d is given by dIN or dMH respectively.
The same cubic interpolation line search [19, Section 2.4.2] is used to compute
the stepsizes αIN and αMH . In this line search, the objective function is
approximated by a cubic polynomial with function values at three points and
a derivative value at one point. The line search starts with a unit stepsize and
terminates either successfully with a value α satisfying a sufficient decrease



MODELING HESSIAN-VECTOR PRODUCTS IN NONLINEAR OPTIMIZATION 9

condition for the function (of the form f(x+αd) ≤ f(x)+c1α∇f(x)>d, with
c1 = 10−4) or unsuccessfully with a stepsize smaller than 10−10.

To form the model described in (2) one needs p interpolation points y1, · · · , yp
and one vector v for Hessian multiplication. We have used the following
scheme: Before the initial iteration we have randomly generated a set of
p points, {y1, · · · , yp}, and a vector v, in the unit ball B(0; 1) centered at the
origin. Then, at each iteration xk, the interpolation points used were of the
form xk + rky

`
k, ` = 1, . . . , p, and the vector vk of the form rk v, where

rk = min{10−2,max{10−4, ‖xk − xk−1‖}}, k = 1, 2, . . . .

For the purpose of this numerical illustration, we selected 48 unconstrained
(smooth and nonlinear) very small problems from the CUTEst collection (see
Appendix B), also used in the papers [2, 12]. Both methods were stopped
when an iterate xk was found such that ‖∇f(xk)‖ < 10−5. We built perfor-
mance profiles (see Appendix A) using as performance metric the numbers
of Hessian-vector products and iterations (Figure 1) and the number of func-
tion evaluations (Figure 2). One can see that our approach can effectively
lead to a significant reduction on the number of Hessian-vector products. We
estimate that this reduction is approximately 50% as both approaches take
on average 2 CG inner iterations to compute a direction, and the number of
main iterations is comparable. Of course, one has to pay a significant cost in
number of function evaluations which is of the order of n2 per main iteration.

2 4 6 8 10 12 14 16
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0.4

0.5

0.6

0.7

0.8

0.9

1
Number of Hessian-vector products (very small problems)

IN
MH(D)

2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1
Number of iterations (very small problems)

IN
MH(D)

Figure 1. Testing the Hessian recovery within a line-search al-
gorithm. Performance profiles for the numbers of Hessian-vector
products and iterations, for the set of very small problems of
Appendix B. The value of p was set to n2+n

2 − n.
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2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Number of function evaluations (very small problems)

IN
MH(D)

Figure 2. Testing the Hessian recovery within a line-search al-
gorithm. Performance profiles for number of function evaluations,
for the set of very small problems of Appendix B. The value of
p was set to n2+n

2 − n.

2.4. Numerical results for the determined case when the Hessian
sparsity is known. In many optimization problems, the Hessian matrix
of the objective function is sparse and the corresponding sparsity pattern is
known. Let

Ω(∇2f) = {(i, j) : i ≤ j,∇2fij(x) = 0 for all x}
be the sparsity pattern of ∇2f . When |Ω(∇2f)| � n(n + 1)/2, it is then
beneficial and often necessary to use specialized algorithms and data struc-
tures that take advantage of the known sparsity pattern. One can tailor our
model Hessian approach to problems with sparse Hessian matrices when the
sparsity patterns are known. We require the Hessian model to share the same
sparsity pattern of the true Hessian, recovering only the nonzero elements.
In fact, instead of solving problem (6) with respect to the whole Hessian
matrix, we solve problem

min
αΩ

1

2
‖αΩ − αprevΩ ‖2 s.t. MΩαΩ = δ, (8)

where the elements in the rows of MΩ and in the vector αΩ correspond now
only to nonzero entries.

We have tested our sparse Hessian recovery approach using the same algo-
rithmic environment of Subsection 2.3, the only difference being in the usage
of the model equation MΩαΩ = δ in (8) and a smaller value of p (now given
by the difference between the number of nonzeros of the Hessian and n, so
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that the matrix MΩ is squared). The sparse problems used are listed in Ap-
pendix C. The experiments are reported in Figures 3 and 4 in the form of
performance profiles. The conclusions are similar to those in Subsection 2.3.
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Number of Hessian-vector products (small sparse problems)
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Number of iterations (small sparse problems)
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Figure 3. Testing the Hessian recovery within a line-search al-
gorithm. Performance profiles for the numbers of Hessian-vector
products and iterations, for the set of small sparse problems of
Appendix C. The value of p was set to number of nonzeros minus
n.
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Figure 4. Testing the Hessian recovery within a line-search al-
gorithm. Performance profiles for number of function evaluations,
for the set of small sparse problems of Appendix C. The value of
p was set to number of nonzeros minus n.
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2.5. Recovery cost in the general case. The necessary and sufficient
optimality conditions for the convex QP (6) can be stated as

α− αprev −M>λ = 0

Mα = δ,
(9)

where λ denotes the Lagrange multipliers. Such multipliers can then be
recovered by solving

MM>λ = δ −Mαprev. (10)

The system (10) can either be solved directly or iteratively. If solved directly
the cost is of the order of (p+n)2n2 to form MM> and of (p+n)3 to factorize
it, and the overall storage of the order of (p+n)2. If the Conjugate Gradient
(CG) method is applied, the overall cost is of the order of cg(p+n)n2, where cg
is the number of CG iterations. In fact, each matrix vector multiplication
with either M> or M costs O((p+n)n2). Solving the KKT system (9) using
an indefinite factorization is even less viable given that the storage space
would be of the order of (n2 + p)2.

3. Newton direction recovery from Hessian-vector prod-
ucts

In this section, we introduce a new approach to recover the Newton direc-
tion from Hessian-vector products that does not require an explicit recovery
of the Hessian matrix.

3.1. Newton direction recovery. Let us first consider a quadratic Taylor
expansion of the form

f(x) +∇f(x)>(y`− x) +
1

2
(y`− x)>∇2f(x)(y`− x) ' f(y`), ` = 1, . . . , p,

(11)
made using a sample set {y1, . . . , yp}. We will synchronize expansion (11)
with Hessian-vector products along y` − x, ` = 1, . . . , p. In fact, we require
the calculation of

z` = ∇2f(x)(y` − x), ` = 1, . . . , p. (12)

Since our interest relies specifically on the calculation of the Newton di-
rection, assuming that the model Hessian ∇2f(x) is nonsingular, we obtain
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from (11) and (12)

f(x)+(∇2f(x)−1∇f(x))>∇2f(x)(y`−x)+
1

2
(y`−x)>z` ' f(y`), ` = 1, . . . , p.

Then, introducing the model vector d ' −∇2f(x)−1∇f(x), one arrives at a
new set of enriched interpolating conditions

(z`)>d = −f(y`) + f(x) +
1

2
(y` − x)>z`, ` = 1, . . . , p. (13)

Equations (13) lead then to a new recovery problem

min
d

norm(d− dprev) s.t. (13). (14)

When dprev is the previously recovered Newton direction, we are following the
spirit of a quasi-Newton least secant approach. One could also consider the
case dprev = 0 as it was done in some derivative-free approaches for Hessian
recovery. Let us now give two arguments to motivate this approach.

3.2. Theoretical motivation. First, as in the previous section, we can
provide motivation for this approach when f is assumed quadratic (5), this
time with a nonsingular Hessian C. Here we need to consider the square of
the `2-norm in (14)

min
d

1

2
‖d− dprev‖2 s.t. (13). (15)

We will show that in the quadratic case the error in the approximation of
the Newton direction is monotonically non increasing.

Theorem 3.1. Let f be given by (5) with C nonsingular and assume that
the system of linear equations (13) is feasible and underdetermined in d. Let
d∗ be the optimal solution of problem (15). Then

‖d∗ − (−C−1b)‖2 ≤ ‖dprev − (−C−1b)‖2. (16)

Proof : From the expression (5) for f , one has

f(y`) = a+ (C−1b)>C(y` − x) +
1

2
(y` − x)>C(y` − x), ` = 1, . . . , p.

and hence, using z` = C(y` − x), ` = 1, . . . , p, and (13), one arrives at
(z`)>(d∗ − (−C−1b)) = 0. The conclusion is that d∗ − (−C−1b) is a feasible
direction for the affine space in d defined by (13).
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The rest of the proof follows the same lines as in the proof of Theorem 2.1.
The function

m(θ) =
1

2
‖(d∗ − dprev) + θ(−C−1b− d∗)‖2

has a minimum at θ = 0, from which we conclude that (d∗−dprev)>(−C−1b−
d∗) = 0. From here we obtain

‖d∗ − (−C−1b)‖2 = ‖dprev − (−C−1b)‖2 − ‖d∗ − dprev‖2

≤ ‖dprev − (−C−1b)‖2.

The second argument establishes the accuracy of the recovery under the
assumption that p ≥ n (see the end of this subsection for a discussion about
this assumption and how to circumvent it practice). We will establish a
bound on the norm of the absolute error of the recovered Newton direction dN

based on ∆y = max1≤`≤p ‖y`−x‖, ∆z = max1≤`≤p ‖z`‖, and the conditioning
of the matrix M z

L, whose rows are (1/∆z)(z
`)>, ` = 1, . . . , p.

Theorem 3.2. Suppose that p ≥ n, the matrix M z
L is full column rank, and

∇2f(x) is invertible. Then, if dN satisfies (13), in a least squares sense when
p > n, one has ∥∥−∇2f(x)−1∇f(x)− dN

∥∥ ≤ ΛzO

(
∆3
y

∆z

)
,

where Λz is a bound on the norm of the left inverse of M z
L and the multi-

plicative constant in O depends on the Lipschitz constant of ∇2f .

Proof : Expanding f at y` around x in (13) yields

(−∇2f(x)−1∇f(x)− dN)>z` = O(∆3
y), ` = 1, . . . , p,

where the constant in O(∆3
y) depends on the Lipschitz constant of ∇2f .

The result follows by dividing both terms by ∆z and multiplying by the left
inverse of M z

L.

One can derive an estimate solely dependent on ∆y and on the conditioning
of the matrix M y

L formed by the rows (1/∆y)(y
` − x)>, ` = 1, . . . , p. In fact,

from

∆yM
y
L∇

2f(x) = ∆zM
z
L
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one has ∥∥∥(M z
L)†
∥∥∥ =

∆z

∆y
‖Ry‖,

with
Ry =

(
∇2f(x)(M y

L)>(M y
L)∇2f(x)

)−1∇2f(x)(M y
L)>. (17)

Corollary 3.1. Suppose that p ≥ n, the matrix M z
L is full column rank, and

∇2f(x) is invertible. Then, if dN satisfies (13), one has∥∥−∇2f(x)−1∇f(x)− dN
∥∥ ≤ ‖Ry‖O(∆2

y),

where the multiplicative constant in O depends on the Lipschitz constant of
∇2f .

Hence by controlling the geometry of the points y`, ` = 1, . . . , p, around x
one can provide an accurate bound when the Hessian of f is invertible and p ≥
n. In general, we can attempt to control the conditioning of M z

L, replacing
some of the points y` if necessary. Such a conditioning must eventually
become adequate if the vectors y` − x are sufficiently linearly independent
and lie in eigenspaces of ∇2f(x) corresponding to eigenvalues not too close
to zero.

Using p = n Hessian-vector products at each iteration is certainly not a
desirable strategy as that would be equivalent to access the entire Hessian
matrix. It is however possible to use p � n and still obtain an accurate
Newton direction model. The possibility we have in mind is to build upon
a previously computed Newton direction model calculated using p = n. Let
xprev be such an iterate, y1

prev, . . . , y
n
prev be the corresponding sample points,

and z1
prev, . . . , z

n
prev be the corresponding Hessian-vector products. Suppose

we are now at a new iterate x and we would like to reuse f(y1
prev), . . . , f(ynprev)

and

z1
prev = ∇2f(xprev)(y

1
prev − xprev), . . . , znprev = ∇2f(xprev)(y

n
prev − xprev).

In such a case what we will have in (13) is

z`prev = ∇2f(xprev)(y
`
prev − xprev) ' ∇f(y`prev)−∇f(xprev), ` = 1, . . . , p,

but what we wish we would have is

z` = ∇2f(x)(y`prev − x) ' ∇f(y`prev)−∇f(x), ` = 1, . . . , p,

So, one can obtain an approximation to z` from

z`prev +∇f(xprev)−∇f(x), ` = 1, . . . , p. (18)
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The error in such an approximation is of the

O(max{‖y`prev − xprev‖2, ‖y`prev − x‖2}),

which would then has to be divided by ∆z in the context of Theorem 3.2.
Of course, if we then keep applying this strategy the error will accumulate
over the iterations, but there are certainly remedies such as bringing a few
new, fresh z’s at each iteration and applying restarts with p = n whenever
the conditioning of M z

L becomes large.

3.3. Numerical results for the determined case using a correction.
To use as few Hessian-vector products as possible, we start by using p = n
products at iteration zero, to then replace only one interpolation point at
each iteration. We choose to replace the point farthest away from the current
iterate x. (A perhaps more sound approach would have been to choose the
z` that has contributed the most to the conditioning of M z

L.) A new point is
then added, generated in the ball B(x, r), where

r = min{10−2,max{10−4, ‖x− xprev‖}}.

Therefore, only one more Hessian-vector product and one more function eval-
uation is required at each iteration. We then replace all other z`prev’s by (18).
We monitor the condition number of M z

L, and apply a restart (with p = n as
in iteration 0) whenever cond(M z

L) ≥ 108.
A Newton direction model dN is then calculated by solving (13) directly. To

guarantee that we have a descent direction d, meaning that −∇f(x)>d > 0,
we modify the dN from (13) so that d = dN − β∇f(x) where β is such that
cos(d,−∇f(x)) = η, and η was set to 0.95.

The modified Newton direction model was then used in a line-search al-
gorithm using the same cubic line search procedure of Subsection 2.3. The
comparison is again against the inexact Newton method (as described in [15,
Section 7.1]). First we tested the very small problems of Appendix B. Again,
we plot performance profiles (see Appendix A) using as performance metric
the numbers of Hessian-vector products and iterations (Figure 5) and the
number of function evaluations (Figure 6). The results are quite encour-
aging. We then selected a benchmark of 26 unconstrained nonlinear small
problems from the CUTEst collection [11], listed in Appendix D. The exper-
iments are reported in Figures 7 and 8 in the form of the same performance
profiles. The results are similar and again promising.
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Figure 5. Testing the Newton direction recovery within a
line-search algorithm. Performance profiles for the numbers of
Hessian-vector products and iterations, for the set of very small
problems of Appendix B.
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Figure 6. Testing the Newton direction recovery within a line-
search algorithm. Performance profiles for the numbers of func-
tion evaluations for the set of very small problems of Appendix B.
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Figure 7. Testing the Newton direction recovery within a
line-search algorithm. Performance profiles for the numbers of
Hessian-vector products and iterations, for the set of small prob-
lems of Appendix D.
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Figure 8. Testing the Newton direction recovery within a line-
search algorithm. Performance profiles for the numbers of func-
tion evaluations for the set of small problems of Appendix D.

4. Final remarks
In this paper we showed how to use interpolation techniques from Derivative-

Free Optimization to model Hessian-vector products. We aimed at presenting
new, refreshing ideas, laying down the theoretical groundwork for future more
elaborated algorithmic developments. Two approaches were presented and
analyzed. In the first one, one aims at recovering a model the Hessian matrix,
possibly sparse if the true Hessian sparsity pattern is known. A drawback



MODELING HESSIAN-VECTOR PRODUCTS IN NONLINEAR OPTIMIZATION 19

of this approach is that at most one Hessian-vector product can be used in
the recovery. The second approach aims at directly recovering the Newton
direction itself, and it may incorporate several Hessian-vector products at the
same time. However, a dense system of linear equations needs to be solved.

It is left for future work the development of competitive versions of these
two approaches for medium/large scale problems. In the particular case of
the second approach based on the calculation of a Newton direction model,
one can consider solving the linear system (13) using an iterative solver. In
such a case, one can easily envision a parallel procedure for the storage of
the matrix M z

L (storing row-wise the vectors z`’s) and the calculation of the
products M z

L times a vector required when applying an iterative solver.
A third recovery approach can also be derived, where the Newton direction

and the inverse of the Hessian are recovered at once (possibly never storing
the whole inverse, rather forming its product times the gradient). This ap-
proach has performed the worse, and we have decided to leave the details for
a future PhD thesis of the first author.

A.Performance profiles
Performance profiles [7] are used to compare the performance of several

solvers on a set of problems. Let S be a set of solvers and P a set of
problems. Let tp,s be the performance metric of the solver s ∈ S on the
problem p ∈ P . Then the performance profile of solver s ∈ S is defined as
the fraction of problems where the performance ratio is at most τ ,

ρs(τ) =
1

|P|

∣∣∣∣{p ∈ P :
tp,s

min {tp,s′ : s′ ∈ S}
≤ τ

}∣∣∣∣ ,
where |P| denotes the cardinality of P . The value of ρs(1) expresses the
percentage of problems on which solver s performed the best. The values
of ρs(τ) for large τ indicate the percentage of problems successfully solved
by solver s. Hence, ρs(1) and ρs(τ) for large τ are, respectively, measures of
the efficiency and robustness of a given solver s. Solvers with profiles above
others are naturally preferred.
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B.Very small test problems

Table 1. List of 48 very small CUTEst test problems.

Name Dimension Name Dimension Name Dimension
ALLINITU 4 ARGLINA 10 ARWHEAD 10

BEALE 2 BIGGS6 6 BOX3 3
BROWNAL 10 BRYBND 10 CHNROSNB 10

COSINE 10 CUBE 2 DIXMAANA 15
DIXMAANB 15 DIXMAAND 15 DIXMAANE 15
DIXMAANF 15 DIXMAANG 15 DIXMAANH 15
DIXMAANI 15 DIXMAANJ 15 DIXMAANK 15
DIXMAANL 15 DIXON3DQ 10 DQDRTIC 10
EDENSCH10 10 ENGVAL2 3 EXPFIT 2
FMINSURF 15 GROWTHLS 3 HAIRY 2
HATFLDD 3 HATFLDE 3 HEART8LS 8

HELIX 3 HILBERTA 10 HILBERTB 10
HIMMELBG 2 HUMPS 2 KOWOSB 4
MANCINO 30 MSQRTALS 4 MSQRTBLS 9

POWER 10 SINEVAL 2 SNAIL 2
SPARSINE 10 SPMSRTLS 28 TRIDIA 10

C.Small sparse test problems

Table 2. List of 12 sparse small CUTEst test problems.

Name Dimension Name Dimension Name Dimension
BDQRTIC 10 BROYDN7D 50 COSINE 200
DQRTIC 10 EDENSCH 200 ENGVAL1 200

LIARWHD 100 NONSCOMP 50 PENTDI 100
SROSENBR 50 TOINTGSS 50 TRIDIA 200
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D.Small test problems

Table 3. List of 26 small CUTEst test problems.

Name Dimension Name Dimension Name Dimension
BOX 200 BOXPOWER 200 BRYBND 100

CHNROSNB 50 DIXON3DQ 200 DQDRTIC 100
EDENSCH 200 ENGVAL1 200 EXTROSNB 100

GENHUMPS 100 HILBERTA 200 HILBERTB 200
INTEQNELS 100 LIARWHD 200 MOREBV 200

PENTDI 100 PENALTY1 100 POWELLSG 36
SPARSINE 100 SROSENBR 50 SROSENBR 100

TESTQUAD 100 TOINTGSS 50 TQUARTIC 100
TRIDIA 200 VAREIGVL 100
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