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MODEL WITH INTEGER INNOVATIONS
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Abstract: We study the limiting behaviour of the maximum of a bivariate moving
average model, based on discrete random variables. We assume that the bivariate
distribution of the innovations belong to the Anderson’ class (Anderson, 1970). The
innovations have an impact on the random variables of the MA model by binomial
thinning. We show that the limiting distribution of the bivariate maximum is
also of Anderson’ class, and that the components of the bivariate maximum are
asymptotically independent.
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1. Introduction
Hall (2003) studied the limiting distribution of the maximum term Mn =

max(X1, · · · , Xn) of stationary sequences defined by non-negative integer-
valued moving sequences of the form

Xn =
∞∑

i=−∞
αi ◦ Vn−i,

where the innovation sequence {Vn} is an iid sequence of non-negative integer-
valued random variables (rv’s) with exponential type tails of the form

1− FV (n) = nξL(n)(1 + λ)−n , n ∈ N0, ξ ∈ R, λ > 0, (1)

where L(n) is slowly varying at +∞, and ◦ denotes binomial thinning with
probabilities αi ∈ [0, 1]. Hall (2003) proved that {Xn} satisfies Leadbetter’s
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conditions D(x+bn) and D′(x+bn), for a suitable real sequence bn, and then{
lim supn→∞ P (Mn ≤ x+ bn) ≤ exp(−(1 + λ/αmax)−x)
lim infn→∞ P (Mn ≤ x+ bn) ≥ exp(−(1 + λ/αmax)−(x−1))

for all real x and αmax := max{αi, i ∈ ZZ}. This is an extension of Theorem
2 of Anderson (1970), where it is proved that for sequences of iid rv’s with
an integer-valued distribution function (df) F with infinite right endpoint,
the limit

lim
n→+∞

1− F (n− 1)

1− F (n)
= r > 1, (2)

is equivalent to {
lim supn→∞ F

n(x+ bn) ≤ exp(−r−x)
lim infn→∞ F

n(x+ bn) ≥ exp(−r−(x−1))

for all real x.
The class of df’s satisfying (1), which is a particular case of (2) (see, e.g.,

Hall and Temido (2007)) is called Anderson’s class.

In this paper we extend the result of Hall (2003) for the bivariate case of
an integer-valued MA model. Concretely, we study the limiting distribu-
tion of the maximum term of stationary sequences {(Xn, Yn)} where the two
marginals are defined by non-negative integer-valued moving sequences of
the form

(Xn, Yn) =

( ∞∑
i=−∞

αi ◦ Vn−i,
∞∑

i=−∞
βi ◦Wn−i

)
,

where Xn and Yn are defined as above with respect to a two-dimensional
innovation sequence {Vn,Wn}. The possible class of bivariate discrete distri-
butions FV,W (see (4)) includes also the bivariate geometric models. .

We assume that X = α ◦ V and Y = β ◦W are conditionally independent
given (V,W ), i.e.

P (X ∈ A, Y ∈ B|V,W ) = P (X ∈ A|V,W )P (Y ∈ B|V,W )
= P (X ∈ A|V )P (Y ∈ B|W )

for all events A and B. We assume that αi, βi ∈ [0, 1] and

αi, βi = O
(
|i|−δ

)
, |i| → +∞, (3)

for some δ > 2.
Following similar ideas of Hall (2003) for the univariate case, we
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• Define a bivariate model FV,W which contains the bivariate geometric
model
• Characterize the tail of (α ◦V, β ◦W ) and the tail of (Xn, Yn), defined

in terms of the model FV,W .

• Establish the limiting behaviour of the bivariate maximum (M
(1)
n ,M

(2)
n )

of the stationary sequence {(Xn, Yn)} which is defined componentwise.

2. Preliminaries results for bivariate innovations
Let (V,W ) be a non-negative random vector (rv) with bivariate distribution

function (df) FV,W satisfying

1− FV,W (v, w) = (1 + λ1)
−[v] [v]ξ1 L1 (v) + (1 + λ2)

−[w] [w]ξ2 L2 (w)

−(1 + λ1)
−[v](1 + λ2)

−[w]θmin([v],[w])L3(v)L4(w)vξ3wξ4`(v, w)
(4)

as v, w → +∞, for positive real constants λi > 0, i = 1, 2, θ > 0 such that
θ < min{1 + λ1, 1 + λ2} and θ > 1− λ1λ2, some real constants ξi, and slowly
varying functions Li, i = 1, 2, 3, 4, and where `(v, w) is a positive bounded
(say by ϑ) function which converges to a positive constant, which may depend
on v < w, v = w or w > w.

By [x] we denote the greatest integer not greater than x.

Remark 2.1. The marginal distributions are of the form:

1−FV (v) ∼ [v]ξ1(1+λ1)
−[v]L1(v) and 1−FW (w) ∼ [w]ξ2(1+λ2)

−[w]L2(w) (5)

for v, w →∞. Both marginal dfs belong to the Anderson class since

lim
v→∞

1− FV (v)

1− FV (v + 1)
= 1 + λ1 and lim

w→∞

1− FW(w)

1− FW(w + 1)
= 1 + λ2.

From (4), we can derive the probability function (pf) of (V,W ):

Proposition 2.1. . The pf of the random vector (V,W ) with df (4) is given
by

P (V = v,W = w) ∼ (1 + λ1)
−v(1 + λ2)

−wθmin([v],[w])−1 ×
×L3(v)L4(w)vξ3wξ4`(v, w)`∗(v, w)

for v, w large integers, where

lim
v,w→∞

`∗(v, w) =

 λ2 (1 + λ1 − θ) , v < w,
λ1λ2 + θ − 1 , w = v,
λ1 (1 + λ2 − θ) , w < v,

(6)
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and `(v, w)`∗(v, w) is bounded and converges to a positive constant.

Proof : Since for v ≤ w − 1

P (V = v,W = w) = P (V ≤ v,W ≤ w)− P (V ≤ v − 1,W ≤ w)

− P (V ≤ v,W ≤ w − 1) + P (V ≤ v − 1,W ≤ w − 1)

= (1 + λ1)
−v vξ1L1(v)− (1 + λ1)

−v+1 (v − 1)ξ1L1(v − 1)

− (1 + λ1)
−v vξ1L1(v) + (1 + λ1)

−v+1 (v − 1)ξ1L1(v − 1)

+ (1 + λ2)
−w wξ2L2(w)− (1 + λ2)

−w wξ2L2(w)

− (1 + λ2)
−w+1 (w − 1)ξ2L2(w − 1) + (1 + λ2)

−w+1 (w − 1)ξ2L2(w − 1)

+ (1 + λ1)
−v (1 + λ2)

−w θvvξ3wξ4L3(v)L4(w)`(v, w)

− (1 + λ1)
−v+1 (1 + λ2)

−w θv−1(v − 1)ξ3wξ4L3(v − 1)L4(w)`(v − 1, w)

− (1 + λ1)
−v (1 + λ2)

−w+1 θvvξ3(w − 1)ξ4L3(v)L4(w − 1)`(v, w − 1)

+ (1 + λ1)
−v+1 (1 + λ2)

−w+1 θv−1(v − 1)ξ3(w − 1)ξ4L3(v − 1)×
× L4(w − 1)`(v − 1, w − 1)

then, we deduce for v and w large

= (1 + λ1)
−v (1 + λ2)

−w θv−1vξ3wξ4L3(v)L4(w)`(v, w)×[
θ − (1 + λ1)

(
1− 1

v

)ξ3 L3(v − 1)

L3(v)

`(v − 1, w)

`(v, w)

−(1 + λ2)θ

(
1− 1

w

)ξ4 L4(w − 1)

L4(w)

`(v, w − 1)

`(v, w)

+ (1 + λ1)(1 + λ2)

(
1− 1

v

)ξ3 (
1− 1

w

)ξ4
×L3(v − 1)L4(w − 1)

L3(v)L4(w)

`(v − 1, w − 1)

`(v, w)

]
= (1 + λ1)

−v(1 + λ2)
−wθv−1vξ3wξ4L3(v)L4(w)`(v, w)`∗(v, w)

where `∗(v, w) −→ λ2(1 + λ1 − θ), as v, w → +∞.
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For v ≥ w + 1 the steps are similar, with `∗(v, w)

lim
v,w

`∗(v, w) = θ − (1 + λ1) lim
v,w

`(v − 1, w)

`(v, w)
− (1 + λ2) lim

v,w

`(v, w − 1)

`(v, w)
+

+ (1 + λ1)(1 + λ2) lim
v,w

`(v − 1, w − 1)

`(v, w)

= λ1(1 + λ2 − θ)

For v = w ∈ N large, we get with similar steps as above

P (V = v,W = v) =

= (1 + λ1)
−v (1 + λ2)

−v θv−1vξ3+ξ4L3(v)L4(v)`(v, v)×[
θ − (1 + λ1)

(
1− 1

v

)ξ3 L3(v − 1)

L3(v)

`(v − 1, v)

`(v, v)
− (1 + λ2)

(
1− 1

v

)ξ4
×

×L4(v − 1)

L4(v)

`(v, v − 1)

`(v, v)

+ (1 + λ1)(1 + λ2)

(
1− 1

v

)ξ3+ξ4

×

×L3(v − 1)L4(v − 1)

L3(v)L4(v)

`(v − 1, v − 1)

`(v, v)

]
= (1 + λ1)

−v(1 + λ2)
−vθv−1vξ3+ξ4L3(v)L4(v)`(v, v)`∗(v, v)

where `∗(v, v) −→ λ1λ2 + θ − 1 > 0 as v → +∞ , a positive constant by
assumption.

Example 2.1. The Bivariate Geometric (BG) distribution is a particular
case of the model (4) with margins (5). Indeed, using the construction of a
BG distribution based on sequences of bivariate Bernoulli random variables
(B1, B2) with success probabilities p+1 and p1+, the pf and the df of a ran-
dom vector (V,W ) with BG distribution are given, respectively, by Mitov and
Nadarajah (2005)

fV,W (v, w) = P (V = v,W = w) =

 pv00p10p
w−v−1
+0 p+1 , 0 ≤ v < w,

pv00p11 , v = w,
pw00p01p

v−w−1
0+ p1+ , 0 ≤ w < v,

(7)
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for v, w ∈ N0, and

FV,W (v, w) = P (V ≤ v,W ≤ w) (8)

= 1− p[v]+1
0+ − p[w]+1

+0 +


p

[v]+1
00 p

[w]−[v]
+0 , 0 ≤ v ≤ w,

p
[w]+1
00 p

[v]−[w]
0+ , 0 ≤ w < v,

for v, w ∈ R+
0 , assuming that 0 < p0+, p+0 < 1. Hence this distribution

satisfies (4) with the constants λ1, λ2 given by 1 +λ1 = 1
p0+

> 1 and 1 +λ2 =
1
p+0

> 1 and the index θ associated to the dependence structure of the rv

(B1, B2) is

θ =
p00

p0+p+0
.

The slowly varying functions are constants and ξi = 0 for i = 1, 2, 3, 4. The
independence case occurs when θ = 1. For dependence cases, we can have
0 < θ < 1 or θ > 1. Finally, we note that `(v, w) is a constant. For
instance, take L1(v) = L3(v) = 1/(1 + λ1), L2(v) = L4(v) = 1/(1 + λ2), we
have `(v, w) = θ) with `∗(v, w) as in (6).

The marginal df of V and W are

P (V ≤ v) = 1− p[v]+1
0+ and P (W ≤ w) = 1− p[w]+1

+0 , for v, w ≥ 0

which means V and W follow a geometric distribution with parameter p1+

and p+1, respectively. �

In order to characterize the df of (X, Y ) = (α ◦ V, β ◦W ) we start by es-
tablishing the relationship between the probability generating function (pgf)
of (V,W ) and (X, Y ), defined e.g. for (V,W ) as

PV,W (s1, s2) :=
∞∑
k1=0

∞∑
k2=0

P (V = k1,W = k2)s
k1
1 s

k2
2

which exists in the region R of convergence of the double series in PV,W .
Obviously, any (s1, s2) ∈ R with |si| ≤ 1.

Proposition 2.2. The pgf of (X, Y ) = (α ◦ V, β ◦W ) is given in terms of
the pgf of (V,W ) by PX,Y (s1, s2) = PV,W (αs1 + 1 − α, βs2 + 1 − β) for all
(s1, s2) ∈ R.
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Proof : Denoting B(n, p) a random variable following a binomial distribution
with parameters n and p, we have:

PX,Y (s1, s2) =
∞∑
j1=0

∞∑
j2=0

P (X = j1, Y = j2)s
j1
1 s

j2
2

=
∞∑
j1=0

∞∑
j2=0

∞∑
k1=j1

∞∑
k2=j2

P (X = j1, Y = j2|V = k1,W = k2)×

×P (V = k1,W = k2)s
j1
1 s

j2
2

=
∞∑
j1=0

∞∑
j2=0

∞∑
k1=j1

∞∑
k2=j2

P (X = j1|V = k1)P (Y = j2|W = k2)×

×P (V = k1,W = k2)s
j1
1 s

j2
2

=
∞∑
j1=0

∞∑
j2=0

∞∑
k1=j1

∞∑
k2=j2

P (B(k1, α) = j1)P (B(k2, β) = j2)×

×P (V = k1,W = k2)s
j1
1 s

j2
2

=
∞∑
k1=0

∞∑
k2=0

k1∑
j1=0

k2∑
j2=0

P (B(k1, α) = j1)P (B(k2, β) = j2)×

×P (V = k1,W = k2)s
j1
1 s

j2
2

=
∞∑
k1=0

∞∑
k2=0

(
k1∑
j1=0

P (B(k1, α) = j1)s
j1
1

)
×

×

(
k2∑
j2=0

P (B(k2, β) = j2)s
j2
2

)
P (V = k1,W = k2)

=
∞∑
k1=0

∞∑
k2=0

(αs1 + 1− α)k1 (βs2 + 1− β)k2 P (V = k1,W = k2)

= PV,W (αs1 + 1− α, βs2 + 1− β)

Taking into account Proposition 2.1, the series PV,W (αs1+1−α, βs2+1−β)
converges obviously for any si ≤ 1. Even for some si > 1 the series converges
because of the assumption (4). By this assumption, we have E(sV1 ) < ∞ if
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s1 < 1 + λ1 and E(sW2 ) < ∞ if s2 < 1 + λ2. For the joint distribution with
si > 1, the series exists shown in the following lemma.

Lemma 2.1. For s1, s2 > 1, PV,W (s1, s2) = E(sV1 s
W
2 ) exists if si ≤ 1+λi, i =

1, 2 in case θ ≤ 1, and if si
√
θ ≤ 1 + λi, i = 1, 2, or s1 ≤ 1 + λ1 and

s2θ ≤ 1 + λ2 in case of θ > 1.

Proof : We have

E(sV1 s
W
2 ) =

∞∑
k=0

∞∑
`=0

sk1s
`
2P (V = k,W = `)

=
m∑
k=0

n∑
`=0

sk1s
`
2P (V = k,W = `) +

m∑
k=0

∞∑
`=n+1

sk1s
`
2P (V = k,W = `)

+
∞∑

k=m+1

n∑
`=0

sk1s
`
2P (V = k,W = `) +

∞∑
k=m+1

∞∑
`=n+1

sk1s
`
2P (V = k,W = `)

The first partial sum is finite. The second one is bounded by

(sm+1
1 − 1)

s1 − 1

∞∑
`=n+1

s`2P (W = `)

which is finite for s2 < 1 + λ2. Analogously, the third one is bounded by

(sn+1
2 − 1)

s2 − 1

∞∑
k=m+1

sk1P (V = k)

which is finite for s1 < 1 + λ1. Finally, for the last partial sum we use
Proposition 2.1 for large k, ` if θ > 1 with

θmin(k,`) ≤ θ(k+`)/2 or θmin(k,`) ≤ θ`

for the second conditions. This sum is finite if s1

√
θ ≤ 1 + λ1 and s2

√
θ ≤

1 + λ2 or if

s1 ≤ 1 + λ1 and s2θ ≤ 1 + λ2.

If θ ≤ 1, the last sum exists by the first mentioned conditions si < 1 + λi,
i = 1, 2.

We want to derive an exact relationship of the two distributions FV,W (v, w)
and FX,Y (x, y). First, we investigate the pgf of the two distributions and
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define the modified pgf

QV,W (s1, s2) =
∞∑
k1=0

∞∑
k2=0

(
1− F(V,W )(k1, k2)

)
sk11 s

k2
2 ,

and analogously for X, Y . Between QV,W (v, w) and PV,W (v, w) we have the
relationship

QV,W (s1, s2) =
1− PV,W (s1, s2)

(1− s1)(1− s2)
, s1, s2 ∈ R,

if the series converge.

Proposition 2.3. The modified pgf of (X, Y ) and (V,W ) satisfy

QX,Y (s1, s2) = αβQV,W (αs1 + 1− α, βs2 + 1− β).

Proof : Write a1 = αs1 + 1− α and a2 = βs2 + 1− β. By Proposition 2.2 we
have

QX,Y (s1, s2) =
1− PX,Y (s1, s2)

(1− s1)(1− s2)
=

1− PV,W (αs1 + 1− α, βs2 + 1− β)

(1− s1)(1− s2)

=
1− PV,W (a1, a2)

1−a1
α

1−a2
β

= αβ
1− PV,W (a1, a2)

(1− a1)(1− a2)

= αβQV,W (a1, a2).

for all (s1, s2) ∈ R.

From Propositions 2.2 and 2.3, we can derive now the tail 1 − FX,Y (x, y)
in terms of 1− FV,W (x, y).

Proposition 2.4. The joint df FX,Y is given in terms of the joint df FV,W ,
with x, y ∈ Z, by

1− FX,Y (x, y) =

=
∞∑

k1=x

∞∑
k2=y

(
k1

x

)(
k2

y

)
(1− α)k1−x(1− β)k2−yαx+1βy+1 (1− FV,W (k1, k2))
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Proof : By Proposition 2.3, and the definition of QV,W we have

QX,Y (s1, s2) = αβQV,W (αs1 + 1− α, βs2 + 1− β)

= αβ
∞∑
k1=0

∞∑
k2=0

(1− FV,W (k1, k2)) (αs1 + 1− α)k1 (βs2 + 1− β)k2

= αβ
∞∑
k1=0

∞∑
k2=0

(1− FV,W (k1, k2))

k1∑
i=0

(
k1

i

)
(1− α)k1−i(s1α)i ×

×
k2∑
j=0

(
k2

j

)
(1− β)k2−j(s2β)j

=
∞∑
i=0

∞∑
j=0


∞∑
k1=i

∞∑
k2=j

(
k1

i

)(
k2

j

)
(1− α)k1−i(1− β)k2−jαi+1βj+1

× (1− FV,W (k1, k2))} si1s
j
2

=
∞∑
i=0

∞∑
j=0

(1− FX,Y (i, j)) si1s
j
2

Hence the tail of FX,Y can be estimated by the assumption (4).

Proposition 2.5. If the joint df of (V,W ) satisfies (4), then for integers x
and y

1− FX,Y (x, y) =

(
1 +

λ1

α

)−x
xξ1L∗1 (x) +

(
1 +

λ2

β

)−y
yξ2L∗2(y)−H(x, y)

where

0 ≤ H(x, y) ≤ ϑL∗3(x)xξ3
(

1 +
λ1

α

)−x
L∗4(w)yξ4

(
1 +

λ2θ

β

)−y
where L∗i are slowly varying functions, being

L∗1(x) = α

(
1 + λ1

λ1 + α

)ξ1+1

L1(x), L∗2(y) = β

(
1 + λ2

λ2 + β

)ξ2+1

L2(y)
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L∗3(x) = α

(
1 + λ1

λ1 + α

)ξ3+1

· L3(x) L∗4(y) = β

(
1 + λ2θ

λ2θ + β

)ξ4+1

· L4(y)

where ϑ bounds `(v, w) and

λ2θ =


λ2 , θ ≤ 1

1+λ2
θ − 1 , θ > 1

(9)

For θ > 1, we have 0 < λ2θ < λ2.

Proof : Due to the assumption (2) and Proposition 2.4, for x and y large,
1 − FXY (x, y) is given by the sum of three terms. Each term, defined by
double sums, can be determined or bounded by (unique) sums associated to
univariate tail functions satisfying Theorem 4 of Hall (2003) or see also Hall
and Temido (2007).

Hence, for x, y ∈ Z, for the first sum,

+∞∑
i=x

+∞∑
j=y

(
i

x

)(
j

y

)
(1− α)i−x (1− β)j−y αx+1βy+1 (1 + λ1)

−i iξ1L1 (i)

=
+∞∑
i=x

(
i

x

)
(1− α)i−x (1 + λ1)

−i iξ1L1 (i)αx+1
+∞∑
j=y

(
j

y

)
(1− β)j−y βy+1

=
+∞∑
i=0

(
i+ x

x

)
(1− α)i (1 + λ1)

−i−x (i+ x)ξ1L1 (i+ x)αx+1

∼ α

(
1 + λ1

λ1 + α

)ξ1+1

xξ1L1 (x)

(
1 +

λ1

α

)−x
=

(
1 +

λ1

α

)−x
xξ1L∗1 (x) .

The second sum can be dealt with in the same way.
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For the third term observe that due to the fact `(v, w) is a bounded func-
tion, with bound ϑ, we get for large integers x, y,

H(x, y) = P (X > x, Y > y)

≤ ϑ
∞∑

k1=x

∞∑
k2=y

(
k1

x

)(
k2

y

)
(1− α)k1−x(1− β)k2−yαx+1βy+1 (1 + λ1)

−k1 (1 + λ2)
−k2

× L3(k1)L4(k2) max(1, θmin(k1,k2))kξ31 k
ξ4
2

≤ ϑ
+∞∑
k1=x

(
k1

x

)
(1− α)k1−x αx+1 (1 + λ1)

−k1 kξ31 L3(k1)

×
+∞∑
k2=y

(
k2

y

)
(1− β)k2−y βy+1 (1 + λ2)

−k2 max(1, θk2) kξ42 L4(k2)

∼ L∗3 (x)xξ3
(

1 +
λ1

α

)−x
L∗4 (y) yξ4

(
1 +

λ2θ

β

)−y
.

3. The bivariate stationary sequence
We consider now the stationary bivariate sequence (Xn, Yn). We establish

first the tail behaviour of (Xn, Yn). Dominating are the maximal values of αi
and βi as in the univariate case. Therefore we write αmax = max{αi : |i| ≥ 0}
and βmax = max{βi : |i| ≥ 0}. It may happen in the bivariate case that αmax

and βmax occurs at the same index or at different ones, and also whether they
are unique or not. We assume for simplicity that they are unique and the
αi’s and βi’s are such that

+∞∑
i=−∞

αi <∞,
+∞∑
i=−∞

βi <∞. (10)

Note that (10) holds because of (3).
Suppose first that αmax and βmax are occuring at different indexes i0 and

i1, respectively. We write

Xn = αmax ◦ Vn−i0 + αi1 ◦ Vn−i1 +
∑
i6=i0,i1

αi ◦ Vn−i
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and

Yn = βmax ◦Wn−i1 + βi0 ◦Wn−i0 +
∑
i 6=i0,i1

βi ◦Wn−i .

Denote S1 = αmax ◦ Vn−i0, S2 = αi1 ◦ Vn−i1, S3 =
∑
i 6=i0,i1

αi ◦ Vn−i, S = S2 + S3,

T1 = βmax ◦Wn−i1, T2 = βi0 ◦Wn−i0 and T3 =
∑
i 6=i0,i1

βi ◦Wn−i, T = T2 + T3.

Hence, Xn = S1 + S2 + S3 = S1 + S and Yn = T1 + T2 + T3 = T1 + T .

For the proof of the main proposition of this section we need the following
lemmas.

Lemma 3.1. If Z belongs to the Anderson class, then

E(1 + h)Z = 1 + hE(Z)(1 + oh(1)), as h→ 0+.

Proof : We first note that Z has all moments finite. Applying the mean value
theorem twice to the function f(1 + h) = (1 + h)k, h > 0, we get, for some
small positive values h2 < h1 < h,

(1 + h)k = 1 + hk(1 + h1)
k−1

= 1 + hk
(
1 + h1(k − 1)(1 + h2)

k−2
)

< 1 + h
(
k + k2h1(1 + h2)

k
)

Since
∑+∞

k=0 k
2(1 + h2)

kP (Z = k) is finite for small h2, we obtain

E(1 + h)Z < 1 + hE(Z)(1 + oh(1)).

Due to the fact that (1 + h)k > 1 + hk the proof is complete.

Lemma 3.2. For any set I of integers, let α∗ = max{αi, i ∈ I}. Consider
the rv Z =

∑
i∈I αi ◦ Vn−i. Then E(1 + h)Z is finite for any 0 < h < λ1

α∗ .

Proof : Let ε > 0 and take M large such that αih < ε for |i| > M . Then,

E(1 + h)Z =
∏
i∈I

E(1 + h)αi◦Vn−i =
∏
i∈I

E(1 + αih)Vn−i =

=
∏

i∈I,|i|≤M

E(1 + αih)Vn−i ×
∏

i∈I,|i|>M

E(1 + αih)Vn−i
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Note that E(1 + αih)Vn−i is finite for all h < λ1/αi which holds because
h < λ1

α∗ . Using Lemma 3.1 we obtain

∞∏
|i|>M

E(1 + αih)Vn−i =
∞∏
|i|>M

(1 + αihE(V )(1 + oε(1)))

≤ exp

 ∞∑
|i|>M

ln(1 + αihE(V )(1 + oε(1)))


≤ exp

(1 + oε(1))hE(V )
∞∑
|i|>M

αi

 <∞

because
∑∞

i=1 αi is finite. The bound tends to 1 for h → 0+. Note that the
term oε(1) does not depend on i.

We derive now the limiting behaviour of the tail of (Xn, Yn). Besides of the
univariate tail distributions we derive only an appropriate bound H∗(x, y)
for the joint tail which is sufficient for the asymptotic limit distribution of
the maxima. We will see that we get asymptotic independence of the com-

ponents (M
(1)
n ,M

(2)
n ) of the bivariate maxima, since this normalized H∗(x, y)

is vanishing, not contributing to the limit.

For this derivation, we use ψ, ρ < 1 and λ > 0 such that λ1
αmax

< λ < λ1
α∗ ,

with α∗ = max{αi, i 6= i0},

1 +
λ1

αmax
< (1 + λ)ψ < 1 + λ < 1 +

λ1

α∗
(11)

and

ρ < B = log

(
1 +

λ2

βmax

)
/ log

(
1 +

λ2θ

βi0

)
. (12)

Proposition 3.1. If (V,W ) satisfies (4) and αmax and βmax are unique and
taken at different indexes, then

(i) for the marginal distributions

1− FXn
(x) ∼ [x]ξ1

(
1 +

λ1

αmax

)−[x]

L∗∗1 (x)
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and

1− FYn(y) ∼ [y]ξ2
(

1 +
λ2

βmax

)−[y]

L∗∗2 (y),

(ii) for the joint distribution with ψ, ρ, λ satisfying (11) and (12)

1− FXn,Yn(x, y) = [x]ξ1
(

1 +
λ1

αmax

)−[x]

L∗∗1 (x) (1 + ox(1))

+ [y]ξ2
(

1 +
λ2

βmax

)−[y]

L∗∗2 (y)(1 + oy(1))−H∗(x, y),

where

L∗∗1 (x) = L∗1(x)E

(
1 +

λ1

αmax

)S
, L∗∗2 (y) = L∗2(y)E

(
1 +

λ2

βmax

)T
(13)

and

H∗(x, y) ≤oy(1)

(
1 +

λ1

αmax

)−x(
1 +

λ2θ

βi0

)−ρy
xξ3L∗3(x) + Cxξ1+1yξ2L∗1(x)L∗2(y)×

×
(

1 +
λ1

αmax

)−(1−ψ)x(
1 +

λ2

βmax

)−y+(log y)2

+O (P (S > ψx))

(14)
for some constant C > 0 with ψx = [ψx].

We show also that P (S > ψx) = o(P (S1 > x)).

Proof : We deal with the three terms in (15), separately.

1− F(Xn,Yn)(x, y) = 1− FXn
(x) + 1− FYn(y)− P (Xn > x, Yn > y) (15)

(i) Since λ1
αmax

< λ1
α∗ , taking the sum S = Z in Lemma 3.2, we conclude

that E
(

1 + λ1
αmax

)S
is finite. Similarly E

(
1 + λ2

βmax

)T
is also finite.
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The tail function of Xn is given, with ψx = [ψx], by

1− FXn
(x) = P (S1 + S > x) =

∞∑
k=0

P (S1 > x− k)P (S = k)

= P (S1 > x)

ψx∑
k=0

P (S1 > x− k)

P (S1 > x)
P (S = k)+

+
∞∑

k=ψx+1

P (S1 > x− k)P (S = k).

(16)

For the first sum of (16), we get by applying Proposition 2.5 for the
marginal distributions

ψx∑
k=0

P (S1 > x− k)

P (S1 > x)
P (S = k) =

ψx∑
k=0

(
1 +

λ1

αmax

)k
(1 + ox(1))P (S = k)

→
∞∑
k=0

(
1 +

λ1

αmax

)k
P (S = k)

= E

(
1 +

λ1

αmax

)S
, x→ +∞,

by dominated convergence.
For the second sum in (16), we get for x large

∞∑
k=ψx+1

P (S1 > x− k)P (S = k) ≤ P (S > ψx)

= P
(
(1 + λ)S ≥ (1 + λ)ψx

)
≤ E (1 + λ)S

(1 + λ)ψx

(17)

using the Markov inequality, since E (1 + λ)S is finite for λ < λ1/α
∗.

Since (1 + λ)ψ > 1 + λ1
αmax

we get by Theorem 4 of Hall (2003)

(1 + λ)−ψx

P (S1 > x)
→ 0, x→ +∞, (18)

and thus together
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1− FXn
(x) = P (S1 > x)E

(
1 +

λ1

αmax

)S
+O((1 + λ)−ψx)

= P (S1 > x)

[
E

(
1 +

λ1

αmax

)S
+O

(
(1 + λ)−ψx

P (S1 > x)

)]

= P (S1 > x)E

(
1 +

λ1

αmax

)S
(1 + ox(1)).

With the same arguments we characterize the tail 1 − FYn. Hence,
the statements on the marginal distributions are shown.

(ii) Now we deal with the third term in (15). Note that (S1, T2), (S2, T1)
and (S3, T3) in the representation of Xn and Yn are independent. For
any ψ ∈ (0, 1) and λ > 0 satisfying (11), we use that (17) and (18)
imply

P (S2 + S3 > ψx) = P (S ≥ ψx) = O((1 + λ)−ψx) (19)

with S := S2 + S3. The probability in the third term of (15) is
split into four summands with ψ < 1 satisfying (11), ψx = [ψx] and
δy = [y − (log y)2]. We get for x and y large,

P (Xn > x, Yn > y) = P (S1 + S2 + S3 > x, T1 + T2 + T3 > y)

=

ψx∑
k=0

δy∑
`=0

P (S1 > x− k, T2 > y − `)P (S2 + S3 = k, T1 + T3 = `)+

+

ψx∑
k=0

∞∑
`=δy+1

P (S1 > x− k, T2 > y − `)P (S2 + S3 = k, T1 + T3 = `)+

+
∞∑

k=ψx+1

δy∑
`=0

P (S1 > x− k, T2 > y − `)P (S2 + S3 = k, T1 + T3 = `)+

+
∞∑

k=ψx+1

∞∑
`=δy+1

P (S1 > x− k, T2 > y − `)P (S2 + S3 = k, T1 + T3 = `).

(20)
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The last sum is bounded by P (T1 + T3 > δy, S2 + S3 > ψx) ≤
P (S2 + S3 > ψx) = O((1 + λ)−ψx) by (19).

For the first sum of (20), we obtain with ρ < 1 such that (12) holds,
using Proposition 2.5,

ψx∑
k=0

δy∑
`=0

P (S1 > x− k, T2 > y − `)P (S2 + S3 = k, T1 + T3 = `)

≤ ϑ

ψx∑
k=0

δy∑
`=0

{
([x]− k)ξ3 ([y]− `)ξ4

(
1 +

λ1

αmax

)−([x]−k)(
1 +

λ2θ

βi0

)−([y]−`)
×

× L∗3([x]− k) L∗4([y]− `)P (S2 + S3 = k, T1 + T3 = `)

≤ ϑ

ψx∑
k=0

δy∑
`=0

{
([x]− k)ξ3 ([y]− `)ξ4

(
1 +

λ1

αmax

)−([x]−k)(
1 +

λ2θ

βi0

)−((1−ρ)+ρ)([y]−`)

× L∗3([x]− k)L∗4([y]− `)P (S2 + S3 = k, T1 + T3 = `)

≤ oy(1)xξ3L∗3(x)

(
1 +

λ1

αmax

)−x(
1 +

λ2θ

βi0

)−ρy
×

×
ψx∑
k=0

δy∑
`=0

(
1 +

λ1

αmax

)k (
1 +

λ2θ

βi0

)ρ`
P (S2 + S3 = k, T1 + T3 = `)

≤ oy(1)xξ3L∗3(x)

(
1 +

λ1

αmax

)−x(
1 +

λ2θ

βi0

)−ρy
×

× E

((
1 +

λ1

αmax

)(S2+S3)(
1 +

λ2θ

βi0

)ρ(T1+T3)
)

≤ oy(1)xξ3L∗3(x)

(
1 +

λ1

αmax

)−x(
1 +

λ2θ

βi0

)−ρy
since (y − `) > (log y)2 for ` ≤ δy, and

(1 +
λ2θ

βi0
)−(1−ρ)([y]−`)([y]− `)ξ4L∗4([y]− `)

≤ (1 +
λ2θ

βi0
)−(1−ρ)([y]−`)([y]− `)ξ4+ε → 0

as y → 0 uniformly, for any small ε > 0.
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The last pgf exists due to Lemma 3.2 and (12). Let I = {i 6= i0},

E

((
1 +

λ1

αmax

)(S2+S3)(
1 +

λ2θ

βi0

)ρ(T1+T3)
)

= E

((∏
i∈I

(1 +
λ1

αmax
)αi◦Vi

(
(1 +

λ2θ

βi0
)ρ
)βi◦Wi

))

=
∏
i∈I

E

(
(1 +

λ1

αmax
)αi◦Vi

(
(1 +

λ2θ

βi0
)ρ
)βi◦Wi

)

=
∏
i∈I

E

(
(1 +

αiλ1

αmax
)Vi(1 + βi([1 +

λ2θ

βi0
]ρ − 1))Wi

)
.

The expectations exist by assumption (4) since (1 + αiλ1
αmax

) < 1 + λ1,

and also 1 + βi([1 + λ2θ
βi0

]ρ − 1) ≤ 1 + βmax([1 + λ2θ
βi0

]ρ − 1) < 1 + λ2, for

all i, by the choice of ρ in (12). For |αi|, |βi| < ε for any small ε > 0,
we can approximate the expectations as in Lemma 3.1 by(
1 +

αiλ1

αmax
E(V )

)(
1 + βi([1 +

λ2θ

βi0
]ρ − 1)E(W )

)
(1 + o(αi + βi)).

Because of the summability of the αi and βi, the pgf exists.

We consider now the approximation of the second sum in (20). We
have with some positive constant C

ψx∑
k=0

∞∑
`=δy+1

P (S1 > x− k, T2 > y − `)P (S2 + S3 = k, T1 + T3 = `)

≤
ψx∑
k=0

∞∑
`=δy+1

P (S1 > x− k)P (T1 + T3 = `)

≤ Cxξ1+1L∗1(x)

(
1 +

λ1

αmax

)−(1−ψ)x

P (T1 + T3 > δy) (21)
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By the arguments used to approximate P (Xn > x) = P (S1 + S2 +
S3 > x) in (i), we also obtain

P (T1+T3 > δy) ∼ Cyξ2 L∗2(y)E

(
1 +

λ2

βmax

)T3 (
1 +

λ2

βmax

)−δy
, as y → +∞.

with some generic constant C. Hence, it implies together with (21)

ψx∑
k=0

∞∑
`=δy+1

P (S1 > x− k, T2 > y − `)P (S2 + S3 = k, T1 + T3 = `)

≤ Cxξ1+1yξ2L∗1(x) L∗2(y)

(
1 +

λ1

αmax

)−(1−ψ)x(
1 +

λ2

βmax

)−y+(log y)2

as y → +∞.
For the third sum in (20), we get analogously to the derivation of

the second sum

∞∑
k=ψx+1

δy∑
`=0

P (S1 > x− k, T2 > y − `)P (S2 + S3 = k, T1 + T3 = `)

≤ δyP (T2 > y − δy)P (S2 + S3 > ψx)

≤ y(log y)2ξ2L∗4((log y)2)(1 +
λ2

βi0
)−(log y)2P (S2 + S3 > ψx)

= oy(1)P (S2 + S3 > ψx) = ox(P (S > ψx))

Combining now the four bounds, we get our statement.

Suppose now the case that the unique αmax and βmax are taken at the same
index i0, say. Write

Xn = αmax ◦ Vn−i0 +
∑
i6=i0

αi ◦ Vn−i

and

Yn = βmax ◦Wn−i0 +
∑
i6=i0

βi ◦Wn−i

Denote S1 = αmax ◦ Vn−i0, S =
∑
i 6=i0

αi ◦ Vn−i, T1 = βmax ◦Wn−i0, and T =∑
i6=i0

βi ◦Wn−i, as used for Proposition 3.1. Observe that (S1, T1) and (S, T )
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are independent. Then the corresponding statement of Proposition 3.1 holds
for this case (letting βi0 = βmax) given in Proposition 3.2. We omit the proof
since it is very similar to the given one with a few obvious changes.

Proposition 3.2. If (V,W ) satisfies (4) and αmax and βmax are unique, oc-
curring at the same index, then

1− FXn,Yn(x, y) ∼ [x]ξ1
(

1 +
λ1

αmax

)−[x]

L∗∗1 (x) (1 + ox(1))

+ [y]ξ2
(

1 +
λ2

βmax

)−[y]

L∗∗2 (y) (1 + oy(1))

−H∗(x, y)

where

L∗∗1 (x) = L∗1(x)E

(
1 +

λ1

αmax

)S
, L∗∗2 (y) = L∗2(y)E

(
1 +

λ2

βmax

)T
and

H∗(x, y) ≤ oy(1)xξ3L∗3 (x)

(
1 +

λ1

αmax

)−x(
1 +

λ2θ

βmax

)−y
+

+ Cyξ2L∗2(y)xξ1+1L∗1(x)

(
1 +

λ1

αmax

)−(1−ψ)x(
1 +

λ2

βmax

)−y+(log y)2

+O(P (S > ψx))

for some constant C > 0 and ψ ∈ (0, 1) satisfying (11).

Now we investigate the limiting behaviour for the bivariate maxima, in
case of iid. (Xn, Yn).

Theorem 3.1. Let (V,W ) be such that (4) holds and αmax and βmax are
unique, occurring either at the same or not the same index. Let

d1 = 1/ log(1 +
λ1

αmax
), d2 = 1/ log(1 +

λ2

βmax
)

Define the normalizations

un(x) = x+ d1[log n+ ξ1 log log n+ logL∗∗1 (log(n)) + ξ1 log d1] (22)

and

vn(y) = y + d2[log n+ ξ2 log log n+ logL∗∗2 (log(n))] + ξ2 log d2] (23)
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Then for x, y real

lim sup (lim inf)n(1− F(Xn,Yn))(un(x), vn(y)) ≶

≶
(

1 + λ1
αmax

)−x+1(0)

+
(

1 + λ2
βmax

)−y+1(0)

Proof : The convergence for the marginal distributions holds by applying
Proposition 3.1 or 3.2 with the chosen normalization sequences. Since un(x)
and vn(y) are similar in type, we only show the derivation of the first mar-
ginal. Because the normalization un(x) is not always an integer, we have to
consider lim sup and lim inf. Let us consider lim sup. The lim inf derivation
follows similarly. Note that(

1 +
λ1

αmax

)−d1 log n

=

(
1 +

λ2

βmax

)−d2 log n

=
1

n

and (
1 +

λ1

αmax

)−d1(ξ1 log log n+logL∗∗1 (log n)+ξ1 log d1)

=
(d1 log n)−ξ1

L∗∗1 (log n)

For the normalization we get

[un(x)] ≥ x− 1 + d1(log n+ ξ1 log log n+ logL∗∗1 (log n) + ξ1 log d1) ∼ d1 log n

So, with bn := d1(log n+ ξ1 log log n+ logL∗∗1 (log n) + ξ1 log d1), we have

n× [un(x)]ξ1
(

1 +
λ1

αmax

)−[un(x)]

L∗∗1 ([un(x)])

. n× (d1 log n)ξ1
(

1 +
λ1

αmax

)−x+1−bn
L∗∗1 (log n)

= (1 + λ1/αmax)−(x−1)

The derivation of the lim inf is similar taking into account that [un(x)] ≤
un(x).

Now for the joint distribution we use the bounds H∗(x, y) of the two propo-
sitions. First we consider the case of Proposition 3.1. We have to derive the
limits of three terms multiplied with n. The last term tends to 0 since from
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(13) we get

nP (S1 > un(x)) = n× (un(x))ξ1
(

1 +
λ1

αmax

)−un(x)

L∗1(un(x))

∼ (1 + λ1/αmax)−x L∗1(log n)/L∗∗1 (log n)

∼ (1 + λ1/αmax)−x /E

(
1 +

λ1

αmax

)S
which is bounded.
The first of the three boundary terms is smaller than

non(1)

(
1 +

λ1

αmax

)−un(x)(
1 +

λ2θ

βi0

)−ρvn(y)

(un(x))ξ3L∗3(un(x))

= non(1)

(
1 +

λ1

αmax

)−d1 log n+o(log n)(
1 +

λ2θ

βi0

)−ρd2 log n+o(log n)

×

× (d1 log n)ξ3L∗3(log n)

= on(1)(log n)ξ3L∗3(log n) exp

(
−ρd2 log n log

(
1 +

λ2θ

βi0

)
+ o(log n)

)
= on(1)(log n)ξ3L∗3(log n) exp (−(ρ/B)(1 + on(1)) log n}

= on(1),

because ρ/B > 0 with B given by (12).
The second term is smaller than

nC1(d1 log n)ξ1+1(d2 log n)ξ2L∗1(log n)L∗2(log n)

×
(

1 +
λ1

αmax

)−(1−ψ)d1 log n+o(log n)(
1 +

λ2

βmax

)−d2 log n+(log(d2 log n))2

≤ C1(log n)ξ1+ξ2+1L∗1(log n)L∗2(log n)×
× exp (log n− (1− ψ) log n− log n+ o(log n))

= on(1)

since 1− ψ > 0 and where C1 represents a generic positive constant.
Thus the limiting distribution is proved in case of Proposition 3.1.

Now let us consider the changes of the proof for the case of Proposition
3.2. Again we have three boundary terms in the bound where the last two
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are as in Proposition 3.1. In the first term we have similarly

non(1)(un(x))ξ3L∗3(un(x))

(
1 +

λ1

αmax

)−un(x)(
1 +

λ2θ

βmax

)−vn(y)

= on(1)(log n)ξ3L∗3(log n) exp

(
−d2 log n log

(
1 +

λ2θ

βmax

)
+ o(log n)

)
= on(1).

since d2 log
(

1 + λ2θ
βmax

)
> 0.

Thus the statements are shown.

4. Conditions D(un, vn) and D′(un, vn)
We deal now with the mixing condition and the local dependence condition

used in the bivariate extreme value theory of the limiting distribution.
We consider the conditions D(un, vn) and D′(un, vn) of Hüsler (1990) (see

also Hsing (1989) and Falk et al. (1990)) since {(Xn, Yn)} is a stationary
sequence.

Definition 4.1. The sequence of rv’s {(Xn, Yn)} satisfies condition D(un, vn)
if for any integers 1 ≤ i1 < ... < ip < j1 < ... < jq ≤ n, for which j1− ip > `n,
we have∣∣P( p⋂

s=1

{Xis ≤ un, Yis ≤ vn},
q⋂
t=1

{Xjt ≤ un, Yjt ≤ vn}
)

−P
( p⋂
s=1

{Xis ≤ un, Yis ≤ vn}
)
P
( q⋂
t=1

{Xjt ≤ un, Yjt ≤ vn}
)∣∣ ≤ αn,`n

for some αn,`n with lim
n→+∞

αn,`n = 0, for some integer sequence `n = o(n).

Under this long range condition, extreme values occurring in largely sepa-
rated intervals of positive integers are asymptotically independent. The local
dependence condition D′(un, vn) excludes the occurrence of local clusters of
extreme values in individual margins of {(Xn, Yn)} as well as together in the
two components.
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Definition 4.2. Let {sn} and {`n} be sequences of positive integers satisfying

lim
n→∞

s−1
n = lim

n→∞

sn`n
n

= lim
n→∞

snαn,`n = 0. (24)

The sequence of rv’s {(Xn, Yn)} satisfies condition D′(un, vn) if

n

[n/sn]∑
j=1

{
P (X0 > un, Xj > un) + P (X0 > un, Yj > vn)

+P (Y0 > vn, Yj > vn) + P (Y0 > vn, Xj > un)

}
→ 0 , n→ +∞.

Write M
(1)
n = max{X1, · · · , Xn} and M

(2)
n = max{Y1, · · · , Yn}. For the sta-

tionary sequence {(Xn, Yn)} satisfying D(un, vn) and D′(un, vn), the limiting

behaviour of the bivariate maxima
(
M

(1)
n ,M

(2)
n

)
, under linear normalization,

is given in Theorem 3.1.

So it remains to show that the conditions D(un, vn) and D′(un, vn) hold
with un and vn given by (22) and (23), respectively. We begin with the first
condition D(un, vn). Let 1 ≤ i1 ≤ · · · ≤ ip < j1 ≤ · · · ≤ jq ≤ n with
j1 − ip > 2`n, `n = nφ, φ < 1, and sn = nζ , ζ < 1. We select φ and ζ later.
Due to the fact that{ ∞∑

k=−`n+1

αk ◦ Vi−k,
∞∑

k=−`n+1

βk ◦Wi−k , i ≤ ip

}
and {

`n−1∑
k=−∞

αk ◦ Vj−k,
`n−1∑
k=−∞

βk ◦Wj−k , j ≥ j1

}
are independent and writing

M (1,1)
n = max

0≤j≤n

−`n∑
k=−∞

αk ◦ Vj−k M (1,2)
n = max

0≤j≤n

−`n∑
k=−∞

βk ◦Wj−k

M (2,1)
n = max

0≤j≤n

+∞∑
k=`n

αk ◦ Vj−k M (2,2)
n = max

0≤j≤n

+∞∑
k=`n

βk ◦Wj−k,
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we have

P

( p⋂
s=1

{Xis ≤ un, Yis ≤ vn},
q⋂
t=1

{Xjt ≤ un, Yjt ≤ vn}
)

(25)

≤ P

( p⋂
s=1

{Xis −
−`n∑

k=−∞

αk ◦ Vis−k ≤ un, Yis −
−`n∑

k=−∞

βk ◦Wis−k ≤ vn}
)

×P
( q⋂
t=1

{Xit −
∞∑
k=`n

αk ◦ Vjt−k ≤ un, Yjt −
∞∑
k=`n

βk ◦Wjt−k ≤ vn}
)

≤ P

( p⋂
s=1

{Xis ≤ un +M (1,1)
n , Yis ≤ vn +M (1,2)

n }
)
×

×P
( q⋂
t=1

{Xjt ≤ un +M (2,1)
n , Yjt ≤ vn +M (2,2)

n }
)
.

We split furthermore this upper bound.

P

( p⋂
s=1

{Xis ≤ un, Yis ≤ vn},
q⋂
t=1

{Xjt ≤ un, Yjt ≤ vn}
)

≤
[
P

( p⋂
s=1

{Xis ≤ un +M (1,1)
n , Yis ≤ vn +M (1,2)

n },M (1,1)
n = 0,M (1,2)

n = 0

)
+ P

(
M (1,1)

n ≥ 1 ∨M (1,2)
n ≥ 1

)]
×
[
P

( q⋂
t=1

{Xjt ≤ un +M (2,1)
n , Yjt ≤ vn +M (2,2)

n },M (2,1)
n = 0,M (2,2)

n = 0

)
+ P

(
M (2,1)

n ≥ 1 ∨M (2,2)
n ≥ 1

)]
≤
[
P
( p⋂
s=1

{Xis ≤ un, Yis ≤ vn}
)

+ P
(
M (1,1)

n ≥ 1 ∨M (1,2)
n ≥ 1

)]

×
[
P
( q⋂
t=1

{Xjt ≤ un, Yjt ≤ vn}
)

+ P
(
M (2,1)

n ≥ 1 ∨M (2,2)
n ≥ 1

)]
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≤ P

( p⋂
s=1

{Xis ≤ un, Yis ≤ vn}
)
× P

( q⋂
t=1

{Xjt ≤ un, Yjt ≤ vn}
)

+2P
(
M (1,1)

n ≥ 1
)

+ 2P
(
M (1,2)

n ≥ 1
)

+ 2P
(
M (2,1)

n ≥ 1
)

+ 2P
(
M (2,2)

n ≥ 1
)

These last four terms tend to zero as it is proved in Hall (2003) depending
on `n. We show it for one term.

P
(
M (1,1)

n ≥ 1
)
≤ (n+ 1)P

( −`n∑
k=−∞

αk ◦ V−k ≥ 1

)

≤ (n+ 1)

−`n∑
k=−∞

E(αk ◦ V−k) = (n+ 1)

−`n∑
k=−∞

αkE(V−k)

≤ Cn
∞∑
k=`n

1

kδ
≤ Cn`1−δ

n

for some generic constant C and δ satisfying (3). Selecting φ > 1/(δ − 1),
this bound tends to 0.

In the same way we establish the lower bound of (25). In fact

P
( p⋂
s=1

{Xis ≤ un, Yis ≤ vn}
)
P
( q⋂
t=1

{Xjt ≤ un, Yjt ≤ vn}
)

≤ P
( p⋂
s=1

{
∞∑

k=−`n+1

αk ◦ Vis−k ≤ un,

∞∑
k=−`n+1

βk ◦Wis−k ≤ vn}
)

×P
( q⋂
t=1

{
`n−1∑
k=−∞

αk ◦ Vjt−k ≤ un,

`n−1∑
k=−∞

βk ◦Wjt−k ≤ vn}
)

≤ P
( p⋂
s=1

{
∞∑

k=−`n+1

αk ◦ Vis−k ≤ un,

∞∑
k=−`n+1

βk ◦Wis−k ≤ vn},

q⋂
t=1

{
`n−1∑
k=−∞

αk ◦ Vjt−k ≤ un,

`n−1∑
k=−∞

βk ◦Wjt−k ≤ vn}
)
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≤ P
(⋂p

s=1{Xis ≤ un +M
(1,1)
n , Yis ≤ vn +M

(1,2)
n },⋂q

t=1{Xjt ≤ un +M
(2,1)
n , Yjt ≤ vn +M

(2,2)
n }

Since we need also that snαn,ln → 0, we select sn (i.e. ζ) such that snn`
1−δ
n =

n1+ζ−φ(δ−1) → 0, which holds for 1 + ζ < φ(δ− 1). Hence condition D(un, vn)
holds.

To prove the condition D′(un, vn) note first that

n

[n/sn]∑
j=1

P (X0 > un, Xj > vn)→ 0, n→ +∞,

and

n

[n/sn]∑
j=1

P (Y0 > un, Yj > vn)→ 0, n→ +∞,

because {Xn} and {Yn} satisfy conditions D′(un) and D′(vn) which was
shown in Hall (2003). Hence, it remains to consider the sums on the terms
P (X0 > un, Yj > vn) and on the terms P (Y0 > un, Xj > vn).

We show it for the sum of the first terms, since for the second one the proof
follows in the same way. Let γn = nν with ν < 1− ζ. Then γn = o(n/sn) =
o(n1−ζ). For j < γn

(X0, Yj) =

( ∞∑
i=−∞

αi ◦ V−i ,
∞∑

i=−∞
βi+j ◦W−i

)

Note that αi0 = αmax for some i0 and βj0 = βmax for some j0. For one j
we have i0 + j = j0, i.e. j = j0 − i0. Hence the maximum terms occur at
the same index for V−i0 and W−i0. If j0 = i0 this case j = 0 does not occur
in the sum. For all other j’s the maxima is occurring at different indexes.
We consider the bound established in Proposition 3.1 and 3.2 for H∗. For
j = j0 − i0, we showed in the proof of Theorem 3.1 that nH∗(un, vn)→ 0.

For the remaining terms P (X0 > un, Yj > vn) with j 6= j0 − i0, we have
βi0+j < βmax and deduce from Proposition 3.1 the following upper bound for
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H∗(un, vn) given by

on(1)

(
1 +

λ1

αmax

)−un (
1 +

λ2θ

βi0+j

)−ρvn
uξ3n L

∗
3(un) + Cuξ1+1

n vξ2n L
∗
1(un)L

∗
2(vn)×

×
(

1 +
λ1

αmax

)−(1−ψ)un (
1 +

λ2

βmax

)−vn+(log vn)2

+O (P (S > ψun))

(26)
with ρ, ψ ∈ (0, 1) defined in (11) and (12). Note that ρ = ρ(j) should be

such that
(

1 + λ2θ
βi0+j

)ρ(j)

<
(

1 + λ2
βmax

)
for all j 6= j0 that (11) is satisfied. It

implies that for any ε > 0 we can select ρ(j) for every j 6= j0 such that

log

(
1 +

λ2

βmax

)
> ρ(j) log

(
1 +

λ2θ

βi0+j

)
> (1− ε) log

(
1 +

λ2

βmax

)
.

Then the sum on {j ≤ 2γn, j 6= j0}, with the first term in the bound of H∗

in (26) multiplied by n, is bounded by

on(1)n1+ν

(
1 +

λ1

αmax

)−d1 log n+o(log n)(
1 +

λ2θ

βio+j

)−ρ(j)d2 log n+o(log n)

×

× (d1 log n)ξ3L∗3(log n)

= on(1) exp

{
log n ·

(
1 + ν − d1 log

(
1 +

λ1

αmax

)
−

−d2(1− ε) log

(
1 +

λ2

βmax

))
+ o(log n)

}
= on(1) exp {− log n · (1− ε− ν + on(1))} → 0, n→∞,

if also ν such that ν < 1− ε.
Let us consider the sum on {j ≤ 2γn, j 6= j0} with the second terms in (26)
multiplied with n. We have

n1+ν

(
1 +

λ1

αmax

)−(1−ψ)un (
1 +

λ2

βmax

)−vn+(log vn)2

= n1+ν

(
1 +

λ1

αmax

)−(1−ψ)d1 log n+o(log n)(
1 +

λ2

βmax

)−d2 log n+o(log n)

= exp {log n · [1 + ν − (1− ψ)− 1] + o(log n)}
= exp {log n · [ν + ψ − 1 + on(1)]} → 0, n→∞,
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if also ν < 1− ψ. Hence we choose ν < min(1− ε, 1− ζ, 1− ψ).

It remains to deal with the sum of the third terms in (26). We showed
that P (S > ψx) = O((1 + λ)−ψx) in (19) with (1 + λ)ψ > 1 + λ1

αmax
in (11).

Let ψ̃ > 1 such that (1 + λ)ψ/ψ̃ = (1 + λ1
αmax

). Then with ε > 0 such that

ψ̃ − ε > 1, this sum on {j ≤ 2γn, j 6= j0} multiplied with n is bounded by

Cn1+ν

(
1 +

λ1

αmax

)−(ψ̃−ε)un
= C exp

{
log n ·

[
1 + ν − (ψ̃ − ε) + on(1)

]}
→ 0

if also ν < ψ̃ − 1− ε.
Thus combining these three bounds we have that

n
∑
j≤2γn

P (X0 > un, Yj > vn)→ 0

if ν < min(1− ε, 1− ζ, 1− ψ, ψ̃ − 1− ε).
We consider now the sum on j with 2γn < j ≤ n/sn and write

X ′0 =
∞∑

i=−γn

αi ◦ V−i , X ′′0 =

−γn−1∑
i=−∞

αi ◦ V−i

and

Y ′j =

γn∑
i=−∞

βi ◦Wj−i , Y ′′j =
∞∑

i=γn+1

βi ◦Wj−i

Note that X ′0 and Y ′j are independent. We have, for j > 2γn and some
k > 1 (chosen later),

P (X0 > un, Yj > vn) = P
(
X ′0 +X ′′0 > un, Y

′
j + Y ′′j > vn

)
≤ P

(
X ′0 > un −X ′′0 , Y ′j > vn − Y ′′j , X ′′0 < k, Y ′′j < k

)
+P (X ′′0 ≥ k) + P

(
Y ′′j ≥ k

)
≤ P

(
X ′0 > un − k, Y ′j > vn − k

)
+ P (X ′′0 ≥ k) + P

(
Y ′′j ≥ k

)
≤ P (X0 > un − k)P (Yj > vn − k) + P (X ′′0 ≥ k) + P

(
Y ′′j ≥ k

)
= O

(
1

n

)
O

(
1

n

)
+ P (X ′′0 ≥ k) + P

(
Y ′′j ≥ k

)
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Similar to Hall (2003), the last two probabilities are sufficiently fast tending
to 0. We have

P (X ′′0 ≥ k) = P

(−γn−1∑
i=−∞

αi ◦ V−i ≥ k

)
= P

(
(1 + hn)

∑−γn−1
i=−∞ αi◦V−i > (1 + hn)

k
)

≤
E
(

(1 + hn)
∑−γn−1
i=−∞ αi◦V−i

)
(1 + hn)k

We select hn such that hnγ
1−δ
n = C > 0, for some constant C, then we have

for i ≤ −γn − 1 and δ > 2

0 < αihn ≤ C|i|−δhn ≤ C(γn + 1)−δhn = o(1/γn)→ 0, n→∞,

by the assumption (3) on the sequence {αi}. It implies

E
(

(1 + hn)
∑−γn−1
i=−∞ αi◦V−i

)
= E

(−γn−1∏
i=−∞

(1 + hn)
αi◦V−i

)
=

−γn−1∏
i=−∞

E
(
(1 + αihn)

V−i
)

and, due to Lemma 3.1,

E
(

(1 + hn)
∑−γn−1
i=−∞ αi◦V−i

)
≤
−γn−1∏
i=−∞

(1 + αihnE(V0)(1 + on(1)))

= exp

(−γn−1∑
i=−∞

ln (1 + αihnE(V0)) (1 + on(1))

)

= exp

(
E(V0)

−γn−1∑
i=−∞

αihn(1 + on(1))

)

= exp

(
E(V0)hnO(1)

−γn−1∑
i=−∞

|i|−δ
)

= exp
(
O(1)hnγ

1−δ
n

)
= O(1), n→ +∞,
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by the choice of hn. Note that hn = Cγδ−1
n = Cnν(δ−1) → ∞. Now, select k

depending on δ, ν and ζ such that

n2/((1 + hn)
ksn) ∼ n2/(Cknkν(δ−1)nζ) = o(1), n→ +∞,

which holds for k > (2− ζ)/(ν(δ − 1)). This choice implies that

(n2/sn)P (X ′′0 ≥ k)→ 0, n→ +∞.

In the same way we can show that also

n
∑
j≤n/sn

P
(
Y ′′j ≥ k

)
→ 0, n→ +∞,

for such a k, since also βi ≤ C |i|−δ for |i| ≥ γn and some constant C > 0.
Hence condition D′(un, vn) holds.

Therefore, upper and lower bounds of the limiting distribution of the maxi-
mum term of non-negative integer-valued moving average sequences are found
leading to a ”quasi max-stable” limiting behavior of the bivariate maximum
in the sense of Anderson type.

Theorem 4.1. Consider the stationary sequences {(Xn, Yn)} defined by

(Xn, Yn) =

( ∞∑
i=−∞

αi ◦ Vn−i,
∞∑

i=−∞
βi ◦Wn−i

)
.

Suppose that the innovation sequence {Vn,Wn} is an iid sequence of non-
negative integer-valued random vectors with df of the form (4), the sequences
of {αi} and {βi} satisfies (3) and αmax and βmax are unique. Then,

lim sup (lim inf)P
(
M

(1)
n ≤ un(x),M

(2)
n ≤ vn(x)

)
≶

≶ exp

(
−
(

1 + λ1
αmax

)−(x−0(1))

−
(

1 + λ2
βmax

)−(y−0(1))
)

for all real x and y and where un(x) and vn(x) are defined by (22) and (23).
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