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Abstract: In this paper we propose a new class of Hermite series-based direct
plug-in bandwidth selectors for kernel density estimation and we describe their
asymptotic and finite sample behaviours. Unlike the direct plug-in bandwidth se-
lectors considered in the literature, the proposed methodology does not involve
multistage strategies and reference distributions are no longer needed. The new
bandwidth selectors show a good finite sample performance when the underlying
probability density function presents not only “easy-to-estimate” but also “hard-
to-estimate” distribution features. This quality, that is not shared by other widely
used bandwidth selectors as the classical plug-in or the least-square cross-validation
methods, is the most significant aspect of the Hermite series-based direct plug-in
approach to bandwidth selection.
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1. Introduction

If X1, . . . , Xn are independent real-valued absolutely continuous random
variables with common and unknown probability density function f , the
Parzen-Rosenblatt estimator of f (Rosenblatt, 1956, Parzen, 1962) based on
the observed sample is defined, for x ∈ R, by

fn,h(x) =
1

n

n∑

i=1

Kh(x−Xi),

where Kh(·) = K(·/h)/h, for h > 0, with K a kernel in R, that is, K is a
bounded and integrable function such that

∫
K(u)du = 1, and the bandwidth

h = hn is a sequence of strictly positive real numbers converging to zero as n
tends to infinity (see Devroye and Györfi, 1985, Silverman, 1986, Bosq and
Lecoutre, 1987, Wand and Jones, 1995, Simonoff, 1996, and Tsybakov, 2009,
for general reviews on density estimation). Contrary to the selection of the
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kernel, the choice of the bandwidth is crucial to the performance of the esti-
mator, this being one of the most studied topics in kernel density estimation,
and several data-based approaches have been proposed for selecting h (see
Wand and Jones, 1995, pp. 58–89, and also Tenreiro, 2017, p. 3440, where
more recent bandwidth selection methods are mentioned).
The direct plug-in method, which dates back to Woodroofe (1970), Na-

daraya (1974) and Deheuvels and Hominal (1980), is a very simple data-
dependent method for choosing the bandwidth. It is based on asymptotic
approximations of the bandwidth h0 that minimizes the mean integrated
square error MISE(f ;n, h) = E(ISE(f ;n, h)) = E||fn,h − f ||22, where || · ||2
denotes the L2 distance:

h0 = argmin
h>0

MISE(f ;n, h).

For a square integrable density f , the existence of this exact optimal band-
width can be established whenever the kernel K is continuous at zero with
k0 < 2K(0), where k0 = ||K||22 (see Chacón et al., 2007). Under some mo-
ment and regularity conditions on K and f , respectively (see Section 6.2),
two asymptotic approximations of the optimal bandwidth h0 are given by

h1 = c1,K θ
−1/5
2 n−1/5,

and
h2 = c1,K θ

−1/5
2 n−1/5 + c2,K θ

−8/5
2 θ3 n

−3/5,

where θr, r = 0, 1, . . . , denotes the quadratic functional

θr =

∫
f (r)(x)2dx = ||f (r)||22,

with f (r) ∈ L2 the rth derivative of f , and the constants c1,K and c2,K
depending on K and given by

c1,K = k
1/5
0 k

−2/5
2 and c2,K =

1

60
k
3/5
0 k

−16/5
2 (3k2k4 − 2k23), (1)

with kj =
∫
ujK(u)du for j = 1, 2, . . . (see Hall and Marron, 1987, 1991).

These asymptotic approximations of h0 reduce the problem of estimating the
optimal bandwidth to that of estimating the quadratic functionals θ2 and θ3,
this being the idea of the direct plug-in approach to bandwidth selection.
Although several methods for estimating the functionals θr, for r = 0, 1, . . . ,

have been studied in the literature (see the references given in Tenreiro, 2011,
p. 534, and Chacón and Tenreiro, 2012, p. 524), the class of kernel estimators
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of θr proposed by Hall and Marron (1987) and Jones and Sheather (1991)
is widely used in a bandwidth selection context. However, for these kernel
estimators the asymptotically optimal bandwidth for estimating θr depends
on θr+2 (whenever a nonnegative and symmetric kernel is used). This makes
the selection of the bandwidth into a somehow cyclic process. Although a
multistage strategy could be used to overcome this problem (see Chacón and
Tenreiro, 2013, for a detailed description of such a multistage procedure),
the standard approach is to use a two-stage procedure with normal reference
distribution leading to the popular two-stage direct plug-in bandwidth selec-
tor described in Wand and Jones (1995, pp. 71–72) and implemented by the
function dpik of the R-package ‘KernSmooth’ (Wand, 2014, pp. 7–8).
When the support of the underlying density function f is known to be

contained within a finite interval [a, b], an alternative approach was followed
by Tenreiro (2011) who proposed direct plug-in bandwidth selectors for the
kernel density estimator based on the Fourier series estimators of θr studied
by Laurent (1997). Prompted by the good practical performance of the
proposed bandwidth selectors, the main purposes of this paper are: 1) to use
estimators of θr based on the orthogonal projection of f (r) on the Hermite
basis to extend the previous results to the case where the support of f is
the whole real line; 2) to examine, from an asymptotic and finite sample
point of view, the quality of the proposed Hermite series-based direct plug-in
bandwidth selectors. Unlike the standard direct plug-in approach, the new
implementation of the plug-in method does not involve multistage strategies
and reference distributions are no longer needed.
The rest of this article is organised as follows. In Section 2 we consider

Hermite series-based estimators of the quadratic functional θr, where the
number of Hermite terms included in the estimators may depend on the
observed sample, and we establish their consistency, probability orders of
convergence and asymptotic normality. In Section 3 these results are used
to describe the asymptotic behaviour of direct plug-in bandwidth selectors
based on each one of the asymptotic approximations h1 and h2 of the exact
optimal bandwidth h0. In Section 4 we propose two data-driven methods
for selecting the number of terms to be included in the Hermite series based
estimators of θr, and in Section 5 we undertake a simulation study to anal-
yse the finite sample behaviour of the proposed direct plug-in bandwidth
selectors. The very good finite sample performance presented by the pro-
posed bandwidth selectors when the underlying probability density function
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presents not only “easy-to-estimate” but also “hard-to-estimate” distribution
features, is the most significant aspect with potential practical interest of the
proposed methodology. This is a relevant attribute of the Hermite series-
based bandwidth selectors proposed in this paper which is not shared by
the generality of the existing bandwidth selector methods, which are usually
high performing for “easy-to-estimate” densities, but, at the same time, they
may be quite inefficient for densities presenting hard distribution features as
strong asymmetry or multimodality. All the proofs and some auxiliar results
are deferred to Section 6.
The simulations and plots in this paper were carried out using the R soft-

ware (R Development Core Team, 2014).

2. Hermite series estimators of θr
Let {hk, k = 0, 1, . . .} be the Hermite orthonormal basis of L2 defined by

hk(x) = (2kk!π1/2)−1/2Hk(x)e
−x2/2,

with x ∈ R, where Hk is the kth Hermite polynomial given by

Hk(x) = (−1)kex
2

(dk/dxk)e−x2

.

For r ∈ {0, 1, . . .}, if we assume that f (r) is square integrable, it is known that
f (r) has the L2 representation f

(r)=
∑∞

k=0 ar,khk, where ar,k=
∫
f (r)(x)hk(x)dx

is the kth Hermite coefficient of f (r), and the quadratic functional of interest
θr = ||f (r)||22 can be written in terms of the Hermite coefficients of f (r) as

θr =
∞∑

k=0

a2r,k.

Using the fact that the kth Hermite coefficient of f (r) can be rewritten as

ar,k = (−1)r
∫

h
(r)
k (x)f(x)dx = (−1)rE

(
h
(r)
k (X1)

)
,

whenever f has bounded derivatives up to order r, it can be estimated with-
out bias as in Greblicki and Pawlak (1984) by

âr,k =
1

n

n∑

i=1

h
(r)
k (Xi),
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which leads to the estimator of θr given by

ˆ̄θr,m =
m∑

k=0

â2r,k, (2)

where m = m(n) is a sequence of integers converging to infinity with n. A
closely related alternative estimator of θr (see Section 6, Proposition 1), can
be obtained by taking

ˆ̃
θr,m =

m∑

k=0

â2r,k, (3)

where â2r,k is the unbiased estimator of a2r,k given by

â2r,k =
2

n(n− 1)

∑

1≤i<j≤n

h
(r)
k (Xi)h

(r)
k (Xj).

As the choice of m should be based on the observed sample, we assume

that m = m̂(X1, . . . , Xn) which leads to the automatic estimators ˆ̄θr,m̂ and
ˆ̃θr,m̂ of θr. Next we describe the asymptotic behaviour of these estimators

that we simply denote by θ̂r,m̂. For r, p = 0, 1, . . . let Dr,p be the set of all
densities f with bounded derivatives up to order r + p, where the functions
x 7→ xr+p−if (i)(x) are assumed to be square integrable, for i = r, . . . , r + p.
We denote by s = r + p the order of smoothness of Dr,p.

Theorem 1. For r = 0, 1, . . . , assume that f ∈ Dr,p, for some p ∈ {0, 1, . . .}.
(a) Consistency. If m̂ is such that m̂

p−→ +∞ and n−1m̂max{1,r+5/6} p−→ 0,
then

θ̂r,m̂
p−→ θr.

(b) Rates of convergence. Let m̂ be such that

P
(
Cnξ ≤ m̂ ≤ Dnξ

)
→ 1, (4)

with C,D > 0 and ξ > 0. If s > r and

0 < ξ <
1

max{1, r + 5/6},

then
θ̂r,m̂ − θr = Op

(
n−βr(p,ξ)

)
,

where

βr(p, ξ) = min
{
(1− ξη(r − p+ 5/6))/2 , 1− ξη(r + 5/6) , pξ

}
.
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Figure 1. Rates of convergence of θ̂r,m̂ to θr for r = 0 (left)
and r = 2 (right), as a function of ξ ∈ ]0, 1/max{1, r+5/6}[ and
p ∈ {1, 2, . . . , 6}.

and η(t) = max{1, t}I(t ≥ 0).
(c) Asymptotic normality. Additionally, if s ≥ 2r + 1 and

1

2p
≤ ξ <

1

2max{1, r + 5/6},

then

n1/2
(
θ̂r,m̂ − θr

) d−→ N
(
0, 4Var(f (2r)(X1)

)
.

Remark 1. From part (b) of Theorem 1 we also conclude that: 1) if s ≥ 2r+1

and 1/(2p) ≤ ξ ≤ 1/(2max{1, r+ 5/6}) the rate of convergence of θ̂r,m̂ to θr
has the semi-parametric order n−1/2. Moreover, the variance 4Var(f (2r)(X1))
is the same as the information bound for the nonparametric estimation of
θr derived by Bickel and Ritov (1988). 2) if r < s ≤ 2r, the best rate

of convergence of θ̂r,m̂ to θr is obtained for ξ = 1/(s + 5/6) and has the
order n−(s−r)/(s+5/6). In the former case the same order of convergence can
be obtained by the improved kernel-based estimator ŜD,r of θr introduced in
Jones and Sheather (1991) by employing a kernel of order 2r. However, in

the latter case the rate of convergence of θ̂r,m̂ to θr compares favourably with

that achieved for ŜD,r which is of order n−(s−r)/(4r+1).
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3. Hermite series-based plug-in bandwidth selectors

In this section we describe the asymptotic behaviour of the relative errors
associated to each one of the plug-in bandwidth selectors defined by

ĥ1,m̂ = c1,K θ̂
−1/5
2,m̂ n−1/5 (5)

and

ĥ2,m̂ = c1,K θ̂
−1/5
2,m̂ n−1/5 + c2,K θ̂

−8/5
2,m̂ θ̂3,m̂ n−3/5, (6)

where θ̂r,m denotes either ˆ̄θr,m or ˆ̃θr,m defined by (2) and (3), respectively, c1,K
and c2,K are given by (1), and m̂ = m̂(X1, . . . , Xn) is a random sequence of
nonnegative integers. We will always assume that the kernel K is a kernel
of order 2, that is,

∫
u2|K(u)|du < ∞, with k1 = 0 and k2 6= 0. We also

assume that K is continuous at zero with k0 < 2K(0). As mentioned earlier,
under these assumptions the existence of an exact optimal bandwidth h0,
in the sense of the minimisation of the mean integrated square error, can be
established whenever f is square integrable (see Chacón et al., 2007, Theorem
1).

Theorem 2. Let K be a kernel satisfying the previously stated conditions
with

∫
|u|5|K(u)|du < ∞. Assume that f ∈ D2,p, for some p ∈ {0, 1, . . .},

with bounded, integrable and continuous derivatives up to order 4. Finally,

let m̂ be such that m̂
p−→ +∞ and n−1m̂2+5/6 p−→ 0.

(a) Asymptotic behaviour of ĥ1,m̂. We have

ĥ1,m̂

h0

p−→ 1;

if p ≥ 1 and m̂ satisfies (4) with

0 < ξ <
1

3
· 18
17

, (7)

then

ĥ1,m̂

h0
− 1 = Op

(
n−min{β2(p,ξ) , 2/5}

)
,

where

β2(p, ξ) = min{(1− ξη(17/6− p))/2 , 1− 17ξ/6 , pξ}.
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Moreover, if p ≥ 3 and

1

5
· 2
p
< ξ <

1

5
· 18
17

, (8)

then

n2/5

(
ĥ1,m̂

h0
− 1

)
p−→ −c−1

1,K c2,K θ
−7/5
2 θ3.

(b) Asymptotic behaviour of ĥ2,m̂. If p ≥ 1 we have

ĥ2,m̂

h0

p−→ 1;

if m̂ and ξ satisfy (4) and (7), respectively, we have

ĥ2,m̂

h0
− 1 = Op

(
n−β2(p,ξ)

)
.

Moreover, if p ≥ 3 and

1

2p
≤ ξ <

1

6
· 18
17

,

then

n1/2

(
ĥ2,m̂

h0
− 1

)
d−→ N

(
0, σ2(f)

)
,

with

σ2(f) =
4

25

(
E(f (4)(X1)

2)

E2(f (4)(X1))
− 1

)
.

Remark 2. The order n−1/2 obtained for the rate of convergence of the relative
error ĥ2,m̂/h0 − 1 by taking ξ = 1/6 when p ≥ 3, is, in a minimax sense, the
best possible rate of convergence as shown by Hall and Marron (1991). More-
over, the variance σ2(f) is the same as the best possible constant coefficient
for bandwidth selection derived by Fan and Marron (1992).

4. The automatic selection of m
We are interested in estimating the unknown probability density function f

by using the kernel estimator fn,h, where the bandwidth h is one of the data-

dependent bandwidths ĥ1,m̂ and ĥ2,m̂, defined by (5) and (6), respectively.

As the estimator
ˆ̃
θr,m of θr defined by (3) may occasionally produce poor,

sometimes negative, estimates of θr when the size of the sample is small, and
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it perform similarly to ˆ̄θr,m when the sample size is moderate or large, the

data-dependent bandwidths based on the estimators ˆ̃θr,m are not considered
hereafter. From now on we take for K the gaussian kernel, i.e., K(x) =
(2π)−1/2 exp(−x2/2), x ∈ R.

The bandwidths ĥ1,m̂ and ĥ2,m̂ depend on the random variable m̂ = m̂(X1,
. . . , Xn), where m̂+1 is the number of Hermite terms included in the estima-
tors of θ2 and θ3 that appear in their definitions. In order to explore the dis-
tribution of ISE(f ;n, ĥi,m), for i = 1, 2, in each graph of Figure 2 we show 40

boxplots describing the empirical distribution of ISE(f ;n, ĥ1,m) based on 500
simulated samples from densities #2,#3, and #13 of the Marron and Wand
(1992) set of mixture of normal densities, for m ∈ {0, 1, ..., 10, 20, ..., 300}.
Similar behaviours can also be observed for the bandwidth selector ĥ2,m,
but the corresponding graphs are not included here to save space. Also, we
include a polygonal line going through the sample mean values of these dis-
tributions, thus giving an approximation of EISE(m) := E(ISE(f ;n, ĥ1,m)).
The solid red circle is used to point out the optimal value of m in the sense of
minimising the approximation of the EISE function. Similar graphs were gen-
erated for all Marron and Wand (1992) densities and sample sizes n = 25 ·2k,
k = 0, 1, . . . , 8.
Densities #2 and #3, whose empirical distributions of ISE(f ;n, ĥ1,m) are

shown at the top of Figure 2, are representative members of two groups of
densities we can identify among our 15 test densities. The pattern displayed
by distribution #2 is shared by other densities having easy-to-identify fea-
tures such as densities #1,#6,#7,#8 and #9, for which a small value of
m seems to be the best choice. The same occurs for other hard-to-estimate
densities only when the sample size is small or moderate. This is the case
of densities #10,#13 and #15 for n ≤ 50, #13 for n ≤ 400, and #11 for
n ≤ 1600. As pointed out by Chacón and Tenreiro (2013, p. 2204) in a simi-
lar context, the reason for the good performance of a low value of m for such
combinations of densities and sample sizes is that they present distribution
features that are not revealed until the sample size is above some threshold.
This situation is illustrated by the graphs at the bottom of Figure 2 where
the empirical distribution of ISE(f ;n, ĥ1,m) for density #13 is shown for sam-
ple sizes n = 100 and n = 800. The pattern displayed by distribution #3
is shared by other test densities for which using a large value of m seems to
be highly advisable. Other than density #3, this second group of densities
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includes densities #4,#5 and #14, and depending on the sample size also
densities #10,#12,#13 and #15 for moderate and large sample sizes, and
#11 for very large values of n.
Based on these considerations, we conclude that if we want to deal with

a wide set of distribution characteristics, any reasonable data-based selector
m̂ of m should take values on a set including small as well as large values of
m. Two methods for selecting m will be considered. In both cases the value
m̂ = m̂(X1, . . . , Xn) is obtained by minimising a certain criterion function
over a set of integers

Mn = {Ln, Ln + 1, . . . , Un},
where Ln < Un are deterministic sequences of nonnegative integers whose
asymptotic behaviour determines that of the bandwidth selectors ĥ1,m̂ and

ĥ2,m̂. Assuming that the underlying density f satisfies the conditions of
Theorem 2 for some p ≥ 3, we will take Ln = ⌊Cnξ⌋ and Un = ⌊Dnξ⌋, with
C = 0.2, D = 80 and ξ = 1/6. This leads to Ln = 0 and 117 ≤ Un ≤ 330 for
10 ≤ n ≤ 5 · 103.
Taking into account that choosing m among the set Mn is equivalent to

selecting one of the bandwidths ĥi,m, for m ∈ Mn, where i = 1, 2, and that
for a squared integrable density function f the mean integrated square error
of fn,h is given by E||fn,h− f ||22 = W (h) + ||f ||22, with W (h) = k0

nh +
∫
Lh(x−

y)f(x)f(y)dxdy, where L = (1 − n−1)K ∗ K̄ − 2K, with K̄(u) = K(−u)
and ∗ denotes the convolution product, we can adapt the strategy followed
in Chacón and Tenreiro (2013) in order to propose a first data-dependent
method for selecting m. For i = 1, 2, it is defined by the first integer m̂i,Wγ

satisfying

m̂i,Wγ
= arg min

m∈Mn

Ŵγ

(
ĥi,m

)
,

where Ŵγ(h) is the weighted cross-validation function defined, for h > 0, by

Ŵγ(h) =
k0
nh

+
γ

n(n− 1)

∑

1≤i neqj≤n

Lh(Xi −Xj),

where 0 < γ ≤ 1 needs to be chosen by the user. We refer the reader
to Tenreiro (2017) for the weighted least-squares cross-validation bandwidth

selector for kernel density estimation. For γ = 1, Ŵγ(h) is the standard least-
squares cross-validation function proposed by Rudemo (1982) and Bowman

(1984). Hearafter the bandwidths ĥi,m̂i,Wγ
will be simply denoted by ĥi,m̂Wγ

.
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Figure 2. Empirical distribution of ISE(f ;n, ĥ1,m) depending
on m for densities # 2 (n = 200), # 3 (n = 200) and # 13
(n = 100, 800) from the Marron and Wand (1992) set of normal
mixture densities. The number of replications is 500.

The second method we consider for selecting m was used in the context
of Fourier series-based plug-in bandwidth selectors by Tenreiro (2011). In
this case the selection of m does not depend on the considered bandwidth
selector. The idea is to take m in such a way that f can be well approx-
imated, in the sense of the mean integrated squared error, by the Hermite
series-based estimator of f defined by f̂n,m =

∑m
k=0 â0,khk. For a squared

integrable density function f , Walter (1977) proves that the mean inte-

grated square error of f̂n,m is given by E||f̂n,m − f ||22 = H(m) + ||f ||22, where
H(m) = 1

n

∑m
k=0

∫
hk(x)

2f(x)dx −
(
1 + 1

n

)∑m
k=0 a

2
0,k. Therefore, the second

data-dependent method for selecting m we consider is defined by the first
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integer m̂Hγ
satisfying

m̂Hγ
= arg min

m∈Mn

Ĥγ(m),

where

Ĥγ(m) =
1

n

m∑

k=0

1

n

n∑

i=1

hk(Xi)
2 − γ

(
1 +

1

n

) m∑

k=0

â20,k,

for some 0 < γ ≤ 1. Although the motivation for this second method for
selecting m can be considered less convincing than the previous one, because
it is not related with the kernel density estimator of f we are interested in
nor with the Hermite series-based estimators of θ2 and θ3 we are using, we
will see that it performs quite well in practice, being less time consuming
than the method based on Ŵγ especially for large sample sizes.
The inclusion of the correction parameter γ in the previous criterion func-

tions is crucial for the good performance of both methods. To the best of
our knowledge, a similar idea was for the first time suggested by Hart (1985)
for selecting the number of terms to be used in a Fourier series-based density
estimator. As the considered set Mn of possible values of m includes large
values of m, some simulation experiments performed for all normal mixture
densities of Marron and Wand (1992) reveal that taking γ = 1, in which

case Ŵγ(h) and Ĥγ(m) are unbiased estimators of E||fn,h − f ||22 − ||f ||22 and
E||f̂n,m − f ||22 − ||f ||22, respectively, does not prevent the user from getting
excessively large values of m, which leads to very poor results especially
for densities with easy-to-estimate distribution features. In fact, excessively
large values of m might lead to an overestimation of the quadratic functional
θ2, and therefore to an underestimation of the optimal bandwidth h0. This is
an undesirable situation since, as is well known, the kernel density estimator
is penalised much more by excessively small than excessively large band-
widths. Taking into account that the functions γ 7→ ĥi,m̂Wγ

are nonincreasing
(i = 1, 2), and the function γ 7→ m̂Hγ

is nondecreasing with probability one,
we may expect to soften the above mentioned problems by including a cor-
rection parameter strictly less than one in the considered criterion functions.
As suggested by these properties, the simulation results support the idea that
small values of γ are more appropriate for easy-to-estimate densities, whereas
large values of γ are more adequate for hard-to-estimate densities. In order
to find a compromise between these two extreme situations, we decide to
follow Tenreiro (2011) suggestion of taking γ = 0.5.
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5. Simulation study

We present in this section the results of a simulation study carried out to
analyse the finite sample behaviour of the Hermite series-based direct plug-
in bandwidth selectors introduced in the previous sections, namely ĥ1,m̂Wγ

,

ĥ1,m̂Hγ
, ĥ2,m̂Wγ

, and ĥ2,m̂Hγ
, with γ = 0.5. We use as test densities the 15

normal mixture densities of Marron and Wand (1992) that we referred to in
Section 4. Two other bandwidth selectors are included in the study: the two-
stage direct plug-in bandwidth selector (PI), implemented by the function
dpik of the R-package ‘KernSmooth’, and the standard least-square cross-
validation bandwidth selector (CV). It is well known that the PI method per-
forms quite well for “easy-to-estimate” densities (e.g. #1,#2,#6,#8,#9),
whereas the CV method performs exceptionally well for “hard-to-estimate”
densities (e.g. #3,#4,#5,#14,#15), these being the main reasons for in-
cluding these bandwidth selectors in our study.
For different sample sizes and for each one of the 15 test distributions the

quality of each one of the considered bandwidths is analysed through the
measure of stochastic performance defined by

L2–norm of ISE(f ;n, ĥ) =

√
Var(ISE(f ;n, ĥ)) + E2(ISE(f ;n, ĥ)).

This performance measure takes into account not only the mean of the
ISE(f ;n, ĥ) distribution, but also its variability. As the behaviour shown

by the bandwidths ĥ1,m̂Wγ
and ĥ1,m̂Hγ

is close to that one of the bandwidths

ĥ2,m̂Wγ
and ĥ2,m̂Hγ

, respectively, only the behaviour of these two last band-
widths is reported in Figures 3, 4 and 5. In these figures the empirical
L2–norm of ISE(f ;n, ĥ), based on 500 replications, is shown for the band-

width selectors ĥ2,m̂Wγ
, ĥ2,m̂Hγ

, ĥPI and ĥCV and sample sizes n = 25 · 2k,
k = 0, 1, . . . , 7.
As we can see from the graphics, the two Hermite series-based direct plug-

in bandwidths perform similarly for all the test distributions, presenting a
very good performance against the PI and CV methods. For some of the
considered test densities, the new bandwidth selectors seem to mimic the
behaviour of the best of these two classic bandwidths, retaining the good
performance of the PI bandwidth for “easy-to-estimate” densities and shar-
ing the superior performance of the CV bandwidth for “hard-to-estimate”
densities. It is particularly interesting the cases of densities #10 and #12,
where the new bandwidth selectors behave similarly to the PI selector for
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Figure 3. Empirical L2–norm of ISE(f ;n, ĥ) associated to the

bandwidths ĥ2,m̂Wγ
, ĥ2,m̂Hγ

(γ = 0.5), ĥPI and ĥCV, for test densi-
ties #1 to #5. The number of replications is 500.
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ĥCV

Density #7

sample sizes ÷ 25

L 2
 −

no
rm

 o
f I

S
E

1 2 4 8 16 32 64

0.
00

0.
02

0.
04
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ĥ2, m̂Hγ
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Figure 4. Empirical L2–norm of ISE(f ;n, ĥ) associated to the

bandwidths ĥ2,m̂Wγ
, ĥ2,m̂Hγ

(γ = 0.5), ĥPI and ĥCV, for test densi-
ties #6 to #10. The number of replications is 500.
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ĥPI
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Figure 5. Empirical L2–norm of ISE(f ;n, ĥ) associated to the

bandwidths ĥ2,m̂Wγ
, ĥ2,m̂Hγ

(γ = 0.5), ĥPI and ĥCV, for test densi-
ties #11 to #15. The number of replications is 500.
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small sample sizes, and similarly to the CV selector for moderate and large
sample sizes.
Based on this evidence, we expect that the new direct plug-in bandwidths

proposed in this paper might present a good overall performance for a wide
range of density features, which is a distinctive quality in particular when
no information about the underlying density shape is available or when a
complex data structure is suspected.

6. Proofs

6.1. Proof of Theorem 1. We recall that ˆ̄θr,m̂ and
ˆ̃
θr,m̂ are defined by (2)

and (3), respectively, where m̂ = m̂(X1, . . . , Xn) is a random sequence of
nonnegative integers. We will first set three preliminar propositions that will
prove usefull.

Proposition 1. For r = 0, 1, . . . and n ≥ 2 we have

ˆ̃θr,m̂ =
n

n− 1
ˆ̄θr,m̂ − Rr,m̂, (10)

where

0 ≤ Rr,m ≤ Brn
−1mmax{1,r+5/6},

and Br is a constant independent of m. Moreover, if m1 = m1(n) and m2 =
m2(n) are sequences of nonnegative integers such that m1 ≤ m̂ ≤ m2, then

ˆ̃θr,m1
−Rr,m2

≤ ˆ̃θr,m̂ ≤ ˆ̃θr,m2
+ Rr,m2

. (11)

Proof: From the definitions of ˆ̄θr,m and
ˆ̃
θr,m we easily see that equality (10)

holds with

Rr,m =
1

n(n− 1)

m∑

k=0

n∑

i=1

h
(r)
k (Xi)

2.

Taking into account that there exist constants Cr > 0, independent of k,
such that

sup
x∈R

|h(r)
k (x)| ≤ Cr(k + 1)r/2−1/12, (12)
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for k = 0, 1, . . . and r = 0, 1, 2, . . . (see Walter, 1977, pp. 1259–1260), we
conclude that

0 ≤ Rr,m ≤ 1

n(n− 1)

m∑

k=0

n∑

i=1

(
Cr(k + 1)r/2−1/12

)2

≤ 2C2
rn

−1
m∑

k=0

(k + 1)r−1/6 ≤ Brn
−1mmax{1,r+5/6},

for some constant Br > 0 independent of m. Finally, the double inequality
(11) follows straightforward from (10) and the fact that Rr,m is a nondecreas-
ing function of m. �

Proposition 2. For r = 0, 1, . . . , assume that f ∈ Dr,p, for some p ∈
{0, 1, . . .}. Then for all n,m ∈ N we have

E
( ˆ̃
θr,m − θr

)2 ≤ D1n
−1mη(r−p+5/6) +D2 n

−2m2η(r+5/6) +D3m
−2pνm,

where D1, D2, D3 > 0 are constants independent of n and m, νm ≥ 0 is such
that νm → 0, as m → ∞, and η(t) = max{1, t}I(t ≥ 0).

Proof: In order to establish the stated result, we use the classical decompo-
sition

E
( ˆ̃θr,m − θr

)2
= Var(ˆ̃θr,m) +

(
E
( ˆ̃θr,m

)
− θr

)2
.

We first examine the bias term. For f ∈ Dr,p we observe that the real-valued
function x 7→ (x−d/dx)pf (r)(x) is square integrable and its (k+p)th Hermite
coefficient, we denote by br,p,k+p, is related to the kth Hermite coefficient of
f (r) by the expression

br,p,k+p = (2(k + p))1/2(2(k + p− 1))1/2 . . . (2(k + 1))1/2ar,k,

for k = 1, 2, . . . (see Walter, 1977, pp. 1261). Thus we have

|ar,k| ≤
(
2(k + 1)

)−p/2|br,p,k+p|, (13)

for k = 0, 1, 2, . . . , which leads to

(
E
( ˆ̃θr,m

)
− θr

)2
=

( ∞∑

k=m+1

a2r,k

)2

≤
∞∑

k=m+1

(
2(k + 1)

)−p|br,p,k+p|2 = O
(
m−2pνm

)
,

(14)

where νm =
(∑∞

k=m+1 |br,p,k+p|2
)2

converges to zero as m tends to infinity.
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Turning now to the variance term, we notice that ˆ̃θr,m is a U-statistics as
it can be written in the form

ˆ̃θr,m =
2

n(n− 1)

∑

1≤i<j≤n

Hr,m(Xi, Xj),

where Hr,m is the symmetric function

Hr,m(x, y) =
m∑

k=0

h
(r)
k (x)h

(r)
k (y). (15)

From Hoeffding’s formula for the variance of a U-statistics (see Lee, 1990,
Theorem 3, p. 12), we have

Var
( ˆ̃θr,m

)
=

2

n(n− 1)

(
2(n− 2)σ2

1,r,m + σ2
2,r,m

)
, (16)

where σ2
1,r,m = Var(Gr,m(X1)) and σ2

2,r,m = Var(Hr,m(X1, X2)), with

Gr,m(y) = E(Hr,m(X1, y)) =
m∑

k=0

E
(
h
(r)
k (X1)

)
h
(r)
k (y) = (−1)r

m∑

k=0

ar,kh
(r)
k (y).

(17)

From (12), (13) and the triangular inequality, we have

σ2
1,r,m ≤ E

(
Gr,m(X1)

2
)
≤

( m∑

k=0

|ar,k|
(
E
(
h
(r)
k (X1)

2
))1/2

)2

≤ C2
r2

−p
∞∑

k=0

b2r,p,k

m∑

k=0

(k + 1)r−p−1/6 = O
(
mη(r−p+5/6)

)
. (18)

Regarding σ2
2,r,m, from (12) and the Cauchy-Schwarz inequality, we have

σ2
2,r,m ≤ E

(
Hr,m(X1, X2)

2
)
=

m∑

k,l=0

(
E
(
h
(r)
k (X1)h

(r)
l (X1)

))2

≤
( m∑

k=0

E
(
h
(r)
k (X1)

2
))2

= O
(
m2η(r+5/6)

)
. (19)

Therefore, from (16) we get

Var
( ˆ̃θr,m

)
= O

(
n−1mη(r−p+5/6) + n−2m2η(r+5/6)

)
,
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which concludes the proof. �

Proposition 3. For r = 0, 1, . . . , assume that f ∈ Dr,p, for some p ∈
{r + 1, r + 2, . . .}. If m = m(n) is a deterministic sequence of nonnegative
integers such that n−1/2mmax{1,r+5/6} → 0 and n1/2m−p = O(1), then

n1/2
( ˆ̃
θr,m − θr

) d−→ N
(
0, 4Var(f (2r)(X1)

)
.

Proof: From the Hoeffding’s decomposition (see Lee, 1990, Theorem 1, p. 26),
we have

ˆ̃
θr,m − E(

ˆ̃
θr,m) =

2

n

n∑

i=1

{Gr,m(Xi)− E(Gr,m(Xi))}+ Ur,n,

where the degenerated U-statistics Ur,n is defined by

Ur,n =
2

n(n− 1)

∑

1≤i<j≤n

H̄r,m(Xi, Xj),

with H̄r,m(x, y) = Hr,m(x, y)−Gr,m(x)−Gr,m(y)+E(Hr,m(X1, X2)), and Hr,m

and Gr,m are given by (15) and (17), respectively. From (18) and (19) we get

Var(Ur,n) = O

(
n−2

(
E
(
Gr,m(X1)

2
)
+ E

(
Hr,m(X1, X2)

2
)))

= O
(
n−2mη(r−p+5/6) + n−2m2η(r+5/6)

)
.

Using (14) and the assumptions on the sequence m = m(n), we conclude
that

n1/2
( ˆ̃θr,m − θr,m

)
=

2√
n

n∑

i=1

{Gr,m(Xi)− E(Gr,m(Xi))}+ op(1).

The stated asymptotic normality follows now from the central limit theo-
rem, whenever we prove that supm∈N supx∈R |Gr,m(x)| < ∞, and Gr,m(x) →
(−1)rf (2r)(x), as m → ∞, for all x ∈ R, where Gr,m is given by (17).
The first property follows from (12), (13) and the fact that p ≥ r + 1. In

fact, we have

sup
m∈N

sup
x∈R

|Gr,m(x)| ≤
∞∑

k=0

|ar,k| sup
x∈R

|h(r)
k (x)|

≤ 2−p/2Cr

( ∞∑

k=0

(k + 1)r−p−1/6

)1/2( ∞∑

k=0

b2r,p,k+p

)1/2

.
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The pointwise convergence of Gr,m to (−1)rf (2r) follows from the differenti-
ation theorem under the integral sign and the fact that the rth derivative of
f can be expressed as f (r)(x) =

∑∞
k=0 ar,khk(x), for all x ∈ R (see Greblicki

and Pawlak, 1985, Lemma 1). �

Using the results established before, we may now prove Theorem 1. From

the first part of Proposition 1, it is enough to consider the estimator ˆ̃θr,m̂.

Proof of part (a) of Theorem 1: It follows from the assumptions on m̂ that
P
(
An(M,N)

)
→ 1, as n → ∞, for all M ∈ N and N > 0, where An(M,N) ={

M ≤ m̂ ≤ ⌊(Nn)1/max{1,r+5/6}⌋
}
, with ⌊x⌋ the integer part of x. Using

Proposition 1 with m1(n) = M and m2(n) = ⌊(Nn)1/max{1,r+5/6}⌋, for ǫ > 0
we have

P
(
| ˆ̃θr,m̂ − θr| ≥ ǫ

)
≤ P

(
| ˆ̃θr,m1

− θr| ≥ ǫ/2
)
+ P

(
| ˆ̃θr,m2

− θr| ≥ ǫ/2
)

+ 2P
(
Rr,m2

≥ ǫ/2
)
+ P(An(M,N)c),

where

0 ≤ Rr,m2
≤ Brn

−1m
max{1,r+5/6}
2 ≤ BrN,

and Br is a constant independent of n. Moreover, from Proposition 2 and
Markov’s inequality we get

P
(
| ˆ̃θr,m1

− θr| ≥ ǫ/2
)

≤ 4

ǫ2

(
D1n

−1Mη(r−p+5/6) +D2n
−2M2max{1,r+5/6} +D3M

−2pνM

)

and

P
(
| ˆ̃θr,m2

− θr| ≥ ǫ/2
)
≤ 4

ǫ2

(
D1N +D2N

2 +D3n
−2p/max{1,r+5/6}νm2(n)

)
.

Therefore, as νm → 0 when m tends to infinity, we easily conclude that for
all ǫ > 0 and δ > 0 there exist M ∈ N large enough, N > 0 small enough,

and n0 ∈ N such that P(| ˆ̃θr,m̂ − θr| ≥ ǫ) < δ, for all n ≥ n0. �

Proof of parts (b) and (c) of Theorem 1: Let m1 = m1(n) and m2 = m2(n)
be two sequences of nonnegative integers such that Cnξ−1 ≤ m1 < Cnξ and
Dnξ < m2 ≤ Dnξ + 1, for n large enough. As P

(
m1 ≤ m̂ ≤ m2

)
→ 1, from

Proposition 1 we also have

P
( ˆ̃θr,m1

− θr −Rr,m2
≤ ˆ̃θr,m̂ − θr ≤ ˆ̃θr,m2

− θr + Rr,m2

)
→ 1,
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where Rr,m2
= Op

(
n−1m

max{1,r+5/6}
2

)
= Op

(
n−(1−ξη(r+5/6))

)
. Thus, part (b) of

Theorem 1 follows from Proposition 2 as

ˆ̃θr,mj
− θr = Op

(
n−min{(1−ξη(r−p+5/6))/2 , 1−ξη(r+5/6) , pξ}),

for j = 1, 2, and part (c) of Theorem 1 follows from Proposition 3 as Rr,m2
=

op(n
−1/2) and n1/2

( ˆ̃
θr,mj

− θr
) d−→ N

(
0, 4Var(f (2r)(X1)

)
, for j = 1, 2. �

6.2. Proof of Theorem 2. The asymptotic behaviour of the relative errors
ĥi,m̂/h0 − 1, for i = 1, 2, where the plug-in bandwidth selectors ĥi,m̂ are
defined by (5) and (6), relies on Theorem 1 and on the following expansion
of the exact optimal bandwidth

h0 = c1,K θ
−1/5
2 n−1/5 + c2,K θ

−8/5
2 θ3 n

−3/5 + O(n−4/5),

which holds when K is a kernel of order 2 with
∫
|u|5|K(u)|du < ∞, and f

has bounded, integrable and continuous derivatives up to order 4 (see Hall
et al., 1991, sec. 2).

Proof of part (a) of Theorem 2: As

ĥ1,m̂

h0
− 1 =

c1,K
(
θ̂
−1/5
2,m̂ − θ

−1/5
2

)

n1/5h0
− c2,Kθ

−8/5
2 θ3 n

−2/5

n1/5h0
+ O(n−3/5),

where n1/5h0 → c1,K θ
−1/5
2 , n → +∞, the stated convergence and order of

convergence for the relative error ĥ1,m̂/h0 − 1 follow from parts (a) and (b)
of Theorem 1 with r = 2 and the fact that β2(p, ξ) > 2/5 iff p ≥ 3 and ξ
satisfies (8). �

Proof of part (b) of Theorem 2: We have

ĥ2,m̂

h0
− 1 =

c1,K
(
θ̂
−1/5
2,m̂ − θ

−1/5
2

)

n1/5h0
+

c2,K
(
θ̂
−8/5
2,m̂ θ̂3,m̂ − θ

−8/5
2 θ3

)

n1/5h0
n−2/5 +O(n−3/5),

where

θ̂
−8/5
2,m̂ θ̂3,m̂ − θ

−8/5
2 θ3

=
(
θ̂
−8/5
2,m̂ − θ

−8/5
2

)
(θ̂3,m̂ − θ3) +

(
θ̂
−8/5
2,m̂ − θ

−8/5
2

)
θ3 + θ

−8/5
2 (θ̂3,m̂ − θ3).

From the part (a) of Theorem 1 with r = 2 we know that θ̂2,m̂ − θ2 = op(1).

The convergence to zero of the relative error ĥ2,m̂/h0−1 follows now from the

convergence n−2/5(θ̂3,m̂ − θ3) = op(1), which can be established by reasoning
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as in the proof of part (a) of Theorem 1 using the fact that f ∈ D3,p−1 with
p− 1 ≥ 0.
If m̂ satisfies (4), from Theorem 1 we have θ̂2,m̂ − θ2 = Op

(
n−β2(p,ξ)

)
, and

θ̂3,m̂−θ3 = Op

(
n−β3(p−1,ξ)

)
. Therefore, the stated order of convergence for the

relative error ĥ2,m̂/h0−1 follows from the fact that β2(p, ξ) < β3(p−1, ξ)+2/5,
for p ≥ 1 and 0 < ξ < 6/17. Finally, from part (c) of Theorem 1 we have

n1/2
(
θ̃
−1/5
2,m̂ − θ

−1/5
2

) d−→ N
(
0, θ

−2/5
2 σ2(f)

)
, whenever p ≥ 3 and 1/(2p) ≤ ξ <

3/17, from which we deduce the stated asymptotic normality of the relative

error of ĥ2,m̂. �

Funding

Research partially supported by the Centre for Mathematics of the University
of Coimbra – UID/MAT/00324/2019, funded by the Portuguese Government
through FCT/MEC and co-funded by the European Regional Development
Fund through the Partnership Agreement PT2020.

References

Bickel, P.J., Ritov, Y. (1988). Estimating integrated squared density deriva-
tives: sharp best order of convergence estimates. Sankhya Ser. A 50, 381–
393.
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