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LAX COMMA 2-CATEGORIES AND

ADMISSIBLE 2-FUNCTORS
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Abstract: This paper is a contribution towards a two dimensional extension of
the basic ideas and results of Janelidze-Galois theory. In the present paper, we give
a suitable counterpart notion to that of absolute admissible Galois structure for the
lax idempotent context, compatible with the context of lax orthogonal factorization
systems. As part of this work, we study lax comma 2-categories, giving analogue
results to the basic properties of the usual comma categories. We show that each
morphism of a 2-category induces a 2-adjunction between lax comma 2-categories
and comma 2-categories, playing the role of the usual change of base functors. With
these induced 2-adjunctions, we are able to show that each 2-adjunction induces 2-
adjunctions between lax comma 2-categories and comma 2-categories, which are
our analogues of the usual lifting to the comma categories used in Janelidze-Galois
theory. We give sufficient conditions under which these liftings are 2-premonadic and
induce a lax idempotent 2-monad, which corresponds to our notion of 2-admissible
2-functor. In order to carry out this work, we analyse when a composition of 2-
adjunctions is a lax idempotent 2-monad, and when it is 2-premonadic. We give
then examples of our 2-admissible 2-functors (and, in particular, simple 2-functors),
specially using a result that says that all admissible (2-)functors in the classical
sense are also 2-admissible (and hence simple as well). We finish the paper relating
coequalizers in lax comma 2-categories and Kan extensions.
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Introduction
Categorical Galois theory, originally developed by Janelidze [16, 4], gives

a unifying setting for most of the formerly introduced Galois type theorems,
even generalizing most of them. It neatly gives a common ground for Magid’s
Galois theory of commutative rings, Grothendieck’s theory of étale covering
of schemes, and central extension of groups. Furthermore, since its genesis
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Janelidze’s Galois theory has found several developments, applications and
examples in new settings (see, for instance, [6], [14], [8], [35], [17, Theo-
rem 4.2], and [30, Theorem 9.8]).

The most elementary observation on factorization systems and Janelidze-
Galois theory is that, in the suitable setting of finitely complete categories,
the notion of absolute admissible Galois structure coincides with that of a
semi-left-exact reflective functor/adjunction [4, Section 5.5].

Motivated by the fact above and the theory of lax orthogonal factorization
systems [9, 10], we started a project whose aim is to investigate a two dimen-
sional extension of the basic ideas and results of (absolute) Janelidze-Galois
theory. We deal herein with a key step of this endeavor, that is to say, we
develop the basics in order to give a suitable counterpart notion to that of
absolute admissible Galois structure.

We adopt the usual viewpoint that the 2-dimensional analogue of an idem-
potent monad (full reflective functor) is that of a lax idempotent monad
(pre-Kock-Zöberlein 2-functor). Therefore the concept of an admissible Ga-
lois structure within our context should be a lax idempotent counterpart
to the notion of semi-left exact reflective functor. Namely, an appropriate
notion of semi-left exact functor for the context of [9].

We study the lifting of 2-adjunctions to comma type 2-categories. We find
two possible liftings which deserve interest. The underlying adjunction of
the first type of lifting is the usual 1-dimensional case, while the other one,
more relevant to our context, is a counterpart to the lifting of the 2-monad
given in [9] by comma objects. The last one requires us to study the lax
analogue notion for comma categories, the notion of lax comma 2-categories
of the title.

We show that the lax comma 2-categories are isomorphic to the 2-category
of coalgebras (and lax morphisms) of a suitable 2-comonad provided that the
base 2-category has products. We also study the basic aspects of lax comma
2-categories. Among them, the 2-adjunction between the usual comma 2-
category and the lax comma 2-category (for each object), and a counterpart
for the usual change of base 2-functors, which comes into play as fundamental
aspect of our work and, specially, to introduce the definition of 2-admissible
2-adjunction.

With these analogues of the change of base 2-functors, we are able to intro-
duce the lifting of each 2-adjunction to a 2-adjunction between the lax comma
2-category and the comma 2-category as a composition of 2-adjunctions.
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Namely, the composition of a straightforward lifting to the lax comma 2-
categories with a change of the base 2-functor induced by the appropriate
component of the unit. Fully relying on the study of properties of compo-
sitions of 2-adjunctions, we investigate the properties of these liftings of the
2-adjunctions. Namely, we show under which conditions these liftings induce
lax idempotent 2-monads (the simple 2-adjunctions of [9]), recovering one
characterization given in [9] of their simple 2-adjunctions. We give also a
characterization of the 2-functors whose introduced lifting is lax idempotent
and 2-premonadic, the 2-admissible 2-functors within our context.

In Section 1 we recall basic aspects and terminology of 2-categories, such
as 2-adjunctions and 2-monads, finishing the section giving aspects on raris,
right adjoints right inverses (see Definition 1.1) within a 2-category. We also
recall the universal properties of the main two dimensional limits used in
our work in Section 2, that is to say, the definitions of conical 2-limits and
comma objects.

In Section 3 we recall and show aspects on idempotent and lax idempotent
2-monads needed to our work on admissible and 2-admissible 2-functors, also
introducing a characterization of the 2-adjunctions that induce lax idempo-
tent 2-monads, called herein lax idempotent 2-adjunctions (see, for instance,
Theorem 3.12).

In Section 4 we introduce the main concepts and results on composi-
tion of 2-adjunctions in order to introduce the notions of simple, admissi-
ble and 2-admissible 2-adjunctions (see, for instance, Definitions 4.3, 4.5,
and 4.10). The results focus on characterizing and giving conditions under
which the composition of 2-adjunctions is an idempotent/lax idempotent (full
reflective/pre-Kock-Zöberlein) 2-adjunction (2-functor). Most of them are
analogues for the simpler case of idempotent 2-adjunctions (see, for instance,
Theorem 4.11 which characterizes when the composition of right 2-adjoints
is pre-Kock-Zöberlein).

In Section 5 we introduce the notion of lax comma 2-categories A//y, for
each 2-category A and object y ∈ A (see Definition 5.1). This notion has
already appeared in the literature (see, for instance, [32, Exercise 5, pag. 115]
or [39, pag. 305]). We also prove that, provided that the 2-category A has
products, the lax comma 2-category A//y is isomorphic to the 2-category of
coalgebras and lax morphisms for the canonical 2-monad whose underlying
endo-2-functor (y ×−).
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In Section 6 we introduce the change of base 2-functors for lax comma
2-categories. More precisely, we show that, for each morphism c : y → z in a
2-category A with comma objects, we have an induced 2-adjunction

A//z A/y

c⇐

66 A/yA//z

c!
vv

_ .

between the lax comma 2-category A//z and the comma 2-category A/y. We
introduce this 2-adjunction using two approaches. Firstly, we get it via the
adjoint triangle theorem for coalgebras (and lax morphisms), provided that
A has products. Then we give the most general and (elementary) approach
(see Theorem 6.7).

Provided that A has pullbacks and comma objects, these induced 2-adjunctions,
together with the classical change of base 2-functors, give the 2-adjunctions

A//z A/z
id⇐z

66
A/zA//z

idz!
uu

A/z A/y
c∗

66
A/yA/z

c!
vv

A//z A/y

c⇐

==
A/yA//z

c!

}}

_ _

in which the composition of c! a c∗ : A/z → A/y with idz! a id⇐z : A//z →
A/z is, up to 2-natural isomorphism, the 2-adjunction c! a c⇐ : A//z → A/y
(see Theorem 6.9). We finish Section 6 showing that, whenever it is well
defined, id⇐y is pre-Kock-Zöberlein (Theorem 6.10).

The main point of Section 7 is to introduce our notions of admissibil-
ity and 2-admissibility (Definition 7.4), relying on the definitions previously
introduced in Section 4. We also use the main results of Section 4 to char-
acterize and give conditions under which a 2-functor is 2-admissible (see, for
instance, Corollaries 7.10 and 7.11).

We finish Section 7 with a fundamental observation on admissibility and
2-admissibility, namely, Theorem 7.13. It says that, provided that A has
comma objects, if F a G is admissible in the classical sense (called herein
admissible w.r.t. the basic fibration), meaning that G itself is full reflective
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and the compositions

η∗y ◦ Ǧ : A/F (y)→ B/y

are full reflective for all y, then G is 2-admissible, which means that the
compositions

η⇐y ◦ Ǧ : A//F (y)→ B/y

are pre-Kock-Zöberlein for all objects y.
We discuss examples of 2-admissible 2-functors (and hence also simple 2-

functors) in Section 8. Most of the examples are about cocompletion of
2-categories, making use of Theorem 7.13.

Finally, in Section 9, we give two remarks about Kan extensions and lax
comma 2-categories. The main remark is a sufficient condition in order to get
coequalizers in the lax comma 2-category, which also gives a characterization
of coequalizers via the universal property of the right Kan extension for
locally preordered 2-categories.

1. Preliminaries
Let Cat be the cartesian closed category of categories in some universe. We

denote the internal hom by

Cat(−,−) : Catop × Cat→ Cat.

A 2-category A herein is the same as a Cat-enriched category. We denote
the enriched hom of a 2-category A by

A(−,−) : Aop × A→ Cat

which, again, is of course a 2-functor. As usual, the composition of 1-cells
(morphisms) are denoted by ◦, ·, or omitted whenever it is clear from the
context. The vertical composition of 2-cells is denoted by · or omitted when
it is clear, while the horizontal composition is denoted by ∗. Recall that,
from the vertical and horizontal compositions, we construct the fundamental
operation of pasting [23, 36].

Finally, if f : w → x, g : y → z are 1-cells of A, given a 2-cell ξ : h ⇒
h′ : x → y, motivated by the case of A = Cat, we use interchangeably the
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notations

idg ∗ ξ ∗ idf =

w

x

f
��
x

y

h′

""

x

y

h

||
y

z

g
��

ks
ξ

= gξf (1.0.1)

to denote the whiskering of ξ with f and g.
Henceforth, we consider the 3-category of 2-categories, 2-functors, 2-natural

transformations and modifications, denoted by 2-Cat. We refer to [23, 37] for
the basics on 2-dimensional category theory, and, more particularly, to the
definitions of adjunctions, monads and Kan extensions inside a 2-category.
Moreover, we also extensively assume aspects of 2-monad theory. The pio-
neering reference is [2], while we mostly follow the terminology (and results)
of [29].

In this paper, we consider the strict versions of 2-dimensional adjunc-
tions and monads: the concepts coincide with the Cat-enriched ones. A
2-adjunction, denoted by

(F a G, ε, η) : A→ B,

consists of 2-functors

A B
G

66 BA
F

vv

with 2-natural transformations ε : FG =⇒ idA and η : idB =⇒ GF playing
the role of the counit and the unit respectively. More precisely, the equations
of 2-natural transformations
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A BG //A

A

B

BA B
G

//

B

A

F
���������

�����������

ks
η

ks ε

= idG and

BA FooA

A

B

BBA
F

ooA

B

G���������

??���������

ks
η

ks ε

= idF

(triangle identities)
hold. We usually denote a 2-adjunction (F a G, ε, η) : A→ B by

A B
G

66 BA
F

vv
(ε,η)_

or by F a G : A→ B for short, when the counit and unit are already given.
A 2-monad on a 2-category B is a triple T = (T, µ, η) in which T : B→ B

is an endo-2-functor and µ, η are 2-natural transformations playing the role
of the multiplication and the unit respectively. That is to say, µ and η are
2-natural transformations such that the equations

B Boo T

B

B

T

OO

B

B

T���������

??���������

BB //
T

B

B

T

OO

ks
µ

ks
µ

=

B Boo T

B

B

T

OO

BB //
T

B

B

T

OO

B

B

T ?????????

__?????????

ks
µ

ks
µ

(associativity of a 2-monad)

B BT // B

B

T

��

B

B

T

��????????????????????B B

η
��

µ

��

=

BB Too

B

B

T

OO

B

B

T

__????????????????????

B B

η
��

µ

��

= idT

(identity of a 2-monad)
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hold.
Since the notions above coincide with the Cat-enriched ones, it should be

noted that the formal theory of monads applies to this case. More pre-
cisely, every 2-adjunction does induce a 2-monad, and we have the usual
Eilenberg-Moore and Kleisli factorizations of a right 2-adjoint functor (e.g
[37, Section 2] or [27, Section 3]), which give rise respectively to the notions
of 2-monadic and Kleisli 2-functors. Furthermore, we also have (the enriched
version of) Beck’s monadicity theorem [12, Theorem II.2.1].

In this direction, we use expressions like equivalence (or 2-equivalence),
and fully faithful 2-functor to mean the (strict) Cat-enriched notions: that
is to say, respectively, equivalence in the 2-category of 2-categories, and a
2-functor that is locally an isomorphism.

1.1. Lalis and ralis. Our terminology is similar to the terminology of [9] to
refer to adjunctions with unit (or counit) being identities. More precisely:

Definition 1.1. Assume that (f a g, v, n) is an adjunction in a 2-category
A.

– If the counit v is the identity 2-cell, (f a g, v, n) is called a rari
adjunction (or rari pair), or a lali adjunction.

If there is a rari adjunction f a g, the morphism f is called a lali
(left adjoint and left inverse), while the morphism g is called a rari
(right adjoint and right inverse).

– If the unit n is the identity 2-cell, (f a g, v, n) is called a rali adjunc-
tion, or a lari adjunction.

If there is a rali adjunction f a g, the morphism f is called a lari,
while the morphism g is called a rali.

Laris (ralis) are closed by composition, and have specific cancellation prop-
erties. We recall them below.

Lemma 1.2. Assume that

w x

g

66 xw

f

vv
x y

g′

66 yx

f ′

vv
(v,n)_ (v′,n′)_ (1.1.1)

are adjunctions in A.
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a) Assuming that f a g is a lari adjunction: we have that ff ′ a g′g is a
lari adjunction if, and only if, f ′ a g′ is a lari adjunction as well.

b) Assuming that f ′ a g′ is a lali adjunction: the adjunction ff ′ a g′g is
a lali adjunction if, and only if, f a g is a lali adjunction as well.

Proof : Assuming that n is an isomorphism, we have that the unit

x

y
g′ **UUUUUUUUUUUUUUUUUUU

w

x
g **UUUUUUUUUUUUUUUUUUU

x

w

f

ttiiiiiiiiiiiiiiiiiii

y

x

f ′

ttiiiiiiiiiiiiiiiiiii y

y

x

x

ks n′ks n
(1.1.2)

of the composition ff ′ a g′g is invertible if, and only if, n′ is invertible. This
proves b) and, dually, we get a).

Of course, the situation is simpler when we consider isomorphisms. That
is to say:

Corollary 1.3. Assume that

w x

g′

66 xw

f ′

vv
x y

g

66 yx

f

vv
y z

g′′

66 zy

f ′′

vv
(1.1.3)

are morphisms in A such that (f ′)−1 = g′ and (f ′′)−1 = g′′. There is a lali
(rali) adjunction f ′ · f · f ′′ a g′′ · g · g′ if and only if there is a lali (rali)
adjunction f a g.

Proof : If f a g is a lali (rali) adjunction, since f ′ a g′ and f ′′ a g′′ are of
course lali and rali adjunctions, it follows that the composite

f ′ · f · f ′′ a g′′ · g · g′

is a lali (rali) adjunction by Lemma 1.2.
Reciprocally, if f ′ · f · f ′′ a g′′ · g · g′ is a lali (rali) adjunction, since g′ a f ′

and g′′ a f ′′ are lali and rali adjunctions, we get that the composite

g′ · f ′ · f · f ′′ · g′′ a f ′′ · g′′ · g · g′ · f ′,
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which is f a g, is a lali adjunction.

But we also have a stronger cancellation property:

Theorem 1.4 (Left cancellation property). Let f : x → w, f ′ : y → x be
morphisms of a 2-category A.

a) Assuming that f : x → w is a lari: the composite ff ′ : y → w is a
lari if, and only if, f ′ : y → x is a lari as well.

b) Assuming that f is a rari: the composite ff ′ is a rari if and only if
f ′ is a rari.

Proof : By Lemma 1.2, if f and f ′ are laris, the composite ff ′ is a lari as
well.

Reciprocally, assume that f and ff ′ are laris. This means that there are
adjunctions

w x

g

66 xw

f

vv
(v,n)_ w y

ĝ

66 yw

ff ′

vv
(v̂,n̂)_

in A such that n = idgf and n̂ = idĝff ′.
We claim that

f ′ a ĝf,

x w
f

// w y
ĝ

// y

x

f ′

��
xw foowx goo xx

x

x

w

w

ks v̂

, idĝff ′


(1.1.4)

is a (lari) adjunction. In fact, the triangle identities follow from the facts
that the equations v̂ff ′ = idff ′ and ĝv̂ = idĝ hold.

Finally, the statement b) is the codual of a).

On the one hand, the left cancellation property of Theorem 1.4 does not
hold for lalis or ralis. For instance, in Cat, we consider the terminal category
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1 and the category 2 with two objects and only one nontrivial morphism
between them. The morphisms

21
s0

oo 11

s0d0

vv (1.1.5)

are lalis. But the inclusion d0 : 1 → 2 of the terminal object of 2 is not a
lali, since it does not have a right adjoint. On the other hand, the dual of
Theorem 1.4 gives a right cancellation property for ralis and lalis.

Corollary 1.5 (Right cancellation property). Let f : x → w, f ′ : y → x be
morphisms of a 2-category A. If f ′ : y → x is a lali (rali): we have that
f : x → w is a lali (rali) if, and only if, the composite ff ′ : y → w is a lali
(rali) as well.

2. Two dimensional limits
In this section, we recall basic universal constructions related to the results

of this paper. Two dimensional limits [38] are the same as weighted limits in
the Cat-enriched context [12]. We refer, for instance, to [38, 21] for the basics
on 2-dimensional limits. We are particularly interested in conical 2-(co)limits
and comma objects.

2.1. Conical 2-limits. Two dimensional conical (co)limits are just weighted
(co)limits with a weight constantly equal to the terminal category 1. Hence-
forth, the words (co)product, pullback/pushout and (co)equalizer refer to the
2-dimensional versions of each of those (co)limits. For instance, if a : x→ y,
b : w → y are morphisms of a 2-category A, assuming its existence, the pull-
back of b along a is an object x×(a,b)w together with 1-cells a∗(b) : x×(a,b)w →
x and b∗(a) : x×(a,b) w → w making the diagram

x×(a,b) w

x

a∗(b)

��

x×(a,b) w w
b∗(a)

//

x ya
//

w

y

b

��

(2.1.1)
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commutative, and satisfying the following universal property. For every ob-
ject z and every pair of 2-cells

(ξ0 : h0 ⇒ h′0 : z → x, ξ1 : h1 ⇒ h′1 : z → w)

such that the equation

z w

h′1

##

x ya
//

z w

h1

;;z

x

h0

��

w

y

b

��

KS

ξ1

=

z

x

h0

��

z

x

h′0

��

w

y

b

��

z w
h′1 //

x ya
//

ξ0 +3 (2.1.2)

holds, there is a unique 2-cell ξ : h ⇒ h′ : z → x ×(a,b) w satisfying the
equations

ida∗(b) ∗ ξ = ξ0 and idb∗(a) ∗ ξ = ξ1.

Remark 2.1. It is clear that the concept of pullback in locally discrete 2-
categories coincides with the concept of (1-dimensional) pullback in the un-
derlying categories.

Moreover, when a pullback exists in a 2-category, it is isomorphic to the
(1-dimensional) pullback in the underlying category.

Finally, both the statements above are also true if pullback is replaced by
any type of conical 2-limit with a locally discrete shape (domain).

2.2. Comma objects. If a : x → y, b : w → y are morphisms of a 2-
category A, the comma object of a along b, if it exists, is an object a ↓ b
with the following universal property. There are 1-cells a⇒(b) : a ↓ b → x
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and b⇐(a) : a ↓ b→ w and a 2-cell

a ↓ b x
a⇒(b)

//a ↓ b

w

b⇐(a)

��

x

y

a

��
w y

b
//

ks
χa↓b

(2.2.1)

such that:

(1) For every triple (h0 : z → x, h1 : z → w, γ : ah0 ⇒ bh1) in which h0, h1

are morphisms and γ is a 2-cell of A, there is a unique morphism
h : z → a ↓ b such that the equations h0 = a⇒(b) · h, h1 = b⇐(a) · h
and

z

a ↓ b

h

��??????????

a ↓ b x
a⇒(b)

//a ↓ b

w

b⇐(a)

��
w y

b
//

x

y

a

��

z x
h0 //z

w

h1

��
w y

b
//

x

y

a

��

ks
χa↓b

ks
γ

(2.2.2)

hold.
(2) For every pair of 2-cells (ξ0 : h0 ⇒ h′0 : z → x, ξ1 : h1 ⇒ h′1 : z → w)

such that

zw

h1

cc

xy a
oo

zw

h′1

{{
z

x

h0

��

w

y

b

��

KS

χa↓b∗idh

KS

ξ1

=

z

x

h0

��

z

x

h′0

��

w

y

b

��

zw
h′1oo

xy a
oo

ks
χa↓b∗idh′ ks

ξ0 (2.2.3)
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holds, there is a unique 2-cell ξ : h ⇒ h′ : z → a ↓ b such that
ida⇒(b) ∗ ξ = ξ0 and idb⇐(a) ∗ ξ = ξ1.

Remark 2.2. If A is a locally discrete 2-category, the comma object of a
morphism a along b has the same universal property of the pullback of a
along b.

3. Lax idempotent 2-adjunctions
Herein, our standpoint is that the notion of pre-Kock-Zöberlein 2-functor is

the 2-dimensional counterpart of the notion of full reflective functor. In this
section, we recall the basic definitions and give basic characterizations, but
we refer to [24, 34, 22] for fundamental aspects on lax idempotent 2-monads.

Definition 3.1. [Lax idempotent 2-monad] A lax idempotent 2-monad is a
2-monad T = (T, µ, η) such that we have a rari adjunction µ a η ∗ idT .

An idempotent 2-monad is a 2-monad T = (T, µ, η) such that µ is invertible
or, in other words, it is a lax idempotent 2-monad such that µ a η ∗ idT is a
rali adjunction as well.

More explicitly, a 2-monad T = (T, µ, η) on a 2-category B is lax idempo-
tent if there is a modification

T 2 T 2
idT2

T 2

T

µ

�#
????????????????

????????????????

T

T 2

ηT

;C����������������

����������������

Γ

��

such that, for each object z ∈ B,

T 2(z) T 2(z)T 2(z)

T (z)

µz ��?????????

T (z)

T 2(z)

ηT (z)

??���������

T (z) T 2(z)
ηT (z)

//

Γz
��

T 2(z) T 2(z)T 2(z)

T (z)

µz ��?????????

T (z)

T 2(z)

ηT (z)

??���������

T 2(z) T (z)
µz //

Γz
��

are respectively the identity 2-cells on ηT (z) and on µz.

Remark 3.2. [Dualities and self-duality] The concepts of lax idempotent
and idempotent 2-monads are actually notions that can be defined inside
any 3-category (or, more generally, tricategory [13]). Therefore they have
eight dual notions each (counting the concept itself).
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However, the notions of lax idempotent and idempotent 2-monads are self-
dual, that is to say, the dual notion coincides with itself. More precisely, a
triple T = (T, µ, η) is a (lax) idempotent 2-monad in the 3-category 2-Cat
if and only if the corresponding triple is also a (lax) idempotent 2-monad in
the 3-category (2-Cat)op.

Furthermore, the notion of idempotent 2-monad is self-3-dual, meaning
that the notion does not change when we invert the directions of the 3-cells
(which are, in our case, the modifications). However the 3-dual of the notion
of lax idempotent 2-monad is that of colax idempotent 2-monad.

Finally, the notions obtained from the inversion of the directions of the
2-cells, that is to say, the codual (or 2-dual) concepts, are those of lax idem-
potent and idempotent 2-comonads.

Henceforth, throughout this section, we always assume that a 2-adjunction

A B
G

66 BA
F

vv
(ε,η)_

is given, and we denote by T = (T, µ, η) the induced 2-monad (GF,GεF, η)
on B.

3.1. Idempotency. There are several useful well-known characterizations
of idempotent (2-)monads (see, for instance, [3, pag. 196]).

Lemma 3.3 (Idempotent 2-monad). The following statements are equiva-
lent.

i) T is idempotent;
ii) Tη (or ηT ) is an epimorphism;

iii) µ is a monomorphism;
iv) Tη = ηT ;
v) a : T (x)→ x is a T -algebra structure if, and only if, a · ηx = idx;

vi) a : T (x)→ x is a T -algebra structure if, and only if, a is the inverse
of ηx;

vii) the forgetful 2-functor T -Algs → B between the 2-category of (strict)
T -algebras (and strict T -morphisms) and the 2-category B is fully
faithful (that is to say, locally an isomorphism).

Proof : Since µ · (ηT ) = µ · (Tη) = idT , we have the following chain of equiv-
alences: µ is a monomorphism ⇔ µ is invertible ⇔ ηT or Tη is invertible ⇔
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ηT or Tη is an epimorphism. This proves the equivalence of the first three
statements.

By the definition of monomorphism, iii) implies iv). Reciprocally, assuming
that Tη = ηT , we have that T 2η = TηT and, thus, we get that

(Tη) · µ =

A

A

T

��

A

A

T

''OOOOOOOOOOOOOOO

A

A
Twwooooooooooooooo

A

A

T

��

A

A

ks
µ

ks
η

=

A

A

T

��

A

A
T

OOOOOOO

''OOOOOOO

A

A
Twwooooooooooooooo

A

A

T

��

A

Aks
µ

η
�� = idT 2.

Therefore Tη is the inverse of µ and, hence, µ is a monomorphism.
Assuming one of the first four equivalent statements (and hence all of

them), we have that, given a morphism a : T (x)→ x such that a · ηx = idx,
the equation

ηx · a = T (a) · ηT (x) = T (a · ηx) = idT (x). (3.1.1)

holds. Thus, since ηT (x) · ηx = T (ηx) · ηx and µ = (Tη)−1, we conclude that

a · µx =
(
ηT (x) · ηx

)−1
= (T (ηx) · ηx)−1 = a · T (a). (3.1.2)

This proves that v) holds. Reciprocally, v) trivially implies iii) (and, hence,
all of the first four equivalent statements), since, for each x ∈ B, µx is a (free)
T -algebra structure for x. Moreover, by Equations (3.1.1) and (3.1.2), we
conclude that the first four statements are also equivalent to vi).

Finally, recall that every forgetful functor T -Algs → B is faithful. Assuming
vi), in order to verify that the forgetful functor is full, it is enough to see
that, for any morphism f : x → y of B, if a : T (x) → x, b : T (y) → y are
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T -algebra structures, we have that the pasting

T (x)

T (x)T (x)

T (y)

T (f)

��

T (y) y
b

//

T (x) x
a // x

T (x)

ηxmmmmmmmmmmmmmmm

vvmmmmmmmmmmmmmmm

y

T (y)

ηymmmmmmmmmmmmmmm

vvmmmmmmmmmmmmmmm

y

y

x

y

f

��

is the identity 2-cell and, hence, the morphism f induces a morphism of
algebras between (x, a) and (y, b).

Assuming vii), we get that, for any object x ∈ B, ηT (x) induces a morphism

between the free T -algebras (T (x), µx) and
(
T 2(x), µT (x)

)
. That is to say,

ηT (x) · µx = µT (x) · T (ηT (x))

and, since the right side of the equation above is equal to the identity on
T 2(x), we conclude that µx is a split monomorphism. This proves that iii)
holds.

A 2-adjunction induces an idempotent 2-monad if, and only if, the induced
2-comonad is also idempotent. More generally:

Proposition 3.4. The following statements are equivalent.

i) T is idempotent;
ii) Fη (or ηG) is an epimorphism;

iii) εF (or Gε) is a monomorphism;
iv) The induced 2-comonad is idempotent.

Proof : Since, by the triangle identities, we have that

(εF ) · (Fη) = idF and (Gε) · (ηG) = idG,

we get that ii) implies that εF or Gε is invertible and, therefore, GεF = µ
is invertible. Analogously, iii) implies i).

Moreover, if we assume that T is idempotent, by Lemma 3.3, we have that

GFη = ηGF
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which, together with one of the triangle identities, implies that

(Fη) · (εF ) =

B

B

A

A

A

B

G

$$JJJJJJJJJJJ

B

A
Fzzttttttttttt

B

A

F

zzttttttttttt

A

B
G $$JJJJJJJJJJJ

B

A
F
��

ks
η

ks ε

=

A

A

A

B
G

JJJJJ

$$JJJJJ

B

A
Fzzttttttttttt

B

A
F
��

A

B
G
��

B

A
F
��

B

B

ks
η

ks ε

= idFGF .

This proves that i) implies ii) and iii). Therefore we proved that i), ii) and
iii) are equivalent statements.

Finally, since condition iii) is codual and equivalent to condition ii), we
conclude that i) is equivalent to its codual – that is to say, to condition
iv).

Motivated by the result above, we say that a 2-adjunction is idempotent if
it induces an idempotent 2-(co)monad.

Remark 3.5. If the 2-adjunction F a G : A → B is such that the under-
lying category of A (or B) is thin, then the induced 2-monad is idempotent
by Proposition 3.4. In particular, seeing categories as locally discrete 2-
categories and contravariant 2-functors as covariant ones defined in the dual
of the respective domains, any Galois connection induces an idempotent (2-
)(co)monad.

If the 2-adjunction F a G is idempotent and G is 2-monadic, G is called
a full reflective 2-functor. This terminology is justified by the well-known
characterization below.

Proposition 3.6 (Full reflective 2-functor). The following statements are
equivalent.

i) G is a full reflective 2-functor;
ii) F a G is idempotent and G is 2-premonadic;
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iii) G is fully faithful;
iv) ε is invertible.

Proof : Recall that a 2-functor is 2-premonadic if the (Eilenberg-Moore) com-
parison 2-functor is fully faithful (that is to say, locally an isomorphism).

We have that i) trivially implies ii). Moreover, since the forgetful 2-functor
T -Algs → B is fully faithful whenever T is idempotent, we have that ii)
implies iii).

Since, for every pair of objects w, x ∈ A, the diagram

A(w, x) A(FG(w), x)
A(εw,x)

// A(FG(w), x) B(G(w), G(x))
∼= //A(w, x) B(G(w), G(x))

G

22

commutes, iii) and iv) are equivalent.
Assuming iv), we have in particular that ε is a split epimorphism and G re-

flects isomorphisms, hence, G is 2-monadic (see Proposition at [33, pag. 236]).
Furthermore, clearly, we also get that Gε is a (split) monomorphism, which
implies that F a G is idempotent by Proposition 3.4. Therefore iv) implies
i).

The dual notion of full reflective 2-functor in 2-Cat is called full co-reflective
2-functor. As a consequence of Proposition 3.6, we have:

Corollary 3.7. If F a G is such that F is full co-reflective and G is full
reflective, then F a G is a 2-adjoint equivalence.

Remark 3.8. [Idempotent 2-adjunction vs. full reflective 2-functor] It should
be noted that there are non-2-monadic idempotent 2-adjunctions. Remark
3.5 gives a way of constructing easy examples. For instance, given a 2-
category A, the unique 2-functor A→ 1 has a left 2-adjoint if and only if A
has an initial object. Assuming that A has an initial object and A is not (2-
)equivalent to 1, the 2-functor A → 1 is not a reflective 2-functor, although
the 2-adjunction is idempotent.

More generally, by Corollary 3.7 any full reflective 2-functor which is not an
equivalence gives an example of an idempotent 2-adjunction such that the left
2-adjoint is not 2-comonadic. Dually, any non-equivalence full co-reflective
2-functor gives an idempotent 2-adjunction such that the right 2-adjoint is
not a full reflective 2-functor.
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3.2. Kleisli vs. idempotent adjunctions. Recall that a 2-adjunction
F a G is Kleisli if the Kleisli comparison 2-functor is an equivalence. This
fact holds if, and only if, F is essentially surjective on objects. Moreover,
a Kleisli 2-adjunction is always premonadic, since the Kleisli 2-category is
equivalent to the full sub-2-category of free algebras of the 2-category T -Algs

of the (strict) algebras of the induced 2-monad.
It should be noted that, by Proposition 3.6, we have that, whenever a

2-adjunction F a G is idempotent, G is 2-premonadic if and only if G is
2-monadic. Therefore by Lemma 3.9 below, this means that, whenever T is
idempotent, the Kleisli 2-category is (2-)equivalent to the 2-category T -Algs.

Lemma 3.9. The following statements are equivalent.

i) The Kleisli 2-category w.r.t. T is 2-equivalent to the 2-category of
(strict) T -algebras.

ii) If F ′ a G′ induces T , then G′ is 2-premonadic if, and only if, G′ is
2-monadic.

By Proposition 3.6, we conclude the following well-known result:

Corollary 3.10. An idempotent 2-adjunction F a G is 2-monadic if, and
only if, it is Kleisli.

3.3. Lax idempotency. For this part, we assume the definition of strict
algebras and lax T -morphisms between them, which can be found, for in-
stance, in [31, Definition 2.2]. Theorem 3.11 is a well-known characterization
of lax idempotent 2-monads [24]. We refer to [34, 22] for the proofs.

Theorem 3.11 (Lax idempotent 2-monad). The following statements are
equivalent.

i) T is lax idempotent;
ii) idT ∗ η a µ is a rali adjunction;

iii) a : T (x) → x is a T -algebra structure if, and only if, there is a rari
adjunction a a ηx;

iv) a : T (x) → x is a T -pseudoalgebra structure if, and only if, there is
an adjunction a a ηx;

v) the forgetful 2-functor T -Alg` → B between the 2-category of (strict)
T -algebras (and lax T -morphisms) and the 2-category B is fully faith-
ful.
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Similarly to the idempotent case, a 2-adjunction induces a lax idempotent
2-monad if and only if it induces a lax idempotent 2-comonad. Furthermore,
we give below a lax idempotent analogue of Proposition 3.4.

Theorem 3.12 (Lax idempotent 2-adjunction). The following statements
are equivalent.

i) T is lax idempotent;
ii) Gε a ηG is a lali adjunction;

iii) Fη a εF is a rali adjunction;
iv) The induced 2-comonad is lax idempotent.

Proof : By Lemma 3.11, it is clear that ii) or iii) implies i). Reciprocally,
assuming i), we have by Lemma 3.11 that idGF ∗ η a idG ∗ ε ∗ idF . By
doctrinal adjunction (e.g. [20]), we conclude that F (ηx) a εF (x) for every x
of B. Finally, again, by doctrinal adjunction, we conclude that idF∗η a ε∗idF .
This proves that i) implies iii).

Analogously, by doctrinal adjunction, we get that i) implies ii). Hence we
proved that the first three statements are equivalent.

Since the condition ii) is codual and equivalent to iii), we get that i) is
equivalent to its codual – which means iv).

Definition 3.13. [pre-Kock-Zöberlein 2-functor] If the induced 2-monad T
is lax idempotent, the 2-adjunction F a G is lax idempotent. In this case if,
furthermore, G is 2-premonadic, G is called a pre-Kock-Zöberlein 2-functor.
Finally, if it is also 2-monadic, G is a Kock-Zöberlein 2-functor.

Proposition 3.14. Assume that F a G : A → B is lax idempotent. The
following statements are equivalent.

i) G is a pre-Kock-Zöberlein 2-functor;
ii) For each object x ∈ A, εx is a regular epimorphism;

iii) For each object x ∈ A,

FGFG(x) FG(x)

εFG(x)

((

FGFG(x) FG(x)

FG(εx)

66
FG(x) x

εx // (3.3.1)

is a coequalizer.

Proof : The result follows directly from the well-known characterization of (2-
)premonadic (2-)functors due to Beck (see, for instance, [33, pag. 226]).
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Theorem 3.15. Assume that F a G : A → B is lax idempotent. The
following statements are equivalent.

i) G is a Kock-Zöberlein 2-functor;
ii) G creates absolute coequalizers;

iii) G is a pre-Kock-Zöberlein 2-functor, and, whenever ηy is a rari, there
is x ∈ A such that G(x) ∼= y.

Proof : The result follows from Proposition 3.14, and the characterization of
algebra structures for lax idempotent 2-monads recalled in Theorem 3.11.

Remark 3.16. [Algebras and free algebras] Corollary 3.10 says that a 2-
functor G is Kleisli if and only if it is monadic, whenever F a G induces
an idempotent 2-monad. This is not the case when T is only lax idempo-
tent. The reference [15] provides several counterexamples in this direction.
Moreover, in our context, in Section 6, Theorem 6.10 also provides several
examples: more precisely, given any 2-category A and object z ∈ A, the 2-
adjunction between the lax comma 2-category A//z (see Definition 5.1) and
the corresponding comma 2-category A/z usually is a Kleisli 2-adjunction
which is not 2-monadic.

Finally, it should be noted that:

Lemma 3.17. If A and B are locally discrete, we have that F a G is lax
idempotent (G is pre-Kock-Zöberlein) if and only if F a G is idempotent (G
is full reflective).

Proof : It is enough to note that a 2-monad defined on a locally discrete 2-
category is lax idempotent if and only if it is idempotent. The rest follows
from Proposition 3.6. More particularly, it follows from the fact that 2-
premonadicity and 2-monadicity are equivalent properties for idempotent
2-adjunctions.

4. Composition of 2-adjunctions
Throughout this section,

A B
G

66 BA
F

vv B C
J

66 CB
H

vvB

T
��

(ε,η)_ (δ,ρ)_ (4.0.1)
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are given 2-adjunctions, and T = (T, µ, η) = (GF,GεF, η) is the 2-monad
induced by the 2-adjunction F a G. Recall that we have the composition of
2-adjunctions above given by

A C

J◦G

44 CA

F◦H

tt C R
uu

(ε·(FδG), (JηH)·ρ)_ (4.0.2)

where R = (R, v, α) denotes the 2-monad induced by FH a JG.

4.1. Idempotent 2-adjunctions. If J and G are full reflective 2-functors,
JG is a full reflective 2-functor and, in particular, FH a JG induces an
idempotent 2-monad. However, if F a G and H a J are only idempotent
2-adjunctions, we cannot conclude that the composite is idempotent. For
instance, consider the 2-adjunctions

CmpHaus Top55 TopCmpHaus
tt

Top Set55 SetTop
uu

_ _ (4.1.1)

in which Top is the locally discrete 2-category of topological spaces and
continuous functions, CmpHaus is the full sub-2-category of compact Haus-
dorff spaces, and the right adjoints are the usual forgetful functors. Both
2-adjunctions are idempotent, but the composition induces the ultrafilter
(2-)monad which is not idempotent.

Proposition 4.1 characterizes when the composition of the 2-adjunctions is
idempotent. It corresponds to the characterization of the simple (reflective)
functors in the 1-dimensional case.

Proposition 4.1. Assume that F a G is idempotent. The following state-
ments are equivalent.

i) FH a JG is idempotent;
ii) JGFδG (or FδGFH) is a monomorphism;

iii) FHα (or αJG) is an epimorphism.

Proof : Since F a G is idempotent, Gε, εF , Fη and ηG are invertible.
By Proposition 3.4, the 2-adjunction FH a JG is idempotent if, and only

if,

JG (ε · (FδG)) = (JGε) · (JTδG), or (ε · (FδG))FH = (εFH) · (FδTH),
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is a monomorphism. Therefore, since JGε and εFH are invertible, we get
that FH a JG is idempotent if, and only if, JTδG, or FδTH, is a monomor-
phism. This proves that i) is equivalent to ii).

Finally, i) is equivalent to iii) by Proposition 3.4.

Corollary 4.2. If J is full reflective and F a G is idempotent, then the
composition is idempotent.

Proof : In this case, since δ is invertible, we have that JGFδG is an isomor-
phism and, hence, a monomorphism.

Definition 4.3. [Admissible 2-functor] The 2-adjunction F a G is admissible
w.r.t. H a J if JG is a full reflective 2-functor.

If G is full reflective, and the composition JG is full reflective, we generally
cannot conclude that J is full reflective. More precisely, in this case, we have:

Proposition 4.4. Assuming that G is full reflective, the horizontal compo-
sition FδG is invertible if and only if the 2-adjunction F a G is admissible
w.r.t. H a J .

Proof : Since ε is invertible (by Proposition 3.6), we get that (FδG) is in-
vertible if and only if the counit ε (FδG) of FH a JG is invertible. By
Proposition 3.6, this fact completes the proof.

4.2. Lax idempotent 2-adjunctions. We turn our attention now to anal-
ogous results for the lax idempotent case. The main point is to investigate
when the composition of the 2-adjunctions is lax idempotent and premonadic.

Definition 4.5. [Simplicity] The 2-adjunction F a G is simple w.r.t. H a J
if the composition FH a JG is lax idempotent.

As a consequence of the characterization of lax idempotent 2-adjunctions,
we get:

Theorem 4.6 (Simplicity). Assume that G is locally fully faithful. The 2-
adjunction F a G is simple w.r.t. H a J if and only if

(idTH ∗ α) a (µ ∗ idH) · (idT ∗ δ ∗ idTH)

is a rali adjunction.
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Proof : By Theorem 3.12, we conclude that the 2-adjunction FH a JG is lax
idempotent if and only if

(FHα) a (εFH) · (Fδ ∗ TH)

is a rali adjunction. Since G is locally fully faithful, we have the rali adjunc-
tion above if, and only if, there is a rali adjunction THα a (µH)·(TδTH).

The characterization of Theorem 4.6 turns out to be difficult to apply for
most of the examples, since it involves several units and counits of the given
2-adjunctions. Therefore it seems useful to have suitable sufficient conditions
to get simplicity.

Theorem 4.7. a) Assume that JGFδG is invertible: FH a JG is lax
idempotent if and only if there is a lali adjunction JGε a JηG.

b) Assume that FδGFH is invertible: FH a JG is lax idempotent if and
only if there is a rali adjunction FηH a εFH.

Proof : We assume that JGFδG is invertible. The other case is entirely
analogous and, in fact, dual (3-dimensional codual).

By hypothesis, there is a 2-natural transformation ϑ : JGFG =⇒ JGFHJG
which is the inverse of JGFδG. Therefore, since

(JGFδG) · (αJG) =

A BG // B

C

J

��

C

C

C

B
H

yyyy

||yyyy

B

A

F

||yyyyyyyyy

A

B
G ""EEEEEEEEE

B

C
J ""EEEEEEEEE

B

BB

B

ks
η

ks
ρ

ks δ

= JηG, (4.2.1)

we conclude that

ϑ · (JηG) = ϑ · (JGFδG) · (αJG) = αJG. (4.2.2)



26 MARIA MANUEL CLEMENTINO AND FERNANDO LUCATELLI NUNES

Therefore we have the following situation

JG JGFG

JηG

/7 JGFGJG

JGε

ow
JGFG JGFHJG

ϑ

.6JGFHJGJGFG

JGFδG
ow

JG JGFHJG

αJG

19
JGFHJGJG

JG(ε(FδG))

qy

(4.2.3)
in which ϑ−1 = JGFδG. This is the hypothesis of Corollary 1.3 and, thus,
there is a lali adjunction

JG (ε · (FδG)) a αJG
if, and only if, there is a lali adjunction JGε a JηG. By Theorem 3.12, this
completes the proof.

Corollary 4.8. Assume that F a G is lax idempotent.

a) If JGFδG is invertible, then FH a JG is lax idempotent.
b) If FδGFH is invertible, then FH a JG is lax idempotent.

Proof : In fact, if F a G is lax idempotent, we have in particular that there are
a rali adjunction FηH a εFH and a lali adjunction JGε a JηG. Therefore
the result follows from Theorem 4.7.

It should be noted that the 2-adjunctions in (4.1.1) show in particular that
FH a JG might not be lax idempotent, even if F a G and H a J are.
However, analogously to the idempotent case (see Corollary 4.2), we have a
nicer situation whenever J is full reflective.

Corollary 4.9. If J is full reflective, then F a G is lax idempotent if, and
only if, FH a JG is lax idempotent.

Proof : Assuming that J is full reflective, we get that δ is invertible and, thus,
JGFδG is invertible.

If F a G is lax idempotent, we get that the composite is lax idempotent
by Corollary 4.8. Reciprocally, if FH a JG is lax idempotent, by Theorem
4.7, there is a lali adjunction

JGε a JηG.
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Since J is locally an isomorphism, this implies that there is a lali adjunction
Gε a ηG which proves that F a G is lax idempotent by Theorem 3.12.

Definition 4.10. [2-admissibility] The 2-adjunction F a G is 2-admissible
w.r.t. H a J if the composition FH a JG is lax idempotent and premonadic
(that is to say, JG is pre-Kock-Zöberlein).

As a consequence of Proposition 3.14 and Theorem 4.6, we have:

Theorem 4.11 (2-admissibility). Assume that G is pre-Kock-Zöberlein. The
2-adjunction F a G is 2-admissible w.r.t. H a J if, and only if, the two
conditions below hold.

– THα a (µ ∗ idH)·(idT ∗ δ ∗ idTH) is a lari adjunction (or, equivalently,
F a G is simple w.r.t. H a J);

– For each object z ∈ C, (ε · (FδG))z is a regular epimorphism.

Whenever a (2-)category has coproducts, the composition of a regular epi-
morphism with a split epimorphism is always a regular epimorphism. There-
fore we also have that:

Corollary 4.12. If A has coproducts, F a G is simple w.r.t. H a J , and
FδG is a split epimorphism, we conclude that F a G is 2-admissible w.r.t.
H a J .

Proof : It follows directly from Theorem 4.11 and the observation above.

Since the composition of a regular epimorphism with an isomorphism is
always a regular epimorphism, we get:

Corollary 4.13. If FδG is an isomorphism and G is pre-Kock-Zöberlein,
then F a G is 2-admissible w.r.t. H a J . In particular, if J is full reflective
and G is pre-Kock-Zöberlein, we conclude that JG is pre-Kock-Zöberlein.

Proof : Since FδG is invertible, we get that JGFδG is invertible. Therefore,
by Corollary 4.8, we get the simplicity. Moreover ε · (FδG) is a regular
epimorphism since ε is a regular epimorphism and (FδG) is invertible.

5. Lax comma 2-categories
Assuming that (A,⊗, I) is a symmetric monoidal 2-category, given an ob-

ject y of A, there is a bijective correspondence between 2-comonadic struc-
tures over the endo-2-functor

(y ⊗−) : A→ A
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and the comonoid structures over y. More precisely, each comonoid (struc-
ture)

(y,m : y → y ⊗ y, ε : y → I)

is associated with the 2-comonad

((y ⊗−),m, ε)

where, for each object w ∈ A, the diagrams

y ⊗ w I ⊗ wε⊗w // I ⊗ w w
∼= //y ⊗ w w

εw

88 y ⊗ (y ⊗ w) (y ⊗ y)⊗ w
∼= // (y ⊗ y)⊗ w y ⊗ w∂y⊗w //y ⊗ (y ⊗ w) y ⊗ w

mw

55

commute, with isomorphisms given by the symmetric monoidal structure of
(A,⊗, I).

Therefore, if (⊗, I) is the cartesian structure (×, 1) (provided that A has
products), there is a unique 2-comonadic structure over

(y ×−) : A→ A

corresponding to the unique comonoid structure over y which is given by the
unique morphism ιy : y → 1 playing the role of the counit, and the diagonal
morphism ∂y : y → y × y playing the role of the comultiplication. More
explicitly, the counit of the (unique) 2-comonadic structure over (y ×−) is
pointwise defined by pw : y×w → w, while the comultiplication is pointwise
defined by ∂y × idw : y × w → y × y × w.

We consider below the locally fully faithful wide inclusion

(y ×−) -CoAlgs
// (y ×−) -CoAlg`

of the 2-category of (y ×−)-coalgebras and (y ×−)-morphisms into the 2-
category of (y ×−)-coalgebras and lax (y ×−)-morphisms (see, for instance,
[2, 31] for the precise definitions).

A strict (y ×−)-coalgebra is a pair (w, a) of an object w ∈ A and a mor-
phism a : w → y×w of A such that the usual (co)identity and (co)associativity
equations for coalgebras are satisfied. This means, in our case, that the dia-
grams
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w

y × w

a

��

w

wy × w 1× wιy×idw // 1× w w
∼= //y × w w

pw

77

w y × wa //w

y × w

a

��
y × w y × y × w

∂y×idw

//

y × w

y × y × w

idy×a

��

(5.0.1)
commute. It should, however, be observed that the second condition above,
called (co)associativity of the coalgebra, is unnecessary for the 2-comonad
(y ×−), since, once (w, a) makes the first diagram commutative, the second
one trivially commutes.

By definition, a lax (y ×−)-morphism between (y ×−)-coalgebras a : w →
y × w and b : x→ y × x is a pair

 w x
f
// ,

w x
f

//w

y × w

a

��

x

y × x

b

��
y × w y × x

idy×f
//

ks
γ


of a morphism and a 2-cell of A such that the equations of (co)associativity
and (co)identity are satisfied. In our case, this means that

w x
f

//w

y × w

a

��
y × w y × x

idy×f
//

x

y × x

b

��
y × x

x

px
???????

��???????

x

x

y × w

w

pw

��
w x

f
//

ks
γ

=

w

x

f

��

w

x

f

��

(5.0.2)
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w x
f

//

y × w y × xidy×f //

y × y × w y × y × x
idy×idy×f

//

w

y × w

a

��

x

y × x

b

��
y × w

y × y × w

∂y×idw

��

y × x

y × y × x

∂y×idx

��

ks
γ

=

w x
f

//

y × w y × xidy×f //

y × y × w y × y × x
idy×idy×f

//

w

y × w

a

��

x

y × x

b

��
y × w

y × y × w

idy×a

��

y × x

y × y × x

idy×b

��

ks
γ

ks
ididy×γ

(5.0.3)
hold. Again, it should be observed that Equation (5.0.3), the (co)associativity,
is redundant. More precisely, if Equation (5.0.2) holds for a pair (f, γ), then
(5.0.3) also holds for (f, γ).

Recall moreover that a (strict) (y ×−)-morphism of (y ×−)-coalgebras is
a lax (y ×−)-morphism

(f, γ : b · f ⇒ (idy × f) · a)

such that γ is the identity 2-cell. Furthermore, the composition of two lax
(y ×−)-morphisms (g, χ) and (f, γ) is given by the pair


g ◦ f,

w x
f

//w

y × w

a

��

x

y × x

b

��
y × w y × x

idy×f
//

z

y × z

c

��

x z
g

//

y × x y × z
idy×g

//y × w y × z

idy×(g◦f)

99

ks
γ

ks
χ


,

and, hence, the identity on a (y ×−)-coalgebra (w, a) is defined by the pair
(idw, ida).

Finally, by definition, a 2-cell ζ : (f, γ) =⇒ (f ′, γ′) in (y ×−) -CoAlg`
between lax (y×−)-morphisms is given by a 2-cell ζ : f ⇒ f ′ of A such that
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the equation

w x

f ′

;;w x

f

##

y × w y × x
idy×f ′

//

w

y × w

a

��

x

y × x

b

��

γ′

��

ζ
��

=

y × w y × x

idy×f

##

w x
f

//

y × w y × x

idy×f ′

::

w

y × w

a

��

x

y × x

b

��

γ
��

ididy×ζ
��

(5.0.4)

holds. The horizontal and vertical compositions of 2-cells in (y ×−) -CoAlg`
are defined as in A.

Definition 5.1. [Lax comma 2-category] Given an object y of a 2-category
A, we denote by A//y the 2-category defined by the following.

– The objects are pairs (w, a) in which w is an object of A and

w a // y

is a morphism of A.
– A morphism in A//y between objects (w, a) and (x, b) is a pair

 w x
f
// ,

w x
f

//w

y

a

��66666666666 x

y

b

�������������
ks
γ


in which f : w → x is a morphism of A and γ is a 2-cell of A.

If (f, γ) : (w, a) → (x, b) and (g, χ) : (x, b) → (z, c) are morphisms
of A//y, the composition is defined by (g ◦ f, γ · (χ ∗ idf)), that is to
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say, the composition of the morphisms g and f with the pasting

w x
f

// x z
g

//w

y

a

!!CCCCCCCCCCCCCCCCCCCCC z

y

c

}}{{{{{{{{{{{{{{{{{{{{{{
x

y

b

��

ks
γ

ks
χ

of the 2-cells χ and γ. Finally, with the definitions above, the identity
on the object (w, a) is of course the morphism (idw, ida).

– A 2-cell between morphisms (f, γ) and (f ′, γ′) is given by a 2-cell
ζ : f ⇒ f ′ such that the equation

w x

f

&&
w x

f ′

88w

y

a

��

x

y

b

}}|||||||||||||||||||||||||
ζ
��

ks
γ′ =

w x
f

//w

y

a

��

x

y

b

~~}}}}}}}}}}}}}}}}}}}}}}}

ks
γ

holds.

The 2-category A//y is called the lax comma 2-category of A over y, while
the 2-category Aco//y is called the colax comma 2-category of A over y.

The concept of (co)lax comma 2-category, possibly under other names,
has already appeared in the literature. See, for instance, [32, Exercise 5,
pag. 115] or [39, pag. 305]. As for our choice of the direction of the 2-cells
for the notion of lax comma 2-categories, although we do not follow [39,
pag. 305], our choice is compatible with the usual definition of lax natural
transformation.

Definition 5.2. [(Strict) comma 2-category] Given an object y of a 2-category
A, we denote by A/y the comma 2-category over y, defined to be the locally
full wide sub-2-category of A//y in which a morphism from (w, a) to (x, b)
is a morphism

(f, χ) : (w, a)→ (x, b)

such that χ is the identity 2-cell.
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Remark 5.3. We have an inclusion 2-functor A/y → A//y obviously defined.
The morphisms in the image of this inclusion are called strict (or tight)
morphisms of A//y. The 2-category A//y endowed with this inclusion forms
an enhanced 2-category, or, more precisely, an F-category as defined in [26].

Theorem 5.4. Assuming that A has products, there is a commutative square

(y ×−) -CoAlgs

(y ×−) -CoAlg`

��

A/y

A//y
��

(y ×−) -CoAlgs A/yoo
∼= //

(y ×−) -CoAlg` A//yoo
∼=

//

(5.0.5)

in which the vertical arrows are the locally full wide inclusions, and the hor-
izontal arrows are invertible 2-functors.

Proof : We give the 2-functor

(y ×−) -CoAlg` A//y
∼= // (5.0.6)

and its inverse explicitly below.

Part A. Our first step is to define the assignment on objects of the 2-functors,
and prove that these assignments are inverse of each other.

The 2-functor (5.0.6) is given by

w, w

y × w
a′

��

 7→

w,
w

y × w
a′

��
y × w

y

py
��

 (5.0.7)

on the objects, while the inverse assignment is given by

(y ×−) -CoAlg`A//y //
∼= (5.0.8)

is defined byw, w
y

a
��

 7→

w, w

y × w
〈a,idw〉
��

 (5.0.9)
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where 〈a, idw〉 denotes the morphism induced by the universal property
of the product y × w and the morphisms a and idw.

We have that (5.0.7) is clearly well defined. In order to verify that
(5.0.9) is also well defined, it is enough to see that, for any morphism
a : w → y, 〈a, idw〉 makes the diagrams of (5.0.1) commutative.

The assignment on objects of the composition

A//y (y ×−) -CoAlg`// (y ×−) -CoAlg` A//y// (5.0.10)

is given by

w, w
y

a
��

 7→
w, w

y × w
〈a,idw〉
��

 7→
w,

w

y × w
〈a,idw〉

��
y × w

y

py
��

w

y

a

ww

 (5.0.11)

and, hence, the composition is the identity on objects.
In order to prove that the action on objects of the composition

(y ×−) -CoAlg` A//y// A//y (y ×−) -CoAlg`// (5.0.12)

w, w

y × w
a′

��

 7→
w,

w

y × w
a′

��
y × w

y

py
��

 7→
w, w

y × w
〈py◦ a′, idw〉
��

 (5.0.13)

is also the identity, it is enough to see that, by the identity equation
of (5.0.1), we have that

a′ = 〈py ◦ a′, pw ◦ a′〉 = 〈py ◦ a′, idw〉

for any (y ×−)-coalgebra (w, a′ : w → y × w).
Part B. The second step is to give the action of the 2-functors on morphisms.

The action of the morphisms of (5.0.6) is defined by
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 w x
f
// ,

w x
f

//w

y × w

a′

��

x

y × x

b′

��
y × w y × x

idy×f
//

ks
γ′

 7→


w x

f
// ,

w x
f

//w

y × w

a′

��

x

y × x

b′

��
y × w y × x

idy×f
// y × x

y

py
������������

y × w

y

py
��9999999999

ks
γ′


(5.0.14)

which is well defined, since it respects the action on objects previously
defined in (5.0.6).

We have that (5.0.14) indeed preserves the identities and composi-
tions. Furthermore, it should be noted that it also preserves tight mor-
phisms, that is to say, it takes (strict) (y ×−)-morphisms of (y ×−)-
coalgebras to strict morphisms of A//y.

The action on morphisms of (5.0.8) is given by w x
f
// ,

w x
f

//w

y

a

��44444444444 x

y

b

��











ks
γ

 7→
 w x

f
// ,

w x
f

//w

y × w

〈a,idw〉

��

x

y × x

〈b,idx〉

��
y × w y × x

idy×f
//

ks
〈γ,idf 〉


(5.0.15)

where 〈γ,idf〉 : 〈b · f, f〉 ⇒ 〈a, f〉 is the 2-cell induced by the universal
property of y × x and the 2-cells γ : b · f ⇒ a and the identity
idf : f ⇒ f .

In order to show that (5.0.15) is well defined, we start by noticing
that

idpx ∗ 〈γ,idf〉 = idf

holds, by the definition of 〈γ,idf〉. Hence, the pair (f, 〈γ,idf〉) satis-
fies the Equation (5.0.2), which proves that the pair indeed defines a
morphism of (y ×−)-coalgebras.

Now it is clear that (5.0.15) respects the assignment on objects de-
fined in (5.0.9). Moreover, it is also clear that (5.0.15) preserves com-
position and identities.
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Analogously to the case of the assignment on objects (5.0.11), since
idpy∗〈γ,idf〉 = γ, we conclude that the action on morphisms of (5.0.10)
is in fact the identity.

Finally, analogously to the case of (5.0.13), by Equation (5.0.2),
given any lax (y ×−)-morphism of (y ×−)-coalgebras (f, γ′), we have
that

(f, γ′) =
(
f,
〈
idpy ∗ γ′, idf

〉)
.

By our definitions, this implies that the action on morphisms of the
composition (5.0.12) is the identity.

Part C. The actions on the 2-cells are the simplest. In both ways, it takes
the 2-cell defined by a 2-cell ζ of A to the unique 2-cell defined by
it. The following facts are straightforward: (1) these actions on the
2-cells are well defined; (2) they preserve compositions and identities
and (3) they are inverse of each other.

This completes the definition of the invertible 2-functor (5.0.6).

Finally the fact that both the 2-functors (5.0.6) and (5.0.8) respect strict/tight
morphisms (see [26]) implies that the restrictions of these 2-functors to A/y
and (y ×−) -CoAlgs are well defined. Hence, these restrictions define the
isomorphism of the top of Diagram (5.0.5).

Remark 5.5. As observed in Remark 5.3, the inclusion A/y → A//y can be
seen as a structure of F-category as introduced in [26]. That being said, the
statement of Theorem 5.4 is actually an isomorphism of F-categories.

Using the theory presented in [26], we could prove a version of Theorem
5.4 using, firstly, Beck’s monadicity theorem and, then, Bourke’s monadicity
theorem [5]. We do not follow this approach for two reasons.

The first reason is that we would need to assume the existence of opcomma
objects (along identity) in the base 2-category. The second reason is that our
elementary approach above avoids the need of further background material
on F-categories [26].
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6. Change of base 2-functors
Assuming that A has pullbacks, given any morphism c : y → z of a 2-

category A, it is well known that it induces a 2-adjunction

A/z A/y
c∗

55 A/yA/z
c!

uu
_ (6.0.1)

between the (strict) comma 2-categories in which the right 2-adjoint is called
the change of base functor induced by the morphism c (see, for instance,
[18, 19]). Recall that c∗ is defined by the pullback along c, and the left
adjoint is defined by the composition with c as below.

In the present section, we give the analogue for lax comma 2-categories,
that is to say, the change of base 2-functors for the lax comma 2-categories.
We start by showing how, once we assume the existence of products, by The-
orem 5.4 these 2-adjunctions come from general theorems of 2-dimensional
monad theory [2, 25, 29]. Then we finish the section by giving an explicit
proof of the 2-adjunction in Theorem 6.7, which, besides being an elementary
approach, has the advantage of not depending on the existence of products.

Definition 6.1. [Direct image] If c : y → z is any morphism of a 2-category
A, we define the commutative diagram

A/yA/z c!ooA/zA//z oo A/yA//z

c!

yy (6.0.2)

in which the unlabeled arrow is the obvious inclusion, and

c! : A/y → A/z

is defined by

(x, a) 7→ (x, ca), (f, id) 7→ (f, idc ∗ id), ζ 7→ ζ,

that is to say, the usual direct image 2-functor.
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By Theorem 5.4 and Definition 6.1, given a morphism c : y → z in a
2-category A with products, we have that the diagram

A/y ∼= (y ×−) -CoAlgsA/z ∼= (z ×−) -CoAlgs
c!oo A/y ∼= (y ×−) -CoAlgs

A tt

A/y ∼= (y ×−) -CoAlgs

A//z ∼= (z ×−) -CoAlg`

c!
uuuuuuuuuuu

zzuuuuuuuuuuuu

A//z ∼= (z ×−) -CoAlg`

A
��

A/z ∼= (z ×−) -CoAlgs

A//z ∼= (z ×−) -CoAlg`

$$IIIIIIIIIIIIIIIIIIIIIIIIII
A/z ∼= (z ×−) -CoAlgs

A**
(6.0.3)

commutes, in which the unlabeled arrows are the obvious forgetful 2-functors.
Assuming that A has products as above, we can get the classical change

of base (2-)functor by the enriched version of Dubuc’s adjoint triangle theo-
rem [11, 28]. More precisely, by the enriched adjoint triangle theorem ([28,
Proposition 1.1]), we have that c! has a right 2-adjoint c∗ if, and only if, for
each object (x, b : x→ z) of A/z, the equalizer of

y × x y × z × x

idy×〈b,idx〉

**
y × x y × z × x

〈idy,c〉×idx

44
y × x

y

py

��??????????????????????
y × z × x

y

py

������������������������

(6.0.4)

exists in A/y. In this case, we have that c∗ (w, b) is isomorphic to the equalizer
of (6.0.4).

Remark 6.2. It should be noted that, assuming that A has products, it
follows from a well-known result on limits of coalgebras [33] that the forgetful
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2-functor

(y ×−) -CoAlgs
∼= A/y A// (6.0.5)

creates all the equalizers and pullbacks that A has, since the endo-2-functor
(y ×−) does preserve any equalizer and pullback. Moreover, this result also
holds even when A does not have products. Furthermore, the product of two
objects (w, a) and (w′, a′) of A/y is given by the pullback of a along a′.

Finally, it is simple to observe that the equalizer of (6.0.4) is actually
defined by the pullback of b along c. More precisely, the equalizer of (6.0.4)
exists if and only if the pullback x ×(b,c) y exists in A and, in this case, the

equalizer is defined by the pair
(
x×(b,c) y, c

∗(b)
)
, following the terminology

of (2.1.1).

It is well-known that the 2-adjunction (6.0.1) holds even without assuming
the existence of products. We establish this result below.

Proposition 6.3 (Change of base 2-functor). Let A be a 2-category with
pullbacks. If c : y → z is any morphism, we get a 2-adjunction

A/z A/y
c∗

55 A/yA/z
c!

uu
_ (6.0.6)

in which c∗ is defined by the pullback along c. Explicitly, the assignment of
objects of c∗ is given by

(w, a) 7→ (w ×(a,c) y, c
∗(a) : w ×(a,c) y → y)

while the action of c∗ on morphisms is given by

(
w

f−→ x, ida

)
: (w, a)→ (x, b) 7→

(
w ×(a,c) y

c∗(f,ida)−−−−−→ x×(b,c) y, idc∗(a)

)
: c∗(a)→ c∗(b)

(6.0.7)

in which all the squares of
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w ×(a,c) y

x×(b,c) y

c∗(f)

��

w ×(a,c) y w//

x×(b,c) y xb∗(c) //

w

x

f

��
x

z

b

��

x×(b,c) y

y

c∗(b)

��
y zc

//

w

z

a

{{

w ×(a,c) y

y

c∗(a)

##

(6.0.8)

are pullbacks. Finally, the image of a 2-cell ζ : f ⇒ f ′ : (w, a) → (x, b) is
defined by the unique 2-cell c∗ (ζ) such that the equations

x×(b,c) y

x

b∗(c)

��

w ×(a,c) y

x×(b,c) y

c∗(f)

��

w ×(a,c) y

x×(b,c) y

c∗(f ′)

��

ks
c∗(ζ)

=

w ×(a,c) y

w

a∗(c)

��
w

x

f

��

w

x

f ′

��

ks
ζ

and x×(b,c) y

y

c∗(b)

��

w ×(a,c) y

x×(b,c) y

c∗(f)

��

w ×(a,c) y

x×(b,c) y

c∗(f ′)

��

ks
c∗(ζ)

=

w ×(a,c) y

y

c∗(a)





w ×(a,c) y

y

c∗(a)

��

(6.0.9)
hold.

Analogously to the case of the classical change of base 2-functor described
above, assuming that A has products and lax descent objects (see [29, 27]),
by Diagram (6.0.4) and the adjoint triangle theorem for (lax) (co)algebras
(Theorem 5.3 of [29]), we conclude that c! has a right 2-adjoint.
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More precisely, assuming that A has products, an object (x, b : x→ z) of
A/z has a right 2-reflection along c! if and only if the lax descent object of

y × x y × z × x

idy×〈b,idx〉

((
y × x y × z × x

〈idy,c〉×idx

55
y × x

y..

y × z × x

y
��

y × z × xy × x py×xoo y × z × x y × z × z × x

〈idy,c〉×idz×idx

55
y × z × x y × z × z × x

idy×idz×〈b,idx〉

((
y × z × x y × z × z × xidy×∂z×idx // y × z × z × x

y pp

(6.0.10)
exists in A/y, and, in this case, the right 2-reflection of c! along (x, b) is the
lax descent object of (6.0.10).

Remark 6.4. By the same theorem on limits of coalgebras mentioned in
Remark 6.2, since the endo-2-functor (y ×−) in a 2-category A (with prod-
ucts) does preserve lax descent objects, we conclude that (6.0.5) creates the
existing lax descent objects of A. Moreover, again, it is the case that (6.0.5)
creates lax descent objects even when A does not have products.

Remark 6.5. Still restricting our attention to the case of A having products,
considering the case of c = idy in Diagram (6.0.3), in the presence of lax
descent objects, we get by the above construction the 2-adjunction

A//y ∼= (y ×−) -CoAlg` (y ×−) -CoAlgs
∼= A/y

77
(y ×−) -CoAlgs

∼= A/yA//y ∼= (y ×−) -CoAlg`

idy!

ww

_
(6.0.11)

which, in our setting, happens to be a particular case of the general coherence
theorems on lax algebras and strict algebras (e.g. [25, 29]), since idy! does
coincide with the inclusion (y ×−) -CoAlgs → (y ×−) -CoAlg`.

We prove that, in our case, we do not need to assume the existence of
products to get the 2-adjunction above. More precisely, the only assumption
is the existence of comma objects along c in order to define the right 2-adjoint
to c!.
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Definition 6.6. [c⇐] Let A be any 2-category, and c : y → z a morphism of
A. Assume that A has comma objects along c. We denote by

c⇐ : A//z → A/y

the 2-functor defined by the comma object along the morphism c. Explicitly,
the action on objects of c⇐ is given by

(x, b) 7→ (b ↓ c, c⇐(b) : b ↓ c→ y) (6.0.12)

in which

b ↓ c x
b⇒(c)

//b ↓ c

y

c⇐(b)

��

x

z

b

��
y zc

//

ks
χb↓c (6.0.13)

is the comma object as in 2.2, while the action on morphisms is given by

 w x
f
// ,

w x
f

//w

z

a

��44444444444 x

z

b

��











ks
γ

 7→
(
a ↓ c c⇐(f,γ)−−−−→ b ↓ c, idc⇐(a)

)

(6.0.14)
in which c⇐(f, γ), sometimes only denoted by c⇐(f), is the unique morphism
of A such that the equations

b⇒(c) · c⇐(f, γ) = f · a⇒(c), c⇐(b) · c⇐(f, γ) = c⇐(a),
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a ↓ c

b ↓ c

c⇐(f,γ)

???????

��???????

b ↓ c xb⇒(c) // x

z

b

��

b ↓ c

y

c⇐(b)

��
y zc

//

a ↓ c

y

c⇐(a)

$$

a ↓ c

x

f · a⇒(c)

��

ks
χb↓c

= x

z

b

����������������������

y zc
//

a ↓ c

y

c⇐(a)

��

w

x

f

��????????????????????w

z

a

��

a ↓ c w
a⇒(c)

//

ks
γ

ks
χa↓c

(6.0.15)
hold. Finally, if ζ : f ⇒ f ′ : (w, a) → (x, b) is a 2-cell between morphisms
(f, γ) and (f ′, γ′) in A//z, the 2-cell c⇐(ζ) is the unique 2-cell such that the
equations

b ↓ c

x

b⇒(c)

��

a ↓ c

b ↓ c

c⇐(f,γ)

��

a ↓ c

b ↓ c

c⇐(f ′,γ′)

��

ks
c⇐(ζ)

=

a ↓ c

w

a⇒(c)

��
w

x

f

��

w

x

f ′

��

ks ζ

and b ↓ c

y

c⇐(b)

��

a ↓ c

b ↓ c

c⇐(f,γ)

��

a ↓ c

b ↓ c

c⇐(f ′,γ′)

��

ks
c⇐(ζ)

=

a ↓ c

y

c⇐(a)





a ↓ c

y

c⇐(a)

��

(6.0.16)

hold.

Theorem 6.7. Let A be any 2-category, and c : y → z a morphism in A. If
A has comma objects along c, then we have a 2-adjunction

A//z A/y

c⇐

66 A/yA//z

c!
vv

_ . (6.0.17)
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Proof : We define below the counit, denoted by δ, and the unit, denoted by
ρ, of the 2-adjunction c! a c⇐.

For each object

(
x, x

b−→ z
)

of A//z, we have the comma object

b ↓ c x
b⇒(c)

//b ↓ c

y

c⇐(b)

��

x

z

b

��
y zc

//

ks
χb↓c (6.0.18)

as in (6.0.13). We define the counit on (x, b), denoted by δ(x,b), to be the mor-

phism between c!c⇐(x, b) and (x, b) in A//z given by the pair (b⇒(c), χb↓c).
Moreover, for each object

(
w,w

a−→ y
)

in A/y, we have the comma object

ca ↓ c w
(ca)

⇒
(c)
//ca ↓ c

y

c⇐c!(a)

��

w

z

ca

��
y zc

//

ks
χca↓c (6.0.19)
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in A. By the universal property of the comma object, there is a unique
morphism ρ′(w,a) of A such that the equations

w

ca ↓ c

ρ′(w,a)

��??????????

ca ↓ c w
(ca)⇒(c)

//ca ↓ c

y

c⇐(ca)

��
y zc

//

w

z

ca

��

w w
idw //w

y

a

��
y zc

//

w

z

ca

��

ks
χca↓c

(6.0.20)

(ca)⇒ (c) · ρ′(w,a) = idw and c⇐c!(a) · ρ′(w,a) = a

hold.
By the equation above, the pair (ρ′(w,a), ida) gives a morphism between

(w, a) and (ca ↓ c, c⇐c!(a)) in A/y. We claim that the component ρ(w,a) of

the unit of c! a c⇐ on (w, a) is the morphism defined by the pair (ρ′(w,a), ida).

It is straightforward to see that the definitions above actually give 2-natural
transformations δ : c!c⇐ −→ idA//z and ρ : idA/y −→ c⇐c!. We prove below
that δ and ρ satisfy the triangle identities.

Let (w, a) be an object of A/y.
The image of the morphism ρ(w,a) by the 2-functor c! : A/y → A//z is the

morphism (ρ′(w,a), idca) between c!(w, a) = (w, ca) and (ca ↓ c, c!c⇐c!(a)) in

A//z, while the component δc!(w,a) = δ(w,ca) is the morphism
(
(ca)⇒(c), χca↓c

)
.

By the definition of ρ′(w,a), we have that (ca)⇒(c) · ρ′(w,a) = idw and χca↓c ∗
idρ′(w,a)

= idca. Therefore δc!(w,a) · c!
(
ρ(w,a)

)
is the identity on c!(a). This

proves the first triangle identity.
Let (x, b) be an object of A//z. Denoting by (c · c⇒(b) ↓ c, χc·c⇐(b)↓c) the

comma object of c · c⇐(b) along c, we have that the morphism

c⇐
(
δ(x,b)

)
: c⇐c!c⇐(x, b)→ c⇐(x, b)
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in A/y is defined by the pair (δ′, idc⇐c!c⇐(b)) in which δ′ is the unique morphism
in A making the diagrams

x b ↓ c
b⇒(c)

oo

c · c⇐(b) ↓ c

δ′

::uuuuuuuuuuuuuuuuuuuu

b⇒(c)·(c·c⇐(b))
⇒

(c)

ccGGGGGGGGGGGGGGGGGGGGG

b ↓ c
c⇐(b)

$$IIIIIIIIIIIIIIIII

y

c · c⇐(b) ↓ c

c⇐c!c⇐(b)

::uuuuuuuuuuuuuuuu

δ′

OO

commute, and the equation

c · c⇐(b) ↓ c

b ↓ c

δ′
?????????

��?????????

b ↓ c xb⇒(c) // x

z

b

��

b ↓ c

y

c⇐(b)

��
y zc

//

c · c⇐(b) ↓ c

y

c⇐(a)

%%

c · c⇐(b) ↓ c

x

f · a⇒(c)

��

ks χb↓c

= x

z

b

�����������������������

y zc
//

c · c⇐(b) ↓ c

y

c⇐c!c⇐(b)

��

b ↓ c

x

b⇒(c)

��????????????????????
b ↓ c

y

c⇐(b)

��
y

z

c

��

c · c⇐(b) ↓ c b ↓ c
(c·c⇐(b))⇒(c)

//

ks χb↓c
ks χ

c·c⇐(b)↓c

(6.0.21)

holds.
Since, by the definition of ρ, the underlying morphism ρ′c⇐(x,b) of the com-

ponent of ρ on c⇐(x, b) is such that the equations

χc·c
⇐(b)↓c ∗ idρ′c⇐(x,b)

= idc·c⇐(b)

(c · c⇐(b))⇒ (c) · ρ′c⇐(b) = idb↓c

c⇐c!c⇐(b) · ρ′c⇐(x,b) = c · c⇐(a)
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hold, we get that the equations

b ↓ c

c · c⇐(b) ↓ c

ρ′c⇐(x,b)

��??????

c · c⇐(b) ↓ c

b ↓ c

δ′

��??????

b ↓ c x
b⇒(c)

//b ↓ c

y

c⇐(b)

��
y zc

//

x

z

b

��

b ↓ c x
b⇒(c)

//b ↓ c

y

c⇐(b)

��
y zc

//

x

z

b

��

ks
χb↓c

ks
χb↓c

(6.0.22)
c⇐(b) · δ′ · ρ′c⇐(b) = c⇐(b), b⇒(c) · δ′ · ρ′c⇐(b) = b⇒(c)

hold. Since, by the universal property of the comma object of b along c, the
morphism satisfying the three equations above is unique, we conclude that
δ′ · ρ′c⇐(x,b) is the identity on b ↓ c. This proves that

c⇐(δ(x,b)) · ρc⇐(x,b) = idc⇐(x,b)

which proves the second triangle identity.

Corollary 6.8. If A has comma objects (along identities), then A/y → A//y
has a right 2-adjoint which is defined by the comma object along the identity
idy.

Proof : It follows from Theorem 6.7 and the fact that the inclusion A/y →
A//y is actually given by the 2-functor idy! : A/y → A//y and, hence, it is
left 2-adjoint to the 2-functor

id⇐y : A//y → A/y.

By Theorem 6.7 and the fact that, given a morphism c : y → z of a
2-category A,

A/yA/z
c!

ooA/zA//z
idz!

oo A/yA//z

c!

yy (6.0.23)

commutes, we get that:
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Theorem 6.9. Let A be a 2-category, and c : y → z a morphism of A. If A
has comma objects and pullbacks along c, we have the following commutative
diagram of 2-adjunctions

A//z A/z
id⇐z

66
A/zA//z

idz!
uu

A/z A/y
c∗

66
A/yA/z

c!
vv

A//z A/y

c⇐

==
A/yA//z

c!

}}

_ _ (6.0.24)

which means that the composition of the 2-adjunction c! a c∗ : A/z → A/y
with idz! a id⇐z : A//z → A/z is, up to 2-natural isomorphism, the 2-
adjunction

c! a c⇐ : A//z → A/y.

Given a 2-category A, it is clear that, for any object y of A, the 2-adjunction
idy! a id∗y : A/y → A/y is 2-naturally isomorphic to the identity 2-adjunction
idA/y a idA/y and, in particular, is an idempotent 2-adjunction.

In the setting of Theorem 6.7, that is to say, the comma version of the
change of base 2-functor, the 2-adjunction

idy! a id⇐y : A//y → A/y,

is far from being isomorphic to the identity 2-adjunction. It is not even
idempotent in most of the cases. Nevertheless, by Lemma 2.5 of [26], if A
has products, the 2-adjunction

(y ×−) -CoAlg` (y ×−) -CoAlgs77
(y ×−) -CoAlgs(y ×−) -CoAlg`

ww

_

as in Remark 6.5 is lax idempotent if the base 2-category A has suitable
comma objects (see, for instance, [27] for opcomma objects). More generally,
we have:
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Theorem 6.10. Let A be a 2-category, and y an object of A. If A has comma
objects along idy, then the 2-adjunction

A//y A/y

id⇐y

66 A/yA//y

idy!

uu
(δ,ρ)_ (6.0.25)

is lax idempotent. Moreover, it is a Kleisli 2-adjunction and, hence, id⇐y is
a pre-Kock-Zöberlein 2-functor.

Proof : In order to verify that (6.0.25) is a Kleisli 2-adjunction, it is enough
to see that idy! is bijective on objects. In particular, we conclude that id⇐y is
2-premonadic. Therefore, in order to prove that id⇐y is a pre-Kock-Zöberlein
2-functor, it remains only to prove that the 2-adjunction (6.0.25) is lax idem-
potent.

We prove below that

ididy! ∗ ρ a δ ∗ ididy! (6.0.26)

is a rari adjunction and, hence, it satisfies the condition iii) of Theorem 3.12,
which implies that the 2-adjunction (6.0.25) is lax idempotent.

For short, throughout this proof, we denote ididy! ∗ ρ by ρ, and δ ∗ ididy! by

δ.
Recall that, given an object (x, b) ∈ A/y, we have that δ(x,b) is defined by

the pair 
δ(x,b),

b ↓ idy x
b⇒(idy)

// x

y

b

��

b ↓ idy

y

id⇐y (b)

��
y y

idy

//

ks
χb↓idy


in which, as suggested by the notation, the 2-cell is the comma object in A,
and

δ(x,b) := b⇒(idy).
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Moreover, recall that, given an object (x, b) ∈ A/y, we have that ρ(x,b) =(
ρ

(x,b)
, idb

)
in which ρ

(x,b)
is the unique morphism of A such that the equa-

tions

δ(x,b) · ρ(x,b)
= idx, id⇐y (b) · ρ

(x,b)
= b, and

x

y

b

��

x

y

b

��

=

x

b ↓ idy

ρ
(x,b)

OOOOOOOOOO

''OOOOOOOOOO

b ↓ idy xb⇒(idy)= δ(x,b)
// x

y

b

��

b ↓ idy

y

id⇐y (b)

��
y y

idy

//

x

y

b

&&

x

x

idx

##

ks χb↓idy

(6.0.27)

hold.
For each object (x, b) ∈ A/y, the pair of 2-cells

(
χb↓idy , idδ(x,b)

)
satisfies the

equation

b ↓ idy

x

δ(x,b)

��44444444444
b ↓ idy

y

id⇐y (b)

((

x

b ↓ idy

ρ
(x,b)

��44444444444

b ↓ idy x
δ(x,b)

// x

y

b

��

b ↓ idy

y

id⇐y (b)

��
y y

idy

//

x

y

b

""

ks
χb↓idy

ks
χb↓idy

=

b ↓ idy

b ↓ idy

idb↓idy

��4444444444444444444444444
b ↓ idy

x

δ(x,b)

��
b ↓ idy x

δ(x,b)
// x

y

b

��

b ↓ idy

y

id⇐y (b)

��
y y

idy

//

ks
χb↓idy

(6.0.28)
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and, hence, by the universal property of the comma object, there is a unique
2-cell Γ(x,b) such that the equations

idid⇐y (b) ∗ Γ(x,b) = χb↓idy and idδ(x,b)
∗ Γ(x,b) = idδ(x,b)

hold. The 2-cells Γ(x,b) define a modification

Γ : ρ · δ =⇒ ididy!id⇐y idy!

which we claim to be the counit of the adjunction (6.0.26).
The first triangle identity holds, since, by the definition of Γ above,

idδ(x,b)
∗ Γ(x,b) = idδ(x,b)

for every object (x, b) ∈ A/y.
Finally, for each object (x, b) ∈ A/y, Γ(x,b) ∗ idρ

(x,b)
is such that

idid⇐y (b) ∗ Γ(x,b) ∗ idρ
(x,b)

= χb↓idy ∗ idρ
(x,b)

= idb

by (6.0.27), and, of course,

idδ(x,b)
∗ Γ(x,b) ∗ idρ

(x,b)
= idδ(x,b)·ρ(x,b)

.

Therefore, by the universal property of the comma object b ↓ idy, we get that
Γ(x,b) ∗ idρ

(x,b)
= ididρ

(x,b)
. This completes the proof that the second triangle

identity holds.

7. Admissibility
Throughout this section,

A B
G

66 BA
F

vv
(ε,η)_

is a given 2-adjunction. By abuse of language, given any 2-functor H : A→
B, for each object x in A, we denote by the same Ȟ the 2-functors

Ȟ : A/x→ B/H(x), Ȟ : A/x→ B//H(x), Ȟ : A//x→ B//H(x)

pointwise defined by H. Moreover, given a morphism f : w → x of A, we
denote by

f ! : A//w → A//x
the 2-functor defined by the direct image between the lax comma 2-categories,
whose restriction to A/w is equal to f !.
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Proposition 7.1. If G is a locally fully faithful 2-functor then, for each
object x of A, both Ǧ : A/x→ B/G(x) and Ǧ : A//x→ B//G(x) are locally
fully faithful.

Theorem 7.2. For any object y ∈ A, we have two 2-adjunctions

A/y B/G(y)

Ǧ

44
B/G(y)A/y

εy!◦F̌
uu

_ and A//y B//G(y)

Ǧ

44
B//G(y)A//y

εy!◦F̌
uu

_ (7.0.1)

where the counit and the unit of these 2-adjunctions are defined pointwise by
the counit and unit of F a G.

Corollary 7.3. For each object y ∈ A, the 2-adjunctions

A/y B/G(y)

Ǧ

44
B/G(y)A/y

εy!◦F̌
uu

_ and A//y B//G(y)

Ǧ

44
B//G(y)A//y

εy!◦F̌
uu

_ (7.0.2)

are lax idempotent (premonadic) if, and only if, F a G is lax idempotent
(premonadic).

Henceforth, we further assume that B has comma objects and pullbacks
whenever necessary. Recall that, in this case, by Section 6, for each object y
of B, we have 2-adjunctions

ηy! a η∗y : B/GF (y)→ B/y and ηy! a η⇐y : B//GF (y)→ B/y
in which the right 2-adjoints are given respectively by the pullback and the
comma object along ηy.

Definition 7.4. [Simple, admissible and 2-admissible 2-functors] The 2-
functor G is called simple/2-admissible if F a G is lax idempotent/pre-
Kock-Zöberlein, and, for every y ∈ B,

A//y B//G(y)

Ǧ

44
B//G(y)A//y

εy!◦F̌
uu

_ (7.0.3)

is simple/2-admissible w.r.t. ηy! a η⇐y (see Definitions 4.5 and 4.10).
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We say that G is admissible w.r.t. the basic fibration if G is fully faithful,
and, for every y ∈ B,

A/y B/G(y)

Ǧ

44
B/G(y)A/y

εy!◦F̌
uu

_ (7.0.4)

is admissible w.r.t. ηy! a η∗y.

Remark 7.5. The notion of admissibility w.r.t. the basic fibration is just
the direct strict 2-dimensional generalization of the classical notion of admis-
sibility (also called semi-left-exact reflective functor) [7, 4], while the notion
of simplicity coincides with that introduced in [9].

In order to establish the direct consequences of the results of Section 4 for
the case of 2-admissibility and simplicity, we set some notation below. For
each y of B, we consider the 2-adjunctions

A//F (y) B//GF (y)

Ǧ

44
B//GF (y)A//F (y)

εF (y)!◦F̌
tt

B//GF (y) B/y

η⇐y

55 B/yB//GF (y)

ηy!

tt

B//GF (y)

T
��

(ε,η)_ (δ,ρ)_ (7.0.5)

in which, by abuse of language, we denote respectively by ε and η the counit
and unit defined pointwise, and T = (T, µ, η) the 2-monad induced by εF (y)!◦
F̌ a Ǧ.

In this case, the composition of 2-adjunctions above is given by

A//F (y) B/y

η⇐y ◦Ǧ

33 B/yA//F (y)

F̌

ss
B/y R

cc
(ε·(idF̌ ∗δ∗idǦ), α)_ (7.0.6)

where α =
(

idη⇐y ∗ η ∗ idηy!

)
·ρ, and we denote by R = (R, v, α) the 2-monad

induced by F̌ a η⇐y ◦ Ǧ.

Remark 7.6. [α] Given an object (x, b) ∈ B/y,

α(x,b) : (x, b)→ η⇐y ǦF̌ (x, b)
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is defined by the unique morphism αb : w → GF (b) ↓ ηy in B such that the
equations

x

GF (b) ↓ ηy

α(x,b)

��?????????????

GF (b) ↓ ηy GF (x)
(GF (b))

⇒
(ηy)
//GF (b) ↓ ηy

y

η⇐y (GF (b))

��
y GF (y)ηy

//

GF (x)

GF (y)

GF (b)

��

x GF (x)
ηx //x

y

b

��
y GF (y)ηy

//

GF (x)

GF (y)

GF (b)

��

ks
χca↓c

(7.0.7)

(GF (b))⇒ (ηy) · αb = ηw and η⇐y (GF (b)) · αb = b

hold.

Remark 7.7. The composition of εF (y)! ◦ F̌ with ηy! is given by F̌ . More
precisely, the diagrams

B//GF (y)A//F (y)
εF (y)!◦F̌
oo B/yB//GF (y)

ηy!

oo B/yA//F (y)

F̌
vv

B/GF (y)A/F (y)
εF (y)!◦F̌
oo B/yB/GF (y)

ηy!
oo B/yA/F (y)

F̌
vv

commute.

As direct consequences of the main results of Section 4, we get the following
corollaries.

Corollary 7.8 (Simplicity [9]). Let G be pre-Kock-Zöberlein. The 2-adjunction

(F a G, ε, η) : A→ B

is simple if, and only if, for each y ∈ B,

idT ∗ α a µ · (idT ∗ δ ∗ idT )
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in which (idT ∗ α) is pointwise defined by (idT ∗ α)b := T (α(x,b)), and µ ·
(idT ∗ δ ∗ idT ) is pointwise defined by

(µ · (idT ∗ δ ∗ idT ))b :=

T (T (b) ↓ ηy)
T(δT (b))

//

T(χT (b)↓ηy)
⇐======

T(η⇐y (T (b)))

��

TT (x)

TT (b)

��

µx // T (x)

T (b)

��

T (y)
T (ηy)

// TT (y) µy
// T (y)

=

Proof : The result follows from Corollary 7.3 and Theorem 4.6.

Corollary 7.9. Assume that F a G is lax idempotent. We have that F a G
is simple provided that, for each y ∈ B, η⇐y TδǦ or FδT is invertible.

Proof : It follows from Corollary 7.3 and Corollary 4.8.

Corollary 7.10 (2-admissibility). Assume that G is pre-Kock-Zöberlein. The
2-adjunction (F a G, ε, η) : A→ B is 2-admissible if and only if it is simple
and, for every object y ∈ B and every object a : w → F (y) of A//F (y), the
morphism defined by

F (G(a) ↓ ηy)

F(η⇐y (G(a)))

��

F(δG(a))
//

F(χG(a)↓ηy)
⇐=======

FG(w)

FG(a)

��

εw // w

a

��

F (y)
F (ηy)

// FGF (y) εF (y)

// F (y)

=

in A//F (y) is a regular epimorphism, i.e. the morphism defined by(
εw · F

(
δG(a)

)
, idεF (y)

∗ F
(
χG(a)↓ηy

))
: εF (y)! F̌ η

⇐
y Ǧ(a)→ a

is a regular epimorphism in A//F (y).

Proof : The result follows from Corollary 7.3 and Theorem 4.11.

Corollary 7.11. If G is pre-Kock-Zöberlein then F a G is 2-admissible,
provided that, for each y ∈ B, F̌ δǦ is invertible.

Proof : It follows from Corollary 7.3 and Corollary 4.13.
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It should be noted that by Lemma 3.17 we can conclude that the no-
tion of simplicity w.r.t. the basic fibration (admissibility w.r.t. the ba-
sic fibration) coincides with the notion of simplicity (2-admissibility) if A
and B are locally discrete. This shows that the notion of simplicity and 2-
admissibility can be seen as generalizations of the classical notions of simplic-
ity and admissibility/semi-left exact reflective functors [7, 4] when categories
are seen as locally discrete 2-categories. Furthermore, Theorem 7.13 shows
that classical admissibility implies 2-admissibility in the presence of comma
objects.

Proposition 7.12. Assume that F a G is pre-Kock-Zöberlein, and A has
comma objects. The 2-adjunction F a G is simple (2-admissible) if, and only
if, for each object y ∈ B, the 2-adjunction

A//F (y) A/F (y)

id⇐F (y)

44
A/F (y)A//F (y)

idF (y)!
tt

_ (7.0.8)

is simple (2-admissible) w.r.t. the composite of the 2-adjunctions

A/F (y) B/GF (y)

Ǧ

44
B/GF (y)A/F (y)

εF (y)!◦F̌
tt

B/GF (y) B/y

η∗y

55 B/yB/GF (y)

ηy!

tt

A/F (y) B/y

η∗y ◦ Ǧ

77
B/yA/F (y)

F̌

vv

(ε,η)_ _ (7.0.9)

Proof : By definition, F a G is simple (2-admissible) if, and only if, for
each object y ∈ B, the composition of the 2-adjunctions of (7.0.5) is lax
idempotent (pre-Kock-Zöberlein). Since G is right 2-adjoint, it preserves
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comma objects and, hence, we get that

A//F (y)

A/F (y)

id⇐F (y)

��

A/F (y)

A//F (y)

idF (y)!

GG

A/F (y)

B/GF (y)

Ǧ

��

B/GF (y)

A/F (y)

εF (y)!◦F̌

GG

B/GF (y)

B/y

η∗y

��

B/y

B/GF (y)

ηy!

GG

�

(ε,η)�

�

∼=

A//F (y)

B//GF (y)

Ǧ

��

B//GF (y)

A//F (y)

εF (y)!◦F̌

GG

B//GF (y)

B/GF (y)

id⇐GF (y)

��

B/GF (y)

B//GF (y)

idGF (y)!

GG

B/GF (y)

B/y

η∗y

��

B/y

B/GF (y)

ηy!

GG

(ε,η)�

�

�

∼=

A//F (y)

B//GF (y)

Ǧ

��

B//GF (y)

A//F (y)

εF (y)!◦F̌

GG

B//GF (y)

B/y

η⇐y

��

B/y

B//GF (y)

ηy!

GG

(ε,η)�

(δ,ρ)�

(7.0.10)
in which the second 2-natural isomorphism follows from Theorem 6.9. By
the definitions of simplicity and 2-admissibility (see Definitions 4.10 and 4.5),
the proof is complete.

Theorem 7.13. Provided that A has comma objects, if (F a G) : A→ B is
admissible w.r.t. the basic fibration, then it is 2-admissible.

Proof : By Theorem 6.10, the 2-functor id⇐F (y) (the right 2-adjoint of (7.0.8))
is a pre-Kock-Zöberlein 2-functor for every y ∈ B.
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If F a G is admissible w.r.t. the basic fibration, we get that, for every
y ∈ B, η∗y ◦ Ǧ is full reflective. Therefore η∗y ◦ Ǧ ◦ id⇐F (y) is a pre-Kock-
Zöberlein 2-functor by Corollary 4.13. By Proposition 7.12, this means that
F a G is 2-admissible.

8. Examples
The references [9, 10] provide several examples of simple 2-adjunctions/monads.

In this section, we give examples of 2-admissible 2-adjunctions which, in par-
ticular, are also examples of simple 2-adjunctions.

Our first example of 2-admissible 2-adjunction is the identity. The result
below follows directly from Theorem 6.10.

Lemma 8.1. Let A be any 2-category with comma objects. The 2-adjunction
idA a idA is 2-admissible.

Of course, the identity is also an example of admissible 2-functor w.r.t.
the basic fibration. Moreover, by Theorem 7.13, examples of admissible
2-functors w.r.t. the basic fibrations give us a wide class of examples of
2-admissible 2-functors.

Theorem 8.2. Let ord be the 2-category of preordered sets, and cat the 2-
category of small categories. The inclusion 2-functor ord → cat has a left
2-adjoint and it is admissible w.r.t. the basic fibration (and, hence, also
2-admissible).

Proof : It is known that the underlying adjunction is admissible (w.r.t. the
basic fibration) [40]. Since cat is a complete 2-category, we get that the
2-adjunction is admissible w.r.t. the basic fibration.

Free cocompletions of 2-categories also give us a good source for examples
of admissibility w.r.t. the basic fibration. In particular, the most basic
cocompletion is the free addition of the initial object.

Theorem 8.3. Let A be a 2-category with pullbacks and an initial object 0.
We denote by A the free addition of an initial object. If A(−, 0) : Aop → Cat
is constantly equal to the empty category, the canonical 2-functor

G : A→ A

is admissible w.r.t. the basic fibration (and, hence, if A has comma objects,
it is 2-admissible as well).
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Proof : In fact A→ A has a left 2-adjoint if and only if A has initial object.
Moreover, provided that A has initial object, we denote by η the unit of this
2-adjunction and by 0 the initial object freely added.

We have that ηx is invertible whenever x 6= 0. Therefore, in this case,

η∗x ◦ Ǧ : A/x→ A/x
is fully faithful.

Moreover, η∗
0
◦ Ǧ : A/0 → A/0 is clearly an isomorphism, since A/0 and

A/0 are both empty.
This completes the proof that G is admissible w.r.t. the basic fibration

and, hence, 2-admissible provided that it has comma objects.

Another example is the free cocompletion of a 2-category under (finite)
coproducts.

Definition 8.4. Let A be a 2-category. We define the 2-category Famfin (A)
as follows. The objects of Famfin (A) are finite families of objects of A, which
can be seen as (possibly empty) lists of objects

(x1, . . . , xn) .

In this case, a morphism (x1, . . . , xn) → (y1, . . . , ym) is a list t = (t0, . . . , tn)
in which

t0 : {1, . . . , n} → {1, . . . ,m}
is a function, and, for j > 0,

tj : xj → yt0(j)

is a morphism of A. The composition and, hence, the identities are defined
pointwise. Finally, given morphisms

t = (t0, . . . , tn) , t
′ = (t′0, . . . , t

′
n) : (x1, . . . , xn)→ (y1, . . . , ym)

of Famfin (A), there is no 2-cell t ⇒ t′, provided that t0 6= t′0. Otherwise, a
2-cell τ : t⇒ t′ is a finite family of 2-cells(

τj : tj ⇒ t′j : xj → yt0(j)

)
j∈{1,...,n}

of A. The horizontal and vertical compositions are again defined pointwise.

There is an obvious full faithful 2-functor IA : A→ Famfin (A) which takes
each object x to the family (x). As observed above, the 2-category Famfin (A)
is the free cocompletion of A under finite coproducts. In particular, we have:
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Proposition 8.5. The fully faithful 2-functor

IA : A→ Famfin (A)

has a left 2-adjoint if and only if A has finite coproducts. In this case, the
left 2-adjoint is given by the coproduct. More precisely, a 2-cell

(τ1, . . . , τn) : (t0, . . . , tn) =⇒ (t′0, . . . , t
′
n) : (x1, . . . , xn)→ (y1, . . . , ym)

in Famfin (A) is taken to the unique 2-cell

n∐
j=1

xj

m∐
j=1

yj

%%n∐
j=1

xj

m∐
j=1

yj
99��

(8.0.1)

induced by the 2-cells xi yt0(i)

ti

��
xi yt0(i)

t′i

==
yt0(i)

m∐
j=1

yj//
��


i∈{1,...,n}

(8.0.2)

in which the second arrows are the components of the universal cocone that
gives the coproduct.

Remark 8.6. If we replace finite families with arbitrary families in Def-
inition 8.4, we get the concept of Fam (A) which corresponds to the free
cocompletion of A under coproducts.

We say that a 2-category A has finite limits if it has finite products, pull-
backs and comma objects. The well-known notion of extensive category has
an obvious (strict) 2-dimensional analogue. In order to simplify the hypoth-
esis on completion of the 2-category A, we are going to consider lextensive
2-categories.

Definition 8.7. [Lextensive 2-category] A 2-category A is lextensive if it has
finite limits and coproducts, and, for every finite family of objects (y1, . . . , yn),



LAX COMMA 2-CATEGORIES AND ADMISSIBLE 2-FUNCTORS 61

the 2-functor
n∏
j=1

A/yj → A/
n∐
j=1

yj

(aj : wj → yj)j∈{1,...n} 7→
n∐
j=1

aj

defined pointwise by the coproduct is a (Cat-)equivalence.

Theorem 8.8. Let A be a lextensive 2-category. We consider the 2-adjunction

A Famfin (A)

I

99
Famfin (A)A

{{
(ε,η)_

in which the right 2-adjoint is the canonical inclusion. For each finite family
Y = (yj)j∈{1,...,n} of objects in A, there is a (canonical) 2-natural isomorphism

A/
n∐
j=1

yj Famfin (A) / (yj)j∈{1,...,n}η∗Y ◦ ǏA
//A/

n∐
j=1

yj

n∏
j=1

A/yj

��
'

Famfin (A) / (yj)j∈{1,...,n}

n∏
j=1

Famfin (A/yj)

��

'

n∏
j=1

A/yj
n∏
j=1

Famfin (A/yj)
∏n
j=1 IA/yj

//

∼= (8.0.3)

Proof : The equivalence 2-functor
n∏
j=1

Famfin (A/yj)→ Famfin (A) / (yj)j∈{1,...,n}

is such that each object

A =
((
a(1,1), . . . , a(1,m1)

)
, . . . ,

(
a(n,1), . . . , a(n,mn)

))
is taken to

tA =
(
tAl
)
l∈{0,(1,1),...,(1,m1),...,(n,mn)}

in which tA0 (j, k) := j and tA(j,k) := a(j,k). The action on morphisms and 2-cells

is then pointwise defined.
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Corollary 8.9. Let A be a lextensive 2-category. The 2-functor IA : A →
Famfin (A) is admissible w.r.t. the basic fibration and, hence, 2-admissible.

Proof : In fact, since products of fully faithful 2-functors are fully faithful, we
get that η∗Y IA is fully faithful by the 2-natural isomorphism (8.0.3).

Remark 8.10. Definition 8.7 has an obvious infinite analogue, the definition
of infinitary lextensive 2-category. For an infinitary lextensive 2-category A,
we have an analogous result w.r.t. Fam (A). More precisely,

IA : A→ Fam (A)

is admissible w.r.t. the basic fibration (and, hence, 2-admissible) whenever
A is infinitary extensive.

9. Remarks on Kan extensions and colimits
We finish the paper giving two remarks on the relation of Kan extension

with lax comma 2-categories. In order to give these remarks, we recall the
definition of Kan extensions. Let j : w → z and h : w → x be morphisms
of a 2-category A. The right Kan extension of j along h is, if it exists, the
right reflection ranhj of j along the functor

A(h, z) : A(x, z)→ A(w, z).

This means that the right Kan extension is actually a pair

(ranhj : x→ z, ϕ : (ranhj) ◦ h⇒ j)

consisting of a morphism ranhj and a 2-cell ϕ of A such that each morphism
f : x→ z of A defines a bijection A(x, z)(f, ranhj) ∼= A(w, z)(f ◦ h, j):

x

z

ranhj
�������������

���������������

x

z

f

oo

ks
β 7→

x

z

ranhj
�������������

���������������

x

z

f

oo

xw //h
w

z

j

��

ks
β

ks
ϕ

(9.0.1)

A pair

(lanhj : x→ z, ϕ : j ⇒ (lanhj) ◦ h)
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is the left Kan extension of j along h if it corresponds to ranhj in the 2-
category Aco.

9.1. Coequalizers. If A has comma objects, since idz! : A/z → A//z has
right 2-adjoint, it does preserve colimits. Since A/z → A does create all the
colimits, we conclude that the colimits of “diagrams of strict morphisms” in
A//z are pointwise. That includes coequalizers. The remaining problem is
to study coequalizers of non-strict morphisms.

Theorem 9.1 (Preservation of coequalizers). Let A be a 2-category with
coequalizers. Given any object z ∈ A, the forgetful 2-functor

A//z → A

preserves coequalizers.

Proof : Let

f,
x y

f
//x

z

b

��44444444444 y

z

c

��









ks
ϕ

 : (x, b) → (y, c) and f ′ : x → y′ be respec-

tively the coequalizer of the pair (g, γ), (h, ζ) of morphisms (w, a) → (x, b)
in A//z g,

w x
g

//w

z

a

��44444444444 x

z

b

��











ks
γ

 ,

h,
w x

h //w

z

a

��44444444444 x

z

b

��











ks
ζ

 (9.1.1)

and the coequalizer of the pair of morphisms g, h : w → x in A.
Since fg = fh, we get that there is a unique morphism t′ : y′ → y of A

such that

t′ · f ′ = f. (9.1.2)
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We have that

x yf //x

z

b

��

y

z

c

{{wwwwwwwwwwwwwwwwww
w x

g
//w

z

a

##GGGGGGGGGGGGGGGGG x

y′

f ′

;;wwwwwwwwwwwwwwwww

y′

y

t′

��

ks
γ

ks
ϕ

= x yf //x

z

b

��

y

z

c

{{wwwwwwwwwwwwwwwwww
w x

h //w

z

a

##GGGGGGGGGGGGGGGGG x

y′

f ′

;;wwwwwwwwwwwwwwwww

y′

y

t′

��

ks
ζ

ks
ϕ

(9.1.3)
which proves that the morphism

f ′, x yf //x

z

b

��

y

z

c

{{wwwwwwwwwwwwwwwwww
x

y′

f ′

;;wwwwwwwwwwwwwwwww

y′

y

t′

��

ks
ϕ


: (x, b)→ (y′, c · t′) (9.1.4)

in A//z is coequalized by the morphisms of (9.1.1) and, hence, there is a
unique morphism

(t, ϕ) : (y, c)→ (y′, c · t′) (9.1.5)

in A//z such that the equations

t · f = f ′ (9.1.6)

x y
f

//x

z

b

##GGGGGGGGGGGGGGGGGG y′

z

c·t′
{{wwwwwwwwwwwwwwwww

y

z

c

��

y y′
t //

ks
ϕ

ks
ϕ

=

x y′
f ′

//x

z

b

##GGGGGGGGGGGGGGGGGG y′

z

c·t′
{{wwwwwwwwwwwwwwwww

ks
ϕ

(9.1.7)

hold.
By the universal property of the coequalizer of g, h in A, since tt′f ′ = tf =

f ′, we get that tt′ = idy′. Finally, by the universal property of the coequalizer
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of the morphisms of (9.1.1), since the morphismt′,
y′ y

t′ //y′

z

ct′

��4444444444
y

z

c

��











 : (y′, c · t′)→ (y, c) (9.1.8)

in A//z is such that the equationt′ · t · f,
y y′

t //y

z

c
4444

��44444

y′

z

ct′






��





y′ y
t′ // y

z

c

wwpppppppppppppppppppppppx y
f

//x

z

b

''NNNNNNNNNNNNNNNNNNNNNNN

ks
ϕ

 =

f,
x y

f
//x

z

b

��44444444444 y

z

c

��









ks
ϕ


(9.1.9)

holds, we get thatt′t,
y y′

t //y

z

c
FFFFFFF

##FFFFFFF

y′

z

ct′

��

y′ y
t′ // y

z

c

{{xxxxxxxxxxxxxxxx
ks
ϕ

 =

t′t,
y y

t′·t //y

z

c

��4444444444
y

z

c

��









ks
ϕ

 (9.1.10)

is equal to the identity (idy, idc). In particular, we get that t′t = idy (and ϕ
is the identity) which completes the proof that t′ is an isomorphism.

There is a relation between Kan extensions and coequalizers in lax comma
2-categories. More precisely, it gives a strong condition for coequalizers as
stated below.

Theorem 9.2. Let A be a 2-category with coequalizers, andg,
w x

g
//w

z

a

��44444444444 x

z

b

��











ks
γ

 ,

h,
w x

h //w

z

a

��44444444444 x

z

b

��











ks
ζ

 : (w, a)→ (x, b) (9.1.11)
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morphisms in the lax comma 2-category A//z. Assume that

c,
x y

f
//x

z

b

��44444444444 y

z

c

��









ks
ϕ


is the right Kan extension of b along f in A. We have that f is the coequalizer
of the morphisms h, g : w → x if and only if the morphism (f, ϕ) : (x, b) →
(y, c) is the coequalizer of the pair of the morphisms (9.1.11) in A//z.

Proof : If (f, ϕ) is the coequalizer of (9.1.11) in A//z, we get that f is the
coequalizer of h, g in A by Theorem 9.1. Reciprocally, assume that f is the

coequalizer of h, g in A, and

f ′,
x y

f ′
//x

z

b

��44444444444 y

z

c′

��









ks
ϕ′

 is a morphism of A//z

such that

(f ′, ϕ′) · (g, γ) = (f ′, ϕ′) · (h, ζ) .

In this case, we have in particular that f ′g = f ′h and, hence, by the universal
property of the coequalizer, there is a unique morphism s : y → y′ in A such
that sf = f ′. Moreover, by the universal property of the right Kan extension
(c, ϕ), we get that there is a unique 2-cell β : c′ · s ⇒ c in A such that the
equation

x y
f

// y y′
s //x

z

b

��

y

z

c����������

������������

y′

z

c′

wwoooooooooooooooooooooooooooooooooo

ks
ϕ

ks
β

=

x y′
f ′

//x

z

b

��

y′

z

c′

����������������������
ks
ϕ′

(9.1.12)

holds. This proves that

(s, β) : (y, c)→ (y′, c′)

is the unique morphism in A//z such that (s, β) · (f, ϕ) = (f ′, ϕ′). This
completes the proof that (f, ϕ) is the coequalizer of the morphisms (9.1.11).
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In the case of locally preordered 2-categories (or locally thin 2-categories)
with coequalizers, the reciprocal of Theorem 9.2 holds. More precisely:

Theorem 9.3. Let A be a 2-category with coequalizers. Assume that a : w →
z is preterminal in A(w, z). Then (f, ϕ) : b→ c is the coequalizer of the pair
(g, γ), (h, ζ) : a → b in A//z if, and only if, f : x → y is the coequalizer of
the pair of morphisms g, h : w → x in A and (c, ϕ) is the right Kan extension
of b along f .

Proof : By Theorem 9.2, it is enough to prove one of the directions.
Assume that a : w → z is preterminal in A(w, z) and (f, ϕ) : b → c is

the coequalizer of the pair (g, γ), (h, ζ) : a → b in A//z. By Theorem 9.1,
f : x→ y is the coequalizer of the pair of morphisms g, h : w → x in A.

Finally, it remains to prove that (c, ϕ) is the right Kan extension ranfb.
Given any 2-cell

x y
f

//x

z

b

��

y

z

c′

����������������������
ks
ϕ′

(9.1.13)

we get that, since a is preterminal in A(w, z),

(f, ϕ′) · (g, γ) = (f, ϕ′) · (h, ζ) .

Therefore there is a unique morphism (s, β) in A//z such that (s, β) ·(f, ϕ) =
(f, ϕ′). Since f is the coequalizer of h, g in A, we have that s = idy and,
hence, this proves that

β : c′ ⇒ c

is the unique 2-cell in A such that

y

z
c′

oo

yx //
f

x

z

b

��

ks
ϕ′ =

y

z

c��������������

����������������

y

z
c′

oo

yx //
f

x

z

b

��

ks
β

ks
ϕ

(9.1.14)
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This completes the proof of the result.

9.2. Conical colimits in objects. We finish with a theorem on Kan exten-
sions and lax comma 2-categories, that is to say, Theorem 9.7. It is related
with Walter Tholen’s talk in the International Conference on Category The-
ory of 2019 or, more precisely, it is a generalization of the main point of the
proof of [1, Lemma 7.13].

We start by recalling a well-known observation w.r.t. Kan extensions in
Cat. Below we denote by colimf the conical colimit of the functor f .

Lemma 9.4. Let 1 be the terminal category in Cat, and, for each category
x, ιx : x→ 1 the unique functor. Given a functor f : x→ z, we have that

lanιxf ∼= colimf,

either side existing if the other does.

This observation motivates the following definition.

Definition 9.5. [Conical cocomplete] Let A be a 2-category with terminal
object, denoted by 1, and B a full sub-2-category of A. An object z in A is
conical B-complete (B-cocomplete) if ranιxj (lanιxj) exists for any morphism
j : x→ z, in which ιx is the morphism x→ 1.

The need of considering a sub-2-category B above comes from the elemen-
tary facts about size of diagrams and limits in the classical context of Cat.
More precisely, the notion of cocomplete category corresponds to the notion
of conical cat-cocomplete category.

In order to establish Theorem 9.7, we need to consider the lax comma
2-categories of type B//y for each y ∈ A, even if y /∈ B. More precisely:

Definition 9.6. Let A and B be 2-categories, and assume that S : B → A
is a full inclusion. Given an object y ∈ A, we denote by (B//y)0 or S//y the
underlying category of the full sub-2-category of A//y defined by the pullback
of S along the forgetful 2-functor A//y → A. Analogously, we denote by
(B/y)0 the 2-category defined by the pullback of S along the forgetful functor
A/y → A (that is to say, the comma object in 2-Cat of y : 1→ A along S).

In the classical case, then, we can consider, for instance, cat//Set. In this
case, if z is any complete category, as observed in [1, Lemma 7.13], there is
a functor cat//z → zop that takes each object of cat//z (that is to say, small
diagram x→ z) to its limit.
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Theorem 9.7. Let A be a 2-category, and B a full sub-2-category. If A has
terminal object 1, the obvious functor

K : Aco (1, z)→ (B//z)0 ,

whose action on morphisms is given by α 7→ (ι1, α) has a left adjoint if and
only if z is conical B-complete. Moreover, in this case, the left adjoint takes
each a : x→ z (object of (B//z)0) to lanιxa.

Proof : In this proof, by abuse of language, we denote by B//z the category
(B//z)0. There is a left adjoint F : B//z → Aco (1, z) if, and only if, for each
morphism a : x→ z such that x ∈ B, there is a pair

(F (a), ηa : a→ KF (a))

of an object F (a) : 1 → z of A (1, z) and a morphism ηa : a → KF (a) in
B//z defined by a pair (ιx, η′a) such that

1

z

F (a)
�������������

���������������

1

z

b

oo

ks
β 7→

1

z

F (a)
�������������

���������������

1

z

b

oo

1x //ιx
x

z

a

��

ks
β

ks
η′a

(9.2.1)

gives a bijection

Aco (1, z) (F (a), b) ∼= B//z (a,K(b)) .

In order to complete the proof, it should be noted that Aco (1, z) (F (a), b) ∼=
A (1, z) (b, F (a)) and B//z (a,K(b)) ∼= A(x, z)(b◦ιx, a). Therefore, we proved
that there is a left adjoint if, and only if, for each a : x → z, there is a pair
(F (a), ηa : a→ KF (a)) which is the right Kan extension of a along ιx.

Remark 9.8. The main observation of [1, Lemma 7.13] is actually given in
codual form of the theorem above.
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[10] M.M. Clementino and I. López-Franco. Lax orthogonal factorisations in monad-quantale-

enriched categories. Log. Methods Comput. Sci., 13(3):Paper No. 32, 16, 2017.
[11] E. Dubuc. Adjoint triangles. In Reports of the Midwest Category Seminar, II, pages 69–91.

Springer, Berlin, 1968.
[12] E. Dubuc. Kan extensions in enriched category theory. Lecture Notes in Mathematics, Vol.

145. Springer-Verlag, Berlin-New York, 1970.
[13] R. Gordon, A.J. Power, and R. Street. Coherence for tricategories. Mem. Amer. Math. Soc.,

117(558):vi+81, 1995.
[14] M. Gran. Central extensions for internal groupoids in Maltsev categories. PhD thesis, Univer-
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