
Pré-Publicações do Departamento de Matemática
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Abstract: We present a detailed analysis of the De Casteljau algorithm to gen-
erate cubic polynomials satisfying certain boundary conditions in the Grassmann
manifold, and extend this approach to produce cubic splines that also solve inter-
polation problems on that manifold.
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1. Introduction
Interpolating nonlinear data arises in many different areas, ranging from ro-

botics and computer vision to industrial and medical applications (see, e.g.,
[4], [12]). In Euclidean spaces, cubic splines, which are C2-smooth curves
obtained by piecing together cubic polynomials, are particularly important
since they minimise the average acceleration. A well-known recursive proce-
dure to generate interpolating polynomial curves in Euclidean spaces is the
classical De Casteljau algorithm which was introduced, independently, by De
Casteljau [6] and Bézier [3]. Generalisations of such curves to non-Euclidean
spaces is useful in many engineering applications, with particular emphasis in
the case where the data can be represented on a Grassmann manifold. This
paper deals with a geometric procedure to generate cubic polynomials and
splines in the Grassmann manifold, known as the De Casteljau algorithm.
We present a detailed implementation of this algorithm for that manifold,
which follows closely the work in [5] concerning the reinterpretation of the
De Casteljau algorithm for connected and compact Lie groups.

The main feature of the algorithm is based on recursive geodesic interpo-
lation in order to find a polynomial curve that solves a 2-boundary value
problem. The boundary conditions might be of Hermite type, i.e., consisting
of initial and final points together with initial and final velocity, or instead
consisting of initial and final points, initial velocity and initial intrinsic ac-
celeration. While the first conditions are more natural in applications, they
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pose some difficulties that do not arise in the second type of boundary con-
ditions. We show how these two types of boundary conditions are related to
each other.

The organisation of the paper is the following. In Section 2, notations and
some preliminary results are introduced. Section 3 includes the geometry
of the Grassmann manifold and reveals the importance of that manifold for
modelling image-sets. The main results appear in Section 4, where the De
Casteljau algorithm to generate geometric cubic polynomials in the Grass-
mann manifold is explained in detail. In Section 5 the results of the previous
section are extended to generate cubic splines. The paper ends with a short
conclusion.

2. Notations and auxiliary results
Here we review the geometry of the real Grassmann manifold, hereafter

denoted by Gk,n, with (0 < k < n), which consists of all k-dimensional real
subspaces of the Euclidean space Rn, and present some preliminary results
that will be important in the main section of the paper. We closely follow
the definitions and terminology in [2], but more details concerning these
manifolds can be found, for instance, in [1].

In the sequel, gl(n) denotes the Lie algebra of n×n real matrices, equipped
with the Lie bracket defined by the commutator, i.e., [A,B] := AB − BA,
for A,B ∈ gl(n). The adjoint operator in gl(n) is defined by adAB := [A,B].
The vector space of n × n symmetric matrices is denoted by s(n) and the
Lie subalgebra of gl(n), consisting of the skewsymmetric n × n matrices is
denoted by so(n). The Lie group SO(n), having so(n) as its Lie algebra, will
also play an important role here.

We now recall some properties of the matrix exponential and of the prin-
cipal matrix logarithm, that can be found in [8] and [7].

Given A ∈ gl(n), the matrix exponential of A, denoted by eA, is the n× n

real matrix given by the sum of the convergent power series
∑+∞

k=0

Ak

k!
, where

A0 is defined to be the identity matrix of order n. So, we write,

eA =
+∞∑
k=0

Ak

k!
. (1)

The logarithms of an invertible matrix X are the solutions of the matrix
equation eA = X. When X is real and doesn’t have eigenvalues in the closed
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negative real line, i.e., σ(X)∩R−0 = ∅, where σ(X) denotes the spectrum
of X, there exists a unique real logarithm of X whose spectrum lies in the
infinite horizontal strip {z ∈ C : −π < Im(z) < π} of the complex plane.
This logarithm is usually called the principal logarithm of X. This is the
only logarithm that we consider, and hereafter will be denoted by logX.
When X ∈ SO(n), logX ∈ so(n). When ‖X − I‖ < 1, logX is uniquely
defined by the following convergent power series:

logX =
+∞∑
k=1

(−1)k+1 (X − I)k

k
. (2)

This power series define the principal logarithm for matrices which are close
to the identity matrix. However, for α ∈ [−1, 1], log(Aα) = α logA, so that,
making α = 1/(2k), with k ∈ Z\{0}, one has

log(A
1

2k ) =
1

2k
logA.

Since limk→∞A
1

2k = I, the previous expression allows to compute logA even
for matrices A which are not close to the identity. This procedure, that can
be found for instance in [7], is called inverse scaling and squaring method.

Lemma 2.1. Let A,B,C, and X be real square matrices and assume that C
is invertible and σ(X)∩R−0 = ∅.Then, the following holds.

1. C−1eAC = eC
−1AC ;

2. eABe−A = eadA(B) = B + [A,B] +
1

2!
[A, [A,B]] + · · · ;

3. C−1(logX)C = log
(
C−1XC

)
;

4. log(X−1) = − logX and log(X>) = (logX)> ;

5. Xα = eα logX , for α ∈ R, and whenever logX is defined;

6. log(eA) = A, whenever log(eA) is defined.

The second of these identities is called the Campbell-Hausdorff Formula.
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In the sequel we assume the following notations:

f(z) = ez−1
z stands for the sum of the series

∑+∞
k=0

zk

(k+1)! , (3)

and when |z − 1| < 1,

g(z) = log z
z−1 stands for the sum of the series

∑+∞
k=0(−1)k

(z − 1)k

k + 1
. (4)

Note that f(z)g(ez) = 1.

Lemma 2.2 ([11]). Let t 7−→ X(t) be a differentiable matrix valued function.
Then,

d

d t
eX(t) = ∆L

X(t)(t)eX(t), (5)

where

∆L
X(t)(t) =

∫ 1

0

euadX(t)(Ẋ(t))du. (6)

Or, alternatively,

d

d t
eX(t) = f

(
adX(t)

) (
Ẋ(t)

)
eX(t), (7)

where f is defined as in (3).

The next three lemmas will play an important role in the main section of
the paper.

Lemma 2.3. Let t 7−→ A(t) be a differentiable matrix valued function. Then

eA(t)∆L
−A(t)(t)e−A(t) = −∆L

A(t)(t), (8)

where ∆L
A(t)(t) denotes the operator defined on (6).
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Proof : It holds that,

eA(t)∆L
−A(t)(t)e

−A(t) = eadA(t)(∆L
−A(t)(t))

= eadA(t)

∫ 1

0

euad−A(t)(−Ȧ(t))du

= eadA(t)

∫ 1

0

e−uadA(t)(−Ȧ(t))du

= −
∫ 1

0

eadA(t)e−uadA(t)(Ȧ(t))du

= −
∫ 1

0

e(1−u)adA(t)(Ȧ(t))du.

Making a change of variable, considering 1− u = z, we have that du = −dz,
u = 0 implies z = 1 and u = 1 implies z = 0. Then,

−
∫ 1

0

e(1−u)adA(t)(Ȧ(t))du =

∫ 0

1

ezadA(t)(Ȧ(t))dz

= −
∫ 1

0

ezadA(t)(Ȧ(t))dz

= −∆L
A(t)(t).

Lemma 2.4. Let t 7−→ A(t) be a differentiable matrix valued function. Then,
for k = 0, 1,

∆L
(t−k)A(t)(t)

∣∣∣
t=k

= A(k), and consequently,
d

d t

∣∣∣∣
t=k

e(t−k)A(t) = A(k). (9)

Proof : We present here the proof of the statement for k = 0, since for k = 1
the proof is similar. Therefore, for k = 0, we have that

∆L
tA(t)(t)

∣∣∣
t=0

=

(∫ 1

0

eutadA(t)(A(t) + tȦ(t))du

)∣∣∣∣
t=0

=

(∫ 1

0

eutadA(t)(A(t))du

)∣∣∣∣
t=0

+

(∫ 1

0

eutadA(t)(tȦ(t))du

)∣∣∣∣
t=0

=

(∫ 1

0

A(t)du

)∣∣∣∣
t=0

= A(0).
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Consequently,

d

d t

∣∣∣∣
t=0

etA(t) = ∆L
tA(t)(t)e

tA(t)
∣∣∣
t=0

= A(0).

Lemma 2.5. Let t 7−→ A(t) be a differentiable matrix valued function. Then

d

d t

∣∣∣∣
t=0

∆L
tA(t)(t) = 2Ȧ(0) and

d

d t

∣∣∣∣
t=1

∆L
(t−1)A(t)(t) = 2Ȧ(1). (10)

Proof : To prove the first identity, we have that

d

d t

∣∣∣∣
t=0

∆L
tA(t)(t) =

d

d t

∣∣∣∣
t=0

(∫ 1

0

eutadA(t)(A(t) + tȦ(t)) du

)
=

d

d t

∣∣∣∣
t=0

(∫ 1

0

A(t) du

)
+

d

d t

∣∣∣∣
t=0

(∫ 1

0

eutadA(t)(tȦ(t)) du

)
=

∫ 1

0

d

d t

∣∣∣∣
t=0

A(t) du+

∫ 1

0

d

d t

∣∣∣∣
t=0

(
eutadA(t)(tȦ(t))

)
du

= Ȧ(0) +

∫ 1

0

(
∆L
utA(t)(t)e

utA(t)(tȦ(t))e−utA(t)

+eutA(t)(Ȧ(t) + tÄ(t))e−utA(t)

+ eutA(t)(tȦ(t))∆L
−utA(t)(t)e

−utA(t)
)∣∣∣

t=0
du

= Ȧ(0) +

∫ 1

0

Ȧ(0) du = 2Ȧ(0).

The proof of the second identity is now immediate, since it is done with
similar computations.

3. The Grassmann manifold
3.1. The geometry of the Grassmann manifold. Each k-dimensional
subspace of Rn can be associated to a unique operator of orthogonal projec-
tions onto itself, with respect to the Euclidean metric. It is well-known that
these operators (or, equivalently, its matrices, called projection matrices) are
symmetric, idempotent, and have rank k. Therefore, Gk,n can be defined,
alternatively, as:

Gk,n :=
{
P ∈ s(n) : P 2 = P and rank(P ) = k

}
. (11)

It is known that Gk,n is a smooth compact connected manifold of real dimen-
sion k(n−k), and moreover it is isospectral (each element has the eigenvalues
1 and 0, with multiplicity k and n− k, respectively).
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For an arbitrary point P ∈ Gk,n, define the following sets of matrices

glP (n) := {A ∈ gl(n) : A = PA+ AP};
sP (n) := s(n) ∩ glP (n);

soP (n) := so(n) ∩ glP (n).

(12)

These sets also play an important role in the geometric description of the
Grassmann manifold, due to their interesting properties, some of which are
listed below.

Lemma 3.1. Let P ∈ Gk,n, A,B,∈ glP (n), and j ∈ N. Then, the following
holds.

1. A2j−1 = PA2j−1 + A2j−1P ;

2. PA2j−1P = 0; PA2j = PA2jP = A2jP ;

3. (I − 2P )A2j−1 = −A2j−1(I − 2P ) = [A2j−1, P ];

4. (I − 2P )A2j = A2j(I − 2P ) = −A[A2j−1, P ];

5. [A,P ] = [B,P ]⇐⇒ A = B.

Proof : The first two properties have been proved, by induction, in [2]. To
prove 3., notice that

(I − 2P )A2j−1 = A2j−1 − 2PA2j−1 1.
= A2j−1 − 2

(
A2j−1 − A2j−1P

)
= −A2j−1 (I − 2P ) ,

and, on the other hand,

−A2j−1 (I − 2P ) = −A2j−1 + 2A2j−1P
1.
= −PA2j−1 − A2j−1P + 2A2j−1P

= [A2j−1, P ].

This proves 3.. Now,

(I − 2P )A2j = A2j − 2PA2j 2.
= A2j − 2A2jP

= A2j (I − 2P ) ,

and
A2j (I − 2P ) = AA2j−1 (I − 2P )

3.
= −A[A2j−1, P ],
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which proves 4.. Finally, we prove the last equivalence. For that, we take into
consideration that A,B ∈ glP (n) and that the matrix I − 2P is orthogonal
and symmetric, so its inverse is itself.

[A,P ] = [B,P ] ⇐⇒ AP − PA = BP − PB
⇐⇒ A− PA− PA = B − PB − PB
⇐⇒ A− 2PA = B − 2PB

⇐⇒ (I − 2P )A = (I − 2P )B

⇐⇒ A = (I − 2P )−1(I − 2P )B

⇐⇒ A = B.

Taking into consideration the previous lemma, we state the next result
involving the matrix exponential and the adjoint operator.

Lemma 3.2. Let P ∈ Gk,n, A ∈ glP (n), and t ∈ R. Then,

(I − 2P )etA = e−tA(I − 2P ), (13)

and, consequently,

e2tA(I − 2P ) = eadtA(I − 2P ). (14)

Proof : Taking into account the definition of matrix exponential, the first
identity (13) is an immediate consequence of properties 3. and 4. of Lemma
3.1. The identity (14) is obtained from the first one just by a few computa-
tions and considering the Campbell-Hausdorff Formula in Lemma (2.1). In
fact, from (13) we get that

etA(I − 2P )etA = (I − 2P ),

then, multiplying both terms on the left by etA, and on the right by e−tA, we
have

e2tA(I − 2P ) = etA(I − 2P )e−tA,

which, using the Campbell-Hausdorff Formula, proves the identity (14).

The tangent space to the Grassmann manifold at a point P ∈ Gk,n can be
defined by

TPGk,n =
{

[P,Ω] : Ω ∈ soP (n)
}
. (15)

We consider the Grassmann manifold equipped with a Riemannian metric
that is induced by the Euclidean inner product on each tangent space, also
known as the Frobenius inner product, defined on the space of square matrices
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as 〈A,B〉 := tr(A>B), where tr denotes the trace of a matrix. For the
Grassmann manifold, this Riemannian metric can be simplified. Indeed, for
P ∈ Gk,n, Ω1,Ω2 ∈ soP (n), using some properties of the trace, we may write

〈[P,Ω1], [P,Ω2]〉 = tr
(
[P,Ω1]

>[P,Ω2]
)

= tr
(
(PΩ1 − Ω1P )>(PΩ2 − Ω2P )

)
= tr

(
(−Ω1P + PΩ1)(PΩ2 − Ω2P )

)
= tr

(
−Ω1PΩ2 + Ω1PΩ2P + PΩ1PΩ2 − PΩ1Ω2P

)
= tr

(
−Ω1PΩ2 − PΩ1Ω2P

)
= tr

(
−(Ω1 − PΩ1)Ω2 − PΩ1Ω2P

)
= tr

(
−Ω1Ω2 + PΩ1Ω2 − PΩ1Ω2P

)
= −tr

(
Ω1Ω2

)
+ tr

(
PΩ1Ω2

)
− tr

(
P 2Ω1Ω2

)
= −tr

(
Ω1Ω2

)
.

So, the Riemannian metric in Gk,n is given by

〈[P,Ω1], [P,Ω2]〉 = −tr
(
Ω1Ω2

)
. (16)

Remark 3.1. Observe that (15) can be rewritten as

TPGk,n =
{

adP (Ω) : Ω ∈ soP (n)
}
, (17)

or, equivalently, as

TPGk,n =
{

ad2
P (S) : S ∈ s(n)

}
. (18)

Using the last description of the tangent space at P , the normal space at
P , with respect to the Riemannian metric (16), can be defined by

(TPGk,n)
⊥ =

{
S − ad2

P (S) : S ∈ s(n)
}
. (19)

We note that the descriptions of the tangent and normal spaces mentioned
above are in accordance with the ones that have already appeared in [9].

Lemma 3.3. Let P ∈ Gk,n and Ω ∈ soP (n). Then,

[Ω, [Ω, P ]] ∈ (TPGk,n)
⊥. (20)

Proof : Let P ∈ Gk,n, Ω ∈ soP (n) and [Ω1, P ], with Ω1 ∈ soP (n), be an
arbitrary element of TPGk,n. Then, taking into account the identities in 2.
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of Lemma 3.1 and some properties of the matrix trace, we have that

〈[Ω1, P ], [Ω, [Ω, P ]]〉 = tr
(
[Ω1, P ]> [Ω, [Ω, P ]]

)
= tr

(
(Ω1P − PΩ1)

>(Ω(ΩP − PΩ)− (ΩP − PΩ)Ω)
)

= tr
(
(−PΩ1 + Ω1P )(Ω2P − 2ΩPΩ + PΩ2)

)
= tr

(
(−PΩ1 + Ω1P )(2Ω2P − 2ΩPΩ)

)
= 2 tr

(
−PΩ1Ω

2P + PΩ1ΩPΩ + Ω1PΩ2P
)

= 2 tr(−PΩ1Ω
2P )

= 2 tr
(
PΩ2Ω1P

)
= 2 tr

(
Ω2PΩ1P

)
= 0.

Consequently, [Ω, [Ω, P ]] ∈ (TPGk,n)
⊥.

Now, we present some results about geodesics in the Grassmann manifold
with respect to the Riemannian metric in (16).

Lemma 3.4 ([2]). The unique geodesic t 7→ γ(t) in Gk,n, satisfying the initial
conditions γ(0) = P and γ̇(0) = [Ω, P ], where Ω ∈ soP (n), is given by

γ(t) = etΩP e−tΩ. (21)

The next result gives an explicit formula for the minimising geodesic arc
connecting two points in Gk,n. Although the expression has already appeared
in [2], we present bellow an easier alternative proof based on Lemma 3.2.

Proposition 3.5. Let P,Q ∈ Gk,n be such that the matrix (I − 2Q)(I − 2P )
has no negative real eigenvalues. Then, the minimising geodesic arc in Gk,n

that joins P (at t = 0) to Q (at t = 1), is parameterised explicitly by

γ(t) = etΩP e−tΩ, (22)

with Ω = 1
2 log((I − 2Q)(I − 2P )) ∈ soP (n).

Proof : Let P,Q ∈ Gk,n and γ(t) = etΩP e−tΩ, t ∈ [0, 1] be such that γ(0) =
P . In order to prove the result we need to obtain Ω ∈ soP (n), such that
γ(1) = Q, i.e., such that eΩP e−Ω = Q. According with Lemma 3.2, and since
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the inverse of the matrix I − 2P is itself, the following holds.

eΩP e−Ω = Q ⇐⇒ eΩ(I − 2P )e−Ω = I − 2Q

⇐⇒ e2Ω(I − 2P ) = I − 2Q

⇐⇒ e2Ω = (I − 2Q)(I − 2P )

⇐⇒ Ω =
1

2
log((I − 2Q)(I − 2P ).

We have that (I−2Q)(I−2P ) ∈ SO(n). Then, Ω =
1

2
log((I−2Q)(I−2P )) ∈

so(n). Therefore, in order to prove that Ω ∈ soP (n), it remains to show that
ΩP + PΩ = Ω, which is equivalent to prove that

2Ω(I − 2P ) + (I − 2P )2Ω = 0.

Taking into account properties in Lemma (2.1) and that (I − 2P )2 = I, we
get,

2Ω(I − 2P ) + (I − 2P )2Ω

= (log((I − 2Q)(I − 2P ))) (I − 2P ) + (I − 2P ) (log((I − 2Q)(I − 2P )))

= (I − 2P ) (log((I − 2P )(I − 2Q)(I − 2P )2)) + (I − 2P ) (log((I − 2Q)(I − 2P )))

= (I − 2P ) (− log((I − 2Q)(I − 2P ))) + (I − 2P ) (log((I − 2Q)(I − 2P )))

= 0,

which proves the result.

Remark 3.2. Notice that the orthogonal matrix (I − 2Q)(I − 2P ) belongs to
SO(n), since the requirement that it has no negative real eigenvalues auto-
matically excludes the orthogonal matrices with determinant equal to −1.

The geodesic distance between two points P and Q is equal to the length of
the geodesic arc that joins P (at t = 0) to Q (at t = 1). So, as a consequence
of the previous proposition, we can state the following.

Proposition 3.6. Let P,Q ∈ Gk,n be such that the matrix (I − 2Q)(I − 2P )
has no negative real eigenvalues. Then, the geodesic distance between the
points P and Q is given by

d2(P,Q) = −1

4
tr
(
log2((I − 2Q)(I − 2P ))

)
. (23)
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3.2. Representing Images by Points in a Grassmann Manifold. In
this subsection we emphasise the importance of the Grassmann manifold in
certain applications dealing with nonlinear data based on images. A pop-
ular choice for modelling image-sets is by representing them through linear
subspaces. This is done by associating to a set of images a point in the
Grassmann manifold Gk,n, where n is the dimension of the space of features
and k is related to the principal features of the images. This enlightens the
importance of the Grassmann manifold in many engineering applications, in
particular to solve some computer vision problems.

In the context of image processing, a feature vector is a collection of im-
portant information that describes an image, differentiating that image from
others. Some examples of features are: colour, gray levels, pixel intensities,
shapes, edges and gradients.

Given a set of m images of the same object, we associate to that set a point
in a Grassmann manifold Gk,n as follows:

(1) Each image corresponds to a column matrix in the space of features,
so that the m images can be represented by a rectangular matrix
X ∈ Rn×m. We assume that m < n.

(2) The matrix X is then decomposed using the Singular Value Decom-
position (SVD)

X = U ΣV >, (24)

where V > denotes the transpose of the matrix V , the matrices U and
V are orthogonal of order n and m respectively (UU> = In, V V

> =
Im) and Σ is a quasi-diagonal matrix containing the singular values
σ1, · · · , σm of X, in non-increasing order, along the main diagonal. If
rank(X) = r and ui and vi denote the column vectors of U and V
respectively, the SVD decomposition (24) can be written as

X =
r∑
i=1

σi ui v
>
i . (25)

Since XX> = U(ΣΣ>)U>, the columns of U are the eigenvectors
associated to the eigenvalues λi of XX>, which are the non-negative
square roots of the singular values and are, by convention, also des-
cendent sorted (λ1 ≥ λ2 ≥ ... ≥ λk ≥ 0). The columns of the matrix
U are called the eigenvectors of the SVD decomposition and the first
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columns correspond to the main dominant directions in the image
structure.

(3) When a set of images is SVD transformed it is not compressed. Image
compression deals with the problem of reducing the amount of com-
puter memory required to represent a digital image. Since the great
amount of the image information lies in the first singular values, com-
pression of data can be achieved replacing the matrix X by a good
approximation of smaller rank, say of rank k < r. The closest matrix
of rank k is obtained by truncating the sum in (25) after the first k
terms to obtain

X ≈
k∑
i=1

σi ui v
>
i .

As k increases, the image quality increases, but so does the amount
of memory needed to store the image. This means that smaller rank
SVD approximations are preferable, but the choice of k also depends
on the dimensionality of the data. The above truncation corresponds
to deleting the last n−k columns of the orthogonal matrix U , to form
the sub-matrix Sn×k, whose columns form a k-orthonormal frame in
Rn, i.e., S>S = Ik.

(4) From the previous matrix S, we compute a square matrix of order n,
P = SS>, which is symmetric, idempotent (P 2 = P ) and has rank k.
This matrix P gives a representation of the data in the Grassmann
manifold Gk,n.

4. De Casteljau algorithm in the Grassmann manifold
4.1. Revisiting cubic polynomials in Riemannian manifolds. Let M
be a m-dimensional connected Riemannian manifold, which is also geodesi-
cally complete, so that any pair of points may be joined by a geodesic arc.

Problem 4.1. Given a set of `+1 distinct points pi ∈M , with i = 0, 1, . . . , `,
a discrete sequence of `+ 1 fixed times, t0 < t1 < · · · < t`−1 < t`, and vectors
ξ0, η0 tangent to M at p0, and ξ` tangent to M at p`, solve the following
problem:

Find a C2-smooth curve γ : [t0, t`]→M,
satisfying the interpolation conditions

γ(ti) = pi, 1 ≤ i ≤ `− 1, (26)
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and the boundary conditions (of Hermite type):

γ(t0) = p0, γ(t`) = p`,

γ̇(t0) = ξ0 ∈ Tp0
M, γ̇(t`) = ξ` ∈ Tp`M,

(27)

or, alternatively, the boundary conditions:

γ(t0) = p0, γ(t`) = p`,

γ̇(t0) = ξ0 ∈ Tp0
M,

Dγ̇

dt
(t0) = η0 ∈ Tp0

M.
(28)

Without loss of generality, in the sequel we consider t0 = 0 and t` = 1,
since the reparametrisation (t→ s) defined by s = t(t` − t0) + t0 maps [0, 1]
to [t0, t`].

In case there are no interpolation conditions, this problem can be solved
using the generalised De Casteljau algorithm on manifolds. This is a pro-
cedure to generate a smooth curve which is the counterpart, for manifolds,
of a cubic polynomial in Euclidean spaces. The classical version of that
algorithm was developed by Paul De Casteljau in 1959 [6], and consists in
performing successive linear interpolations to generate polynomial curves of
arbitrary degree in the Euclidean space Rm. The generalisation of the classi-
cal De Casteljau algorithm to Riemannian manifolds, is based on the simple
idea of replacing line segments by geodesic arcs, as shown in [10], and later
implemented to some concrete manifolds in [5].

In order to implement this algorithm for data on the Grassmann manifold,
we review first the three steps of the De Casteljau algorithm to generate
cubic polynomials using four ordered distinct points in M , where the first
and the forth are the points we want to join and the other two points control
the shape of the curve and are related with the boundary conditions. This
will become clear later on.

Algorithm 4.2. Generalised De Casteljau Algorithm

Given four distinct points x0, x1, x2 and x3 in M :
Step 1. Construct three geodesic arcs β1(t, xi, xi+1), t ∈ [0, 1] joining,

for i = 0, 1, 2, the points xi (at t = 0) and xi+1 (at t = 1).
Step 2. Construct two families of geodesic arcs

β2(t, x0, x1, x2) = β1(t, β1(t, x0, x1), β1(t, x1, x2)),
β2(t, x1, x2, x3) = β1(t, β1(t, x1, x2), β1(t, x2, x3)),
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joining, for i = 0, 1 and t ∈ [0, 1], the point β1(t, xi, xi+1) (at
t = 0) with the point β1(t, xi+1, xi+2) (at t = 1).

Step 3. Construct the family of geodesic arcs

β3(t, x0, x1, x2, x3) = β1(t, β2(t, x0, x1, x2), β2(t, x1, x2, x3)),

joining, for each t ∈ [0, 1], the points β2(t, x0, x1, x2) (at
t = 0) and β2(t, x1, x2, x3) (at t = 1).

The curve t ∈ [0, 1] 7→ β3(t) := β3(t, x0, x1, x2, x3) obtained in Step 3. of
this algorithm generalises cubic polynomials in Euclidean spaces and here-
after will be called geometric cubic polynomial in M . We bring to the atten-
tion of the reader that this name has been used in the literature for poly-
nomial curves that result from generalising to manifolds other methods to
produce cubic polynomials in Euclidean spaces. It is also important to ob-
serve that this curve joins the points x0 (at t = 0) and x3 (at t = 1), but
does not pass through the other two points x1 and x2. These points are
usually called control points, since they influence the shape of the curve. As
will become clear later, the control points can be obtained from the boun-
dary conditions. Although the geometry of a Riemannian manifold possesses
enough structure to formulate this construction, it can only be implemented
when one can reduce the calculation of these geodesic arcs to a manageable
form. Using the result in Proposition 3.5, we can now implement the above
algorithm when the manifold M is Gk,n.

4.2. Implementation of the De Casteljau Algorithm in Gk,n. Al-
though the Grassmann manifold is geodesically complete, we have seen that
an explicit formula for the geodesic that joints two points may be unknown
in some particular situations. So, in this case the implementation of the De
Casteljau algorithm is restricted to a convex open subset of the manifold
where the expression to compute geodesic arcs is known.

When the given points x0, x1, x2 and x3 belong to Gk,n, the curves pro-
duced at each step of the Algorithm 4.2 are easily derived using the result in
Proposition 3.5, and are presented bellow.

Step 1

β1(t, xi, xi+1) = etΩ
1
ixie

−tΩ1
i = e

tad
Ω1
i xi, i = 0, 1, 2, (29)

with

Ω1
i =

1

2
log((I − 2xi+1)(I − 2xi)) ∈ soxi(n). (30)
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Step 2

β2(t, x0, x1, x2) = etΩ
2
0(t)β1(t, x0, x1)e−tΩ

2
0(t) = e

tad
Ω2

0(t)β1(t, x0, x1), (31)

β2(t, x1, x2, x3) = etΩ
2
1(t)β1(t, x1, x2)e−tΩ

2
1(t) = e

tad
Ω2

1(t)β1(t, x1, x2), (32)

with

Ω2
0(t) =

1

2
log((I − 2β1(t, x1, x2))(I − 2β1(t, x0, x1))) ∈ soβ1(t,x0,x1)(n), (33)

Ω2
1(t) =

1

2
log((I − 2β1(t, x2, x3))(I − 2β1(t, x1, x2))) ∈ soβ1(t,x1,x2)(n). (34)

Step 3

β3(t, x0, x1, x2, x3) = etΩ
3
0(t)β2(t, x0, x1, x2)e−tΩ

3
0(t) = e

tad
Ω3

0(t)β2(t, x0, x1, x2), (35)

with

Ω3
0(t) =

1

2
log((I − 2β2(t, x1, x2, x3))(I − 2β2(t, x0, x1, x2))) ∈ soβ2(t,x0,x1,x2)(n). (36)

As a result of applying the De Casteljau algorithm to the given four points,
we obtain our definition of a geometric cubic polynomial in the Grassmann
manifold.

Definition 4.1. The curve t ∈ [0, 1] 7→ β3(t) := β3(t, x0, x1, x2, x3) in Gk,n

defined by
β3(t) = etΩ

3
0(t)etΩ

2
0(t)etΩ

1
0x0e−tΩ

1
0e−tΩ

2
0(t)e−tΩ

3
0(t)

= e
tadΩ3

0(t)e
tadΩ2

0(t)e
tadΩ1

0x0,
(37)

with Ω1
0, Ω2

0 and Ω3
0 given by (30), (33), and (36), is called a geometric

cubic polynomial in the Grassmann manifold, associated to the points xi,
i = 0, 1, 2, 3.

Remark 4.1. Notice that, as expected, the curve just defined joins the point
x0 (at t = 0) to x3 (at t = 1). It is obvious that β3(0) = x0. To see that
β3(1) = x3, we use the following easily derived boundary conditions for the
Ωi
j

Ω2
0(0) = Ω3

0(0) = Ω1
0, Ω2

1(0) = Ω1
1,

Ω2
1(1) = Ω3

0(1) = Ω1
2, Ω2

0(1) = Ω1
1,

(38)

together with the definition of the geodesic arcs (29), to obtain

β3(1) = e
adΩ3

0(1)e
adΩ2

0(1)e
adΩ1

0x0 = e
adΩ1

2 e
adΩ1

1 e
adΩ1

0x0 = x3. (39)

We now present a few more results for the Ωi
j that will be used later on.
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Lemma 4.3. Let Ωi
j, i = 1, 2, 3, j = 0, 1, 2 be defined as at the beginning of

Subsection 4.2. Then, the following identities hold:

(i) e2Ω2
0(t) = e2tΩ1

1e2(1−t)Ω1
0

(ii) e2Ω2
1(t) = e2tΩ1

2e2(1−t)Ω1
1

(iii) e2Ω3
0(t) = e2tΩ2

1(t)e2(1−t)Ω2
0(t).

(40)

Proof : The proof of all these identities uses the definition of Ωi
j and Lemma

3.2. We prove the last one in detail, the others can be proved using similar
arguments, but have an even easier proof.
Proof of (iii): From the definition of Ω3

0, we know that

Ω3
0(t) =

1

2
log((I − 2β2(t, x1, x2, x3))(I − 2β2(t, x0, x1, x2))).

Then, using the relations (31) and (32), we have

e2Ω3
0(t) = (I − 2β2(t, x1, x2, x3))(I − 2β2(t, x0, x1, x2))

= (I − 2e
tadΩ2

1(t)β1(t, x1, x2))(I − 2e
tadΩ2

0(t)β1(t, x0, x1))

= (I − 2etΩ
2
1(t)β1(t, x1, x2)e

−tΩ2
1(t))(I − 2etΩ

2
0(t)β1(t, x0, x1)e

−tΩ2
0(t)).

Therefore, since Ω2
1(t) ∈ soβ1(t,x1,x2)(n) and Ω2

0(t) ∈ soβ1(t,x0,x1)(n), using
Lemma 3.2 and the definition of Ω2

0, we obtain

e2Ω3
0(t) = etΩ

2
1(t)(I − 2β1(t, x1, x2))e

−tΩ2
1(t)etΩ

2
0(t)(I − 2β1(t, x0, x1))e

−tΩ2
0(t)

= e2tΩ2
1(t)(I − 2β1(t, x1, x2))(I − 2β1(t, x0, x1))e

−2tΩ2
0(t)

= e2tΩ2
1(t)e2Ω2

0(t)e−2tΩ2
0(t)

= e2tΩ2
1(t)e2(1−t)Ω2

0(t).

Lemma 4.4. Let Ωi
j, i = 1, 2, 3, j = 0, 1, 2, be defined as in the steps at the

beginning of Subsection 4.2. Then, the following identities hold:

(i) e
(t−1)adΩ2

0(t)e
tadΩ1

1 = e
tadΩ2

0(t)e
(t−1)adΩ1

0

(ii) e
(t−1)adΩ2

1(t)e
tadΩ1

2 = e
tadΩ2

1(t)e
(t−1)adΩ1

1

(iii) e
(t−1)adΩ3

0(t)e
tadΩ2

1(t) = e
tadΩ3

0(t)e
(t−1)adΩ2

0(t).

(41)
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Proof : We will prove the identities (i) and (iii). The proof of the identity
(ii) is similar to the proof of the identity (i).
Proof of (i): Since Ω2

0(t) ∈ soβ1(t,x0,x1)(n) and β1(t, x0, x1) ∈ Gk,n, by Lemma
3.2, we have that

e2Ω2
0(t) (I − 2β1(t, x0, x1)) = e

adΩ2
0(t) (I − 2β1(t, x0, x1)) .

But, from (29), we know that β1(t, x0, x1) = e
tadΩ1

0x0, and thus we get

e2Ω2
0(t)e

tadΩ1
0 (I − 2x0) = e

adΩ2
0(t)e

tadΩ1
0 (I − 2x0) . (42)

Then, taking into account the identity (i) of Lemma 4.3 and Lemma 3.2, the
left-hand side of (42) can be rewritten as

e2Ω2
0(t)e

tadΩ1
0 (I − 2x0) = e2Ω2

0(t)etΩ1
0 (I − 2x0) e−tΩ1

0

= e2Ω2
0(t)e2tΩ1

0 (I − 2x0)

= e2tΩ1
1e2(1−t)Ω1

0e2tΩ1
0 (I − 2x0)

= e2tΩ1
1e2 Ω1

0 (I − 2x0)

= e2tΩ1
1e

adΩ1
0 (I − 2x0)

= e2tΩ1
1 (I − 2x1)

= e
tadΩ1

1e
adΩ1

0 (I − 2x0) .

(43)

Therefore, comparing the last right-hand side of (43) with the right-hand
side of (42), we obtain that

e
tadΩ1

1e
adΩ1

0 (I − 2x0) = e
adΩ2

0(t)e
tadΩ1

0 (I − 2x0) .

Since (I − 2x0)
−1 = (I − 2x0), then e

−adΩ2
0(t)e

tadΩ1
1e

adΩ1
0 = e

tadΩ1
0 , which is

equivalent to

e
−adΩ2

0(t)e
tadΩ1

1 = e
(t−1)adΩ1

0 . (44)

Consequently, multiplying both sides of the last equality by e
tadΩ2

0(t), we get

e
(t−1)adΩ2

0(t)e
tadΩ1

1 = e
tadΩ2

0(t)e
(t−1)adΩ1

0 ,

which proves the result.
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Proof of (iii): We first show that

e
adΩ2

0(t)β1(t, x0, x1) = β1(t, x1, x2). (45)

From the relation (44), it yields that

e
adΩ2

0(t) = e
tadΩ1

1e
(1−t)adΩ1

0 . (46)

Then, according with the relations (29) and (46), we have that

e
adΩ2

0(t)β1(t, x0, x1) = e
tadΩ1

1e
(1−t)adΩ1

0β1(t, x0, x1)

= e
tadΩ1

1e
(1−t)adΩ1

0e
tadΩ1

0x0

= e
tadΩ1

1e
adΩ1

0x0

= e
tadΩ1

1x1

= β1(t, x1, x2),

which proves identity (45). Since Ω3
0(t) ∈ soβ2(t,x0,x1,x2)(n) and β2(t, x0, x1, x2)

is a curve in Gk,n, by Lemma 3.2 and by (31), we have

e2Ω3
0(t) (I − 2β2(t, x0, x1, x2)) = e

adΩ3
0(t) (I − 2β2(t, x0, x1, x2))

= e
adΩ3

0(t)e
tadΩ2

0(t) (I − 2β1(t, x0, x1)) .
(47)

Then, using Lemma 3.2, together with the identity (iii) of Lemma 4.3 and
the equality (45), we obtain that the left-hand side of (47) can be rewritten
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as

e2Ω3
0(t) (I − 2β2(t, x0, x1, x2)) = e2Ω3

0(t)e2tΩ2
0(t) (I − 2β1(t, x0, x1))

= e2tΩ2
1(t)e2(1−t)Ω2

0(t)e2tΩ2
0(t) (I − 2β1(t, x0, x1))

= e2tΩ2
1(t)e2Ω2

0(t) (I − 2β1(t, x0, x1))

= e2tΩ2
1(t)e

adΩ2
0(t) (I − 2β1(t, x0, x1))

= e2tΩ2
1(t)

(
I − 2e

adΩ2
0(t)β1(t, x0, x1)

)
= e2tΩ2

1(t) (I − 2β1(t, x1, x2))

= e
tadΩ2

1(t) (I − 2β1(t, x1, x2))

= e
tadΩ2

1(t)e
adΩ2

0(t) (I − 2β1(t, x0, x1)) .
(48)

Therefore, from (47) and (48), we get that

e
tadΩ2

1(t)e
adΩ2

0(t) (I − 2β1(t, x0, x1)) = e
adΩ3

0(t)e
tadΩ2

0(t) (I − 2β1(t, x0, x1)) .

Also, since β1(t, x0, x1) ∈ Gk,n, we know that

(I − 2β1(t, x0, x1)) (I − 2β1(t, x0, x1)) = I,

and thus

e
−adΩ3

0(t)e
tadΩ2

1(t)e
adΩ2

0(t) = e
tadΩ2

0(t).

Consequently,

e
−adΩ3

0(t)e
tadΩ2

1(t) = e
(t−1)adΩ2

0(t),

and multiplying both sides of this identity by e
tadΩ3

0(t), the result follows.

We are now in conditions to state the following result which contains an
alternative way of defining the geometric cubic polynomial β3 in Gk,n. The
importance of this result lies in the fact that this alternative expression will
be particularly useful in the computation of the derivatives of the cubic poly-
nomial at the endpoint (t = 1).

Theorem 4.5. Let t ∈ [0, 1] 7→ β3(t) be the geometric cubic polynomial in
Gk,n defined in Definition 4.1. Define another curve t ∈ [0, 1] 7→ γ(t) in Gk,n,
by

γ(t) = e
(t−1) adΩ3

0(t)e
(t−1) adΩ2

1(t)e
(t−1) adΩ1

2x3, (49)
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where Ω3
0, Ω2

1 and Ω1
2 are as defined at the beginning of Subsection 4.2. Then,

β3(t) = γ(t), t ∈ [0, 1].

Proof : Taking into consideration the relation (39) and applying the identities
(i), (ii) and (iii) of Lemma 4.4, we may write

γ(t) = e
(t−1)adΩ3

0(t)e
(t−1)adΩ2

1(t)e
(t−1)adΩ1

2x3

(39)
= e

(t−1)adΩ3
0(t)e

(t−1)adΩ2
1(t)e

(t−1)adΩ1
2e

adΩ1
2e

adΩ1
1e

adΩ1
0x0

= e
(t−1)adΩ3

0(t)e
(t−1)adΩ2

1(t)e
tadΩ1

2e
adΩ1

1e
adΩ1

0x0

(ii)
= e

(t−1)adΩ3
0(t)e

tadΩ2
1(t)e

(t−1)adΩ1
1e

adΩ1
1e

adΩ1
0x0

(iii)
= e

tadΩ3
0(t)e

(t−1)adΩ2
0(t)e

tadΩ1
1e

adΩ1
0x0

(i)
= e

tadΩ3
0(t)e

tadΩ2
0(t)e

(t−1)adΩ1
0e

adΩ1
0x0

= e
tadΩ3

0(t)e
tadΩ2

0(t)e
tadΩ1

0x0

= β3(t).

We now state some results about derivatives of the Ωi
j that will be necessary

to fully understand other important developments.

Lemma 4.6. For j = 2, 3, let i = 3− j. Then, the following holds.

d

d t

(
e2Ωj

0(t)
)∣∣∣∣

t=0

= 2χ
0

(
Ω̇j

0(0)
)

e2Ω1
0, where χ

0
:=

∫ 1

0

e
uad2Ω1

0du. (50)

d

d t

(
e2Ωj

i (t)
)∣∣∣∣

t=1

= 2χ
1

(
Ω̇j
i (1)

)
e2Ω1

2, where χ
1

:=

∫ 1

0

e
uad2Ω1

2du. (51)

Proof : From Lemma 2.2, we have that, for j = 2, 3,

d

d t

(
e2Ωj

0(t)
)

=

∫ 1

0

e
uad

2Ω
j
0(t)(2Ω̇j

0(t))du e2Ωj
0(t).
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Then, evaluating at t = 0, and since Ωj
0(0) = Ω1

0 for j = 2, 3, we obtain

d

d t

(
e2Ωj

0(t)
)∣∣∣∣

t=0

= 2

∫ 1

0

e
uad2Ω1

0(Ω̇j
0(0))du e2Ω1

0

= 2

∫ 1

0

e
uad2Ω1

0du (Ω̇j
0(0)) e2Ω1

0

= 2χ
0

(
Ω̇j

0(0)
)

e2Ω1
0.

The second identity can be proved with similar computations, just taking
into account Lemma 2.2, the fact that Ωj

i (1) = Ω1
2 for j = 2, 3 and i = 3− j,

together with

∆L
2Ωj

i (t)
(t)
∣∣∣
t=1

= 2χ
1

(
Ω̇j
i (1)

)
. (52)

Remark 4.2. Note that χ
0

and χ
1

are, alternatively, defined by

χ
0

:= f(ad2Ω1
0
), χ

1
:= f(ad2Ω1

2
), (53)

where f and g are as in (3) and (4), respectively.

Lemma 4.7. For j = 2, 3, let i = 3 − j. Then, from Lemma 2.2 replacing
X(t) by 2(1− t)Ωj

0(t) and 2tΩj
i (t), respectively, we have

∆L
2(1−t)Ωj

0(t)
(t)
∣∣∣
t=0

= −2Ω1
0 + 2χ

0

(
Ω̇j

0(0)
)
,

∆L
2tΩj

i (t)
(t)
∣∣∣
t=1

= 2Ω1
2 + 2χ

1

(
Ω̇j
i (1)

)
.

(54)
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Proof : The first identity follows easily from the following computations, when
j = 2, 3.

∆L
2(1−t)Ωj

0(t)
(t)
∣∣∣
t=0

=

(∫ 1

0

e
2(1−t)uad

Ω
j
0(t)(−2Ωj

0(t) + 2(1− t)Ω̇j
0(t))du

)∣∣∣∣
t=0

=

(∫ 1

0

e
2(1−t)uad

Ω
j
0(t)(−2Ωj

0(t))du

)∣∣∣∣
t=0

+

(∫ 1

0

e
2(1−t)uad

Ω
j
0(t)(2(1− t)Ω̇j

0(t))du

)∣∣∣∣
t=0

= −
∫ 1

0

e
2uad

Ω
j
0(0)(2Ωj

0(0))du+

∫ 1

0

e
2uad

Ω
j
0(0)(2Ω̇j

0(0))du

= −
∫ 1

0

e
uad

2Ω1
0 (2Ω1

0)du+ 2

∫ 1

0

e
uad

2Ω1
0du(Ω̇j

0(0))

= −2Ω1
0 + 2χ0

(
Ω̇j

0(0)
)
.

The proof of the second identity can be achieved with analogous com-
putations, and taking in consideration that, for j = 2, 3 and i = 3 − j,
Ωj
i (1) = Ω1

2.

Remark 4.3. In what follows, we must guarantee that the operators χ
0

and
χ

1
have inverse. From the definition of f and g in (3) and (4) respectively,

we know that f(A)g(eA) = I, for ‖eA − I‖ < 1. So, if this restriction holds
for A = ad2Ω1

0
and for A = ad2Ω1

2
, taking into account the definition of χ

0
and

χ
1

in Remark (4.2), we immediately obtain

χ−1
0

:= g(e
ad2Ω1

0) and χ−1
1

:= g(e
ad2Ω1

2). (55)

Lemma 4.8. For j = 2, 3, let i = 3− j. Then

Ω̇j
0(0) = (j − 1)χ−1

0

(
Ω1

1 − Ω1
0

)
, (56)

Ω̇j
i (1) = (j − 1)χ−1

1

(
Ω1

2 − e2Ω1
2Ω1

1e−2Ω1
2

)
. (57)

Proof : We first show that the identity (56) holds for j = 2. Differentiating
with respect to t, both sides of the identity (i) of Lemma 4.3, we have that

d

d t

(
e2Ω2

0(t)
)

= 2Ω1
1e

2Ω2
0(t) + e2tΩ1

1(−2Ω1
0)e

2(1−t)Ω1
0,
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and, since Ω2
0(0) = Ω1

0, we have

d

d t

(
e2Ω2

0(t)
)∣∣∣∣

t=0

= 2Ω1
1e

2Ω2
0(0) − 2Ω1

0e
2Ω1

0 = 2(Ω1
1 − Ω1

0)e
2Ω1

0. (58)

But, from Lemma 4.6, considering j = 2, we also have that

d

d t

(
e2Ω2

0(t)
)∣∣∣∣

t=0

= 2χ
0

(
Ω̇2

0(0)
)

e2Ω1
0, (59)

with χ
0

=

∫ 1

0

e
uad2Ω1

0du.

Then, comparing the expressions (58) and (59), we get

2χ
0

(
Ω̇2

0(0)
)

e2Ω1
0 = 2(Ω1

1 − Ω1
0)e

2Ω1
0 ⇔ Ω̇2

0(0) = χ−1
0

(
Ω1

1 − Ω1
0

)
, (60)

which proves the result, for j = 2.
Now, we show that the identity (56) also holds for j = 3. Similarly, differen-

tiating with respect to t, both sides of the identity (iii) of Lemma 4.3, and
evaluating at t = 0, it yields that

d

d t

(
e2Ω3

0(t)
)∣∣∣∣

t=0

=
(

∆L
2tΩ2

1(t)
(t)e2Ω3

0(t) + e2tΩ2
1(t)∆L

2(1−t)Ω2
0(t)

(t)e2(1−t)Ω2
0(t)
)∣∣∣

t=0

= ∆L
2tΩ2

1(t)
(t)
∣∣∣
t=0

e2Ω3
0(0) + ∆L

2(1−t)Ω2
0(t)

(t)
∣∣∣
t=0

e2Ω2
0(0).

(61)

Since Ω2
1(0) = Ω1

1, by Lemma 2.4, we have that ∆L
2tΩ2

1(t)
(t)
∣∣∣
t=0

= 2Ω2
1(0) =

2Ω1
1. Also, by Lemma 4.7 and, taking into account the relation (60), we have

∆L
2(1−t)Ω2

0(t)
(t)
∣∣∣
t=0

= −2Ω1
0 + 2χ

0

(
Ω̇2

0(0)
)

= −2Ω1
0 + 2χ

0
χ−1

0

(
Ω1

1 − Ω1
0

)
= −4Ω1

0 + 2Ω1
1.

Consequently, since Ω2
0(0) = Ω3

0(0) = Ω1
0, the relation (61) can be rewritten

as
d

d t

(
e2Ω3

0(t)
)∣∣∣∣

t=0

= 2Ω1
1e

2Ω1
0 +
(
−4Ω1

0 + 2Ω1
1

)
e2Ω1

0

= 4
(
Ω1

1 − Ω1
0

)
e2Ω1

0.

(62)

Therefore, from (62) and Lemma 4.6, with j = 3, we get

2χ
0

(
Ω̇3

0(0)
)

e2Ω1
0 = 4

(
Ω1

1 − Ω1
0

)
e2Ω1

0 ⇔ Ω̇3
0(0) = 2χ−1

0

(
Ω1

1 − Ω1
0

)
, (63)
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which also proves the result, for j = 3.
The proof of the second identity uses identical arguments to those applied

to show the first, so we only present a sketch of the proof, starting with
j = 2. For that, differentiate, with respect to t, both sides of the identity (ii)
of Lemma 4.3 and evaluate them at t = 1. The result is then achieved, with

a few calculations, considering Lemma 4.6, the identity ∆L
2(1−t)Ω1

1
(t)
∣∣∣
t=1

=

−2Ω1
1, the fact that Ω2

1(1) = Ω1
2 and the relation (52), with j = 2 and i = 1.

For j = 3, differentiate with respect to t, both sides of the identity (iii) of
Lemma 4.3 and evaluate them at t = 1. Then, with some computations,
taking into account Lemma 4.6 and Lemma 4.7, the relation (52), with j = 3
and i = 0, the fact that Ω3

0(1) = Ω2
1(1) = Ω1

2 and that, by Lemma 2.4, we

have ∆L
2(1−t)Ω2

0(t)
(t)
∣∣∣
t=1

= −2Ω2
0(1) = −2Ω1

1, it holds that

Ω̇3
0(1) = Ω1

2 + Ω̇2
1(1)− χ−1

1

(
e2Ω1

2Ω1
1e
−2Ω1

2

)
.

Therefore, making a few calculations, the result is obtained replacing Ω̇2
1(1)

by the identity (57), previously proved for j = 2, and attending to the fact
that χ

1

(
Ω1

2

)
= Ω1

2.

We are now in conditions to prove the following result and its corollaries.

Theorem 4.9. The polynomial curve t ∈ [0, 1] 7→ β3(t) in Gk,n defined in
(37) satisfies the boundary conditions β3(0) = x0, β3(1) = x3 and

β̇3(t) = [Ω(t), β3(t)], (64)

with Ω(t) = ∆L
tΩ3

0(t)
(t) + e

tadΩ3
0(t)(∆L

tΩ2
0(t)

(t)) + e
tadΩ3

0(t)e
tadΩ2

0(t)Ω1
0 ∈ soβ3(t)(n).

Proof : We have already pointed out in Remark 4.1 that β3(0) = x0 and
β3(1) = x3. Differentiating (37) with respect to t, and since etΩ

1
0Ω1

0e
−tΩ1

0 =

e
tadΩ1

0Ω1
0 = Ω1

0, we obtain

β̇3(t) = ∆L
tΩ3

0(t)
(t)β3(t) + etΩ

3
0(t)∆L

tΩ2
0(t)

(t)e−tΩ
3
0(t)β3(t)

+
[
etΩ

3
0(t)etΩ

2
0(t)Ω1

0e
−tΩ2

0(t)e−tΩ
3
0(t), β3(t)

]
+β3(t)e

tΩ3
0(t)etΩ

2
0(t)∆L

−tΩ2
0(t)

(t)e−tΩ
2
0(t)e−tΩ

3
0(t)

+β3(t)e
tΩ3

0(t)∆L
−tΩ3

0(t)
(t)e−tΩ

3
0(t).

(65)
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Using Lemma 2.3, with A(t) replaced by tΩj
0(t), for j = 2, 3, the fourth and

fifth terms in (65) can be rewritten, respectively, as

−β3(t)e
tΩ3

0(t)∆L
tΩ2

0(t)(t)e
−tΩ3

0(t) and − β3(t)∆
L
tΩ3

0(t)(t).

Then, we get

β̇3(t) =
[
∆L
tΩ3

0(t)
(t), β3(t)

]
+
[
etΩ

3
0(t)∆L

tΩ2
0(t)

(t)e−tΩ
3
0(t), β3(t)

]
+
[
etΩ

3
0(t)etΩ

2
0(t)Ω1

0e
−tΩ2

0(t)e−tΩ
3
0(t), β3(t)

]
= [Ω(t), β3(t)] ,

with

Ω(t) = ∆L
tΩ3

0(t)
(t) + etΩ

3
0(t)∆L

tΩ2
0(t)

(t)e−tΩ
3
0(t) + etΩ

3
0(t)etΩ

2
0(t)Ω1

0e
−tΩ2

0(t)e−tΩ
3
0(t)

= ∆L
tΩ3

0(t)
(t) + e

tadΩ3
0(t)(∆L

tΩ2
0(t)

(t)) + e
tadΩ3

0(t)e
tadΩ2

0(t)Ω1
0 ∈ soβ3(t)(n),

which proves the result.

Corollary 4.10. Let t ∈ [0, 1] 7→ β3(t) be the geometric cubic polynomial in
Gk,n defined in (37) and Ω(t) ∈ soβ3(t)(n) as defined in Theorem 4.9. Then,

Dβ̇3

dt
(t) =

[
Ω̇(t), β3(t)

]
.

Proof : Differentiating the relation (64) of Theorem 4.9 with respect to t, we
get

β̈3(t) = [Ω̇(t), β3(t)] + [Ω(t), β̇3(t)]

= [Ω̇(t), β3(t)] + [Ω(t), [Ω(t), β3(t)]].

By Lemma 3.3, we have that [Ω(t), [Ω(t), β3(t)]] ∈ (Tβ3(t)Gk,n)
⊥. Therefore,

since [Ω̇(t), β3(t)] ∈ Tβ3(t)Gk,n, we obtain that

Dβ̇3

dt
(t) =

[
Ω̇(t), β3(t)

]
.

Corollary 4.11. Let t ∈ [0, 1] 7→ β3(t) be the geometric cubic polynomial in
Gk,n defined in (37) and Ω(t) ∈ soβ3(t)(n) as defined in Theorem 4.9. Then,

β̇3(0) = [3Ω1
0, x0] and

Dβ̇3

dt
(0) = 6

[
χ−1

0

(
Ω1

1 − Ω1
0

)
, x0

]
.
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Proof : From Theorem 4.9, we have that β3(0) = x0 and that

β̇3(0) = [Ω(0), β3(0)],

with Ω(0) =
(

∆L
tΩ3

0(t)
(t)
)∣∣∣

t=0
+
(

∆L
tΩ2

0(t)
(t)
)∣∣∣

t=0
+ Ω1

0 ∈ soβ3(0)(n). But, since

Ω2
0(0) = Ω3

0(0) = Ω1
0, from Lemma 2.4, we obtain that Ω(0) = 3Ω1

0. Therefore,
β̇3(0) = [3Ω1

0, x0]. From Corollary 4.10, and since β3(0) = x0, we know that

Dβ̇3

dt
(0) =

[
Ω̇(0), x0

]
. (66)

In order to compute Ω̇(0), let us consider ω1(t) := e
tadΩ3

0(t)(∆L
tΩ2

0(t)
(t)) and

ω2(t) := e
tadΩ3

0(t)e
tadΩ2

0(t)Ω1
0. Then, Ω(t) = ∆L

tΩ3
0(t)

(t)+ω1(t)+ω2(t) ∈ soβ3(t)(n)

and, differentiating with respect to t, we have that

Ω̇(t) = ∆̇L
tΩ3

0(t)(t) + ω̇1(t) + ω̇2(t),

with

ω̇1(t) = ∆L
tΩ3

0(t)
(t)ω1(t) + e

tadΩ3
0(t)(∆̇L

tΩ2
0(t)

(t)) + e
tadΩ3

0(t)

(
∆L
tΩ2

0(t)
(t)∆L

−tΩ3
0(t)

(t)
)

=
[
∆L
tΩ3

0(t)
(t), ω1(t)

]
+ e

tadΩ3
0(t)(∆̇L

tΩ2
0(t)

(t))

and

ω̇2(t) = ∆L
tΩ3

0(t)
(t)ω2(t) + e

tadΩ3
0(t)

(
∆L
tΩ2

0(t)
(t)e

tadΩ2
0(t)Ω1

0

)
+e

tadΩ3
0(t)e

tadΩ2
0(t)

(
Ω1

0∆
L
−tΩ2

0(t)
(t)
)

+ e
tadΩ3

0(t)

(
e
tadΩ2

0(t)(Ω1
0)∆

L
−tΩ3

0(t)
(t)

)
=

[
∆L
tΩ3

0(t)
(t) + e

tadΩ3
0(t)

(
∆L
tΩ2

0(t)
(t)
)
, ω2(t)

]
.

Therefore, evaluating at t = 0, and according with Lemma 2.4 and Lemma
2.5, we get

Ω̇(0) = 2Ω̇3
0(0) + ω̇1(0) + ω̇2(0),

with
ω̇1(0) = Ω3

0(0)Ω2
0(0) + 2Ω̇2

0(0)− Ω2
0(0)Ω3

0(0)

=
[
Ω3

0(0),Ω2
0(0)

]
+ 2Ω̇2

0(0)
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and
ω̇2(0) = Ω3

0(0)Ω1
0 + Ω2

0(0)Ω1
0 − Ω1

0Ω
2
0(0)− Ω1

0Ω
3
0(0)

=
[
Ω3

0(0) + Ω2
0(0),Ω1

0

]
.

Due to the fact that Ω2
0(0) = Ω3

0(0) = Ω1
0, it holds that ω̇1(0) = 2Ω̇2

0(0) and
ω̇2(0) = 0. Then, by Lemma 4.8, we can conclude that

Ω̇(0) = 2Ω̇3
0(0) + 2Ω̇2

0(0)
= 6χ−1

0

(
Ω1

1 − Ω1
0

)
.

(67)

Consequently, assuming (67), the relation (66) can be rewritten as

Dβ̇3

dt
(0) = 6

[
χ−1

0

(
Ω1

1 − Ω1
0

)
, x0

]
.

On the next result we derive an expression for the derivative of the geome-
tric cubic polynomial β3, and for the covariant derivative of the velocity vector
field along the curve β3, at the endpoint t = 1. For that, it was fundamental
the use of the alternative expression of β3 established in the Theorem 4.5.

Theorem 4.12. Let t ∈ [0, 1] 7→ β3(t) be the geometric cubic polynomial in
Gk,n given by the alternative formula present in Theorem 4.5. Then,

β̇3(1) = [3Ω1
2, x3] and

Dβ̇3

dt
(1) = 6

[
χ−1

1

(
Ω1

2 − e2Ω1
2Ω1

1e−2Ω1
2

)
, x3

]
. (68)

Proof : The alternative formula for β3 present in Theorem 4.5 is

β3(t) = e
(t−1)adΩ3

0(t)e
(t−1)adΩ2

1(t)e
(t−1)adΩ1

2x3. (69)

Making a few calculations similar to those that where done in the proof of
the Theorem 4.9, it is possible to show that, differentiating with respect to t
the expression (69), we obtain

β̇3(t) = [Ω(t), β3(t)], (70)

with

Ω(t) = ∆L
(t−1)Ω3

0(t)(t) + e
(t−1)adΩ3

0(t)(∆L
(t−1)Ω2

1(t)(t)) + e
(t−1)adΩ3

0(t)e
(t−1)adΩ2

1(t)Ω1
2,

which belongs to soβ3(t)(n).
The ingredients to prove the previous identity (70) are, essentially, the

formula for the derivative of the exponential map given by Lemma 2.2 and
the relation in Lemma 2.3.
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Therefore, to obtain the first identity in (68), observe that, for j = 2, 3 and

i = 3 − j, we have that e
(t−1)ad

Ω
j
i
(t)

∣∣∣∣
t=1

= I. Furthermore, consider Lemma

2.4 with k = 1, and Remark 4.1, namely, the fact that Ω2
1(1) = Ω3

0(1) = Ω1
2.

All the rest are simple computations.
In order to prove the second identity in (68), notice that differentiating

(70) with respect to t, using similar arguments to those in the proof of the
Corollary 4.10, and taking into consideration the Lemma 2.2 and Lemma 2.3,
with a few calculations, we get that

Dβ̇3

dt
(t) =

[
Ω̇(t), β3(t)

]
,

with

Ω̇(t) = ∆̇L
(t−1)Ω3

0(t)
(t) +

[
∆L

(t−1)Ω3
0(t)

(t), ω1(t)
]

+ e
(t−1)adΩ3

0(t)

(
∆̇L

(t−1)Ω2
1(t)

(t)
)

+

[
∆L

(t−1)Ω3
0(t)

(t) + e
(t−1)adΩ3

0(t)

(
∆L

(t−1)Ω2
1(t)

(t)
)
, ω2(t)

]
,

(71)
where

ω1(t) = e
(t−1)adΩ3

0(t)(∆L
(t−1)Ω2

1(t)(t))

and ω2(t) = e
(t−1)adΩ3

0(t)e
(t−1)adΩ2

1(t)Ω1
2.

Consequently, evaluating at t = 1 and, essentially, due to Lemma 2.5,
Lemma 4.8, Lemma 2.4, with k = 1, and Remark 4.1, we obtain

Dβ̇3

dt
(1) = 6

[
χ−1

1

(
Ω1

2 − e2Ω1
2Ω1

1e
−2Ω1

2

)
, x3

]
,

as required.

4.2.1. Obtaining the Control Points from the Boundary Conditions. In this
subsection we will show how to get the control points from the boundary
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conditions in order to implement the De Casteljau algorithm to solve interpo-
lation data problems that arise from different areas involving the Grassmann
manifold.

• Case 1 - The Boundary Conditions are of Type (27)

When M = Gk,n, the boundary conditions (27) in Problem 4.1 are:

β3(0) = x0, β3(1) = x3, β̇3(0) = [V0, x0], β̇3(1) = [V3, x3], (72)

where x0, x3 ∈ Gk,n, V0 ∈ sox0
(n), and V3 ∈ sox3

(n).
According to the implementation of the algorithm, in order to generate the

cubic polynomial that satisfies (72), we must be able to choose the control
points x1 and x2 from those boundary conditions. The following theorem
answers this question.

Theorem 4.13. The control points x1 and x2, used in the De Casteljau algo-
rithm to generate the geometric cubic polynomial that satisfies the boundary
conditions (72), are given by:

x1 =
1

2

(
I − e

2
3V0(I − 2x0)

)
, x2 =

1

2

(
I − (I − 2x3)e

2
3V3

)
. (73)

Proof : From Corollary 4.11 we know that β̇3(0) = [3Ω1
0, x0], with Ω1

0 =
1

2
log((I − 2x1)(I − 2x0)) ∈ sox0

(n). Then, considering the expression of

β̇3(0) in (72) and the property 5. in Lemma 3.1, it follows that

Ω1
0 =

1

3
V0. (74)

According with the definition of Ω1
0, we have e2Ω1

0 = (I−2x1)(I−2x0), which
is equivalent to I − 2x1 = e2Ω1

0(I − 2x0). Therefore, solving the last equation

for x1, and using (74), we obtain x1 =
1

2

(
I − e

2
3V0(I − 2x0)

)
. Similarly, to

obtain the control point x2 notice that, as proved in Theorem 4.12, β̇3(1) =
[3Ω1

2, x3]. On the other hand, from (72), β̇3(1) = [V3, x3]. So, it follows from
the property 5. in Lemma 3.1 that V3 = 3Ω1

2, that is,

Ω1
2 =

1

3
V3. (75)
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From the definition of Ω1
2, we have e2Ω1

2 = (I−2x3)(I−2x2). Then, solving the

last equality for x2, and using (75), we obtain x2 = (I − (I − 2x3)e
2
3V3)/2.

• Case 2 - The Boundary Conditions are of Type (28)

When M = Gk,n, the boundary conditions (28) in Problem 4.1 are:

β3(0) = x0, β3(1) = x3, β̇3(0) = [V0, x0],
Dβ̇3

dt
(0) = [W0, x0], (76)

where x0, x3 ∈ Gk,n, and V0, W0 ∈ sox0
(n).

Theorem 4.14. The control points x1 and x2, used in the De Casteljau algo-
rithm to generate the geometric cubic polynomial that satisfies the boundary
conditions (76), are given by:

x1 =
1

2

(
I − e

2
3V0(I − 2x0)

)
, x2 =

1

2

(
I − e

1
3χ0

(W0)+ 2
3V0 e

2
3V0(I − 2x0)

)
. (77)

Proof : It is enough to obtain the control point x2. Taking into account the

expressions for
Dβ̇3

dt
(0) in (76) and in the Corollary 4.11, it follows from

property 5. in Lemma 3.1 that 6χ−1
0

(
Ω1

1 − Ω1
0

)
= W0. Thus, also using (74),

we obtain

Ω1
1 =

1

6
χ

0
(W0) +

1

3
V0. (78)

On the other hand, from the definition of Ω1
1, e2Ω1

1 = (I − 2x2)(I − 2x1). So,

solving for x2, one has x2 =
1

2

(
I − e2Ω1

1(I − 2x1)
)
. Now, using the expression

of Ω1
1 given by (78) and the expression of x1 in terms of x0 and V0, we obtain

x2 = (I − e
1
3χ0

(W0)+ 2
3V0 e

2
3V0(I − 2x0))/2.

The Case 1, corresponding to the Hermite boundary conditions, can be con-
sidered simpler than the Case 2, since it doesn’t involves the computation
of covariant derivatives. However, the Case 2, where the data is not sym-
metrically specified, has computational advantages over the Case 1, namely
whenever the goal is to generated cubic splines, i.e., piecing together several
geometric cubic polynomials so that the overall curve is C2-smooth.

As a consequence of the last two theorems, we can summarise the relation-
ship between the boundary conditions of types (27) and (28) in the following
result.
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Corollary 4.15.

W0 = 3χ−1
0

(
log
(

(I − 2x3)e
2
3V3 e

2
3V0(I − 2x0)

)
− 2

3
V0

)
, (79)

and

V3 =
3

2
log
(

(I − 2x3)e
1
3χ0

(W0)+ 2
3V0 (I − 2x0)e−

2
3V0

)
, (80)

where χ
0

= f(ad 2
3V0

), χ−1
0

= g(e
ad 2

3V0), with f and g as defined in (3) and

(4).

5. Generating Cubic Splines in Gk,n

We now explain how to solve the interpolation Problem 4.1 for the boun-
dary conditions of type (28). The objective is to generate a geometric cu-
bic spline, i.e., a C2-smooth curve that satisfies the interpolation and the
boundary conditions and such that when restricted to each subinterval is a
geometric cubic polynomial. The crucial procedure is the generation of the
first cubic polynomial, denoted by γ1, joining p0 to p1 and having prescribed
initial velocity [V0, p0] and initial covariant acceleration [W0, p0]. Although
this has already been described in the previous section, we summarise the
results here for the sake of completeness. We also adapt the notations so that
the curve is given in terms of the data. The interpolation curve γ of Problem
4.1 may be generated by piecing together cubic polynomials defined on each
subinterval [ti, ti+1], i = 0, 1, . . . , `−1. Without loss of generality, we assume
that all spline segments are parameterised in the [0, 1] time interval.

5.1. Generating the First Spline Segment. Apply the De Casteljau
algorithm to obtain the first spline segment

γ1(t) = e
tadΩ3

0(t)e
tadΩ2

0(t)e
tadΩ1

0p0, (81)
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where

Ω1
0 =

1

2
log((I − 2x1)(I − 2p0));

Ω1
1 =

1

2
log((I − 2x2)(I − 2x1));

Ω1
2 =

1

2
log((I − 2p1)(I − 2x2));

Ω2
0(t) =

1

2
log((I − 2e

tadΩ1
1x1)(I − 2e

tadΩ1
0p0));

Ω2
1(t) =

1

2
log((I − 2e

tadΩ1
2x2)(I − 2e

tadΩ1
1x1));

Ω3
0(t) =

1

2
log((I − 2e

tadΩ2
1(t)e

tadΩ1
1x1)(I − 2e

tadΩ2
0
(t)

e
tadΩ1

0p0)),

and the control points are given by

x1 =
1

2
(I − e

2
3V0(I − 2p0));

x2 =
1

2
(I − e

1
3χ0(W0)+ 2

3V0 e
2
3V0(I − 2p0)).

5.2. Generating Consecutive Spline Segments. After having generated
the first spline segment, one continues in a similar way for the second spline
segment. Since the cubic spline is required to be C2-smooth, the initial ve-
locity and initial covariant acceleration for this second spline segment must
equal the end velocity and the end covariant acceleration of the previous
spline segment, which are given by the formulas in Theorem 4.12. The other
` − 2 consecutive segments are generated similarly. The solution of Prob-
lem 4.1 is the cubic spline curve resulting from the concatenation of the `
consecutive segments.

6. Conclusion
We have presented all the necessary details to implement the De Casteljau

algorithm on the Grassmann manifold. This algorithm is a geometric con-
struction, based on successive geodesic interpolation, that generates cubic
polynomials and cubic splines. For practical applications, one still needs
to rely on computing stable matrix exponentials and matrix logarithms of
structured matrices, but this is out of the scope of our work. The problem
of computing matrix functions is of growing importance, and efficient nu-
merical methods to solve them have been developed along the years (see, for
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instance, [7]), and are expanding at a fast rate.
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