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THERE ARE NO NONTRIVIAL TWO-SIDED

MULTIPLICATIVE (GENERALIZED)-SKEW DERIVATIONS

IN PRIME RINGS

JOSE BROX

Abstract: As originally de�ned by Mozumder and Dhara ([15]), multiplicative
(generalized)-skew derivations must satisfy two identities. In this short note we
show that, as a consequence of the simultaneous satisfaction of both identities, a
multiplicative (generalized)-skew derivation of a prime ring is either a multiplica-
tive (generalized) derivation (i.e., not skew), or a generalized skew derivation (i.e.,
additive). Therefore only one of the identities should be taken in the de�nition of
multiplicative (generalized)-skew derivations in order to get a new class of deriva-
tions in prime rings.

Keywords: prime rings, derivations, generalized derivations, skew derivations.
Math. Subject Classification (2010): 16N60, 16W25, 16W20.

1. Introduction

The fundamental concept of derivation of an associative ring R, an additive
map d : R→ R such that d(xy) = d(x)y + xd(y), has been progressively gen-
eralized in recent literature: by a twisting by an automorphism or a secondary
derivation of the ring, by dropping the additivity assumption, by combining
both previous ideas, and by repeating the process on the secondary deriva-
tion when present ([4],[2],[13],[5],[7],[15]). One of the main purposes of these
generalizations is to extend to more sophisticated maps the classic results on
derivations in the tradition of Herstein's theory of rings ([16]), in which strong
knowledge is gained about the map or the ring through some special (and a
priori weaker) property of the map. The main focus is on prime and semiprime
rings, or on rings with well-behaved idempotents, which provide a context rich
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enough for the theory to be satisfactorily developed. For example one tries
to extend to a more general setting Posner's second theorem for derivations
of prime rings ([17, Theorem 2]), which states that a prime ring R is com-
mutative when it has a derivation d 6= 0 such that xd(x) − d(x)x is central
for every x ∈ R. These e�orts have generated literature in abundance (e.g.
[1],[3],[6],[8],[9],[10],[12],[14],[18]).

De�nitions 1.1. Let R be a ring.

a) A skew derivation ([11, page 170]) is an additive map d : R → R together
with an automorphism α : R→ R such that d(xy) = d(x)y + α(x)d(y).

b) A multiplicative derivation ([4]) is a map d : R → R, not necessarily
additive, such that d(xy) = d(x)y + xd(y).

c) A multiplicative skew derivation is a not necessarily additive map d : R→
R together with an automorphism α : R → R such that d(xy) = d(x)y +
α(x)d(y).

d) A generalized derivation ([2]) is an additive map F : R→ R together with
a derivation d : R→ R such that F (xy) = F (x)y + xd(y).

e) A generalized skew derivation ([13]) is an additive map F : R→ R together
with an automorphism α : R→ R and a skew derivation d : R→ R for α
such that F (xy) = F (x)y + α(x)d(y).

f) A multiplicative generalized derivation ([5]) is a map F : R → R, not
necessarily additive, together with a derivation d : R → R such that
F (xy) = F (x)y + xd(y).

g) A multiplicative (generalized) derivation ([7]) is a map F : R → R, not
necessarily additive, together with a map (not necessarily additive nor a
derivation) d : R→ R such that F (xy) = F (x)y + xd(y).

As de�ned in [15], a multiplicative (generalized)-skew derivation (M(G)S
derivation) is a not necessarily additive map F : R → R, together with a
not necessarily additive map d : R → R and an automorphism α : R → R
such that

F (xy) =F (x)α(y) + xd(y) (Identity 1)

F (xy) =F (x)y + α(x)d(y) (Identity 2)

Since in this case we get two di�erent identities in the de�nition, accordingly we
will call these two-sided M(G)S derivations. We will say that a map is a type
1 M(G)S derivation (resp. type 2 M(G)S derivation) when it satis�es Identity
1 (resp. Identity 2).
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2.Main theorem

In what follows we show that in prime rings there are no nontrivial two-
sided M(G)S derivations, since either they are not skew or they actually are
generalized skew derivations.

Lemma 2.1. If R is a semiprime ring and F is a M(G)S derivation of type 1
(resp. type 2) with map d : R→ R and automorphism α : R→ R then d is in
fact a multiplicative skew derivation with α as automorphism (resp. satis�es
d(xy) = d(x)α(y) + xd(y)).

Proof : For type 1 this is [18, Lemma 2.1]. For type 2 the same proof works.

Theorem 2.2. Let R be a prime ring and F be a two-sided M(G)S derivation
with map d : R→ R and automorphism α : R→ R. Then either

i) α = idR, so F is a multiplicative (generalized) derivation, or
ii) F and d are additive, so F is a generalized skew derivation.

Proof : From Identities 1 and 2, F (x)y+α(x)d(y) = F (xy) = F (x)α(y)+xd(y)
for every x, y ∈ R, so

F (x)(y − α(y)) = (x− α(x))d(y). (1)

Linearizing in x we get, for every x, y, z ∈ R,
F (x+ y)(z − α(z)) = (x+ y − α(x+ y))d(z) = (x+ y − α(x)− α(y))d(z) =
= (x− α(x))d(z) + (y − α(y))d(z) = F (x)(z − α(z)) + F (y)(z − α(z))
by (1). So (F (x+ y)− F (x)− F (y))(z − α(z)) = 0.
Put G(x, y) := F (x+ y)− F (x)− F (y). We have, for every x, y, z ∈ R,

G(x, y)z = G(x, y)α(z). (2)

Therefore, for every w ∈ R,
G(x, y)wz = G(x, y)α(wz) = (G(x, y)α(w))α(z) = (G(x, y)w)α(z)

by (2), hence G(x, y)w(z − α(z)) = 0 for every x, y, z, w ∈ R. Since R is
prime, either α(z) = z for every z ∈ R or G(x, y) = 0 for every x, y ∈ R.
In the �rst case α = idR and F is a multiplicative (generalized) derivation.
In the second case we get α 6= idR and F (x + y) = F (x) + F (y) for every
x, y ∈ R, so F is additive. Now, by Lemma 2.1 above d is another M(G)S
derivation associated to α 6= idR, so analogously d is additive, whence it is a
skew derivation and F is a generalized skew derivation.
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