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CURVATURE ADAPTED SUBMANIFOLDS
OF BI-INVARIANT LIE GROUPS
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Abstract: We study submanifolds of arbitrary codimension in a Lie group G
equipped with a bi-invariant metric. In particular, we show that, if the normal
bundle of M ⊂ G is abelian, then the normal Jacobi operator of M equals the
square of its invariant shape operator. This allows us to obtain geometric con-
ditions which are necessary and sufficient for the submanifold M to be curvature
adapted to G.
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1. Introduction and main result
Let M be an m-dimensional submanifold of a Riemannian manifold (Q, g) ≡
Q, N 1M its unit normal bundle, and R the ambient curvature tensor. For
(p, η) ≡ η ∈ N 1

pM , the normal Jacobi operator

K : TpM → TpQ

x 7→ R(η, x)η

of M (with respect to η) measures the curvature of the ambient manifold
along η. On the other hand, denoting by N a unit normal local extension of
η along M , and by ∇ the Levi-Civita connection of Q, the shape operator

A : TpM → TpM

x 7→ π>∇xN

of M (with respect to η) describes the curvature of M as a submanifold of
Q. Here π> denotes orthogonal projection onto TpM . One says that M is
curvature adapted (to Q) if, for every (p, η) ∈ N 1M ,

(1) K leaves TpM invariant, i.e., K(TpM) ⊂ TpM ;
(2) K and A commute, i.e., K ◦ A = A ◦K.
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Note that the first condition is always satisfied for hypersurfaces. Moreover,
since both A and K are self-adjoint with respect to the Riemannian metric,
fulfilment of both (1) and (2) is equivalent to the existence of a common
(orthonormal) basis of eigenvectors.

It is easy to see that every hypersurface in a real space form is curvature
adapted. Indeed, if Πx denotes the 2-plane determined by x ∈ TpM and
η ∈ NpM , then sec(Πx) = −g(K(x), x). However, for other ambient spaces,
the definition is restrictive. For example, if Q is an (m+1)-dimensional non-
flat complex space form with complex structure J , then A and K commute
precisely when−Jη is an eigenvector of A; Also, ifQ is an (m+1)-dimensional
non-flat quaternionic space form with quaternionic structure I, then A and
K commute precisely when the maximal subspace of TpM invariant under I
is also invariant under A; see [1] and [4, Sec. 9.8].

In a symmetric space of non-constant curvature, the situation is more in-
volved, yet many interesting results have been obtained. Among others (see
for example [6, 10, 7]), the most important is arguably Gray’s Theorem [5,
Th. 6.14], which states that any tubular hypersurface about a curvature
adapted submanifold is itself curvature adapted.

Remarkably, Gray’s Theorem has been further generalized to so-called B-
spaces, namely Riemannian manifolds such that, for every geodesic γ, the
Jacobi operator R(γ̇, ·)γ̇ is diagonalizable by a parallel orthonormal frame
field along γ. It turns out that, in such spaces, the classification of the
curvature-adapted submanifolds is fully determined by that of the curvature-
adapted hypersurfaces; see [3, 2].

In this note, we shall examine the case where Q is a Lie group G equipped
with a bi-invariant metric 〈·,·〉. In particular, we shall focus our attention to
the class of submanifolds of G having abelian normal bundle. Recall that the
normal bundle of M ⊂ G is called abelian if, for every p ∈ M , exp(NpM) is
contained in some totally geodesic, flat submanifold of G; see [14].

In order to explain our main result, we first set up some notation. Let
(e1, . . . , em) be an orthonormal basis of eigenvectors of K, that is, a basis of
TpM such that K(ej) = λjej for all j = 1, . . . ,m. Let (E1, . . . , Em) be the
left-invariant extension of (e1, . . . , em).

Theorem 1. Assume that the normal bundle of M ⊂ G is abelian. Then the
following are equivalent:

(i) A and K commute;
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(ii) For all j < h ∈ {1, . . . ,m} such that λj 6= λh,

ej(〈N,Eh〉) = 0 ;

(iii) The left-invariant extension of each eigenspace of K is orthogonal to
N along all the others.

Remark 2. For all j ∈ {1, . . . ,m}, λj = −sec(ej, η) ≤ 0; see Section 2.

Clearly, when M is a hypersurface, the condition on the normal bundle is
automatically fulfilled. Specializing the theorem to that case, we obtain:

Corollary 3. If dimG = m+ 1, then the following are equivalent:

(i) A and K commute;
(ii) The left-invariant extension of each eigenspace of K is tangent to M

along all the others.

The basic fact which allows us to prove Theorem 1 is that the shape oper-
ator of M ⊂ H with respect to η, being H any Lie group with a left-invariant
metric, decomposes as the sum of two terms [12]: an invariant shape oper-
ator, which depends only on η and H; plus a second term, here denoted by
W , which is closely related to the Gauss map of M , see Section 3 for details.
In particular, if the metric is bi-invariant, then the invariant shape operator
commutes with K (Proposition 9), and so, by linearity, commutativity of A
and K reduces to that of W and K.

In fact, if the metric is bi-invariant, then the non-zero eigenvalues of K have
even multiplicities (Corollary 11), which allows us to establish the following
result:

Proposition 4. Assume the normal bundle of M ⊂ G is abelian. Then:

(i) If dimM = 2, then M is curvature adapted;
(ii) If dimM = 3 and K 6= 0 for all η ∈ N 1

pM , then the following are
equivalent:
(a) M is curvature adapted in a neighborhood U of p;
(b) For all η ∈ N 1U , the 0-eigenvector of K is an eigenvector of A.

Eventually, combining the first part of Proposition 4 with Gray’s Theorem,
we get:

Corollary 5. If M ⊂ G is two-dimensional and has abelian normal bundle,
then every tubular hypersurface about M is curvature adapted.
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The paper is organized as follows. In the next section we briefly review
some background material. In Section 3 we introduce the invariant shape op-
erator and examine its properties. In Section 4 we then prove Theorem 1 and
Proposition 4. In Section 5 we study curvature adapted product submani-
folds; in so doing we obtain further examples of curvature adapted subman-
ifolds of bi-invariant Lie groups. We finish off with Appendix A, where – for
illustrative purposes – we give a direct proof that condition (ii) in Theorem
1 holds whenever p is an umbilical point of M .

Notation. Throughout the paper, the indices j, h, i satisfy j, h ∈ {1, . . . ,m}
and i ∈ {1, . . . ,m + n}. Note that we always use Einstein summation con-
vention.

2. Preliminaries
Here we recall some basic results which are used throughout the paper; see
e.g. [9] for further details about metric Lie groups and [8] about Riemannian
geometry.

To begin with, let (Q, g) be a Riemannian manifold and ∇ its Levi-Civita
connection. The curvature endomorphism R : X(Q)3 → X(Q) of (Q, g) is the
(1, 3)-tensor field on Q defined by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z .

(Caution: Milnor in [9] defines the curvature endomorphism as the negative
of ours.)

Note that, if x, y, z are vectors in TpQ, then the value R(x, y)z is indepen-
dent of the extension of x, y, z and thus well-defined. If, in particular, x, y
are orthonormal, then the sectional curvature sec(x, y) of the plane spanned
by x and y may be computed by the formula:

sec(x, y) = g(R(x, y)y, x) .

Next we consider products. Let Q = Q1 × Q2, where Q1 and Q2 are Rie-
mannian manifolds. The tangent space TpQ at p = (p1, p2) naturally splits
as the orthogonal direct sum TpQ = Tp1Q1⊕Tp2Q2. As a consequence, Q has
a canonical Riemannian metric, called the product metric, defined by

〈(x1, x2), (y1, y2)〉 = 〈x1, x2〉+ 〈y1, y2〉 .
Here and in what follows, objects related to Q1 (resp. Q2) are denoted by
adding a “1” (resp. “2”) as a subscript – or as a superscript when the object
in question already has one.
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Assuming that Q is equipped with the product metric, it is well-known
that its Levi-Civita connection decomposes by

∇(Y1,Y2)(X1, X2) =
(
∇1

Y1
X1,∇2

Y2
X2

)
,

and the curvature endomorphism by

R(X, Y )Z = (R1(X1, Y1)Z1, R2(X2, Y2)Z2) , (1)

where on the left hand side of the last equation we have used the notation
X(Q) 3 (V1, V2) = V .

We now turn our attention to Lie groups. Let G be a Lie group equipped
with a left- and right-invariant (i.e., bi-invariant) metric 〈·,·〉, and g its Lie
algebra, that is, the Lie algebra of left-invariant vector fields on G. As cus-
tomary, we identify g with the tangent space TeG of G at the identity e.

Let X, Y, Z ∈ g. Then the Levi-Civita connection is given by

∇XY = −∇YX =
1

2
[X, Y ] , (2)

while the curvature endomorphism by

R(X, Y )Z =
1

4
[Z, [X, Y ]] .

In addition, the following equality holds:

〈[X, Y ], Z〉 = 〈X, [Y, Z]〉 . (3)

Let x, y be two orthonormal vectors in TpG, and X, Y their left-invariant
extensions. The sectional curvature of the the two-plane spanned by x and
y may be computed by

sec(x, y) =
1

4
〈[X, Y ], [X, Y ]〉 .

Note that sec(x, y) ≥ 0, with equality if and only if [X, Y ] = 0.

3. The invariant shape operator
In this section we shall consider the general case of an orientable submanifold
M of a Lie group H equipped with a left-invariant metric 〈·,·〉. Given a unit
normal vector η of M at p, we denote by H its left-invariant extension. The
invariant shape operator of M (with respect to η) is the map

α : TpM → TpM

x 7→ π>∇xH ,
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where, as usual, π> is the orthogonal projection onto TpM .
The significance of the invariant shape operator lies in the fact that it

represents the deviation of the ordinary shape operator from the differential
of the Gauss map of M , in the sense described below.

Let N 1M be the unit normal bundle of M . Let Sm+n−1
e be the unit sphere

inside the Lie algebra h of H. The Gauss map of M is the map

γ : N 1M → Sm+n−1
e

(p, η) 7→ d(Lp−1)(η) .

Let N be a unit normal vector field along M such that Np = η. Consider
the map γ̄ := γ ◦ N . Its differential at p is a linear map TpM → γ(p, η)⊥.
Thus, since d(Lp−1) maps η to γ(p, η) and is an isometry, it follows that

W := π> ◦ d(Lp) ◦ dγ̄

is an endomorphism of TpM .
Clearly, if G = Rm+1, then γ is the classical Gauss map of M , whereas W

its shape operator. In our setting, we shall prove that

Proposition 6 (cf. [13, p. 769]).

∀x ∈ TpM : A(x) = α(x) +W (x) . (4)

Proof : Let (b1, . . . , bm+n) be an orthonormal basis of TpG, such that b1, . . . , bm ∈
TpM and bm+n = η. For each i, let Bi be the left-invariant extension of bi,
so that (B1, . . . , Bm+n = H) is an orthonormal frame for G (and a basis of
TeG).

If q ∈M – writing N i as a shorthand for 〈N,Bi〉 – then

γ̄(q) = d(Lq−1)(Nq) = d(Lq−1)
(
N i(q)Bi|q

)
= N i(q)Bi .

Thus, if x ∈ TpM , then

dγ̄(x) = dN i(x)Bi = x(N i)Bi .

Since

d(Lp)(dγ̄(x)) = x(N i)bi ,

it follows that

π> d(Lp)(dγ̄(x)) = x(N j)bj , (5)



CURVATURE ADAPTED SUBMANIFOLDS OF LIE GROUPS 7

On the other hand,

A(x) = π>∇xN
iBi

= π>
(
N i(p)∇xBi + x(N i)bi

)
.

Since, by construction, N 1(p) = · · · = Nm+n−1(p) = 0 and Nm+n(p) = 1, we
have

A(x) = α(x) + x(N j)bj , (6)

which, together with (5), gives (4).

Remark 7. Proposition 6 shows that W does not depend on the particular
choice of normal vector field N but only on its value at p.

Remark 8. Using equation (6), it is not difficult to see that statement (ii)
in Theorem 1 is nothing but the coordinate expression, with respect to the
frame (E1, . . . , Em), of the condition

For all j < h ∈ {1, . . . ,m} such that λj 6= λh : πj ImW |Λh
= 0 , (7)

where Λj is the eigenspace of K corresponding to the eigenvalue λj, and πj
the orthogonal projection onto Λj. Note that (7) holds if and only if W leaves
the eigenspaces of K invariant.

A useful property of the invariant shape operator, which is crucial in prov-
ing Theorem 1, is contained in the following

Proposition 9. If 〈·,·〉 is bi-invariant and the normal bundle ofM is abelian,
then

(1) K = α ◦ α, and so α and K commute;
(2) K leaves TpM invariant.

The proof will be based on a lemma:

Lemma 10. Under the hypotheses of Proposition 9, α(x) = ∇xH.

Proof : Let ξ be a unit normal vector at p. Let X and Ξ be the left-invariant
extensions of x ∈ TpM and ξ, respectively. Note that, for the normal bundle
of M is abelian, [H,Ξ] = 0. Indeed, since Hp = η and ξ are tangent to
a totally geodesic, flat submanifold, we infer from the Gauss equation that
〈R(η, ξ)ξ, η〉 = 0, which is equivalent to sec(η, ξ) = 0 when η and ξ are
linearly independent.
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Hence, by bi-invariance of the metric, it follows that

〈[X,H], Ξ〉 = 〈X, [H,Ξ]〉 = 0 ,

which implies [X,H]p = ∇xH ∈ TpM , and so α(x) = π>∇xH = ∇xH.

Proof of Proposition 9: Clearly, being the second assertion in the proposition
a direct consequence of the first, we only need to prove the latter.

Let x ∈ TpM . Since K is tensorial, the value K(x) may be computed in
terms of the left-invariant extensions X and H of x and η:

K(x) =
(
∇H∇XH −∇X∇HH −∇[H,X]H

)
p
.

Assume that the metric is bi-invariant. Then, using (2), we have

K(x) = (∇H∇XH)p − 2(∇∇HXH)p
= −(∇∇XHH)p + 2(∇∇XHH)p
= ∇∇xHH .

From here the statement follows directly from Lemma 10.

Corollary 11. Under the hypotheses of Proposition 9, the non-zero eigen-
values of K are negative and have even multiplicities.

Proof : We deduce from equation (3) that the invariant shape operator α of
G is skew-adjoint with respect to the Riemannian inner product. On the
other hand, K is self-adjoint. Thence, if the hypotheses of Proposition 9 are
fulfilled, then K = α◦α, and the statement follows from [11, Theorem 2].

4. Proof of the main result
We are now ready to prove Theorem 1 and Proposition 4 in the Introduction.

Proof of Theorem 1: The equivalence of statements (ii) and (iii) is easily seen,
so we prove (i) ⇔ (ii).

Assume that the normal bundle of M is abelian. It follows from equation
(6) that

A(ej) = α(ej) + ej(〈N,Eh〉)eh .
Hence, by linearity of K, we have:

K(A(ej)) = K(α(ej)) + ej(〈N,Eh〉)K(eh) ,

whereas

A(K(ej)) = α(K(ej)) +K(ej)(〈N,Eh〉)eh .
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Since G is equipped with a bi-invariant metric, K and α commute. It
follows that K(A(ej)) = A(K(ej)) if and only if

ej(〈N,Eh〉)K(eh) = K(ej)(〈N,Eh〉)eh .

Therefore, being (e1, . . . , em) a basis of eigenvectors of K, we conclude that
A and K commute if and only if ej(〈N,Eh〉) = 0 for all j and h such that
λj 6= λh.

It only remains to show that ej(〈N,Eh〉) = eh(〈N,Ej〉) when λj 6= λh. To
this end, identify α, A, and K with their matrices in the basis (ej)

m
j=1. The

first is a skew-symmetric matrix, by equation (3), whereas A is symmetric
and K diagonal. Since α and K commute, the (j, h)-entries of αK and Kα
are equal, and so we must have αjhλh = λjαjh.

Assume λj 6= λh. Then αjh = −αhj = 0 and so, by equation (4),

Ajh = 〈W (ej), eh〉 ,
Ahj = 〈W (eh), ej〉 ,

from which we conclude that 〈W (ej), eh〉 = 〈W (eh), ej〉 by symmetry of A.

Proof of Proposition 4: The first part is an immediate consequence of Corol-
lary 11, so we shall prove the second.

Suppose that dimM = 3 and α 6= 0. It follows by Corollary 11 that K
has one zero eigenvalue, while the remaining two are equal. Without loss
of generality, we may assume that λ3 = 0. Since K 6= 0, it is clear that
λ1 = λ2 6= 0.

Extend η to a unit normal vector field N along M . Then, by continuity,
the multiplicity of λ3 is locally constant, i.e., there exists a neighborhood
U = U(N) of p in M such that the extension of K has two negative definite
eigenvalues in U .

Assume that A and K commute, i.e., they share a common basis of eigen-
vectors. Since the 0-eigenspace of K is one-dimensional, it follows that e3 is
an eigenvector of A. Conversely, if e3 is an eigenvector of A, then its other
two eigenvectors lie in the λ1-eigenspace of K, from which we conclude that
A and K commute.

5. Product manifolds
We have seen that any surface in a bi-invariant three-dimensional Lie group
is curvature adapted. Further examples may be constructed via the next
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result, which states, in full generality, that the property of being curvature
adapted behaves well under Cartesian products:

Proposition 12. Let Q1, Q2 be Riemannian manifolds. If Q1×Q2 is equipped
with the product metric, then the following are equivalent:

(1) M1 ⊂ Q1 and M2 ⊂ Q2 are curvature adapted submanifolds;
(2) M1 ×M2 is curvature adapted to Q1 ×Q2.

Proof : For k = 1, 2, let (pk, ηk) ∈ N 1Mk. By definition of the product metric,
it is clear that η = 2−1/2(η1, η2) is a unit normal vector of M = M1 ×M2 at
(p1, p2). Conversely, every unit normal vector of M may be expressed in this
form.

For xk ∈ TpkMk, we compute:

21/2A(x1, x2) = π>∇(x1,x2)(N1, N2)

=
(
π>1 ∇1

x1
N1, π

>
2 ∇2

x2
N2

)
= (A1(x1), A2(x2)) ,

where, as usual, objects related to Qk are denoted by a sub- or super-scripted
“k”. It follows that (x1, x2) is an eigenvector of A if and only if xk is an
eigenvector of Ak for k = 1, 2.

Likewise, from equation (1), we deduce that

2K(x1, x2) = (K1(x1), K2(x2)) ,

and so an analogous statement holds for K. Hence, we conclude that A and
K share a common eigenbasis precisely when Ak and Kk commute for each
k = 1, 2.

Corollary 13. Under the assumptions of Proposition 12, the following are
equivalent:

(1) M1 is curvature adapted to Q1;
(2) M1 is curvature adapted to Q1 ×Q2;
(3) M1 ×Q2 is curvature adapted to Q1 ×Q2.

Proof : Equivalence of the first and second statements follows by specializing
Proposition 12 to the case where M2 is a single point – which is obviously
curvature adapted toQ2. On the other hand, equivalence of the first and third
statements follows by applying Proposition 12 to the case where M2 = Q2.
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In particular, Corollary 13, together with Gray’s Theorem, implies that
any surface in SO(3) (or SU(2)) gives rise to a curvature adapted tubular
hypersurface in SO(3) × G2, where the second factor is a bi-invariant Lie
group of arbitrary dimension.

Appendix A.
Here we present a direct proof of the following obvious corollary of Theorem
1:

Corollary 14. Assume that the normal bundle of M is abelian. If A = µ id
for some µ ∈ R, then ej(〈N,Eh〉) = 0 for all j, h ∈ {1, . . . ,m} such that
λj 6= λh.

Proof : Suppose the j-th eigenvalue λj of K has multiplicity r, meaning that
there exists a multi-index (j1, . . . , jr) of length r ≤ m such that j1, . . . , jr ∈
{1, . . . ,m} and λj = λj1 = · · · = λjr .

Assume thatNM is abelian. Since α commutes withK, the j-th eigenspace
Λj = span(ej1, . . . , ejr) is invariant under α. Indeed, from α(K(ej)) =
λjα(ej) = K(α(ej)), we observe that α(ej) is an eigenvector of K corre-
sponding to the eigenvalue λj.

Assume that A = µ id for some µ ∈ R. Then, for every j 6= h,

〈A(ej), eh〉 = 0 ,

which, by equation (6), is equivalent to

〈α(ej), eh〉 = −ej(〈N,Eh〉) .
Now, if eh ∈ Λj, then λh = λj. Else, if eh /∈ Λj, then ej(〈N,Eh〉) = 0

because α(ej) ∈ Λj.
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